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Abstract

We give the first super-polynomial (in fact, mildly exponential) lower bounds for tolerant testing
(equivalently, distance estimation) of monotonicity, unateness, and juntas with a constant separation between
the “yes” and “no” cases. Specifically, we give

• A 2Ω(n1/4/
√
ε)-query lower bound for non-adaptive, two-sided tolerant monotonicity testers and unateness

testers when the “gap” parameter ε2 − ε1 is equal to ε, for any ε ≥ 1/
√
n;

• A 2Ω(k1/2)-query lower bound for non-adaptive, two-sided tolerant junta testers when the gap parameter
is an absolute constant.

In the constant-gap regime no non-trivial prior lower bound was known for monotonicity, the best prior lower
bound known for unateness was Ω̃(n3/2) queries, and the best prior lower bound known for juntas was poly(k)
queries.

1 Introduction

A monotone Boolean function f : {0, 1}n → {0, 1} is one for which f(x) ≤ f(y) whenever x is coordinate-
wise less than or equal to y, and a k-junta f : {0, 1}n → {0, 1} is a function which depends on at most k
of its n input coordinates. Monotonicity testing, the closely related problem of unateness1 testing, and junta
testing are among the most fundamental and intensively studied problems in the field of property testing of
Boolean functions; indeed, many of the earliest and most influential works in this area study these problems
[GGL+00, DGL+99, FLN+02, PRS02, FKR+04].

Many different variants of these testing problems have been analyzed by now, including functions with non-
Boolean domains and ranges (see e.g. [DGL+99, FLN+02, HK07, BCGM12, CS13b, BCS18, BCS20, PRW22,
BCS23, BKKM23, FKR+04, Bla09]) and distribution-free testing (see e.g. [HK07, LCS+19, Bsh19]). In this
paper we study the original setting for each of these testing problems, i.e. we consider Boolean functions
f : {0, 1}n → {0, 1} and we measure distance between functions with respect to the uniform distribution over
{0, 1}n.

After two decades of intensive research, the original problems of testing whether an unknown f :
{0, 1}n → {0, 1} is monotone/unate/k-junta versus ε-far from being monotone/unate/k-junta are now quite
well understood. We briefly recall the current state of the art:

• Monotonicity: Building on [GGL+00, CS13a, CST14], Khot et al. [KMS18] gave an Õ(
√
n/ε2)-query

non-adaptive monotonicity testing algorithm with one-sided error.2 An Ω̃(
√
n)-query lower bound for non-

adaptive two-sided testers was given by Chen et al. [CWX17a] (strengthening earlier non-adaptive lower
bounds in [FLN+02, CST14, CDST15]); [CWX17a] also gave an Ω̃(n1/3)-query lower bound for adaptive
algorithms with two-sided error. Thus far, no known algorithms for monotonicity testing use adaptivity.
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1A Boolean function f : {0, 1}n → {0, 1} is unate if g(x) = f(x ⊕ r) is monotone for some r ∈ {0, 1}n, where ⊕ denotes

coordinate-wise XOR; equivalently, f is either nondecreasing or nonincreasing in each coordinate.
2A tester is non-adaptive if the choice of its i-th query point does not depend on the responses received to queries 1, . . . , i− 1. A

one-sided tester for a class of functions is one which must accept every function in the class with probability 1.
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• Unateness: In [CS16] Chakrabarti and Seshadhri gave an Õ(n/ε)-query non-adaptive unateness tester with
one-sided error (see also [GGL+00, BCP+20]), and Chen et al. [CWX17a] gave a near-matching Ω̃(n)-query
lower bound for this setting. Chen and Waingarten [CW19] gave an Õ(n2/3/ε2)-query adaptive algorithm
with one-sided error, strengthening prior adaptive algorithms [KS16, BCP+20, CWX17c]. The [CW19]
adaptive algorithm is near-optimal, since Chen et al. [CWX17b] gave an Ω̃(n2/3)-query lower bound for
two-sided adaptive testers.

• Juntas: State-of-the-art adaptive algorithms for testing k-juntas due to [Bla09, Bsh19] use Õ(k/ε)
queries, and near-matching Ω̃(k/ε)-query lower bounds are known for adaptive algorithms [Sağ18] (see
also [PRS02, CG04, FKR+04, BGMdW13, STW15] for a long line of earlier works). For non-adaptive
testers, in [Bla08] Blais gave an Õ(k3/2)/ε-query algorithm, and Chen et al. gave an essentially matching
Ω̃(k3/2/ε) lower bound in [CST+18].

To summarize, for all three of the properties we consider — being monotone, being unate, and being a k-junta
— matching or near-matching polynomial upper and lower bounds are known, for both adaptive and non-adaptive
algorithms, for testing whether a function perfectly satisfies the property or is ε-far from having the property.

Tolerant Testing. The requirement that functions in the “yes-case” of standard property testing must exactly
satisfy the property means that algorithms under this framework may be undesirably brittle; thus it is natural
to consider a noise-tolerant variant of standard property testing. With this motivation, in [PRR06] Parnas et
al. introduced a natural generalization of standard property testing, which they called tolerant property testing.
For parameters 0 ≤ ε1 < ε2, an (ε1, ε2)-tolerant tester for a class of functions is a query algorithm which must
accept with high probability if the input is ε1-close to some function in the class and reject with high probability
if the input is ε2-far from every function in the class (so “standard” testing corresponds to (0, ε)-tolerant testing).

It is well known [PRR06] and not difficult to see that tolerant property testing is essentially equivalent to
the problem of estimating the distance to the nearest function that has the property. Thus, results on tolerant
testing can alternately be phrased as results on distance estimation, but for simplicity throughout this paper we
will describe our results in terms of tolerant testing.

Tolerant property testers clearly enjoy an attractive level of robustness that typically is not shared by standard
property testers. For this and other reasons, much property testing research in recent years has attempted to give
algorithms and lower bounds for tolerant testing of various properties. However, while it is widely believed that
tolerant testing is generally a hard algorithmic problem, it has proved to be quite challenging to establish strong
upper or lower bounds on the query complexity of tolerant testing; much less is known here than in the standard
(non-tolerant) setting. This lack of understanding is particularly acute for the three problems of monotonicity,
unateness, and juntas which are our focus. We recall the state of the art prior to our results:

• Tolerant Monotonicity and Unateness Testing: Little is known about non-trivial algorithms for

tolerant monotonicity or unateness testing. It is folklore that the known 2Õ(
√

n/ε)-query agnostic
learning algorithms for monotone (respectively, unriable Boolean functions [BT96, KKMS08, FKV17] imply

the existence of (ε1, ε2)-tolerant non-adaptive testing algorithms with query complexity 2Õ(
√

n/(ε2−ε1)).
Strengthening earlier work of [FR10], Pallavoor et al. [PRW22] gave an efficient algorithm for the case
when there is a large multiplicative gap between ε1 and ε2; their algorithm uses poly(n, 1/ε) queries to
non-adaptively (ε, Õ(

√
n) · ε)-test monotonicity. Turning to lower bounds, Pallavoor et al. [PRW22] showed

that for 0 < κ < 1/2, any non-adaptive (1/n1−κ, 1/
√
n)-tolerant tester for monotonicity or unateness must

make at least 2n
κ

queries. We note that while this can give a strong lower bound in certain regimes when all
of ε1, ε2, ε2 − ε1 are inverse-polynomially small, it does not give any lower bound when any of these values
is lower bounded by a constant. Prior to the current work, the only known lower bound in the constant-gap
regime was due to Levi and Waingarten [LW19], who showed that for constants 0 < ε1 < ε2, tolerant
unateness testing requires Ω̃(n) (possibly adaptive) queries and requires Ω̃(n3/2) non-adaptive queries.

• Tolerant Junta Testing: De et al. [DMN19] obtained a 2k · poly(k, 1/(ε2 − ε1))-query non-adaptive
algorithm for testing k-juntas, and subsequently Iyer et al. [ITW21] gave an adaptive algorithm which makes

2Õ(
√

k/(ε2−ε1)) queries. In terms of lower bounds, the above-mentioned result of Pallavoor et al. [PRW22]
for the “small gap” regime also holds for n/2-junta testing, which implies that for 0 < κ < 1/2, any
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Upper Bound Prior Work This Work

Monotonicity exp( 󰁨O(
√
n))

(Folklore)

󰁨Ω(√n)

[CWX17a]

exp(Ω(n1/4))

(Theorem 1.1)

Unateness exp( 󰁨O(
√
n))

(Folklore)

󰁨Ω(n3/2)

[LW19]

exp(Ω(n1/4))

(Theorem 1.1)

Juntas exp(O(k))

[DMN19]

kΩ(1)

[LW19, CP23]

exp(Ω(
√
k))

(Theorem 1.2)

Table 1: A summary of tolerant property testing upper and lower bounds for non-adaptive algorithms in the
constant gap regime (i.e. ε2 − ε1 = Θ(1)).

non-adaptive (1/k1−κ, 1/
√
k)-tolerant tester for k-juntas must make at least 2k

κ

many queries. In the
constant-gap regime, Levi and Waingarten [LW19] showed that for constants 0 < ε1 < ε2, any non-adaptive
(ε1, ε2)-tolerant k-junta tester must make Ω̃(k2) queries. Very recently Chen and Patel [CP23] have given
an Ω(k−Ω(log(ε2−ε1)))-query lower bound for adaptive k-junta testers, which is a poly(k)-query lower bound
when ε2 and ε1 differ by an additive constant.

Summarizing the above results, major gaps remain in our understanding of the complexity of (ε1, ε2)-tolerant
testing for all three properties of monotonicity, unateness, and being a k-junta. Given the presumed difficulty
of tolerant testing, this lack of knowledge seems to be most acute on the lower bounds side, and particularly in
the most interesting and natural regime in which ε1 < ε2 are constants independent of n. Indeed, in this setting,
even for non-adaptive testers the best known lower bound prior to the current work was Ω̃(n3/2) for unateness
[LW19] and poly(k) for k-juntas [LW19, CP23], and no lower bound seems to have been known for monotonicity
other than the Ω̃(

√
n) lower bound for standard (non-tolerant) non-adaptive monotonicity testing [CWX17a].

1.1 Our Results In this paper we give the first super-polynomial (in fact, mildly exponential) lower bounds
for non-adaptive tolerant testing of monotonicity, unateness and juntas when the separation ε2 − ε1 between
the “yes” and “no” cases is a constant independent of n. (Equivalently, via the standard connection to distance
estimation mentioned earlier, our results imply that a mildly-exponential number of queries are required to perform
distance estimation even to constant additive accuracy.)

In more detail, we prove the following main results:

Theorem 1.1. (Lower bounds on tolerant testers for monotonicity and unateness) For any ε ∈
(0, 1) with ε ≥ 1/

√
n, there exist ε1, ε2 > 0 with ε1 = Θ(ε) and ε2 − ε1 = Θ(ε) such that any non-adaptive

(ε1, ε2)-tolerant tester for monotonicity (or unateness) must make 2Ω(n1/4/
√
ε) queries.

Theorem 1.2. (Lower bounds on tolerant testers for k-juntas) Any non-adaptive (0.1, 0.2)-tolerant
tester for the property of being a k-junta must make 2Ω(k1/2) queries.

These results dramatically narrow the gap between lower and upper bounds when ε2 − ε1 is a constant.

Indeed, since as noted earlier there are known 2Õ(n1/2)-query non-adaptive monotonicity /unateness testers (based
on learning [BT96, KKMS08, FKV17]) and there is a known 2O(k)-query non-adaptive k-junta tester [DMN19]
in this setting, our lower bounds are off from the best possible algorithms by at most a quadratic factor in the
exponent. It is an intriguing goal for future work to locate the optimal non-adaptive query complexity of tolerant
monotonicity/unateness testing in the range between 2n

1/4

and 2
√
n, and likewise for junta testing in the range

between 2
√
k and 2k.

1.2 Techniques The central ingredient of our improved lower bounds for monotonicity and unateness testing
is a refinement and strengthening of a construction from [PRW22]. [PRW22] consider distributions Dyes and Dno

over n-variable “yes”- and “no”-functions, each of which involves a random partition of the n input variables into
a set of n/2 “control variables” and a complementary set of n/2 “action variables.” Intuitively, the interesting
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n-bit inputs for both “yes”- and “no”-functions are ones for which the n/2 control bits have n/4 coordinates
set to 0 and n/4 coordinates set to 1; on inputs of this sort, the setting of the action variables determines the
value of the function (a useful way to think of this is that each distinct input of this sort results in a different
“action subcube” determining the value of the function). The values of the function on the action subcubes are
carefully defined in such a way as to make it impossible for an algorithm to distinguish “yes”-functions from
“no”-functions unless two inputs x, x′ are queried which lie in the same action subcube (so the setting of the n/2
control bits is the same between the two inputs x and x′), but differ in many of the n/2 action variables. Very
roughly speaking, the non-adaptive lower bounds of [PRW22] follow from the fact that since the partition of [n]
into control variables and action variables is random and unknown, it is very unlikely for any two input strings
which are far apart (which they must be in order for the action variables to differ in many locations as sketched
above) to differ only in the n/2 action variables while being completely identical in the n/2 control variables.

It turns out that the analysis of [PRW22] is not able to handle “no”-functions that are more than Θ(1/
√
n)-far

from monotone/unate/junta essentially because the action bits are only consulted in their construction if the n/2
control bits are set in a perfectly balanced way (intuitively, this is because the middle layer of the n/2-dimensional
hypercube has a Θ(1/

√
n)-fraction of all points). Our key insight is to change the [PRW22] construction by using

(a small extension of) a construction of random monotone DNF formulas due to Talagrand [Tal96]. The purpose
of the extension is to let us handle general values of ε2 ≥ 1/

√
n, but for simplicity we restrict the following

discussion to the case that ε2 is a constant, in which case our construction coincides with Talagrand’s.
Talagrand’s random DNF is a 2

√
m-term monotone DNF formula over {0, 1}m (for us m will be the number

of control variables) which has the property that a constant fraction of points in {0, 1}m satisfy a unique term.
Like the points in the middle layer of the control subcube, these uniquely-satisfied points have the property that
any pair of points x, x′ which respectively satisfy two distinct unique terms Ti, Ti′ must be incomparable to each
other, i.e. they neither satisfy x ≤ x′ nor x′ ≤ x; this turns out to be essential for us due to the way that the
“yes” and “no” functions are defined within the action subcubes. Intuitively, we use these “uniquely-satisfied”
points in {0, 1}m in place of the “middle layer” of the control subcube, and rather than having each middle-layer
point map to a distinct action subcube we have all points which uniquely satisfy a given term Ti map to the same
action subcube.

The fact that a constant fraction of points in the control subcube satisfy a unique term in Talagrand’s random
DNF is ultimately why we are able to handle constant values of ε1, ε2. Our construction differs in some other
regards from the [PRW22] construction as well; to optimally balance parameters it turns out to be best for us to

have many fewer action variables than control variables, and our 2Ω(n1/4/
√
ε) query lower bounds ultimately come

from trading off constraints which arise from our use of the Talagrand DNF rather than the “middle layer” as in
[PRW22].

Our improved lower bound for junta testing follows a similar high-level approach, but the technical details
are simpler; it turns out that in this case, since we are not concerned with monotonicity there is no need to use
Talagrand DNF, and instead we use a straightforward indexing scheme in which each assignment to the control
bits indexes a different action subcube. (Intuitively, avoiding the use of the Talagrand DNF and the resulting
tradeoff which it necessitates is why we are able to achieve an exponent of 1/2 for juntas rather than the 1/4 that
we achieve for monotonicity and unateness.)

Finally, it is natural to wonder whether using some other function in place of the Talagrand DNF might lead
to an improved tradeoff, and hence a quantitatively better lower bound, for monotonicity or unateness testing.
In Section 6, we argue that the Talagrand function is in fact optimal for our approach, so improving on our lower
bounds for monotonicity or unateness will require a different construction.

2 Preliminaries

For an integer n, we use [n] to denote the set {1, . . . , n}. For two integers n1 ≤ n2, we use [n1 : n2] to denote
{n1, . . . , n2}.

We will denote the 0/1-indicator of an event A by 1{A}. All probabilities and expectations will be with
respect to the uniform distribution over the relevant domain unless stated otherwise. We use boldfaced letters
such as x,f , and A to denote random variables (which may be real-valued, vector-valued, function-valued, or
set-valued; the intended type will be clear from the context). We write x ∼ D to indicate that the random variable
x is distributed according to distribution D.
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Notation 1. Given a string x ∈ {0, 1}n and a set A ⊆ [n], we write xA ∈ {0, 1}A to denote the |A|-bit string
obtained by restricting x to coordinates in A, i.e. xA := (xi)i∈A.

Given two strings x, y ∈ {0, 1}n, we write x ≤ y to indicate that xi ≤ yi for all i; if moreover x ∕= y then we
may write x < y.

Given two Boolean functions f, g : {0, 1}n → {0, 1}, we define the distance between f and g (denoted by
dist(f, g)) to be the normalized Hamming distance between f and g, i.e.

dist(f, g) := Pr
x∼{0,1}n

󰀅
f(x) ∕= g(x)

󰀆
.

A property P is a collection of Boolean functions; we say that a function f : {0, 1}n → {0, 1} is ε-far from the
property P if f satisfies

dist(f,P) := min
g∈P

dist(f, g) ≥ ε.

We say f is ε-close from P if dist(f,P) ≤ ε.
We recall the following basic fact about the middle layers of the hypercube {0, 1}n:

Fact 2.1. We have
1

4
√
n
≤

󰀃
n

n/2+ℓ

󰀄

2n
≤ 1√

n
, for every integer ℓ with |ℓ| ≤ 0.1

√
n.

2.1 Lower Bounds for Testing Algorithms Our query-complexity lower bounds for tolerant testing
algorithms are obtained via Yao’s minimax principle [Yao77], which we recall below. (We remind the reader
that an algorithm for the problem of (ε1, ε2)-tolerant testing is correct on an input function f provided that it
outputs “yes” if f is ε1-close to the property and outputs “no” if f is ε2-far from the property; if the distance to
the property is between ε1 and ε2 then the algorithm is correct regardless of what it outputs.)

Theorem 2.1. (Yao’s principle) To prove a q-query lower bound on the worst-case query complexity of any
non-adaptive randomized testing algorithm, it suffices to give a distribution D on instances such that for any
q-query non-adaptive deterministic algorithm A, we have

Pr
f∼D

󰀅
A is correct on f

󰀆
≤ c,

where 0 ≤ c < 1 is a universal constant.

3 Talagrand’s Random DNF

We define a useful distribution over Boolean functions that will play a central role in the proofs of our tolerant
lower bound for monotonicity and unateness. The construction is a slight generalization of a distribution over
DNF (disjunctive normal form) formulas that was constructed by Talagrand [Tal96]. (The generalization is that
we allow a parameter ε to control the size of each term and the number of terms; the original construction
corresponds to ε = 1.)

Definition 2. (Talagrand’s random DNF) Let ε ∈ (0, 1) and let L := 0.1 · 2
√
n/ε. Let Talagrand(n, ε)

be the following distribution on ordered tuples of L monotone terms: for each i = 1, . . . , L, the i-th term is
obtained by independently drawing a set Ti ⊆ [n] where each set Ti is obtained by drawing

√
n/ε elements of [n]

independently and with replacement. We use T to denote the ordered tuple T = (T1, · · · ,TL) which is a draw
from Talagrand(n, ε). Then a “Talagrand DNF” is given by

f(x) =

L󰁢

ℓ=1

󰀳
󰁃

󰁡

j∈Tℓ

xj

󰀴
󰁄.

It is clear that any Talagrand DNF obtained by a draw from Talagrand(n, ε) is a monotone function.
We will frequently view Ti ⊆ [n] as the term

󰁙
j∈Ti

xj , where we say Ti(x) = 1 if and only if xj = 1 for all
j ∈ Ti. We may also write T = (T1, · · · , Tk) to represent a DNF, which is defined by the disjunction of the terms
Ti. We will often be interested in the probability of a random input x ∼ {0, 1}n satisfying a unique term Ti in a
Talagrand DNF; towards this, we introduce the following notation:
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Notation 3. Given a DNF T = (T1, · · · , Tk) where each Ti is a term, we define the collection of terms of T
satisfied by x, written ST (x), as

ST (x) :=
󰀋
ℓ ∈ [k] : Tℓ(x) = 1

󰀌
.

The following claim shows that on average over the draw of T ∼ Talagrand(n, ε), an Ω(ε) fraction of strings
from {0, 1}n satisfy a unique term in the Talagrand DNF (i.e. |ST (x)| = 1 for Ω(ε)-fraction of x ∈ {0, 1}n). We
note that an elegant argument of Kane [Kan13] gives this for ε = Θ(1), but this argument does not extend to the
setting of small ε which we require. The proof below is based on an argument due to O’Donnell and Wimmer (cf.
Theorem 2.1 of [OW07]).

Proposition 3.1. For ε ∈ (0, 1), let T ∼ Talagrand(n, ε) be as in Definition 2. Then

Pr
T ,x

󰀅
|ST (x)| = 1

󰀆
= Ω

󰀃
max{ε, 1/

√
n}

󰀄
.

Proof. Note that Proposition 3.1 is immediate if the following holds: For every string x ∈ {0, 1}n with
|x| ∈ [n/2, n/2 + 0.05ε

√
n],3 we have

(3.1) Pr
T

󰀅
|ST (x)| = 1

󰀆
= Ω(1).

This is because a straightforward application of the Chernoff bound, and the well-known middle binomial
coefficient bound

󰀃
n

n/2

󰀄
/2n = Θ(1/

√
n), together imply that

Pr
x

󰀅
|x| ∈ [n/2, n/2 + 0.05ε

√
n]
󰀆
= Ω

󰀃
max{ε, 1/

√
n}

󰀄
.

We prove Equation (3.1) in the rest of the proof. Fix such an x ∈ {0, 1}n and let Ti be one of the 0.1 · 2
√
n/ε

terms of T ∼ Talagrand(n, ε). Recalling that Ti consists of
√
n/ε many variables (with repetition), we have

Pr
Ti

󰀅
Ti(x) = 1

󰀆
≤

󰀕
1

2
+

0.05ε√
n

󰀖√
n/ε

=

󰀕
1

2
+

0.1ε

2
√
n

󰀖√
n/ε

≤ 2−
√
n/ε exp (0.1).

where in the second inequality we used the fact that 1 + x ≤ ex for all x ∈ R. It follows by the linearity of
expectation that for any x as above, we have

E
T

󰀅
|ST (x)|

󰀆
=

0.1·2
√

n/ε󰁛

i=1

Pr
Ti

󰀅
Ti(x) = 1

󰀆
≤ 0.1 · exp(0.1) < 0.12.

Markov’s inequality then implies that

(3.2) Pr
T

󰀅
|ST (x)| ≥ 2

󰀆
≤ 1

2
·E
T

󰀅
|ST (x)|

󰀆
≤ 0.06.

On the other hand, since |x| ≥ n/2, we have

Pr
T

󰀅
|ST (x)| = 0

󰀆
≤

󰀳
󰁃1−

󰀕
1

2

󰀖√
n/ε

󰀴
󰁄

0.1·2
√

n/ε

≤ exp(−0.1) < 0.91,(3.3)

where the second inequality used again 1 + x ≤ ex. Combining Equations (3.2) and (3.3), we get that

Pr
T

󰀅
|ST (x)| = 1

󰀆
> 0.03,

thus establishing Equation (3.1), which in turn completes the proof.

3Note that when 0.05ε
√
n < 1, only strings x ∈ {0, 1}n with |x| = n/2 are considered.
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4 Lower Bounds on Tolerant Testers for Monotonicity and Unateness

We start with some objects that we need in the construction of the two distributions Dyes and Dno.
Let ε ∈ (0, 1) be a parameter with ε ≥ c0/

√
n for some sufficiently large constant c0. We partition the

variables x1, · · · , xn into control variables and action variables as follows: Let a :=
√
n/ε and A ⊆ [n] be a fixed

subset of [n] of size a. Let C := [n]\A. We refer to the variables xi for i ∈ C as control variables and the variables
xi for i ∈ A as action variables. We first define two pairs of functions over {0, 1}A on the action variables as
follows (we will use these functions later in the definition of Dyes and Dno): Let h

(+,0), h(+,1), h(−,0) and h(−,1) be
Boolean functions over {0, 1}A defined as follows:

h(+,0)(xA) =

󰀻
󰁁󰁁󰀿
󰁁󰁁󰀽

0 |xA| >
a
2 + c1

√
a;

0 |xA| ∈ [a2 − c1
√
a, a

2 + c1
√
a];

0 |xA| <
a
2 − c1

√
a.

h(+,1)(xA) =

󰀻
󰁁󰁁󰀿
󰁁󰁁󰀽

1 |xA| >
a
2 + c1

√
a;

0 |xA| ∈ [a2 − c1
√
a, a

2 + c1
√
a];

1 |xA| <
a
2 − c1

√
a.

and

h(−,0)(xA) =

󰀻
󰁁󰁁󰀿
󰁁󰁁󰀽

1 |xA| >
a
2 + c1

√
a;

0 |xA| ∈ [a2 − c1
√
a, a

2 + c1
√
a];

0 |xA| <
a
2 − c1

√
a.

h(−,1)(xA) =

󰀻
󰁁󰁁󰀿
󰁁󰁁󰀽

0 |xA| >
a
2 + c1

√
a;

0 |xA| ∈ [a2 − c1
√
a, a

2 + c1
√
a];

1 |xA| <
a
2 − c1

√
a.

for some sufficiently small constant c1 to be specified later.
Now we are ready to define the distributions Dyes and Dno over f : {0, 1}n → {0, 1}. We follow the convention

that random variables are in boldface and fixed quantities are in the standard typeface.
Let m = n − a. A function fyes ∼ Dyes is drawn as follows. We start by sampling a subset A ⊆ [n] of

size a uniformly at random and let C := [n] \ A. Note that there are in total n − a control variables. We let

L := 0.1 · 2
√
n−a/ε and draw an L-term monotone Talagrand DNF T ∼ Talagrand(n − a, ε) on C as described

in Definition 2. Finally, we sample L random bits b ∈ {0, 1}L uniformly at random. Given A,T and b, fyes is
defined by letting

fyes(x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰀽

1 |ST (xC)| > 1 or |xC | > m/2 + 0.05ε
√
m;

0 |ST (xC)| = 0 or |xC | < m/2;

h(+,0)(xA) ST (xC) = {ℓ}, |xC | ∈ [m/2,m/2 + 0.05ε
√
m] and bℓ = 0;

h(+,1)(xA) ST (xC) = {ℓ}, |xC | ∈ [m/2,m/2 + 0.05ε
√
m] and bℓ = 1.

To draw a function fno ∼ Dno, we sample A,T and b exactly as in the definition of Dyes above, and we
replace h(+,0/1) by h(−,0/1) in the construction described above. In more detail, fno is defined by letting

fno(x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰀽

1 |ST (xC)| > 1 or |xC | > m/2 + 0.05ε
√
m;

0 |ST (xC)| = 0 or |xC | < m/2;

h(−,0)(xA) ST (xC) = {ℓ}, |xC | ∈ [m/2,m/2 + 0.05ε
√
m] and bℓ = 0;

h(−,1)(xA) ST (xC) = {ℓ}, |xC | ∈ [m/2,m/2 + 0.05ε
√
m] and bℓ = 1.

4.1 Distance to Monotonicity and Unateness It is easy to verify that every function from Dyes is close to
monotone (and thus, unate):

Lemma 4.1. Every function in the support of Dyes is (0.1c1ε)-close to monotonicity.

Proof. Let f be a function in the support of Dyes defined using A, T and b. Let f ′ be the partial function obtained
from f by replacing f(x) with nil for any x ∈ {0, 1}n that satisfies ST (xC) = {ℓ} for some ℓ and the following two
conditions:

|xC | ∈
󰀅
m/2, m/2 + 0.05ε

√
m
󰀆

and |xA| ∈
󰀅
a/2− c1

√
a, a/2 + c1

√
a
󰀆
.(4.4)
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0

1

Tℓ

󰁫

m
2
, m+0.1ε

√
m

2

󰁬

If bℓ = 1:

1

0

1

If bℓ = 0:

0

0

0

󰁫

a
2
± c1

√
a
󰁬

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

Figure 1: *
(a) A draw of fyes ∼ Dyes

0

1

Tℓ

󰁫

m
2
, m+0.1ε

√
m

2

󰁬

If bℓ = 1:

0

0

1

If bℓ = 0:

1

0

0

󰁫

a
2
± c1

√
a
󰁬

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

Figure 2: *
(b) A draw of fno ∼ Dno

Figure 3: The left hand side depicts the control subcube {0, 1}C with the terms of the Talagrand DNF, and the
right hand side depicts an action subcube {0, 1}A. The cross-hatched region in the control subcube corresponds
to outcomes of the control bits for which the action subcube determines the value of the function and the dashed
lines indicate Hamming weight levels.
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Note that the fraction of points erased, by Fact 2.1, is at most 0.05ε · 2c1 = 0.1c1ε. So it suffices to show that the
partial function f ′ is monotone.

To prove this, it suffices to show that for any x < y, if f(x) = 1 and f(y) ∕= nil, then f(y) = 1. The case
when x satisfies |ST (xC)| > 1 or |xC | > m/2 + 0.05ε

√
m is trivial. Otherwise, x satisfies ST (xC) = {ℓ} for some

ℓ and |xC | ∈ [m/2, m/2 + 0.05ε
√
m], and bℓ = 1. Given that x < y, either |ST (yC)| > 1, in which case f(y) = 1

and we are done, or |yC | > m/2 + 0.05ε
√
m, in which case f(y) = 1 and we are also done, or ST (yC) = {ℓ} and

|yC | ∈ [m/2, m/2 + 0.05ε
√
m]. For the latter, we have either yA is in the middle layers and f(y) = nil or yA is

not in the middle layers and thus, f(y) = 1. This finishes the proof of the lemma.

Next we show that with high probability a function drawn from Dno is far from unate (and thus, far from monotone
as well). Before that, we first show a property of the random choices of A,T and b.

Lemma 4.2. Recall that m = n − a. With probability at least 0.01 over A,T and b, the number of x ∈ {0, 1}C

that satisfies ST (x) = {ℓ} for some ℓ, |xC | ∈ [m/2, m/2 + 0.05ε
√
m] and bℓ = 1 is Ω(ε) · 2m. Symmetrically,

with probability at least 0.01 over A,T and b, the number of x ∈ {0, 1}C that satisfies the same conditions above
except bℓ = 0 is also Ω(ε) · 2m.

Proof. We first introduce the event GoodTalagrand(T ), which states that there exists an Ω(ε)-fraction of points x ∈
{0, 1}m such that |ST (x)| = 1. Formally, let t·ε be the number of x in {0, 1}m such that |x| ∈ [m/2,m/2+0.05ε

√
m]

and let GoodTalagrand(T ) be the event that E|x|∈[m/2,m/2+0.05ε
√
m]

󰀅
1{|ST (x)| = 1}

󰀆
≥ t · ε/100. We will show

that

PrT∼Talagrand(m,ε)[GoodTalagrand(T )] ≥ 0.02.

Let p denote PrT∼Talagrand(m,ε)[GoodTalagrand(T )]. Recall that in Proposition 3.1, we have shown that

PrT
󰀅
|ST (x)| = 1

󰀆
≥ 0.03 for any x ∈ {0, 1}m with |x|1 ∈ [m/2,m/2 + 0.05ε

√
m]. So we have

p · tε+ (1− p) · tε/100 ≥ tεPr
T

󰀅
|ST (x)| = 1

󰀆
≥ 0.03tε,

which implies that p ≥ 2/99 > 0.02.
Fix an arbitrary T in the support of Talagrand(m, ε) such that GoodTalagrand(T ) happens. Note that for each

x such that ST (x) = {ℓ} for some ℓ ∈ [L], E[bℓ] = 1/2. So by linearity of expectation and Markov’s inequality, we
know that with probability at least 99%, there is an Ω(ε)-fraction of points x such that ST (x) = {ℓ} and bℓ = 1.
The other symmetric statement follows from the same argument.

Lemma 4.3. With probability at least 0.01, f ∼ Dno is Ω(ε)-far from unate.

Proof. We first include a folklore claim and its proof for completeness.

Claim 4. For integer 0 ≤ w ≤ a, let Pw denote the set of points in {0, 1}a with Hamming weight w,
i.e. Pw = {x ∈ {0, 1}a : |x|1 = w}. Then for any 0 ≤ w ≤ a/2, the bipartite graph (Pw, Pa−w) with the
poset relations as edges has a perfect matching.

Proof. The key point is that (Pw, Pa−w) is a k-regular bipartite graph, where k =
󰀃
a−w
w

󰀄
.

We apply Hall’s theorem to show this claim. Consider any subset S ⊆ Pa−w. The number of edges associated
with S is exactly k|S|. Let N (S) be the neighborhood of S. Then we know the number of edges associated with
N (S) is exactly k|N (S)|, and these edges include the k|S| edges above. So we have k|S| ≤ k|N (S)|, which means
|S| ≤ |N (S)|.

We will use the following claim about the two functions h(−,0) and h(−,1):

Claim 5. Fix any set A ⊂ [n] of size a. For any r ∈ {0, 1}A, either

h0 := h(−,0)(x⊕ r) or h1 := h(−,1)(x⊕ r)

is Ω(1)-far from monotone.
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Proof. Fix a string r ∈ {0, 1}A. Without loss of generality, we assume that r satisfies |r| ≤ a/2 and show that h1 is
Ω(1)-far from monotone. For the case when |r| < a/2, we can take r′ = r⊕1 with |r′| ≥ a/2. Then what we prove
below shows that h(−,1)(x⊕ r′) is Ω(1)-far from monotone. On the other hand, we have h(−,1)(x) = h(−,0)(x⊕ 1)
and thus,

h(−,0)(x⊕ r) = h(−,1)(x⊕ r ⊕ 1) = h(−,1)(x⊕ r′)

is Ω(1)-far from monotone.
In the rest of the proof we focus on the case when |r| ≤ a/2 and show that h1 is Ω(1)-far from monotone.

By the symmetry of h1, we assume without loss of generality that r1 = · · · = rk = 0, where k = a − |r| ≥ a/2.
To prove that h1 is Ω(1)-far from monotone, it suffices to give Ω(2a) many disjoint pairs (x, y) such that x < y,
h1(x) = 1 and h1(y) = 0.

We start by picking a string z ∈ {0, 1}a−k such that

|z| ∈
󰀅
(a− k)/2− 0.01

√
a, (a− k)/2 + 0.01

√
a
󰀆
.

Note that the number of such z, by Fact 2.1, is Ω(2a−k).
Next, for any such string z, we build disjoint pairs (x, y) such that x < y,

x[k+1:a] = y[k+1:a] = z, |x[k]| ≤ k/2− 0.02
√
a and |y[k]| ≥ k/2 + 0.02

√
a.

On the one hand, it follows from k ≥ a/2, Fact 2.1 and Definition 4 that the number of such disjoint pairs is
Ω(2k). On the other hand, we have h1(x) = 1 and h1(y) = 0 when c1 is sufficiently small. For example, for h1(x),
we have

|x⊕ r| = |x[k]|+ (a− k)− |z| ≤ k/2− 0.02
√
a+ (a− k)/2 + 0.01

√
a = a/2− 0.01

√
a,

which is smaller than a/2− c1
√
a when c1 < 0.01.

As a result, the total number of disjoint pairs is Ω(2a) and the claim follows.

To prove Lemma 4.3, we have from Lemma 4.2 that with probability at least 0.01 over A,T and b, the number
of y ∈ {0, 1}C that satisfies ST (y) = {ℓ} for some ℓ, |yC | ∈ [m/2, m/2 + 0.05ε

√
m] and bℓ = 1 is Ω(ε) · 2n−a and

(symmetrically) the number of y ∈ {0, 1}C that satisfies the same conditions with bℓ = 0 is also Ω(ε) · 2n−a. The
lemma then follows from Definition 5.

To summarize, by setting the constant c1 sufficiently small, there are ε1 and ε2 satisfying

ε1 = Θ(ε) and ε2 − ε1 = Θ(ε)

such that every function drawn from Dyes is ε1-close to monotone (and hence ε1-close to unate) and a function
drawn from Dno is ε2-far from unate with probability at least 0.01.

4.2 Indistinguishability of Dyes and Dno To prove Theorem 1.1, we show that no non-adaptive deterministic

algorithm A that makes q = 2c2n
1/4/

√
ε queries, for some sufficiently small constant c2, can distinguish Dyes from

Dno. Specifically, for any nonadaptive deterministic algorithm A with query complexity q = 2c2n
1/4/

√
ε, we show

that

(4.5) Pr
fyes∼Dyes

[A accepts fyes] ≤ Pr
fno∼Dno

[A accepts fno] + on(1).

To this end, we define Bad to be the event that there are two strings x and y queried by A that satisfy
ST (xC) = ST (yC) = {ℓ} for some ℓ and |xC |, |yC | ∈ [m/2,m/2 + 0.05εm] such that one is in the top region and
the other is in the bottom region of the action cube, namely |xA| > a/2 + c1

√
a and |yA| < a/2 − c1

√
a. We

will first show in Lemma 4.4 that the algorithm can distinguish A only when Bad occurs. On the other hand,

in Lemma 4.5, we show Bad occurs with probability on(1) when the number of queries is 2c2n
1/4/

√
ε and c2 is

sufficiently small (compared to c1).
The formal argument proceeds as follows. We write A(f) to denote the sequence of q answers to the queries

made by A to f . We write viewA(Dyes) (respectively viewA(Dno)) to be the distribution of A(f) for f ∼ Dyes

(respectively f ∼ Dno). The following claim asserts that conditioned on Bad not happening, the distributions
viewA(Dyes|Bad) and viewA(Dno|Bad) are identical.
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Lemma 4.4. viewA(Dyes|Bad) = viewA(Dno|Bad).

Proof. Let QA be the set of points queried by A.
Recall that the distributions of the partition of [n] into control variables C and action variables A are

identical for Dyes and Dno. So fix an arbitrary partition C and A. As the distribution of Talagrand DNF
T ∼ Talagrand(m, ε) is also identical for Dyes and Dno, we fix an arbitrary T . Let fyes ∼ Dyes be a random
function drawn from Dyes.

Note that for any point x ∈ {0, 1}n such that |ST (xC)| ∕= 1, |xC | ∕∈ [m/2,m/2 + 0.05ε
√
m] or |xA| ∈

[a/2− c1
√
a, a/2+ c1

√
a], by construction we have that f(x) can be determined directly in the same way for both

Dyes and Dno. So it suffices for us to consider the points x such that |ST (xC)| = 1, |xC | ∈ [m/2,m/2+0.05ε
√
m],

and |xA| ∕∈ [a/2− c1
√
a, a/2 + c1

√
a]. We call these points important points.

We divide these important points into disjoint groups according to ST (xC). More precisely, for every ℓ ∈ [L],
let Xℓ = {x | x is important, ST (xC) = {ℓ}}. Let fℓ(x) denote the function f(x) restricted to Xℓ. Note that for
a fixed ℓ ∈ [L], the functions fℓ(x) only depends on the random bit bℓ. As a result, the distributions of functions
fℓ(x) for different ℓ are independent.

So it suffices for us to fix an arbitrary ℓ ∈ [L] and only consider points that are in Xℓ. The condition that Bad
does not happen implies that |xA| > a/2 + c1

√
a for all x ∈ QA ∩Xℓ or |xA| < a/2− c1

√
a for all x ∈ QA ∩Xℓ.

In particular, this means fℓ(x) = fℓ(y) for all x, y ∈ QA ∩Xℓ, and this holds for both Dyes and Dno.
Since fℓ(x) are the same for all x ∈ QA ∩Xℓ, the distribution of fℓ is actually one random bit, which only

depends on the uniform random bit bℓ. Indeed, fℓ(x
i) = 0 with probability 1/2 and fℓ(x

i) = 1 with probability
1/2, which holds for both Dyes and Dno.

This finishes the proof.

Next, we show that the probability that Bad happens is small (recall that q = 2c2n
1/4/

√
ε):

Lemma 4.5. For any set of points QA = {x1, · · · , xq} ⊆ {0, 1}n, Pr[Bad] = on(1).

Proof. Fix any x, y ∈ {0, 1}n. We will upper bound the probability that ST (xC) = ST (yC) = {ℓ} for some ℓ ∈ [L]
and |xA| < a

2 − c1
√
a and |yA| > a

2 + c1
√
a. Call this specific event Badxy.

Let I01 be the set of i with xi = 0 and yi = 1. On one hand, for Badxy to happen, we have:

(⋄) |I01 ∩A| ≥ 2c1
√
a.

On the other hand, to have ST (xC) = ST (yC) = {ℓ}, we must have:

(󰂏) There exists ℓ ∈ [L] such that ST (x) = ST (y) = {ℓ}.

It follows that
Pr[Badxy] ≤ min(Pr[⋄],Pr[󰂏]);

we will in fact show that
min(Pr[⋄],Pr[󰂏]) ≤ 2−0.25c1n

1/4/
√
ε.

Let t = |I01|. By the random choice of the coordinates defining the action cube A, we have

Pr[⋄] ≤ Pr

󰀥
Bin

󰀕
a,

t

n− a

󰀖
≥ 2c1

√
a

󰀦
≤

󰀕
a

2c1
√
a

󰀖
·

󰀕
t

n− a

󰀖2c1
√
a

≤
󰀕

ea

2c1
√
a

󰀖2c1
√
a

·

󰀕
t

n− a

󰀖2c1
√
a

≤
󰀣

et
√
a

2c1(n− a)

󰀤2c1
√
a

≤
󰀣

et
√
a

2c1n(1− 1
c0
)

󰀤2c1
√
a

.

To bound Pr[󰂏], we use

Pr[󰂏] = Pr[ST (x) = ST (y) and there exists ℓ ∈ [L] such that ST (y) = {ℓ}]

≤ Pr[ST (x) = ST (y) | there exists ℓ ∈ [L] such that ST (y) = {ℓ}]

≤ max
ℓ∈[L]

Pr[ST (x) = ST (y) | ST (y) = {ℓ}]

≤
󰀕
1− t

n− a

󰀖√
n−a/ε

≤ e−t/(ε
√
n−a) ≤ e−t/(ε

√
n),
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where the last line above is by the definition of the random process T ∼ Talagrand(m, ε). Next, note that

If t ≤ c1
1

4
n3/4 ·

√
ε, thenPr[⋄] ≤ 2−c1n

1/4/
√
ε; and

If t > c1
1

4
n3/4 ·

√
ε, thenPr[󰂏] < 2−0.25c1n

1/4/
√
ε.

Overall, we thus get that

Pr[Badxy] ≤ min(Pr[⋄],Pr[󰂏]) ≤ 2−0.25c1n
1/4/

√
ε.

By a union bound for all pairs of points of QA, we know that

Pr[Bad] ≤ 2−0.25c1n
1/4/

√
ε ·

󰀓
2c2n

1/4/
√
ε

󰀔2

= on(1)

as long as c2 is sufficiently small (compared to c1). This completes the proof.

Now we are ready to prove Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let D = 1
2{Dyes +Dno}. Then we have

Pr
D
[A is correct on f ] =

1

2

󰀕
Pr
Dyes

[A is correct on fyes] + Pr
Dno

[A is correct on fno]

󰀖

=
1

2

󰀕
Pr
Dyes

[A accepts fyes] + Pr
Dno

[A is correct on fno]

󰀖
(4.6)

≤ 1

2

󰀕
Pr
Dyes

[A accepts fyes] + 0.99 + 0.01Pr
Dno

[A rejects fno]

󰀖
(4.7)

=
1

2

󰀕
Pr
Dyes

[A accepts fyes] + 1− 0.01Pr
Dno

[A accepts fno]

󰀖

≤ 199

200
+

1

200

󰀕
Pr
Dyes

[A accepts fyes]− Pr
Dno

[A accepts fno]

󰀖

=
199

200
+

Pr[Bad]

200

󰀣
Pr

Dno|Bad
[A accepts fno]− Pr

Dyes|Bad
[A accepts fyes]

󰀤
(4.8)

≤ 199

200
+

Pr[Bad]

200

≤ 199

200
+ on(1),(4.9)

where Equation (4.6) is because of Lemma 4.1, Equation (4.7) is because fno is not c2-far from unate with
probability at most 0.99 thanks to Lemma 4.3, Equation (4.8) is from Lemma 4.4, and Equation (4.9) follows
from Lemma 4.5. Theorem 1.1 now follows from Yao’s minimax principle (Theorem 2.1).

5 Lower Bounds on Tolerant Testers for Juntas

We use a different, simpler pair of distributions Dyes and Dno for juntas. Let a = n/2 and A ⊂ [n] be a set of
size a. The four functions h(+,0), h(+,1), h(−,0) and h(−,1) over {0, 1}A are defined in the same way as in Section 4
with the constant c1 fixed to be 0.05.

To draw a function fyes ∼ Dyes, we first sample a set A ⊂ [n] of size a uniformly at random, set C = [n] \A,
and sample a Boolean function b over {0, 1}C uniformly at random. Then the Boolean function fyes over {0, 1}

n

is defined using A and b as follows:

fyes(x) =

󰀻
󰀿
󰀽
h(+,0)(xA) b(xC) = 0

h(+,1)(xA) b(xC) = 1
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To draw fno ∼ Dno, we first sample A and b in the same way as in Dyes, and fno is defined as

fno(x) =

󰀻
󰀿
󰀽
h(−,0)(xA) b(xC) = 0

h(−,1)(xA) b(xC) = 1

We first show that every function in the support of Dyes is close to a (n/2)-junta.

Lemma 5.1. Every function in the support of Dyes is 0.1-close to a (n/2)-junta.

Proof. Given A, b and the function f they define in the support of Dyes, we let g be the function such that
g(x) = b(xC). It is clear that g is a (n/2)-junta and the distance between f and g, using Fact 2.1, is at most 0.1.

Next we show that with high probability, fno ∼ Dno is far from a (n/2)-junta.

Lemma 5.2. With probability at least 1− on(1), fno ∼ Dno is 0.2-far from any (n/2)-junta.

Proof. First of all, it follows from Chernoff bound and a union bound that with probability at least 1− on(1), A
and b satisfy the following condition:

1. For every i ∈ C, there are at least 0.24 · 2n/2 many strings x ∈ {0, 1}C with xi = 0 such that b(x) ∕= b(x(i)).

We assume below that A and b satisfy the above condition, and show that the function f in the support of Dno

defined using A and b is 0.2-far from (n/2)-juntas.
Let g be any (n/2)-junta and I ⊂ [n] of size n/2 be its influential variables. Given the condition above, we

have that the number of bichromatic edges of f along each direction i ∈ C is at least

0.24 · 2n/2 · (1− 0.1) · 2n/2 > 0.2 · 2n.

So if I ∕= C, then g must be at least 0.2-far from f . On the other hand, if I = C, then from the construction of
f , g is at least 0.45-far from f . This finishes the proof of the lemma.

Let A be a non-adaptive deterministic algorithm that makes q = 20.01
√
n queries. Let A and b be drawn

as in the definition of Dyes and Dno. Let Bad be the following event: there are two points x and y queried by
A that satisfy xC = yC , |xA| > a/2 + 0.05

√
a and |yA| < a/2 − 0.05

√
a. Following the proof of Lemma 4.4, A

can potentially distinguish Dyes from Dno only when Bad occurs. The next lemma shows that Bad occurs with
probability on(1), from which Theorem 1.2 follows:

Lemma 5.3. The probability of the event Bad is on(1).

Proof. Let x and y be two points queried by A. For |xA| > a/2 + 0.05
√
a and |yA| < a/2 − 0.05

√
a to hold, it

must be the case that x and y have Hamming distance at least 0.1
√
a. However, for any x and y with Hamming

distance at least 0.1
√
a ≥ 0.07

√
n, the probability of xC = yC is at most 2−0.06

√
n. The lemma then follows from

a union bound over all pairs of points queried by A.

The proof of Theorem 1.2 follows from the same steps as that of Theorem 1.1.

6 Discussion

Our results suggest several intriguing directions and possibilities for future work.
The Role of Adaptivity in Tolerant Testing. Recall that the best known upper bound for tolerant

monotonicity (resp. unateness) testing is a 2
󰁨O(

√
n)-query non-adaptive algorithm that goes through agnostic

learners for monotone (resp. unate) functions [BT96, KKMS08, FKV17]. No non-trivial adaptive lower bounds
are known for tolerant monotonicity or unateness testing, and no tolerant testing algorithms are known which
employ adaptivity. For tolerant k-junta testing in the constant gap setting (i.e. when ε := ε2 − ε1 = Θ(1)), recall
that De, Mossel, and Neeman [DMN19] give a 2O(k)-query non-adaptive algorithm. Subsequent work by Iyer,

Tal, and Whitmeyer [ITW21] gives a 2O(
√
k)-query adaptive algorithm for the same task; very recently, Chen and

Patel [CP23] gave a kΩ(1)-query lower bound against adaptive tolerant junta testers.
The prior discussion highlights a gap in our understanding: Does adaptivity help for tolerant monotonicity,

unateness, or junta testing? Proving improved lower bounds against adaptive algorithms, or alternatively
designing efficient testers that make adaptive queries for these problems, is a natural next step for future work.
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A Barrier to Improving the Monotonicity & Unateness Lower Bound. One might hope to improve

the 2Ω(n1/4)-query lower bound against non-adaptive monotonicity and unateness testers from Section 4 by using
another Boolean function on the control subcube instead of the Talagrand DNF. Tracing through the proof of
Theorem 1.1 in Section 4, it is not too difficult to establish the following:

Proposition 6.1. Let ε ∈ (0, 1). For 0 ≤ τ ≤ 1
2 , suppose there exist L disjoint sets S1, S2, . . . , SL ⊆ {0, 1}n with

L := 0.01 · 2n
1−τ/ε such that

1. 2−n|S| ≥ Ω

󰀕
max

󰁱
ε, 1√

n

󰁲󰀖
where S := S1 ⊔ S2 ⊔ . . . ⊔ SL;

2. If x, y ∈ S and x ≤ y, then x, y ∈ Si for some i ∈ [L]; and

3. Define the function sens−S : S → [n] as

sens−S (x) := |{i ∈ [n] : xi = 1, x⊕i /∈ S}|

where x⊕i := (x1, . . . , 1− xi, . . . , xn); then we have

E
x∼S

󰁫
sens−S (x)

󰁬
= Ω(n1−τ ).

Then any non-adaptive algorithm for (ε1, ε2)-tolerant monotonicity or unateness testing must make 2n
√

(1−τ)/ε

queries, where ε1 = Θ(ε), ε2 − ε1 = Θ(ε) as in Theorem 1.1.

To align Proposition 6.1 with the Talagrand DNF construction in Sections 3 and 4, note that the L disjoint
sets S1, . . . , SL correspond to the uniquely-satisfying assignments of each of the L terms of the Talagrand DNF.
Item 2 ensures that the “yes” (resp. “no”) functions are indeed close (resp. far) from being monotone or unate,
and Item 3 ensures indistinguishability of the distributions (cf. Lemma 4.5). Note that the function sens−S can
be viewed as a “directed” variant of the standard notion of sensitivity of a subset of the Boolean hypercube (cf.
Chapter 2 of [O’D14]).

Proposition 6.1 shows that if it were possible to obtain quantitatively stronger parameters with a variant of
the Talagrand DNF, our approach would yield an improved lower bound for tolerant monotonicity or unateness
testing. However, it turns out that no such improvement is possible:

Proposition 6.2. Suppose ε = Θ(1) and τ < 1/2. Then there is no S as in Proposition 6.1.

Proof. Suppose, for the sake of contradiction, that such an S exists. Consider the monotone Boolean function
f : {0, 1}n → {0, 1} obtained by taking the upward closure of S, i.e.

f(x) =

󰀫
1 there exists y ∈ S such that x ≥ y

0 otherwise
.

Writing sensf (x) for the sensitivity of the function f at x (cf. Chapter 2 of [O’D14]), we then have from Item 3
of Proposition 6.1 that

E
x∼{0,1}

󰀅
sensf (x)

󰀆
≥ Ω(n1−τ ).

However, it is well known that the average sensitivity of a monotone Boolean function is at most O(
√
n) (cf.

Theorem 2.33 of [O’D14]), resulting in a contradiction for τ < 1
2 .

This suggests that quantitatively improving on Theorem 1.1 may require a substantially new construction.
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