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ABSTRACT

Accurate minimum operating voltage (Vinin) prediction is a critical
element in manufacturing tests. Conventional methods lack cover-
age guarantees in interval predictions. Conformal Prediction (CP),
a distribution-free machine learning approach, excels in providing
rigorous coverage guarantees for interval predictions. However,
standard CP predictors may fail due to a lack of knowledge of pro-
cess variations. We address this challenge by providing principled
conformalized interval prediction in the presence of process varia-
tions with high data efficiency, where the data from a few additional
chips is utilized for calibration. We demonstrate the superiority of
the proposed method on industrial 16nm chip data.
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1 INTRODUCTION

The assessment of the minimum operating voltage (Vinin) stands
as an important test for silicon manufacturers aiming to enhance
product reliability and yield by identifying and eliminating outliers
and potentially defective chips [5]. Nevertheless, the precise deter-
mination of Vj,;, necessitates the execution of a testing scheme
multiple times, spanning a broad range of operating voltages. This
limitation hampers its practical applicability due to the associated
undesirable temporal and financial costs.

In light of the emerging success of contemporary Machine-
Learning (ML) methods across diverse scientific domains, there
is a growing focus on developing an ML-based chip performance
predictor to expedite the testing workflow [1, 7, 12, 16]. The key
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Figure 1: Process variations of example 16nm chips

idea is to leverage informative, cost-effective testing features, such
as on-chip Ring Oscillator (RO) delay and IDDQ leakage current,
to predict Vi, whose direct measurement is expensive.
Nevertheless, the accuracy of Vi, predicted by an ML technique
may be compromised by measurement noise, testing limitations,
and model capacity constraints, falling short of the high reliability
demanded by the semiconductor industry. Adding to the challenge,
the presence of process variations between training and testing
chips further impedes the accuracy of the V;;,i,, predictor. As illus-
trated in Figure 1, both lot-to-lot and wafer-to-wafer variations
manifest in the input features and target V;;,;, values across a 16nm
chip dataset, consisting of multiple lots with multiple wafers per
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Figure 2: Coverage rate of 6-sigma intervals of multiple lots
predicted by linear regression trained on lot A

lot. Consequently, it is risky to directly employ a pre-trained Viin
predictor on chips from different lots/wafers. To this end, it is desir-
able to develop a robust interval predictor that ensures @ a rigorous
coverage for Vi prediction under @ process variations, while also
exhibiting @ high data efficiency.

Traditional interval prediction methods [8], such as ones based
on utilizing the 6-sigma of the error distribution, focus on achieving
a99.7% coverage rate while making the strong Gaussian assumption
on the Vp,i, predictor’s error. However, the underlying assumption
for error distribution may be misleading, especially when the train-
ing data is insufficient to fit an accurate Vp,;p predictor. Furthermore,
process variations may exacerbate the deviation from any derived
theoretical coverage. In Figure 2, we illustrate the empirical cover-
age rate of the 6-sigma interval on hundreds of chips from all of the
3 lots, whereas the Vj;,i,, predictor is a linear regressor trained on
thousands of chips from lot A. Additional details regarding experi-
mental settings are provided in Section 4.1. Notably, the 6-sigma
method not only falls short of the theoretical coverage rate on lot
A, indicating an incorrect assumption about the error distribution,
but also performs poorly under the influence of process variations,
particularly evident in predictions made on lot C.

Conformal Prediction (CP) [11] has emerged as a promising
distribution-free Uncertainty Quantification (UQ) method for con-
structing intervals based on any point predictor while offering
a nonasymptotic coverage guarantee. CP leverages held-out cal-
ibration data, separated from the training dataset, to assess the
uncertainty of a fitted regression model for new testing data. While
adopting CP for reliable V;,;y, interval prediction is a plausible im-
plementation to address coverage guarantee, this attribute is no
longer held when utilizing the CP predictor to assess chips manu-
factured under another process condition.

To this end, we propose a novel distribution-free Vi, interval
prediction framework, named Calibrated Weighed Conformalized
Quantile Regression (CWCQR), with a @ theoretical coverage guar-
antee in addressing both @ process variations and @ data efficiency.
Our approach systematically calibrates Conformalized Quantile
Regression (CQR) [10] to satisfy a designed coverage rate under
process variations. Our primary contributions are:

» We incorporate Weighted Conformal Prediction (WCP) [14]
into CQR to handle the distribution shift of input features under
process variations without requiring any new chip data.

» We propose a calibration method to transform the prediction
intervals of a pre-trained CP predictor to accommodate shifts in
Vmin mean value and noise under the new processing condition,
leveraging only a small number of newly measured chips.
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» We empirically demonstrate that our method outperforms sev-
eral existing interval prediction baselines on an industrial dataset.

2 BACKGROUND

We first describe the general training flow of ML-based V;y, pre-
dictors, then we summarize prevalent interval prediction methods.

2.1 Point Estimation

Vinin point prediction can be viewed as fitting an ML-based pre-
dictor to minimize a loss function on training chips, with low-cost
test features as model input, and Vi, as output. We denote a
training dataset containing N chips as D = {(x;, yl-)}fil,
D test features are aggregated as a vector x € RP, and true Vinin
is a scalar y € R. We can optimize parameters 0 of a predictor

g(+;0) : R — R by minimizing a loss function £:

whose

1
6" = argmin — TN, L(9(xi:0).v1). 8
o

where ¥ = g(x; 0) is the model prediction.
For instance, we can apply the Mean Squared Error (MSE) loss
Lmse to train a point predictor with small bias and variance.

2.2 Interval Prediction

Vinin point estimation is not the final step in the testing process.
Indeed, a Vj,i, interval needs to be constructed to differentiate
between normal parts and outliers. Silicon industry engineers prac-
tically apply a 6-sigma width interval to a point prediction. For a
chip with input features x, its 6-sigma interval C(x) is

C(x) = [g(x;0) —30,9(x; 0) + 30], (2)

where o is the standard deviation of g’s prediction error on the
training dataset D.

Despite plausible bounds for chips constructed by the 6-sigma
approach, this method is unable to provide a theoretical coverage
rate for its prediction of testing data. Suppose we have a testing
chip (Xtest, Yrest), we want to know the empirical miscoverage rate
a € [0,1] for the 6-sigma interval in Equation (2):

a=1-=P{yrest € C(Xtest)}- )

Unfortunately, the estimation of « relies on strong assumptions on
the model prediction’s errors, limiting the reliability and efficacy
of this heuristic interval prediction approach.

2.3 Conformal Prediction (CP)

CP [11] is a distribution-free UQ method to provide a rigorous
nonasymptotic coverage guarantee for testing data. It is an ad-
ditional post-training strategy for a point predictor to construct
reliable intervals. The prerequisite assumption of CP is that training
data and testing data are exchangeable. The exchangeability is a
weaker condition than the i.i.d. property, i.e., D and (Xtest, Yrest)
are sampled from an identical distribution. In our chip performance
prediction case, the assumption is supposed to be held, as long as
both sets of chips come from the same process.
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CP aims to construct an interval C(+) with a designed coverage
rate 1 — « for a point predictor g on the testing chip:

C(x)={y:s(xy) < g}, 4)
st P{yrest € C(Xtest)} 21—, (5)

where § € [0, +00) is a positive value to be determined, s(x,y) — R
is a score function to evaluate the conformity.

We describe how to compute § in CP, specifically, in split CP 1.
Split CP divides the training dataset D into two disjoint subsets,
where one is for training the model, and the other is for computing §.
The idea is to calibrate the model’s heuristic uncertainty by testing
the conformity of some unseen data, sampled from the distribution
of testing data (Xtest, yzest ). The conformity is evaluated by a score
function s(x,y) — R, whose larger value means higher discrepancy.

We dive into the detailed procedures of CP. The two disjoint
subsets partitioned from P are a new training dataset Dy,qin and
calibration dataset D,;;. A point predictor g is trained on the new
training dataset Dyrq4in to minimize Equation (1).

Without loss of generality, we suppose the first | D, ;| items
form the calibration set. Next, we choose the absolute residual as
the conformal score, and compute the conformity of the calibration
dataset D y;:

si=s(Xiyi) =19(xi:0) —yil. i=1--,[Deanil-  (6)
Finally, ¢ is set to the [(1 — a) (1 + | D, q;]) 1th-smallest score:

N . (1= a)(1+DeariD)]
G = Quantile |51, , 5|, ;|5
|-Z)cali|

It is proved in [15] that ¢ in Equation (7) satisfies the coverage
rate 1 — « for the interval in Equation (4), which is equivalent to

C(x) =19(x0) - ¢,9(x0) +4| . ®

Despite CP provides distribution-free prediction intervals with

a theoretical coverage guarantee, it still has an apparent limitation:

the length of intervals is fixed to 24, regardless of the input features

X¢est of the testing chip. This characteristic potentially leads to

underkill of outliers and overkill of normal chips. Moreover, it

fails to address process variations, restricting its effectiveness in
industrial practice.

™

2.4 Conformalized Quantile Regression (CQR)

COR [10] introduces Quantile Regression (QR) [6] to CP for the first
time to enable adaption to heteroscedasticity, meanwhile maintain-
ing the equivalent nonasymptotic coverage guarantee. The frame-
work of CQR is the same as that of CP, except for 2 differences:

* CQR adopts two quantile regressors to provide heuristic inter-
val prediction;

» CQR proposes a new score function to assess the conformity.

Given a designed coverage rate 1 — &, CQR trains two quantile
predictors, gg/2(+; 00) : RP — R and G1-a/2(5 Opi) : RP SR to
regress the lower and the upper bound of a (a/2)-th to (1 —a/2)-th
quantile interval, respectively. the quantile loss L instead of the
MSE loss Lse is set for model training:

Ly(§.y) = max {y(y = 9). (1 - p)§ - y)}, ©)
ICP has two primary variants: full CP and split CP. Full CP is not applicable for

regression problems when y can take infinite numbers of values, since it requires
infinite times of model training. Thereby, we introduce split CP herein.
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where y € [0, 1] is the designed quantile.
In CQR, the conformal score of i-th item of calibration dataset
Deqr; is defined as

si = max{g(xi;00) = vi. Vi — g(xi;0pi)}. (10)
CQR employs a scalar ¢ for the prediction interval, where § is
also the the [(1—a)(1+|D.a1;1)1/1Deaii|-th quantile of conformal
scores, computed in Equation (7). The formulation of prediction
interval in Equation (4) can be written as
C(x) = [9(x:010) =4, g(x: Opy) +]. (11)
As shown in [10], the aforementioned interval satisfies 1 — & cover-
age rate in Equation (5).

Even though CQR gives a prediction interval for the testing chip
(Xtest, Yrest) With a nonasymptotic coverage guarantee, it assumes
that (Xtess, Yrest) and (x;,y;) follows the same distribution, where
(x1,yi) € D. Due to the existence of process variations as shown
in Figure 1, the assumption may be violated when (Xyest, Yrest)
is picked from a new lot or a new wafer, thus deteriorating the
coverage rate of CQR.

3 PROPOSED METHOD

In order to stress process variations, we propose CWCOQR, satisfy-
ing a nonasymptotic coverage guarantee with high data efficiency.
We introduce weighted CP [14] to CQR to handle the distribution
shift of input features between training data and testing data. More-
over, we propose an additional calibration scheme to translate and
stretch prediction intervals such that the designed coverage rate is
guaranteed while preserving invaluable model parameters learned
from a large training dataset . CWCQR merits data efficiency in
ensuring reliable prediction intervals.

3.1 Weighted CQR (WCQR)

Weighted CP [14] is capable of a specific kind of process variation,
named covariate shift [13], which means training features’ distribu-
tion p and testing features’ distribution p;es; are different, whereas
the conditional distribution y|x stays fixed. This relationship can
be formulated as:

y = f(x) +6(x), (12)
where f : RP — R is an agnostic real-world physical model,
5 : RP — R is an unknown zero-mean noise, dependent on x.

Weighted CP introduces a weighting scheme for conformal scores,
whose weights depend on features of the testing data. The weight
of i-th conformal score s; is

r(x;)

D .
F(Xtest) + 0

wi(Xtest) = > (13)

r(x )]
where r : RP — [0, +00) is the likelihood ratio of two feature
distributions: r(x) = prest (x)/p(x).

Intuitively, the weight is larger when the features are more likely
to be sampled from the test distribution, and vice versa.

Next, we describe how weighted CP computes §(Xtesr), which
is dependent on x;s:. Without loss of generality, suppose D,,;; is
sorted to an ascending order of the conformal score. Then, we have

J
Q(Xtest) = inf{sj : Z Wi(Xpest) 21— (X} . (14)

i=1
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Table 1: Description of a 16nm industrial dataset

Attributes Lot A Lot B Lot C
# Dies 3754 731 754
# Parametric features 354 354 354
# DC Scan Viuin 13 13 13
# AC Scan Viyin 13 13 13
# MBIST Vipin 9 9 9

Test temperature/°C -40, 25,125 -40,25 -40, 25,125

such that Equation (5) is satisfied where

C(xtest) = {y : s(Xtest>¥) < §(Xtest)}- (15)

While weighed CP is a general framework regardless of the se-
lection of the score function, its combination with CQR has not
been explored yet, to the best of our knowledge. Moreover, weighed
CP provides a plausible solution for covariate shift in process varia-
tions. To this end, we propose Weighted Conformalized Quantile
Regression (WCQR), introducing the weighed scheme to CQR.

In WCQR, the score function is defined in Equation (10), and the
prediction interval is

C(Xtest) = [g(xtest§ 010) — G(Xtest),  9(Xtest; Opi) + Q(Xtest)]’
(16)
where §(X¢est) is presented in Equation (14). Under the weighted
CP’s framework [14], our prediction interval has at least 1 — «
coverage rate for yzes;.

3.2 Calibrated WCQR (CWCQR)

The proposed WCQR provides interval prediction with a nonasymp-
totic coverage guarantee. Note that such property is only held under
the assumption of covariate shift: y|x is the same for training data
and testing data. This assumption, however, is sometimes too strong
in our Vj,i, prediction scenarios, where some process variations
do not essentially follow it. A more general and realistic assump-
tion is that ysess|Xzest has a constant shift with a changed noise
intensity, diverged from y|x. This assumption on y;est|Xresr can be
formulated as:

Ytest = f(xtest) +b' + 5’(Xtest)s (17)

where bias b’ € R is a real number, noise §’ is sampled from a
zero-mean distribution dependent on X;eg;.

We propose CWCQR to handle the aforementioned type of pro-
cess variations. Its prediction interval for X;es; is constructed as

C(xtest) = [Yiow Yhignl:
where  yioy, = g(xrest: 61) ~ §(Xtest) + beali = eatis (18)
Vhigh = 9(Xeest: Opi) + d(Xeest) + beali + deali-
Herein, two scalars };cali and §.4;; are determined to address the

bias b’ and the noise §’ in ensuring a 1 — a coverage rate for y;es;.
CWCOQR employs a small additional calibration dataset D;ali to

compute l;mll- and §.q7;, where Déali and (Xyest, Yresr) are under

the same process. For convenience, we suppose the index for Dé ali
takes value from N + 1 to N + M.
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Table 2: V,;,;,, prediction error of CatBoost

Vinin Prediction RMSE (mV)

Lot Temperature Lot n~'qo0 " ACScan  MBIST

cold 5.52 7.17 8.84
A room A 22.89 29.54 22.67
hot 6.85 8.35 15.34
A 6.14 8.89 10.67
cold
B B 5.09 7.13 8.16
room A 20.55 25.82 25.37
B 16.66 23.51 20.52
cold A 29.92 25.23 23.54
C 9.36 9.59 10.79
C room A 31.45 25.96 29.31
C 15.58 13.97 11.89
A 26.07 25.74 26.49
hot
C 9.85 10.64 14.46

For the estimation of V;,;p, shift, we translate prediction intervals
C(x) to C(x) + by to cover Déali as much as possible:

beai; =argmax [{i:y; € C(x;) +b,i=N+1,--- ,N+M}|. (19)
b

In tackling the discrepant noise under process variations, we stretch
prediction intervals to satisfy the coverage rate 1—a. We adopt ideas
from CQR to compute the conformity of Déali’ whose conformal
score is

si = max {9(Xi; O10) = (Vi = beari): Vi = beari — 9(xi: 9hi)} .
(20)

Next, we select §.q; as

[A-a)(1+M)]

m ) . @

Geali = Quantile (3N+1, S SNHMS

4 EXPERIMENTS

We conduct experiments to demonstrate the efficacy of our ap-
proach for addressing process variations on thousands of 16nm
automotive chips. We aim to illustrate: 1) the fatal impact of process
variations in standard Vi, point predictors, and 2) CWCQR’s su-
perior efficacy and data efficiency in addressing process variations.
In specific, we consider lot-to-lot variations in our experiments.

As shown in Table 1, chips are sampled from 3 different lots:
3754 from lot A, 731 from lot B, and 754 from lot C. For each chip,
we employ the same test flow to collect 354 parametric features and
Vinin, used for input data and output targets of predictors, respec-
tively. 3 types of Vjpin, are measured: 13 patterns of DC Scan Vjip,
30 patterns of AC Scan Vj,ip, and 21 patterns of MBIST V;,i,,. We
describe how the input features and the output V,;p, are collected.

In the testing flow, We first test all patterns of Viin, and then
perform the parametric tests. Both phases are done at the same
specific temperature: -45°C (cold), 25°C (room), or 125°C (hot). Both
Vinin and parametric tests are performed on an Automatic Test
Equipment (ATE) tester.
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Table 3: Comparison of regressors in lot A at cold temperature

Vinin Prediction RMSE (mV)

Vimin predictor DC Scan AC Scan MBIST

Linear Regression 10.65 10.99 12.88
XGBoost 5.63 8.23 9.25
CatBoost 5.52 7.17 8.84

4.1 Impact of Lot-to-Lot Variations in Vmin
Point Estimation

We empirically illustrate the influence of lot-to-lot variations for
Vimin predictors.

Experimental Settings. We train A Vp,;, predictor solely on lot
A, and then directly employ it to predict chips from lot B and lot
C. In order to evaluate how its accuracy deviates when no process
variations exist, we further report the performance of a predictor,
whose training and testing data are from the same lot. In this case,
4-fold cross-validation is applied to split the full lot into two subsets.
The Viin point predictor is CatBoost [9], which performs well in
our dataset.

Results. The Vi prediction error of CatBoost is shown in Ta-
ble 2, where Lotte and Lot represent the testing and training lot,
respectively. The lot-to-lot variation is relatively small between
lots A and B, and is large between lots A and C, across all testing
temperatures and V;,, test patterns: the increase of RMSE is up
to 5mV, 25% in the first case, and 21mV, 220% in the second case.
This outcome remains consistent with (a) in Figure 1, where the
discrepancy between lots A and C is much larger than that between
lots A and B, in terms of both input features and target Viuip.

Our experiment indicates that The magnitude of lot-to-lot varia-
tions varies in a large range. A consequence is that directly adopting
a predictor for new chips is risky, since the discrepancy between
training and new chips is agnostic to us, advancing to any evalu-
ation of new data. To this end, an additional calibration stage is
essential for a pre-trained Vi, predictor to achieve high reliability.

Remarks. We demonstrate the reason for applying CatBoost in
Vimin prediction. CatBoost is compared with two baselines: linear
regression and XGBoost [2]. For linear regression, 5 features are
selected from a total of 354 parametric data by Correlation Fea-
ture Selection (CFS) [4] with the Pearson correlation [3] for the
model’s input. A 4-fold cross-validation is performed in lot A at
cold temperature to report results. As shown in Table 3, CatBoost
achieves superior performance in V,,i, prediction average across
test patterns.

4.2 Efficacy of CWCQR

Our experiments compare CWCQR to vanilla CQR on our industrial
dataset to verify its effectiveness in addressing lot-to-lot variations
in Vjpipn interval prediction.

Experimental Settings. For both methods, we employ the same
configurations for a fair comparison. Since CWCQR basically cali-
brates a base CQR model, we first introduce how to train a CQR,
then describe how our method works.
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Figure 3: Average sigma of CWCQR with a 90% Coverage rate

For CQR, the training dataset D is all of 3754 chips from lot A,
and it is further separated into two subsets: 1) Dyrqin for containing
75% chips for training quantile regressors, and 2) D, ;, including
the rest 25% ones for calibration. We set the miscoverage « to 0.1,
and train two CatBoost quantile regressors whose objectives are
5% and 95% Vinin, respectively.

For CWCQR, two additional steps are proposed: a weighting
scheme and a further calibration. In the first stage, we follow [14]
to adopt a logestic classifier to estimate the likelihood ratio. In
avoiding the overfitting problem for this classifier, CFS is employed
to select 5 features with the top-5 highest linear correlations to
Vinin. In the second stage, 50 evaluated from the testing lot are
utilized for further calibration to compute I;cali and §eq;-

One unfair setting is that CWCQR essentially requires new cal-
ibration data. To address this concern, we also calibrate the CQR
model on these data: the model is viewed as a heuristic interval
predictor just like QR, and a CQR framework is employed to satisfy
a 90% coverage rate.

Results. The average length and coverage rate of Vj;,i,, prediction
intervals are listed in Table 4. Although CQR satisfies the designed
coverage in lot A, its reliability is not held in lot B and C. In the worst
case, it only covers less than 12% true DC Scan Vp,ip of chips from
lot C, tested at the hot temperature. Despite that Z)é 1; Successfully
calibrates CQR to achieve a 90% coverage rate, the average length
of its prediction intervals is much longer than that of CWCQR for
most Vinipn test patterns, underscoring the superior performance
of our approach. Compared with CQR trained on the 75% new
data (~550 chips), CWCQR is much more data-efficient: it requires
measurements of 50 new chips for calibration. We save 91% testing
time to provide a reliable interval prediction with a 90% coverage
for Vinin, scarifying an increased interval length within 0.7-sigma
for DC Scan Vpip, 0.6-sigma for AC Scan Vi, and 1-sigma for
MBIST Vjpin, where sigma is the Vi point predictor’s residual
under process variations.

In addition, we demonstrate that the distribution-free CWCQR
outperforms the sigma method to satisfy a 90% coverage demand.
We report the prediction interval length quantified by the sigma
average across all test patterns under lot-to-lot variations. As shown
in Figure 3, CWCQR achieves much smaller intervals than the sigma
method, indicating that CWCQR’s efficiency and robustness under
process variations.
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Table 4: Length and coverage of V,;,;,, prediction intervals provided by CatBoost for a designed 90% coverage rate

Lot Temperature Lot Method DC Scan AC Scan MBIST
te P tr Len.(mV)  Cov.(%) Len.(mV) Cov.(%) Len.(mV) Cov. (%)
B CQR 19.55 90.98+1.45 26.52 90.60+1.18 31.18 90.18+1.36
cold CQR 17.25 86.87+3.36 24.44 87.93+3.64 28.26 79.05+11.86
A CQR with Addi. Cali. 21.39 93.02+3.78 30.10 92.57+6.33 35.54 90.54+3.87
B CWCQR 20.63 90.64+4.94 27.57 90.26+6.21 36.31 90.93+4.39
B CQOR 23.46 91.58+1.20 32.74 90.45+1.31 38.30 90.74+0.88
room COR 34.38 92.24+2.07 49.37 90.83+2.62 42.17 75.47+21.72
A COR with Addi. Cali. 35.27 92.29+4.47 53.95 93.24+2.51 52.40 90.55+4.29
CWCQR 31.94 89.38+4.40 46.09 91.11+4.49 42.31 87.02+6.17
C CQR 28.13 90.79+0.67 34.55 91.46+0.81 42.05 91.59+1.21
cold CQR 17.00 12.57+15.69 23.09 23.94+9.41 27.61 45.48+20.28
A COR with Addi. Cali. 77.21 91.51+7.16 71.31 90.47+3.88 77.39 91.03+3.37
CWCQR 36.73 91.38+4.42 39.02 90.25+3.68 56.43 90.05+6.17
C CQR 30.06 91.90+1.03 37.03 91.77+0.91 46.30 91.91+0.70
C room CQOR 41.35 44.03+38.57 57.40 72.93+27.77 42.20 58.14+25.67
A COR with Addi. Cali. 85.38 92.56+4.63 71.34 91.60+5.20 91.97 93.47+3.64
CWCQR 40.77 89.65+3.91 51.25 86.81+4.21 70.48 89.74+4.80
C CQOR 29.75 90.13+1.66 42.70 91.70+2.20 55.05 91.82+2.48
hot COR 23.90 11.88+7.80 33.16 25.50+12.25 50.99 50.06+25.34
A COR with Addi. Cali. 78.16 92.65+2.44 93.27 92.46+3.42 91.00 92.26+4.21
CWCQR 41.10 91.63+4.16 55.45 92.85+4.66 70.92 90.69+6.09
5 CONCLUSION [4] Mark A Hall. 1999. Correlation-based feature selection for machine learning. Ph.D.

We propose a novel distribution-free V;;,i, interval prediction method,
CWCQR, with a theoretical nonasymptotic coverage guarantee. A
systematical calibration scheme is introduced to adjust a base CQR
model to satisfy the designed coverage rate. Leveraging informa-
tive information from training lots, CWCQR achieves superior data
efficiency and effectiveness. Although lot-to-lot variations are con-
sidered in our experiment for demonstration, we believe our method
is capable of other kinds of process variations in silicon manufac-
turing flows. In fact, CWCQR is a new data-efficient conformalized
interval prediction framework to calibrate any pre-trained interval
predictor to ensure high reliability in addressing distribution shifts
between training and testing data.
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