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ABSTRACT
Accurate minimum operating voltage (𝑉𝑚𝑖𝑛) prediction is a critical
element in manufacturing tests. Conventional methods lack cover-
age guarantees in interval predictions. Conformal Prediction (CP),
a distribution-free machine learning approach, excels in providing
rigorous coverage guarantees for interval predictions. However,
standard CP predictors may fail due to a lack of knowledge of pro-
cess variations. We address this challenge by providing principled
conformalized interval prediction in the presence of process varia-
tions with high data efficiency, where the data from a few additional
chips is utilized for calibration. We demonstrate the superiority of
the proposed method on industrial 16nm chip data.
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1 INTRODUCTION
The assessment of the minimum operating voltage (𝑉𝑚𝑖𝑛) stands
as an important test for silicon manufacturers aiming to enhance
product reliability and yield by identifying and eliminating outliers
and potentially defective chips [5]. Nevertheless, the precise deter-
mination of 𝑉𝑚𝑖𝑛 necessitates the execution of a testing scheme
multiple times, spanning a broad range of operating voltages. This
limitation hampers its practical applicability due to the associated
undesirable temporal and financial costs.

In light of the emerging success of contemporary Machine-
Learning (ML) methods across diverse scientific domains, there
is a growing focus on developing an ML-based chip performance
predictor to expedite the testing workflow [1, 7, 12, 16]. The key
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(a) Lot-to-lot variations
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Figure 1: Process variations of example 16nm chips

idea is to leverage informative, cost-effective testing features, such
as on-chip Ring Oscillator (RO) delay and IDDQ leakage current,
to predict 𝑉𝑚𝑖𝑛 , whose direct measurement is expensive.

Nevertheless, the accuracy of𝑉𝑚𝑖𝑛 predicted by anML technique
may be compromised by measurement noise, testing limitations,
and model capacity constraints, falling short of the high reliability
demanded by the semiconductor industry. Adding to the challenge,
the presence of process variations between training and testing
chips further impedes the accuracy of the 𝑉𝑚𝑖𝑛 predictor. As illus-
trated in Figure 1, both lot-to-lot and wafer-to-wafer variations
manifest in the input features and target𝑉𝑚𝑖𝑛 values across a 16nm
chip dataset, consisting of multiple lots with multiple wafers per
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Figure 2: Coverage rate of 6-sigma intervals of multiple lots
predicted by linear regression trained on lot A

lot. Consequently, it is risky to directly employ a pre-trained 𝑉𝑚𝑖𝑛

predictor on chips from different lots/wafers. To this end, it is desir-
able to develop a robust interval predictor that ensures ❶ a rigorous
coverage for𝑉𝑚𝑖𝑛 prediction under ❷ process variations, while also
exhibiting ❸ high data efficiency.

Traditional interval prediction methods [8], such as ones based
on utilizing the 6-sigma of the error distribution, focus on achieving
a 99.7% coverage rate while making the strong Gaussian assumption
on the 𝑉𝑚𝑖𝑛 predictor’s error. However, the underlying assumption
for error distribution may be misleading, especially when the train-
ing data is insufficient to fit an accurate𝑉𝑚𝑖𝑛 predictor. Furthermore,
process variations may exacerbate the deviation from any derived
theoretical coverage. In Figure 2, we illustrate the empirical cover-
age rate of the 6-sigma interval on hundreds of chips from all of the
3 lots, whereas the 𝑉𝑚𝑖𝑛 predictor is a linear regressor trained on
thousands of chips from lot A. Additional details regarding experi-
mental settings are provided in Section 4.1. Notably, the 6-sigma
method not only falls short of the theoretical coverage rate on lot
A, indicating an incorrect assumption about the error distribution,
but also performs poorly under the influence of process variations,
particularly evident in predictions made on lot C.

Conformal Prediction (CP) [11] has emerged as a promising
distribution-free Uncertainty Quantification (UQ) method for con-
structing intervals based on any point predictor while offering
a nonasymptotic coverage guarantee. CP leverages held-out cal-
ibration data, separated from the training dataset, to assess the
uncertainty of a fitted regression model for new testing data. While
adopting CP for reliable 𝑉𝑚𝑖𝑛 interval prediction is a plausible im-
plementation to address coverage guarantee, this attribute is no
longer held when utilizing the CP predictor to assess chips manu-
factured under another process condition.

To this end, we propose a novel distribution-free 𝑉𝑚𝑖𝑛 interval
prediction framework, named Calibrated Weighed Conformalized
Quantile Regression (CWCQR), with a ❶ theoretical coverage guar-
antee in addressing both ❷ process variations and ❸ data efficiency.
Our approach systematically calibrates Conformalized Quantile
Regression (CQR) [10] to satisfy a designed coverage rate under
process variations. Our primary contributions are:

• We incorporate Weighted Conformal Prediction (WCP) [14]
into CQR to handle the distribution shift of input features under
process variations without requiring any new chip data.

• We propose a calibration method to transform the prediction
intervals of a pre-trained CP predictor to accommodate shifts in
𝑉𝑚𝑖𝑛 mean value and noise under the new processing condition,
leveraging only a small number of newly measured chips.

• We empirically demonstrate that our method outperforms sev-
eral existing interval prediction baselines on an industrial dataset.

2 BACKGROUND
We first describe the general training flow of ML-based 𝑉𝑚𝑖𝑛 pre-
dictors, then we summarize prevalent interval prediction methods.

2.1 Point Estimation
𝑉𝑚𝑖𝑛 point prediction can be viewed as fitting an ML-based pre-
dictor to minimize a loss function on training chips, with low-cost
test features as model input, and 𝑉𝑚𝑖𝑛 as output. We denote a
training dataset containing 𝑁 chips as D = {(x𝑖 , y𝑖 )}𝑁𝑖=1, whose
𝐷 test features are aggregated as a vector x ∈ R𝐷 , and true 𝑉𝑚𝑖𝑛

is a scalar y ∈ R. We can optimize parameters 𝜽 of a predictor
𝑔(·;𝜽 ) : R𝐷 → R by minimizing a loss function L:

𝜽 ∗ = argmin
𝜽

1
𝑁

∑𝑁
𝑖=1 L

(
𝑔(x𝑖 ;𝜽 ), y𝑖

)
. (1)

where ŷ = 𝑔(x;𝜽 ) is the model prediction.
For instance, we can apply the Mean Squared Error (MSE) loss

L𝑚𝑠𝑒 to train a point predictor with small bias and variance.

2.2 Interval Prediction
𝑉𝑚𝑖𝑛 point estimation is not the final step in the testing process.
Indeed, a 𝑉𝑚𝑖𝑛 interval needs to be constructed to differentiate
between normal parts and outliers. Silicon industry engineers prac-
tically apply a 6-sigma width interval to a point prediction. For a
chip with input features x, its 6-sigma interval 𝐶 (x) is

𝐶 (x) = [𝑔(x;𝜽 ) − 3𝜎,𝑔(x;𝜽 ) + 3𝜎], (2)

where 𝜎 is the standard deviation of 𝑔’s prediction error on the
training dataset D.

Despite plausible bounds for chips constructed by the 6-sigma
approach, this method is unable to provide a theoretical coverage
rate for its prediction of testing data. Suppose we have a testing
chip (x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 ), we want to know the empirical miscoverage rate
𝛼 ∈ [0, 1] for the 6-sigma interval in Equation (2):

𝛼 = 1 − P{y𝑡𝑒𝑠𝑡 ∈ 𝐶 (x𝑡𝑒𝑠𝑡 )}. (3)

Unfortunately, the estimation of 𝛼 relies on strong assumptions on
the model prediction’s errors, limiting the reliability and efficacy
of this heuristic interval prediction approach.

2.3 Conformal Prediction (CP)
CP [11] is a distribution-free UQ method to provide a rigorous
nonasymptotic coverage guarantee for testing data. It is an ad-
ditional post-training strategy for a point predictor to construct
reliable intervals. The prerequisite assumption of CP is that training
data and testing data are exchangeable. The exchangeability is a
weaker condition than the i.i.d. property, i.e., D and (x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 )
are sampled from an identical distribution. In our chip performance
prediction case, the assumption is supposed to be held, as long as
both sets of chips come from the same process.
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CP aims to construct an interval 𝐶 (·) with a designed coverage
rate 1 − 𝛼 for a point predictor 𝑔 on the testing chip:

𝐶 (x) = {y : 𝑠 (x, y) ≤ 𝑞}, (4)
𝑠 .𝑡 . P{y𝑡𝑒𝑠𝑡 ∈ 𝐶 (x𝑡𝑒𝑠𝑡 )} ≥ 1 − 𝛼, (5)

where 𝑞 ∈ [0, +∞) is a positive value to be determined, 𝑠 (x, y) → R
is a score function to evaluate the conformity.

We describe how to compute 𝑞 in CP, specifically, in split CP 1.
Split CP divides the training dataset D into two disjoint subsets,
where one is for training themodel, and the other is for computing𝑞.
The idea is to calibrate the model’s heuristic uncertainty by testing
the conformity of some unseen data, sampled from the distribution
of testing data (x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 ). The conformity is evaluated by a score
function 𝑠 (x, y) → R, whose larger value means higher discrepancy.

We dive into the detailed procedures of CP. The two disjoint
subsets partitioned from D are a new training dataset D𝑡𝑟𝑎𝑖𝑛 and
calibration dataset D𝑐𝑎𝑙𝑖 . A point predictor 𝑔 is trained on the new
training dataset D𝑡𝑟𝑎𝑖𝑛 to minimize Equation (1).

Without loss of generality, we suppose the first |D𝑐𝑎𝑙𝑖 | items
form the calibration set. Next, we choose the absolute residual as
the conformal score, and compute the conformity of the calibration
dataset D𝑐𝑎𝑙𝑖 :

𝑠𝑖 = 𝑠 (x𝑖 , y𝑖 ) := |𝑔(x𝑖 ;𝜽 ) − y𝑖 |, 𝑖 = 1, · · · , |D𝑐𝑎𝑙𝑖 |. (6)

Finally, 𝑞 is set to the ⌈(1 − 𝛼) (1 + |D𝑐𝑎𝑙𝑖 |)⌉th-smallest score:

𝑞 = Quantile
(
𝑠1, · · · , 𝑠 |D𝑐𝑎𝑙𝑖 | ;

⌈(1 − 𝛼) (1 + |D𝑐𝑎𝑙𝑖 |)⌉
|D𝑐𝑎𝑙𝑖 |

)
. (7)

It is proved in [15] that 𝑞 in Equation (7) satisfies the coverage
rate 1 − 𝛼 for the interval in Equation (4), which is equivalent to

𝐶 (x) = [𝑔(x;𝜽 ) − 𝑞,𝑔(x;𝜽 ) + 𝑞] . (8)

Despite CP provides distribution-free prediction intervals with
a theoretical coverage guarantee, it still has an apparent limitation:
the length of intervals is fixed to 2𝑞, regardless of the input features
x𝑡𝑒𝑠𝑡 of the testing chip. This characteristic potentially leads to
underkill of outliers and overkill of normal chips. Moreover, it
fails to address process variations, restricting its effectiveness in
industrial practice.

2.4 Conformalized Quantile Regression (CQR)
CQR [10] introduces Quantile Regression (QR) [6] to CP for the first
time to enable adaption to heteroscedasticity, meanwhile maintain-
ing the equivalent nonasymptotic coverage guarantee. The frame-
work of CQR is the same as that of CP, except for 2 differences:

• CQR adopts two quantile regressors to provide heuristic inter-
val prediction;

• CQR proposes a new score function to assess the conformity.
Given a designed coverage rate 1 − 𝛼 , CQR trains two quantile

predictors, 𝑔𝛼/2 (·;𝜽𝑙𝑜 ) : R𝐷 → R and 𝑔1−𝛼/2 (·;𝜽ℎ𝑖 ) : R𝐷 → R, to
regress the lower and the upper bound of a (𝛼/2)-th to (1−𝛼/2)-th
quantile interval, respectively. the quantile loss L𝛾 instead of the
MSE loss L𝑚𝑠𝑒 is set for model training:

L𝛾

(
ŷ, y

)
:= max

{
𝛾 (y − ŷ), (1 − 𝛾) (ŷ − y)

}
, (9)

1CP has two primary variants: full CP and split CP. Full CP is not applicable for
regression problems when y can take infinite numbers of values, since it requires
infinite times of model training. Thereby, we introduce split CP herein.

where 𝛾 ∈ [0, 1] is the designed quantile.
In CQR, the conformal score of 𝑖-th item of calibration dataset

D𝑐𝑎𝑙𝑖 is defined as

𝑠𝑖 := max{𝑔(x𝑖 ;𝜽𝑙𝑜 ) − y𝑖 , y𝑖 − 𝑔(x𝑖 ;𝜽ℎ𝑖 )}. (10)

CQR employs a scalar 𝑞 for the prediction interval, where 𝑞 is
also the the ⌈(1−𝛼) (1+ |D𝑐𝑎𝑙𝑖 |)⌉/|D𝑐𝑎𝑙𝑖 |-th quantile of conformal
scores, computed in Equation (7). The formulation of prediction
interval in Equation (4) can be written as

𝐶 (x) =
[
𝑔(x;𝜽𝑙𝑜 ) − 𝑞, 𝑔(x;𝜽ℎ𝑖 ) + 𝑞

]
. (11)

As shown in [10], the aforementioned interval satisfies 1 − 𝛼 cover-
age rate in Equation (5).

Even though CQR gives a prediction interval for the testing chip
(x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 ) with a nonasymptotic coverage guarantee, it assumes
that (x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 ) and (x𝑖 , y𝑖 ) follows the same distribution, where
(x𝑖 , y𝑖 ) ∈ D. Due to the existence of process variations as shown
in Figure 1, the assumption may be violated when (x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 )
is picked from a new lot or a new wafer, thus deteriorating the
coverage rate of CQR.

3 PROPOSED METHOD
In order to stress process variations, we propose CWCQR, satisfy-
ing a nonasymptotic coverage guarantee with high data efficiency.
We introduce weighted CP [14] to CQR to handle the distribution
shift of input features between training data and testing data. More-
over, we propose an additional calibration scheme to translate and
stretch prediction intervals such that the designed coverage rate is
guaranteed while preserving invaluable model parameters learned
from a large training dataset D. CWCQR merits data efficiency in
ensuring reliable prediction intervals.

3.1 Weighted CQR (WCQR)
Weighted CP [14] is capable of a specific kind of process variation,
named covariate shift [13], which means training features’ distribu-
tion 𝑝 and testing features’ distribution 𝑝𝑡𝑒𝑠𝑡 are different, whereas
the conditional distribution y|x stays fixed. This relationship can
be formulated as:

y = 𝑓 (x) + 𝛿 (x), (12)
where 𝑓 : R𝐷 → R is an agnostic real-world physical model,
𝛿 : R𝐷 → R is an unknown zero-mean noise, dependent on x.

Weighted CP introduces aweighting scheme for conformal scores,
whose weights depend on features of the testing data. The weight
of 𝑖-th conformal score 𝑠𝑖 is

𝑤𝑖 (x𝑡𝑒𝑠𝑡 ) :=
𝑟 (x𝑖 )

𝑟 (x𝑡𝑒𝑠𝑡 ) +
∑ |D𝑐𝑎𝑙𝑖 |

𝑗=1 𝑟 (x𝑗 )
, (13)

where 𝑟 : R𝐷 → [0, +∞) is the likelihood ratio of two feature
distributions: 𝑟 (x) = 𝑝𝑡𝑒𝑠𝑡 (x)/𝑝 (x).

Intuitively, the weight is larger when the features are more likely
to be sampled from the test distribution, and vice versa.

Next, we describe how weighted CP computes 𝑞(x𝑡𝑒𝑠𝑡 ), which
is dependent on x𝑡𝑒𝑠𝑡 . Without loss of generality, suppose D𝑐𝑎𝑙𝑖 is
sorted to an ascending order of the conformal score. Then, we have

𝑞(x𝑡𝑒𝑠𝑡 ) = inf

{
𝑠 𝑗 :

𝑗∑︁
𝑖=1

𝑤𝑖 (x𝑡𝑒𝑠𝑡 ) ≥ 1 − 𝛼

}
. (14)



DAC ’24, June 23–27, 2024, San Francisco, CA, USA Yuxuan Yin, Rebecca Chen, Chen He, and Peng Li

Table 1: Description of a 16nm industrial dataset

Attributes Lot A Lot B Lot C

# Dies 3754 731 754
# Parametric features 354 354 354
# DC Scan 𝑉𝑚𝑖𝑛 13 13 13
# AC Scan 𝑉𝑚𝑖𝑛 13 13 13
# MBIST 𝑉𝑚𝑖𝑛 9 9 9
Test temperature/°C -40, 25, 125 -40, 25 -40, 25, 125

such that Equation (5) is satisfied where

𝐶 (x𝑡𝑒𝑠𝑡 ) = {y : 𝑠 (x𝑡𝑒𝑠𝑡 , y) ≤ 𝑞(x𝑡𝑒𝑠𝑡 )}. (15)

While weighed CP is a general framework regardless of the se-
lection of the score function, its combination with CQR has not
been explored yet, to the best of our knowledge. Moreover, weighed
CP provides a plausible solution for covariate shift in process varia-
tions. To this end, we propose Weighted Conformalized Quantile
Regression (WCQR), introducing the weighed scheme to CQR.

In WCQR, the score function is defined in Equation (10), and the
prediction interval is

𝐶 (x𝑡𝑒𝑠𝑡 ) =
[
𝑔(x𝑡𝑒𝑠𝑡 ;𝜽𝑙𝑜 ) − 𝑞(x𝑡𝑒𝑠𝑡 ), 𝑔(x𝑡𝑒𝑠𝑡 ;𝜽ℎ𝑖 ) + 𝑞(x𝑡𝑒𝑠𝑡 )

]
,

(16)
where 𝑞(x𝑡𝑒𝑠𝑡 ) is presented in Equation (14). Under the weighted
CP’s framework [14], our prediction interval has at least 1 − 𝛼

coverage rate for y𝑡𝑒𝑠𝑡 .

3.2 Calibrated WCQR (CWCQR)
The proposedWCQR provides interval prediction with a nonasymp-
totic coverage guarantee. Note that such property is only held under
the assumption of covariate shift: y|x is the same for training data
and testing data. This assumption, however, is sometimes too strong
in our 𝑉𝑚𝑖𝑛 prediction scenarios, where some process variations
do not essentially follow it. A more general and realistic assump-
tion is that y𝑡𝑒𝑠𝑡 |x𝑡𝑒𝑠𝑡 has a constant shift with a changed noise
intensity, diverged from y|x. This assumption on y𝑡𝑒𝑠𝑡 |x𝑡𝑒𝑠𝑡 can be
formulated as:

y𝑡𝑒𝑠𝑡 = 𝑓 (x𝑡𝑒𝑠𝑡 ) + 𝑏′ + 𝛿 ′ (x𝑡𝑒𝑠𝑡 ), (17)

where bias 𝑏′ ∈ R is a real number, noise 𝛿 ′ is sampled from a
zero-mean distribution dependent on x𝑡𝑒𝑠𝑡 .

We propose CWCQR to handle the aforementioned type of pro-
cess variations. Its prediction interval for x𝑡𝑒𝑠𝑡 is constructed as

𝐶 (x𝑡𝑒𝑠𝑡 ) = [y𝑙𝑜𝑤 , yℎ𝑖𝑔ℎ],

where y𝑙𝑜𝑤 = 𝑔(x𝑡𝑒𝑠𝑡 ;𝜽𝑙𝑜 ) − 𝑞(x𝑡𝑒𝑠𝑡 ) + 𝑏𝑐𝑎𝑙𝑖 − 𝑞𝑐𝑎𝑙𝑖 ,

yℎ𝑖𝑔ℎ = 𝑔(x𝑡𝑒𝑠𝑡 ;𝜽ℎ𝑖 ) + 𝑞(x𝑡𝑒𝑠𝑡 ) + 𝑏𝑐𝑎𝑙𝑖 + 𝑞𝑐𝑎𝑙𝑖 .
(18)

Herein, two scalars 𝑏𝑐𝑎𝑙𝑖 and 𝑞𝑐𝑎𝑙𝑖 are determined to address the
bias 𝑏′ and the noise 𝛿 ′ in ensuring a 1 − 𝛼 coverage rate for y𝑡𝑒𝑠𝑡 .

CWCQR employs a small additional calibration dataset D′
𝑐𝑎𝑙𝑖

to
compute 𝑏𝑐𝑎𝑙𝑖 and 𝑞𝑐𝑎𝑙𝑖 , where D′

𝑐𝑎𝑙𝑖
and (x𝑡𝑒𝑠𝑡 , y𝑡𝑒𝑠𝑡 ) are under

the same process. For convenience, we suppose the index for D′
𝑐𝑎𝑙𝑖

takes value from 𝑁 + 1 to 𝑁 +𝑀 .

Table 2: 𝑉𝑚𝑖𝑛 prediction error of CatBoost

Lotte Temperature Lottr
𝑉𝑚𝑖𝑛 Prediction RMSE (𝑚𝑉 )
DC Scan AC Scan MBIST

A
cold

A
5.52 7.17 8.84

room 22.89 29.54 22.67
hot 6.85 8.35 15.34

B
cold A 6.14 8.89 10.67

B 5.09 7.13 8.16

room A 20.55 25.82 25.37
B 16.66 23.51 20.52

C

cold A 29.92 25.23 23.54
C 9.36 9.59 10.79

room A 31.45 25.96 29.31
C 15.58 13.97 11.89

hot A 26.07 25.74 26.49
C 9.85 10.64 14.46

For the estimation of𝑉𝑚𝑖𝑛 shift, we translate prediction intervals
𝐶 (x) to 𝐶 (x) + 𝑏𝑐𝑎𝑙𝑖 to cover D′

𝑐𝑎𝑙𝑖
as much as possible:

𝑏𝑐𝑎𝑙𝑖 = argmax
𝑏

|{𝑖 : y𝑖 ∈ 𝐶 (x𝑖 ) + 𝑏, 𝑖 = 𝑁 + 1, · · · , 𝑁 +𝑀}|. (19)

In tackling the discrepant noise under process variations, we stretch
prediction intervals to satisfy the coverage rate 1−𝛼 . We adopt ideas
from CQR to compute the conformity of D′

𝑐𝑎𝑙𝑖
, whose conformal

score is

𝑠𝑖 := max
{
𝑔(x𝑖 ;𝜽𝑙𝑜 ) − (y𝑖 − 𝑏𝑐𝑎𝑙𝑖 ), y𝑖 − 𝑏𝑐𝑎𝑙𝑖 − 𝑔(x𝑖 ;𝜽ℎ𝑖 )

}
.

(20)
Next, we select 𝑞𝑐𝑎𝑙𝑖 as

𝑞𝑐𝑎𝑙𝑖 = Quantile
(
𝑠𝑁+1, · · · , 𝑠𝑁+𝑀 ;

⌈(1 − 𝛼) (1 +𝑀)⌉
𝑀

)
. (21)

4 EXPERIMENTS
We conduct experiments to demonstrate the efficacy of our ap-
proach for addressing process variations on thousands of 16nm
automotive chips. We aim to illustrate: 1) the fatal impact of process
variations in standard 𝑉𝑚𝑖𝑛 point predictors, and 2) CWCQR’s su-
perior efficacy and data efficiency in addressing process variations.
In specific, we consider lot-to-lot variations in our experiments.

As shown in Table 1, chips are sampled from 3 different lots:
3754 from lot A, 731 from lot B, and 754 from lot C. For each chip,
we employ the same test flow to collect 354 parametric features and
𝑉𝑚𝑖𝑛 , used for input data and output targets of predictors, respec-
tively. 3 types of 𝑉𝑚𝑖𝑛 are measured: 13 patterns of DC Scan 𝑉𝑚𝑖𝑛 ,
30 patterns of AC Scan 𝑉𝑚𝑖𝑛 , and 21 patterns of MBIST 𝑉𝑚𝑖𝑛 . We
describe how the input features and the output 𝑉𝑚𝑖𝑛 are collected.

In the testing flow, We first test all patterns of 𝑉𝑚𝑖𝑛 , and then
perform the parametric tests. Both phases are done at the same
specific temperature: -45°C (cold), 25°C (room), or 125°C (hot). Both
𝑉𝑚𝑖𝑛 and parametric tests are performed on an Automatic Test
Equipment (ATE) tester.
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Table 3: Comparison of regressors in lotA at cold temperature

𝑉𝑚𝑖𝑛 predictor 𝑉𝑚𝑖𝑛 Prediction RMSE (𝑚𝑉 )
DC Scan AC Scan MBIST

Linear Regression 10.65 10.99 12.88
XGBoost 5.63 8.23 9.25
CatBoost 5.52 7.17 8.84

4.1 Impact of Lot-to-Lot Variations in Vmin
Point Estimation

We empirically illustrate the influence of lot-to-lot variations for
𝑉𝑚𝑖𝑛 predictors.

Experimental Settings. We train A 𝑉𝑚𝑖𝑛 predictor solely on lot
A, and then directly employ it to predict chips from lot B and lot
C. In order to evaluate how its accuracy deviates when no process
variations exist, we further report the performance of a predictor,
whose training and testing data are from the same lot. In this case,
4-fold cross-validation is applied to split the full lot into two subsets.
The 𝑉𝑚𝑖𝑛 point predictor is CatBoost [9], which performs well in
our dataset.

Results. The 𝑉𝑚𝑖𝑛 prediction error of CatBoost is shown in Ta-
ble 2, where Lotte and Lottr represent the testing and training lot,
respectively. The lot-to-lot variation is relatively small between
lots A and B, and is large between lots A and C, across all testing
temperatures and 𝑉𝑚𝑖𝑛 test patterns: the increase of RMSE is up
to 5𝑚𝑉 , 25% in the first case, and 21𝑚𝑉 , 220% in the second case.
This outcome remains consistent with (a) in Figure 1, where the
discrepancy between lots A and C is much larger than that between
lots A and B, in terms of both input features and target 𝑉𝑚𝑖𝑛 .

Our experiment indicates that The magnitude of lot-to-lot varia-
tions varies in a large range. A consequence is that directly adopting
a predictor for new chips is risky, since the discrepancy between
training and new chips is agnostic to us, advancing to any evalu-
ation of new data. To this end, an additional calibration stage is
essential for a pre-trained𝑉𝑚𝑖𝑛 predictor to achieve high reliability.

Remarks. We demonstrate the reason for applying CatBoost in
𝑉𝑚𝑖𝑛 prediction. CatBoost is compared with two baselines: linear
regression and XGBoost [2]. For linear regression, 5 features are
selected from a total of 354 parametric data by Correlation Fea-
ture Selection (CFS) [4] with the Pearson correlation [3] for the
model’s input. A 4-fold cross-validation is performed in lot A at
cold temperature to report results. As shown in Table 3, CatBoost
achieves superior performance in 𝑉𝑚𝑖𝑛 prediction average across
test patterns.

4.2 Efficacy of CWCQR
Our experiments compare CWCQR to vanilla CQR on our industrial
dataset to verify its effectiveness in addressing lot-to-lot variations
in 𝑉𝑚𝑖𝑛 interval prediction.

Experimental Settings. For both methods, we employ the same
configurations for a fair comparison. Since CWCQR basically cali-
brates a base CQR model, we first introduce how to train a CQR,
then describe how our method works.
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Figure 3: Average sigma of CWCQR with a 90% Coverage rate

For CQR, the training dataset D is all of 3754 chips from lot A,
and it is further separated into two subsets: 1)D𝑡𝑟𝑎𝑖𝑛 for containing
75% chips for training quantile regressors, and 2) D𝑐𝑎𝑙𝑖 , including
the rest 25% ones for calibration. We set the miscoverage 𝛼 to 0.1,
and train two CatBoost quantile regressors whose objectives are
5% and 95% 𝑉𝑚𝑖𝑛 , respectively.

For CWCQR, two additional steps are proposed: a weighting
scheme and a further calibration. In the first stage, we follow [14]
to adopt a logestic classifier to estimate the likelihood ratio. In
avoiding the overfitting problem for this classifier, CFS is employed
to select 5 features with the top-5 highest linear correlations to
𝑉𝑚𝑖𝑛 . In the second stage, 50 evaluated from the testing lot are
utilized for further calibration to compute 𝑏𝑐𝑎𝑙𝑖 and 𝑞𝑐𝑎𝑙𝑖 .

One unfair setting is that CWCQR essentially requires new cal-
ibration data. To address this concern, we also calibrate the CQR
model on these data: the model is viewed as a heuristic interval
predictor just like QR, and a CQR framework is employed to satisfy
a 90% coverage rate.

Results. The average length and coverage rate of𝑉𝑚𝑖𝑛 prediction
intervals are listed in Table 4. Although CQR satisfies the designed
coverage in lot A, its reliability is not held in lot B and C. In theworst
case, it only covers less than 12% true DC Scan 𝑉𝑚𝑖𝑛 of chips from
lot C, tested at the hot temperature. Despite that D′

𝑐𝑎𝑙𝑖
successfully

calibrates CQR to achieve a 90% coverage rate, the average length
of its prediction intervals is much longer than that of CWCQR for
most 𝑉𝑚𝑖𝑛 test patterns, underscoring the superior performance
of our approach. Compared with CQR trained on the 75% new
data (∼550 chips), CWCQR is much more data-efficient: it requires
measurements of 50 new chips for calibration. We save 91% testing
time to provide a reliable interval prediction with a 90% coverage
for 𝑉𝑚𝑖𝑛 , scarifying an increased interval length within 0.7-sigma
for DC Scan 𝑉𝑚𝑖𝑛 , 0.6-sigma for AC Scan 𝑉𝑚𝑖𝑛 , and 1-sigma for
MBIST 𝑉𝑚𝑖𝑛 , where sigma is the 𝑉𝑚𝑖𝑛 point predictor’s residual
under process variations.

In addition, we demonstrate that the distribution-free CWCQR
outperforms the sigma method to satisfy a 90% coverage demand.
We report the prediction interval length quantified by the sigma
average across all test patterns under lot-to-lot variations. As shown
in Figure 3, CWCQR achieves much smaller intervals than the sigma
method, indicating that CWCQR’s efficiency and robustness under
process variations.
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Table 4: Length and coverage of 𝑉𝑚𝑖𝑛 prediction intervals provided by CatBoost for a designed 90% coverage rate

Lotte Temperature Lottr Method DC Scan AC Scan MBIST
Len. (𝑚𝑉 ) Cov. (%) Len. (𝑚𝑉 ) Cov. (%) Len. (𝑚𝑉 ) Cov. (%)

B

cold

B CQR 19.55 90.98±1.45 26.52 90.60±1.18 31.18 90.18±1.36

A
CQR 17.25 86.87±3.36 24.44 87.93±3.64 28.26 79.05±11.86

CQR with Addi. Cali. 21.39 93.02±3.78 30.10 92.57±6.33 35.54 90.54±3.87
CWCQR 20.63 90.64±4.94 27.57 90.26±6.21 36.31 90.93±4.39

room

B CQR 23.46 91.58±1.20 32.74 90.45±1.31 38.30 90.74±0.88

A
CQR 34.38 92.24±2.07 49.37 90.83±2.62 42.17 75.47±21.72

CQR with Addi. Cali. 35.27 92.29±4.47 53.95 93.24±2.51 52.40 90.55±4.29
CWCQR 31.94 89.38±4.40 46.09 91.11±4.49 42.31 87.02±6.17

C

cold

C CQR 28.13 90.79±0.67 34.55 91.46±0.81 42.05 91.59±1.21

A
CQR 17.00 12.57±15.69 23.09 23.94±9.41 27.61 45.48±20.28

CQR with Addi. Cali. 77.21 91.51±7.16 71.31 90.47±3.88 77.39 91.03±3.37
CWCQR 36.73 91.38±4.42 39.02 90.25±3.68 56.43 90.05±6.17

room

C CQR 30.06 91.90±1.03 37.03 91.77±0.91 46.30 91.91±0.70

A
CQR 41.35 44.03±38.57 57.40 72.93±27.77 42.20 58.14±25.67

CQR with Addi. Cali. 85.38 92.56±4.63 71.34 91.60±5.20 91.97 93.47±3.64
CWCQR 40.77 89.65±3.91 51.25 86.81±4.21 70.48 89.74±4.80

hot

C CQR 29.75 90.13±1.66 42.70 91.70±2.20 55.05 91.82±2.48

A
CQR 23.90 11.88±7.80 33.16 25.50±12.25 50.99 50.06±25.34

CQR with Addi. Cali. 78.16 92.65±2.44 93.27 92.46±3.42 91.00 92.26±4.21
CWCQR 41.10 91.63±4.16 55.45 92.85±4.66 70.92 90.69±6.09

5 CONCLUSION
Wepropose a novel distribution-free𝑉𝑚𝑖𝑛 interval predictionmethod,
CWCQR, with a theoretical nonasymptotic coverage guarantee. A
systematical calibration scheme is introduced to adjust a base CQR
model to satisfy the designed coverage rate. Leveraging informa-
tive information from training lots, CWCQR achieves superior data
efficiency and effectiveness. Although lot-to-lot variations are con-
sidered in our experiment for demonstration, we believe ourmethod
is capable of other kinds of process variations in silicon manufac-
turing flows. In fact, CWCQR is a new data-efficient conformalized
interval prediction framework to calibrate any pre-trained interval
predictor to ensure high reliability in addressing distribution shifts
between training and testing data.
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