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Abstract—Predicting the minimum operating voltage (Vi)
of chips is one of the important techniques for improving the
manufacturing testing flow, as well as ensuring the long-term
reliability and safety of in-field systems. Current V,,,;, prediction
methods often provide only point estimates, necessitating addi-
tional techniques for constructing prediction confidence intervals
to cover uncertainties caused by different sources of variations.
While some existing techniques offer region predictions, but they
rely on certain distributional assumptions and/or provide no
coverage guarantees. In response to these limitations, we propose
a novel distribution-free V,,;, interval estimation methodology
possessing a theoretical guarantee of coverage. Our approach
leverages conformalized quantile regression and on-chip monitors
to generate reliable prediction intervals. We demonstrate the
effectiveness of the proposed method on an industrial Snm
automotive chip dataset. Moreover, we show that the use of on-
chip monitors can reduce the interval length significantly for V.,
prediction.

Index Terms—chip performance prediction, on-chip monitors,
conformal prediction, quantile regression

I. INTRODUCTION

Measurement of the minimum operating voltage (Vi) is
one of the important testing procedures to determine chip
performance. It facilitates the detection of inferior products,
the conservation of power consumption, and the indication of
potential early life failures. As technology nodes keep scaling,
Vinin tests via structural test patterns (e.g., SCAN) become
more and more crucial and necessary to screen out tiny flaws
and defects [1] inside chips.

Conventional V,,;, measurements involve testing chips at
a high operating voltage and decreasing step by step until
they fail, which is time-consuming. Moreover, such a strategy
is exclusively applicable in the manufacturing test process,
but not in-field systems. To this end, researchers propose to
build machine learning based V/,,,;,, predictors utilizing low-cost
features, such as parametric testing data from the production
test flow and on-chip monitor data for the in-field prediction
[2]-[5]. Many regression models have been explored recently,
including linear regression [4], Gaussian Process (GP) [3], and
Neural Network (NN) [5]. For instance, Chen demonstrated a
low-cost approach to predict the system F},,, (the maximum
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Table I: Comparison of uncertainty quantification methods

Property Bayesian Ensemble QR CP CQR
Distribution-free X 4 v v v
Agnostic model X X v v v
Coverage guarantee

for test data X X X v v
Adaption to

heteroscedasticity v v v d v
Computational efficiency X X v v v

operating frequency) using the structural F,,,, of flip flops [3]
via a GP model, whose kernel hyperparameter length scales are
used as indicators of the significance of features. Yin adopted a
constrained NN to capture the monotonicity between RO delay
and V,,;, degradation [5]. Although these methods provide
promising point estimation for V,,,;,, additional techniques are
still required to construct prediction intervals to ensure high
coverage of true V,;, to account for the uncertainties due to
variations of process, voltage, temperature, operating frequency,
application mode, etc.

Uncertainty Quantification (UQ) for machine learning pro-
vides the model’s confidence interval. Commonly employed
UQ methods include 1) Bayesian approaches such as GP
[6] and Bayesian neural networks [7], 2) neural networks
ensemble [8], and 3) Quantile Regression (QR) [9]. While these
methods excel at estimating uncertainty within the training
data distribution, their prediction intervals often lack a reliable
coverage guarantee for new testing data. Consequently, none
of these approaches fully meet the stringent demands of the
silicon industry for generating robust V,,;, intervals to ensure
high reliability.

Conformal Prediction (CP) [10] emerges as a promising
distribution-free UQ method for constructing intervals based
on any point predictor while offering a nonasymptotic coverage
guarantee. CP leverages a calibration dataset to assess the un-
certainty associated with a fitted regression model by analyzing
its prediction residuals. However, vanilla CP exhibits limitations
as a Vi, region predictor, as it constructs constant intervals
for all testing samples, potentially leading to excessive margins
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Figure 1: V,,,;,, prediction flow

for normal chips and inadequate coverage for anomalous ones.

To this end, we propose a distribution-free V,,;, interval
prediction framework with a theoretical coverage guarantee.
Our approach leverages Conformalized Quantile Regression
(CQR) and on-chip monitors to construct prediction intervals.
Our primary contributions are outlined as follows:

» We conduct a comprehensive comparison among various
Vimin point predictors for our industrial dataset. We discover
that while no golden model outperforms others for all scenarios,
the prediction accuracy of linear regression is competitive
overall. Moreover, on-chip monitors are capable of predicting
future V,,,;,, degradation.

e We introduce CQR to the context of V/,,;, interval estima-
tion, showcasing its better performance in terms of coverage
rate and interval length when compared to alternative UQ
models.

» Through empirical analysis, we demonstrate that the inclu-
sion of on-chip monitor data yields substantial improvements
in the precision of interval predictions.

II. PRELIMINARIES
A. Point Prediction

For the task of V,,;, point estimation, in both the product
flow and in-field scenarios, the objective remains consistent:
utilizing a set of features to predict a single value. We denote
these features as a D dimension vector x € RP, the V,.n
as a real number y € R, and the point predictor as g,(-;0) :
RP — R, parameterized by 6. Given a training dataset of N
tested chips D = {(x;,y;)}}Y,, the predictor is optimized by
minimizing the mean of a loss function £,:

0" = argominﬁp (gp(X; 0),y), (1
where X = [xy,--- ,xn]T € RV*D is a matrix of inputs, and
y=[v1, -, vy~ € RY is a vector of true Vyin.

B. Region Prediction

In manufacturing test processes, engineers often face risks of
over-kill or under-kill when relying solely on V,,;, point pre-
dictions to identify abnormal products due to process variations.
In in-field scenarios, point estimation can be highly unreliable
due to the presence of numerous environmental uncertainties.

Consequently, the utilization of prediction intervals becomes
essential for effectively detecting outliers and identifying po-
tential failures.

Unlike point estimation, which only generates a single value
for an input example, region prediction provides an interval
prediction. A region regressor g,(-; 00, 01;) : RP — R, con-
sisting of a pair g,(;0;,) : R? — R and g,(;05;) : RP - R
of the lower and the upper bound function, maps a sample x
to a closed region C'(x):

C(x) = [9p(x5 010, gp(x§9hi)]~ 2

Given a coverage rate 1 — o where « € [0, 1] and the training
dataset D, the prediction intervals of a region regressor g,
should be able to cover at least 1 — « labels:

P{y € C(x)|(x,y) €D} > 1 —a. 3)

We introduce two well-known region regression methods
satisfying Eq. (3): Gaussian process and quantile regression.
Their theoretical traits are summarized in Table I.

1) Gaussian Process (GP): GP is a non-parametric Bayesian
method that provides a posterior Gaussian distribution for any
testing point [6]. Suppose the posterior mean is u(x) € R and
the posterior variance is 02(x) > 0 for sample x, we are able
to construct an interval C'(x) satisfying Eq. (3):

C(x) = [u(x) + Koo (x), p(x) + Knio(x)], (4

where K;, = @7 1(a/2) < 0, Kj; = @ 1(1—a/2) > 0, and ®
is the cumulative distribution function of the standard Gaussian
distribution.

2) Quantile Regression (QR): Apart from traditional regres-
sion analysis with Mean Square Error (MSE) loss that estimates
the conditional mean of V,,;,, QR estimates the conditional
quantile [9]. Given a quantile ¢ € [0, 1], a QR muodel is trained
to minimize the quantile loss [9] £, in Eq. (1):

EQ(yﬂy) = max{q(y_y)ﬂ(l_q)(y_Y)}v (5)

where § = g,(x; ) is the prediction of quantile V,,;y.

By selecting two different quantiles g;, = /2 and gp; = 1—
a/2, we can train two quantile regressors, the interval between
which achieves the coverage in Eq. (3).

QR can be easily added to any point regressor where its
objective is to minimize the MSE loss by applying the pinball
loss instead.

III. METHODOLOGY
A. Overview of Vy,in Prediction

Our Vi, prediction framework is depicted in Fig. 1, where
four stress read points are drawn for illustration. V,,;, at
each stress read point will be predicted. The horizontal dash
line (min_spec) stands for the product specification of the
minimum operating voltage, i.e., device with V,,,;, higher than
that threshold will violate the specification and likely become
a failure.

We utilize low-cost parametric data and on-chip data to
predict V,,,;, at time zero and subsequent read points during
stress simulated in-field life. Note that stress is done at an
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elevated voltage such that a much shorter stress duration is
equivalent to a much longer in-field life. Specifically, two kinds
of V,,in prediction scenarios are considered: in the production
test flow, and in the in-field deployment which is simulated by
accelerated stress. In the first case, both production parametric
test data and on-chip data are included to build V,,,;,, predictors.
In the second case, however, we make V,,;, degradation
prediction based on all accessible features before the V,,,;,, test
timestamp, including production parametric test data at time
zero and on-chip data measured at all previous read points
during stress. In our industrial dataset, both V;,,;,, and on-chip
data are collected at the same read point, and the total number
of read points is relatively small, i.e., less than 10. In this
case, time series methods would suffer over-fitting problems.
Thus, we treat on-chip data at different read points as different
features, and apply CQR to predict V,,;, intervals.

Since CQR is originated from CP, we first briefly summarize
how CP works, and then present CQR for V,,;, interval
prediction.

B. Conformal Prediction (CP)

Even though the coverage of prediction intervals is guaran-
teed for the training dataset D in GP and QR, such characteristic
is not held for a testing instance (Xn41,yN+1):

P{yns1 € Clxn41)} > 1—c (6)

The adoption of the aforementioned two region predictors for
new examples is risky without the coverage guarantee.

In semiconductor industry, all chips can be viewed as ex-
amples from a hidden distribution: {(x;,y;)}Y+! are sampled
ii.d. from a distribution Pxy. CP can help to calibrate any
heuristic interval to meet the coverage guarantee in Eq. (6) [10].
CP has two main versions: full CP and split CP. In regression
tasks, full CP needs infinite times of model fitting, rendering
it impossible for practical usage. On the contrary, split CP is
more computationally efficient with the scarification of splitting
the training dataset.

We outline how split CP utilizes a V},;, point predictor g,
to generate a interval C(x) for x:

« Split the training dataset D into a new training dataset Dy,.,
and a small calibration dataset D, such that D;,. U D,., = D,
and Dy N Doy = .

« Fit the point regressor g, in Dy,.

« Compute ¢ as the [(M +1)(1 — «)]/M-th quantile of the
conformal score function s(x,y) of absolute residuals in the
calibration set D, :

5(x,y) = |y — 9p(x; 0)], (7

where M is the number of examples in D,,.
» Construct the interval for x4 1, satisfying Eq. (6):

gp(xn41;0) + 4. (8)

C. Conformalized Quantile Regression (COR)

While split CP satisfies the coverage guarantee, the length
of predicted intervals is 2g, remaining fixed to different inputs.

Clxn+1) = [gp(xn11:0) — 4,

Table II: Input feature description

Attribute Parametric On-chip (ROD)  On-chip (CPD)
Quantity 1800 168 10
Temperature (°C) -45, 25, 125 25 80

Read point (hour) 0 0, 24, 48, 168, 504, 1008

This property may incur overkill for good products and un-
derkill for defective ones. CQR, however, is a variant interval
prediction method combining CP and QR together.

We describe the procedures of split CQR:

« Split the training dataset D .

« Fit the quantile regressor g, in Dy,.

« Compute ¢ as the [(M +1)(1 — «)]/M-th quantile of the
conformal score function s(x,y) in D.,, where

Y = gp(%;0ni)}. (9)
 Construct the interval for x4 satisfying Eq. (6):
9p(XN4+1;6ri) + G]. (10)

CQR inherits good features of CP and QR, as shown in
Table I. It is shown empirically effective in achieving the
shortest interval length than CP and QR across 11 datasets
while persisting the designed coverage rate [11]. Herein, we
adopt it for reliable V,,,;,, interval prediction.

S(Xa Y) = max{gp (X; 0lo) -y,

C(xn+1) = [gp(xN+1;00) — G

IV. EXPERIMENTAL RESULTS
A. Industrial Dataset

Our experiments use 156 5Snm automotive chips to demon-
strate the effectiveness of the proposed V;,,;, prediction frame-
work. As shown in Fig. 1, parametric data and on-chip monitor
data are considered for V,,,;, prediction. We describe how the
input features and the output V,,,;, are collected.

All 156 chips go through the dynamic Dhrystone stress
at elevated voltage in Burn-In (BI) oven for 1008 hours to
simulate in-field long-term aging degradation. At specific stress
read points, i.e., 0, 24, 48, 168, 504, and 1008 hours, we pause
the stress process and 1) test SCAN V,,;,, 2) perform the
parametric tests, and 3) collect on-chip monitor data. SCAN
Vinin is tested on Automatic Test Equipment (ATE) tester,
at temperatures of -45°C, 25°C, and 125°C. The parametric
tests are also performed on ATE tester, including IDDQ, trip
IDD, leakage, etc., across all three temperatures. The chip has
two types of on-chip monitors: domain sensors which include
Ring Oscillator Delay (ROD) sensors and in-situ Critical Path
Delay (CPD) sensors. In our experiment, due to hardware and
logistic process limitations, ROD is measured on ATE at room
temperature (25°C) only while CPD is measured in-situ in BI
oven at 80C. We summarize the traits of input features in
Table II.

B. Experimental Settings

We illustrate the features used for V,,;, prediction at each
read point and the evaluation metrics for point prediction and
interval regression. As shown in Fig. 1, for the prediction of
Vinin at time 0, both parametric test data and on-chip monitor
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Figure 2: SCAN V,,,;,, point prediction

data collected at time O are utilized to predict V,,;,; For the
prediction of V,,,;,, at the subsequent read points to enable in-
field failure prediction, we use on-chip monitor data collected
at all previous read points and parametric data collected at time
0, because parametric tests are no longer possible once chips
are shipped to customers and deployed in-field.

For Vi, point prediction, the performance criteria are the
coefficient of determination (R2) and Root Mean Square Error
(RMSE); For V,,;, region prediction, the metrics are the
average interval length and the coverage of true V,,;, of the
testing data.

To reduce the influence of randomization, a 4-fold cross-
validation is adopted. We report the average score of each
metric across the 4 testing folds. In CQR, 75% training data
are used to train predictors while the remaining 25% chips are
held for calibration. To ensure a fair comparison, we use the
same random seed for all V,,;,, interval predictors.

C. Descriptions of Vyp,in Point Regressors

ML models with fewer learnable parameters and simpler
structures are more favorable for our high-dimensional small
data scenario. Moreover, feature selection is an essential di-
mension reduction technique for some ML models to avoid
overfitting problems.

Firstly, we demonstrate model selection for V,;, point
prediction. 5 regressors are considered: Linear Regression (LR),
Gaussian Process (GP) [6], XGBoost [12], CatBoost [13], and
a 2-layer Neural Network (NN). The detailed configurations of
each regressor except LR are provided below:

1) Gaussian Process: GP utilizes a radial basis function ker-
nel, whose parameters are optimized to maximize the likelihood
of training data.

2) XGBoost: We utilize the default hyper-parameters in the
XGBoost Python package.

3) CatBoost: We utilize the default hyperparameters in the
CatBoost Python package except for one hyper-parameter: the
number of boosting trees. The default number is 1000, which
seems too large for our small dataset including 156 chips, and
potentially causes over-fitting. Therefore, we reduce it to 100.

4) Neural Network: We consider a shallow fully-connected
multilayer perceptron (MLP) with one hidden layer containing
16 neurons with Rectified Linear Units (ReLU) [14] activation
functions. The optimizer is Adam [15] whose learning rate is
0.01, the number of epochs is 3000, and the weight of Lo
penalty is 0.1. These configurations are the same as [5].

Then, we discuss how to select a small set of informative
features among thousands of input data. For XGBoost and
CatBoost which have an intrinsic feature selection mechanism,
all raw data are directly fed to regressors. For the rest of the
three methods, we apply Correlation Feature Selection (CFS)
[16] with the Pearson correlation to pick 1 to 10 features as
input data and report the best testing scores.

D. V,..n Point Prediction Results

The R? of V,,;, point predictions of regression models are
depicted in Fig. 2 For SCAN V,,;, tested at time 0, while
CatBoost is the best method across all three temperatures, linear
regression is also performing well with a small drop of R2,
which is less than 0.03. For all methods except GP, the RMSE
for V,,;, point predictions are within 2.5mV to 7TmV (12mV
to 22mV for GP) for all scenarios, and exhibiting similar com-
parison as R? among different models, i.e., CatBoost performs
best for time O prediction while linear regression performs
reasonably well overall. As linear regression is straightforward
to implement by either software or hardware, it is a sufficiently
good option for V,,;,, time O prediction in industrial production
tests.

For V,,i, degradation prediction, no regression model is
outperforming the rest across all temperatures and stress read
points, in terms of R? and RMSE. We note that linear regres-
sion is still performing reasonably well, and even the best one
for predicting SCAN V/,,;,, at 25°C and 125°C, for both R? and
RMSE. With its simplicity, implementing a linear regression
model with an on-chip hardware accelerator seems to be a
viable option for in-field V,,;, degradation prediction.

In addition, an interesting observation is that there is no clear
reduction of R? in SCAN V,,,;,, degradation prediction accuracy
from O to 1008 hours. It demonstrates that our design of on-chip
monitors captures informative gate-level features that exhibit a
strong correlation with system-level V.

E. Descriptions of Vy,in Region Regressors

We consider three interval prediction methods: GP, QR, and
CQR. QR and CQR are built on 4 point regressors: LR, NN,
XGBoost, and CatBoost. The configurations of these models
are the same as those in Section IV-C. We set o = 0.1 and let
predictors generate an interval with 5% to 95% coverage.

FE V,.in Region Prediction Results

The average length of prediction intervals of SCAN V,;,
and coverage rates are shown in Table III. Both GP and QR
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Table III: Average length and coverage of prediction intervals for SCAN V,,,;,, across 156 chips

Stress Time Method -45°C 25°C 125°C
(Hour) Length (mV)  Coverage (%) Length (mV) Coverage (%) Length (mV) Coverage (%)

GP 61.96 85.9 48.56 93.59 51.88 89.1

QR Linear Regression 51.0 91.03 14.14 83.33 15.98 83.33

QR Neural Network 30.44 66.84 18.28 5391 21.33 52.83

QR XGBoost 50.31 51.28 28.22 89.1 30.96 82.05

0 QR CatBoost 2.48 10.26 0.98 14.1 1.37 24.36
CQR Linear Regression 53.76 92.95 17.37 95.51 19.39 91.03

CQR Neural Network 114.3 94.81 52.75 93.11 77.54 94.01

CQR XGBoost 60.84 95.51 31.91 92.95 48.48 98.72

CQR CatBoost 24.11 91.67 13.94 92.95 12.72 91.67

GP 56.76 84.93 48.64 94.87 50.53 87.74

QR Linear Regression 26.7 85.62 18.3 80.13 13.28 85.16

QR Neural Network 24.19 68.67 16.33 49.52 19.78 53.68

QR XGBoost 43.27 39.04 32.64 87.18 30.28 86.45

24 QR CatBoost 1.54 3.42 1.38 19.87 1.77 20.65
CQR Linear Regression 43.1 99.32 20.68 89.74 17.07 95.48

CQR Neural Network 117.82 97.01 53.66 93.34 84.99 95.45

CQR XGBoost 65.3 99.32 43.5 92.95 42.41 92.9

CQR CatBoost 27.1 97.95 16.58 94.87 15.34 93.55

GP 56.83 81.13 49.84 89.72 53.84 82.24

QR Linear Regression 29.77 84.91 20.03 81.31 13.98 82.24

QR Neural Network 29.66 68.04 44.71 92.05 26.14 50.79

QR XGBoost 4543 45.28 35.78 85.98 48.6 84.11

48 QR CatBoost 1.64 11.32 1.07 16.82 1.79 19.63
CQR Linear Regression 36.92 93.4 29.34 94.39 20.61 93.46

CQR Neural Network 100.62 95.59 58.75 95.62 80.64 95.07

CQR XGBoost 62.81 98.11 49.82 94.39 55.12 95.33

CQR CatBoost 24.3 95.28 29.61 96.26 19.23 89.72

GP 54.45 79.81 50.43 84.91 54.42 85.58

QR Linear Regression 26.05 81.73 44.0 89.62 12.27 81.73

QR Neural Network 27.74 72.68 43.56 84.12 26.03 48.32

QR XGBoost 38.27 75.96 39.89 84.91 49.65 85.58

168 QR CatBoost 1.81 19.23 0.71 13.21 1.78 20.19
CQR Linear Regression 36.28 92.31 51.35 94.34 17.09 89.42

CQR Neural Network 82.98 95.33 60.16 95.48 80.99 95.42

CQR XGBoost 56.65 96.15 48.61 94.34 57.75 92.31

CQR CatBoost 28.71 93.27 20.49 91.51 20.49 92.31

GP 52.61 77.0 52.63 88.46 54.23 79.61

QR Linear Regression 25.46 83.0 37.71 88.46 26.14 88.35

QR Neural Network 25.51 70.39 46.33 92.16 48.65 83.49

QR XGBoost 359 78.0 43.14 84.62 47.71 83.5

504 QR CatBoost 1.43 12.0 1.54 18.27 2.24 20.39
CQR Linear Regression 31.2 91.0 45.21 93.27 32.05 94.17

CQR Neural Network 66.13 93.37 53.44 92.79 72.25 94.76

CQR XGBoost 46.81 93.0 46.83 87.5 58.74 96.12

CQR CatBoost 21.17 96.0 19.01 92.31 16.15 94.17

GP 53.18 78.12 52.45 91.84 53.22 82.65

QR Linear Regression 29.75 88.54 42.63 88.78 32.28 80.61

QR Neural Network 20.2 50.3 19.89 39.14 31.47 51.9

QR XGBoost 37.18 79.17 45.19 84.69 46.0 82.65

1008 QR CatBoost 1.72 17.71 1.64 13.27 1.89 24.49
CQR Linear Regression 323 89.58 47.25 94.9 36.53 91.84

CQR Neural Network 78.55 98.2 66.8 93.08 65.86 92.25

CQR XGBoost 44.14 89.58 47.11 91.84 51.44 96.94

CQR CatBoost 17.64 93.75 18.7 94.9 14.68 89.8
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Figure 3: The average interval length of CQR CatBoost for
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Table IV: SCAN V,,,;,, interval prediction via CQR CatBoost
averaged across all stress time read points

Feature type Avg Interval Length (mV’)

-45°C 25°C 125°C Average
Parametric 29.44 24.38 22.14 25.32
On-chip 29.32 22.22 19.44 23.66
On-chip and Parametric 23.84 19.72 16.43 20.00
On-chip monitor gain 19.02% 19.11%  25.79%  21.01%

underestimate the interval for testing chips, failing to meet
the designed coverage rate. CQR, in contrast, successfully
calibrates the undercovered interval predictions of QR across
all stress read points and temperatures, underscoring the im-
portance of applying conformal prediction for reliable region
predictions.

CQR performs differently with different point regression
models. The best variant is CQR CatBoost, achieving the
shortest intervals with around 90% coverage rate. While LR
is competitive for point prediction in Section IV-D, its CQR
version predicts larger intervals than CQR CatBoost, especially
for SCAN V,,;», at -45°C and 25°C.

G. Benefits of On-chip Monitors

We present evidence supporting the value of on-chip monitor
data in the prediction of V,,;, intervals. Fig. 3 illustrates the
interval length of CQR CatBoost with three types of feature
sets: 1) parametric test data and on-chip monitor data (same
to Section IV-F), 2) parametric test data only, and 3) on-chip
monitor data only. In addition, Table IV summarizes the average
length across all read points of SCAN V,,,;,, during stress.

Compared to utilizing parametric data only, the inclusion of
on-chip monitor data results in a reduction of 21.01% in the
average interval length. Intriguingly, a CQR CatBoost model
relying solely on on-chip monitor data outperforms the same
model using only parametric test data, despite the much larger

number of parametric data (Table II). This implies the on-chip
monitor data could contain more information that facilitates
Vinin €stimation.

V. CONCLUSION

We propose a distribution-free V,,,;, interval estimation
framework possessing a statistical coverage guarantee. By
harnessing CQR in conjunction with on-chip monitor data, our
approach achieves an average interval length of 20mV with
a 90% coverage rate for true V,,;, values on our industrial
dataset. In the future, we will explore how to embed the
proposed method 1) in the production test flow to accelerate the
Vinin test and enhance the yield while screening out outliers,
and 2) in the in-field systems to secure long-term reliability
and safety.

ACKNOWLEDGMENT

The content of this paper has been developed with the
support of Grant No. 1956313 from the National Science
Foundation (NSF) and has also received partial funding from
a Long Term University (LTU) grant provided by NXP.

REFERENCES

[1] C. He and Y. Yu, “Wafer level stress: Enabling zero defect quality for
automotive microcontrollers without package burn-in,” in 2020 [EEE
International Test Conference (ITC), 2020, pp. 1-10.

[2] T-B. Chan, P. Gupta, A. B. Kahng, and L. Lai, “Ddro: A novel

performance monitoring methodology based on design-dependent ring

oscillators,” in Thirteenth International Symposium on Quality Electronic

Design (ISQED), 2012, pp. 633-640.

J. Chen, J. Zeng, L.-C. Wang, J. Rearick, and M. Mateja, “Selecting the

most relevant structural fmax for system fmax correlation,” in 2010 28th

VLSI Test Symposium (VTS), 2010, pp. 99-104.

[4] W.-C. Lin, C. Chen, C.-H. Hsieh, J. C.-M. Li, E. J.-W. Fang, and S. S.-

Y. Hsueh, “Ml-assisted vminbinning with multiple guard bands for low

power consumption,” in 2022 IEEE International Test Conference (ITC),

2022, pp. 213-218.

Y. Yin, R. Chen, C. He, and P. Li, “Domain-specific machine learning

based minimum operating voltage prediction using on-chip monitor data,”

in 2023 IEEE International Test Conference (ITC), 2023, pp. 99-104.

[6] D. J. MacKay, Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[7]1 L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun,
“Hands-on bayesian neural networks—a tutorial for deep learning users,”
IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp. 29-48,
2022.

[8] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[9] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica:

Journal of the Econometric Society, pp. 33-50, 1978.

G. Shafer and V. Vovk, “A tutorial on conformal prediction.” Journal of

Machine Learning Research, vol. 9, no. 3, 2008.

Y. Romano, E. Patterson, and E. Candes, “Conformalized quantile re-

gression,” Advances in neural information processing systems, vol. 32,

2019.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, 2016, pp. 785-794.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,

“Catboost: unbiased boosting with categorical features,” vol. 31, 2018.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-

mann machines,” in Proceedings of the 27th International Conference on

International Conference on Machine Learning, ser. ICML’10. Madison,

WI, USA: Omnipress, 2010, p. 807-814.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

M. A. Hall, “Correlation-based feature selection for machine learning,”

Ph.D. dissertation, The University of Waikato, 1999.

3

—

[5

—_

[10]

[11]

[12]

[13

—

[14]

[15]

[16]

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 08,2024 at 00:26:35 UTC from IEEE Xplore. Restrictions apply.



