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Abstract—Vehicles are equipped with various sensors such
as LiDAR, which enable them to perceive the surrounding
environment and enhance driver safety through advanced driver
assistance systems. However, these sensors are limited by line-
of-sight, preventing them from seeing beyond occlusions. One
solution is to leverage the edge server which can collect and
share perception data with other vehicles. Most existing research
focuses on improve the performance of uploading perception
data to the server, and the problem of perception dissemination
remains largely unexplored, despite the challenges posed by
the large volume of perception data and the limited wireless
bandwidth. In this paper, we propose an edge-assisted relevance-
aware perception dissemination system that collects perception
data from multiple vehicles and selectively disseminates only the
necessary data to appropriate vehicles. The necessity of dissem-
ination is determined by evaluating the relevance of perception
data, which quantifies the probability of potential collisions
between corresponding objects. We then formulate and solve the
relevance-aware perception dissemination problem whose goal is
to maximize the relevance of disseminated data under bandwidth
constraints. Extensive evaluation results demonstrate that our
system can significantly enhance traffic safety while reducing the
overall bandwidth consumption.

I. INTRODUCTION

Autonomous driving and advanced driver assistance systems
(ADAS) have rapidly evolved in recent years. These systems
rely on various sensors to perceive their surroundings, and
leverage artificial intelligence techniques to understand the
traffic conditions and prevent accidents. However, the per-
ception data generated by sensors on a single vehicle may
be insufficient due to the limitations in their line of sight.
A scenario shown in Fig. 1 illustrates this issue, where a
pedestrian p is crossing the road behind truck D, while vehicle
B is passing through the intersection. The pedestrian p is not
visible to B’s sensors because truck D blocks its view. In
this case, relying solely on B’s sensors may fail to detect the
pedestrian, leading to a potential accident. Similar scenarios
exist such as a vehicle’s sensor may not detect an object that
is around a corner or beyond its range.

This limitation can be overcome by aggregating and sharing
perception data from multiple vehicles [1]–[3], and existing
research has explored various ways to achieve this goal, such
as cooperative perception through the edge server [4]–[6].
The edge server collects and shares perception data with
other vehicles, enabling the creation of a traffic map based
on all objects on the road. This map can inform vehicles
of traffic conditions beyond their line of sight, allowing

Fig. 1: A traffic scenario where the pedestrian p is relevant to
vehicle B, and vehicle C is relevant to A.

for better decision-making in autonomous driving and driver
assistance systems to prevent potential accidents. However,
existing research primarily focuses on the problem of up-
loading perception data with bandwidth and delay constraints
[7]–[9], without addressing the issue of what perception data
should be disseminated to which vehicle. A potential solution
is to broadcast the entire traffic map to all vehicles, however,
this approach has significant drawbacks. Most vehicles do not
require the perception data as they are not involved in potential
accidents. Processing and storing such unnecessary perception
data consumes resources on vehicles where the computational
resources are limited. Besides, too much irrelevant information
may also overwhelm human drivers, causing distraction.

An example can be seen in Fig. 1, the crossing pedestrian p
is important (relevant) to vehicle B since B is moving forward
and might hit the pedestrian in the near future. However,
such information is not important (irrelevant) to vehicle A
which will turn left and has no chance to hit p. Similarly, the
perception data of C is irrelevant to B, but it is relevant to
A since A is taking a left turn at the intersection. Therefore,
instead of overwhelming the drivers with a large amount of
irrelevant perception data which wastes resources, the edge
server should only disseminate highly relevant data to the
corresponding vehicles.

To address these issues, we propose an edge-assisted
relevance-aware perception dissemination system that only
disseminates necessary perception data to appropriate vehicles
to reduce the bandwidth consumption. Our system estimates
the relevance of the perception data based on the probabil-
ity of potential collisions, and addresses the the perception
dissemination problem by maximizing the total relevance of



LiDAR Location &
Orientation

Advanced Driving Assistance
System (ADAS)

Vehicles

Coordinate Transformation

Build the Traffic Map

Point Cloud Merging

Object Tracking Trajectory
Prediction

Relevance Estimation

Perception Dissemination

Moving Objects Extraction

Edge Server

Fig. 2: A system overview

disseminated data while considering bandwidth constraints.
The main contributions of this paper can be summarized

as follows. First, we introduce an edge-assisted relevance-
based perception dissemination system that efficiently collects
perception data from multiple vehicles and selectively dis-
seminates only the relevant perception data to the appropriate
vehicles. Second, we propose techniques for clustering vehi-
cles and pedestrians based on their locations and orientations,
resulting in reduced computational overhead for trajectory
prediction. By only tracking representative entities within
each cluster, we can significantly reduce the computational
overhead. Third, we develop an efficient approach to measure
the relevance of the perception data. We formulate and solve
the relevance-aware perception dissemination problem with the
goal of maximizing the overall relevance of disseminated data
under bandwidth constraints. Finally, we conduct extensive
evaluations to demonstrate the effectiveness and efficiency of
our proposed system.

II. SYSTEM DESIGN

In this section, we introduce the system design of our edge-
assisted relevance-aware perception dissemination system as
shown in Fig. 2.

A. System Overview

Vehicles: LiDAR sensors mounted on vehicles are used
for environment perception. These sensors have 360-degree
field of view and can generate point cloud with detailed 3D
information, enabling applications like path planning and aug-
mented reality on the head-up display. Since it is impractical
to transmit the extensive 3D point cloud data with millions
of points via limited wireless bandwidth, we reduce the size
of point cloud to save bandwidth. Specifically, for each frame
generated by LiDAR sensors, we propose the Moving Objects
Extraction module to reduce the point cloud by extracting only
points corresponding to moving objects such as vehicles and
pedestrians. Then, the reduced point cloud, along with the
locations and orientations of the vehicles, are uploaded to the
edge server.

Edge Server: After receiving the information uploaded by
vehicles, the edge server uses the Coordinate Transformation
and Point Cloud Merging modules to construct the compre-
hensive traffic map which includes objects on the road like
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Fig. 3: (a) The raw point cloud generated by a LiDAR sensor.
(b) Point cloud after removing ground points. (c) The points
of moving objects (red) and static objects (black).

vehicles and pedestrians. This map serves as a basis for Object
Tracking and Trajectory Prediction modules, which can track
and predict the movements of objects. Using the predicted
trajectories, the Relevance Estimation module evaluates the
relevance of the perception data by calculating the probability
of potential collisions when the trajectories intersect. Then,
based on the relevance, the relevance-aware perception dis-
semination problem is solved by the Perception Dissemination
module, so that the edge server can determine whether the
perception data should be disseminated and to which vehicle
the data should be sent. Our goal is to maximize the total
relevance of disseminated perception data under bandwidth
constraints. That is, only perception data with higher rele-
vance are disseminated to the corresponding vehicles, allowing
ADAS and human drivers to gain a better understanding about
the traffic conditions.

In the subsequent sections, we provide a detailed description
of each module in our system.

B. Moving Objects Extraction

To save bandwidth, instead of uploading all LiDAR data,
we propose to only upload the data related to important
objects such as vehicles and pedestrians. To achieve this, we
should extract these moving objects from the LiDAR sensor
data locally. Although various 3D object detection algorithms
based on deep neural networks [10]–[13] can be leveraged to
identify the moving objects, they typically require significant
computational resources which are not commonly available on
vehicles. Instead, we propose a different approach to extract
the points corresponding to objects.

First, as most points in the point cloud are from the ground
plane which are irrelevant in traffic map construction, they
should be removed to save bandwidth. Since LiDAR sensors
are typically mounted on vehicles at a fixed height above the
ground, it becomes straightforward to identify ground points
by examining the z-axis coordinate of each point. Specifically,
if the LiDAR sensor is positioned at a height of h above the
ground, ground points should exhibit a z-coordinate of −h in
the LiDAR coordinate system. Consequently, the removal of
ground points can be accomplished by filtering out the points
with z-coordinates less than or equal to −h+ ϵ, where ϵ is a
small value to accommodate the potential measurement errors.
For example, Fig.3 (a) illustrates a raw point cloud obtained
from a LiDAR sensor. By eliminating the ground points, only



the points above the ground surface remain, as depicted in
Fig.3 (b).

Second, further reduction in perception data size can be
achieved by removing the points associated with static ob-
jects. This is because moving objects such as vehicles and
pedestrians, are more likely to be involved in collisions and
accidents, and static objects like buildings and parked vehicles
are less critical. To differentiate between different objects,
including vehicles, pedestrians, and buildings, we employ the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [14]. By applying DBSCAN, the vehi-
cles can identify location changes across consecutive frames
of LiDAR data, considering that LiDAR sensors generate
multiple frames per second (e.g., 10 frames per second).
If an object’s location undergoes significant changes, it is
deemed as a moving object, and its corresponding perception
data should be uploaded. Conversely, if an object’s location
remains relatively stable, it is considered a static object and
its perception data can be discarded. One such example is
shown in Fig. 3 (c).

By implementing these processing steps, we can achieve
a substantial reduction in the size of the LiDAR data, often
decreasing it from several megabytes (2-3 MB) to less than
20 kilobytes (KB). Additionally, further reduction in data size
can be attained by leveraging compression techniques [15].

C. Building the Traffic Map

In order to build the traffic map, the edge server should
collect all objects and position them to the right place in the
real world locations. However, the point cloud uploaded by
the vehicles are using the LiDAR coordinates, which only
have the relative object locations with respect to the LiDAR
sensors. Therefore, the edge server should transform it to the
world coordinate to build the traffic map. To achieve this
transformation, vehicles should upload their own locations
and orientations, which can be obtained accurately by using
SLAM techniques [16], [17]. Then, the LiDAR-to-world trans-
formation matrix, Tlw, can be calculated according to the 3D
projection rules [18]. Formally, let [x, y, z]T be the location of
a point in the LiDAR coordinate, and let [Wx,Wy,Wz]

T be
the location of the corresponding point in the world coordinate.
The transformation from the LiDAR coordinate to the world
coordinate is represented as follow.

[Wx,Wy,Wz, 1]
T = Tlw · [x, y, z, 1]T

After transforming to world coordinate, the edge server
merges all uploaded point clouds together to build the traffic
map using techniques in [19], [20]. Based on the traffic map,
our system will selectively disseminate the data to different
vehicles separately, and the details of how to display the
notification are out of the scope of this paper.

D. Object Tracking and Trajectory Prediction

With the traffic map, the edge server can track the move-
ments of vehicles and pedestrians, and then detect potential

collisions. More specifically, the edge server employs trajec-
tory prediction techniques to predict the paths of vehicles and
pedestrians. By analyzing these predicted trajectories, it can
proactively identify potential accidents that may occur when
two trajectories intersect in the near future. While the majority
of early research on trajectory prediction utilized Markov
model [21]–[23], deep neural networks have been increasingly
utilized for the prediction task in recent years [24]–[26].
However, predicting the trajectories of all objects requires
significant computational resources, and it is infeasible to run
in real time when the number of vehicles and pedestrians
increases. To address this issue, we propose the following rules
to reduce the number of objects whose trajectories need to be
tracked and predicted.
Rule 1. To optimize the computation resources and reduce the
complexity of trajectory prediction, we can exploit the fact that
vehicles in the same lane tend to follow the leading vehicle,
and the behaviors of following vehicles can be described
by car-following models [27], [28]. Thus, we propose to
track the leading vehicle in each lane that approaches the
intersection and only predict the trajectories of the leading
vehicle [26]. Note that the lanes can be identified based on the
high-definition map at the edge server, which represent road
environment [29], [30], and hence the first vehicle in each lane
is the leading vehicle. Then, based on the predicted trajectory
of the leading vehicle, the movements of the following vehicles
can be estimated by leveraging car-following models. This
approach can significantly reduce the number of vehicles
whose trajectories need to be predicted, while still enabling
the detection of potential collisions.
Rule 2. At intersections, vehicles may take various actions
after passing the crosswalk, such as turning or going straight,
leading to risky scenarios, like unprotected left turns [31].
Therefore, it is crucial to track and predict the movements
of vehicles after they pass the crosswalk. To achieve this, a
red boundary is defined along the crosswalk, as shown in Fig 5
(a). All moving vehicles within this boundary are tracked, and
their trajectories are predicted. This allows the edge server to
detect potential accidents in complex traffic scenarios.
Rule 3. To reduce the computational cost of trajectory pre-
diction for pedestrians, we propose a crowd-based clustering
method. In each frame, instead of predicting trajectories for
each individual pedestrian, we cluster them into crowds based
on their proximity and moving directions. Each cluster has a
representative. The edge server only needs to track and predict
the trajectory of the representative, while other pedestrians
are expected to be close to their representative. This method
is suitable for predicting the trajectories of large crowds in
a complex urban environment, where individual pedestrian
trajectories might be difficult to model accurately. By clus-
tering pedestrians into crowds, we can reduce the number of
trajectories that need to be predicted and hence reduce the
computational cost.

Despite the existence of numerous cluster algorithms, di-
rectly applying them in traffic scenarios poses a challenge.
Some centroid-based algorithms, such as K-Means, require
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Fig. 4: (a) Clustering pedestrians into two clusters represented
by different colors. (b) Clustering into three clusters. (c)
Deviations of pedestrians’ final locations.

prior knowledge of the number of clusters. However, in
dynamic traffic situations, it is impossible to determine the
number of clusters beforehand due to the continuously chang-
ing nature of traffic. On the other hand, density-based algo-
rithms like DBSCAN can automatically determine the number
of clusters, but they may encounter issues with excessively
large cluster sizes. In pedestrian clustering scenarios, large
clusters can result in significant deviations in both location
and orientation. Moreover, the implementation of DBSCAN
makes it difficult to strike a balance between the importance
of location and orientation metrics. When using DBSCAN
to cluster pedestrians, the resulting clusters may not ade-
quately capture the similarities in both location and orientation.
To illustrate this point, consider Fig. 4 (a), which depicts
pedestrians crossing crosswalks at an intersection. Each point
represents a pedestrian, and the arrow indicates their direction
of movement. The cross symbol indicates the final location of
the pedestrian after moving along that direction for a period
of time. The clustering result of DBSCAN is shown using
different colors. In this illustration, the orange cluster produced
by DBSCAN contains pedestrians who are close in location
but are generally heading in two different orientations. Con-
sequently, the final locations of these individuals (represented
by orange crosses) are widely separated, leading to significant
deviations in location.

To address the problem of DBSCAN and effectively group
individuals with similar locations and orientations, we pro-
pose the following algorithm. Initially, we cluster pedestrians
solely based on their locations. Then, for each cluster, we
compute the standard deviations of the pedestrians’ locations
and orientations (moving directions). These deviations are
compared to predefined thresholds for location deviation (β)
and orientation deviation (γ). Any pedestrians with deviations
exceeding the thresholds are removed from the cluster and
assigned to a new one. This process is repeated until all
clusters meet the deviation constraints. Fig. 4 (b) illustrates
how our algorithm works, with different colors representing
distinct clusters. In the figure, the pedestrians on the right
exhibit varying orientations, resulting in significant orientation
deviations. Consequently, they are divided into two separate
clusters. It is evident that our algorithm successfully partitions
the pedestrians into three clusters, with individuals within
each cluster sharing similar locations and moving in the same
direction.

To evaluate the performance of the proposed cluster algo-
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Fig. 5: (a) Vehicles within the red boundary should be tracked.
(b) Objects in red points are tracked.

rithm, we collect pedestrian trajectories at an intersection and
apply algorithms to cluster the pedestrians. Then, we measure
the location deviations of the pedestrians in the same cluster
after they move for a period of time. We set the thresholds
β = 2 and γ = 5, and compared our cluster algorithm
with DBSCAN. As shown in Fig. 4 (c), as the number of
pedestrians increases, DBSCAN may result in larger cluster
sizes and, consequently, larger location deviations. In contrast,
our algorithm consistently outperforms DBSCAN across all
tested scenarios, demonstrating superior performance in terms
of reduced location deviations.

To demonstrate the scalability of our proposed method, we
apply the three rules in the scenario depicted in Fig. 5 (a),
while Fig. 5 (b) shows the point cloud of tracked vehicles
and pedestrians (represented by red points). Firstly, applying
Rule 1, we track the leading vehicles in each lane, which
in this case are vehicles A, B, C, and D. Subsequently,
according to Rule 2, we track vehicles that have passed the
crosswalk (within the red boundary), such as vehicles E, F ,
and G. Their trajectories are then predicted. Additionally,
utilizing our proposed cluster algorithm, we can cluster the
pedestrians at the intersection into four groups. Following
Rule 3, the edge server only predicts the trajectories for the
representatives within each cluster. In the figure, only the
perception data of four pedestrians are shown in red. Note
that Fig. 5 (a) only displays a portion of the traffic, while
there are ten additional following vehicles not shown in the
figure. By implementing the proposed rules, our system tracks
and predicts the trajectories of only seven vehicles and four
pedestrians, rather than processing data for all 30 vehicles and
20 pedestrians, which is a significant reduction in computation.

After predicting the trajectories of the tracked vehicles
and pedestrians, the edge server detects potential collisions
and evaluates the relevance of the objects involved in these
collisions. The approach used to estimate relevance will be
discussed in the next section.

III. RELEVANCE-AWARE PERCEPTION DISSEMINATION

In this section, we propose an efficient approach to estimate
the relevance of the perception data. Based on the relevance,
we formulate the relevance-aware perception dissemination
problem and propose a greedy algorithm to solve it.

A. Relevance Estimation

To determine which perception data should be distributed
to each vehicle, the edge server needs to assess the relevance
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Fig. 6: (a) Collision area at the trajectory intersection. (b)
Checking whether the objects are located in the collision area
at the same time.

of the data. In cases where objects (such as vehicles or
pedestrians) are directly observable by the LiDAR sensors on
the vehicles, it is unnecessary to disseminate the perception
data related to those objects. Consequently, the relevance
score for such data should be 0. Note that the server can
infer an object’s visibility to a vehicle by checking whether
the uploaded perception data includes information about that
object or not.

However, for objects that are obstructed by occlusions, their
relevance must be estimated, and the dissemination decision
will be based on this relevance assessment. One way to calcu-
late the relevance is by analyzing potential collisions detected
through trajectories. Additionally, as discussed before, not all
trajectories of vehicles and pedestrians are explicitly predicted
due to scalability issues. Thus, we introduce two different
strategies to estimate relevance.

1) Relevance Estimation based on Trajectory Prediction: In
Section II-D, we discussed several rules for tracking objects.
By predicting their trajectories, it becomes possible to directly
estimate their relevance. When the predicted trajectories of
different objects intersect, it indicates a potential collision,
making their perception data relevant. The relevance value in
this case corresponds to the probability of potential collisions.

In recent trajectory prediction models, bivariate Gaussian
distributions are commonly used to describe the uncertainty
of the predicted locations [24]–[26], hence a natural idea to
measure relevance is to calculate the joint probability of the
distributions at the point of trajectory intersection. However,
this method might underestimate the probability since it takes
objects as points and ignores the size of the objects. This can
lead to potential collisions occurring before their trajectories
intersect. To address this limitation, some research proposes to
treat the vehicles as shapes, such as circles and ellipses [32]–
[34]. Then, the potential accidents can be quantified by calcu-
lating the overlap of shapes and cumulative probability within
the overlap. However, this approach can introduce complexity
in computing overlaps, especially when multiple vehicles are
in motion, leading to heavy computational overhead.

In order to reduce the computational burden associated
with calculating shape overlaps, we propose an alternative
approach for estimating relevance. Instead of examining the
exact overlap between shapes, we determine the likelihood of
collision by checking if objects are simultaneously present in
specific areas. To achieve this, we define a collision area as
a circular region around the intersection of object trajectories,

(a) (b)

Fig. 7: (a) Collision areas (red circles) at the trajectory
intersections. (b) A and C will collide, G and p will not
collide, based on their passing time calculations.

as depicted in Fig. 6 (a). The radius of the circle is set to
the maximum length of the respective objects, ensuring that a
collision will occur if both objects are within the collision area
simultaneously. Next, we calculate the time intervals, denoted
as t1 and t2 in Fig. 6 (b), during which each object passes
through the collision area. By assessing the overlap in these
intervals, we can determine the potential for collision. This
overlap length is defined as the collision interval (ci). A longer
collision interval indicates a higher probability of collision and
a potentially more severe accident. To quantify the relevance
of ci, we utilize the intersection over union of the passing
times, represented by the ratio Rci = ci

t1∪t2
.

We also incorporate the concept of time-to-collision (ttc) to
describe the potential occurrence of a collision. This metric is
commonly used in risk assessment [32], [35]. Since a collision
could happen at any moment within the collision interval,
we focus on the earliest possibility. Then, ttc is defined as
the duration leading up to the start of the collision interval,
and its relevance is defined as Rttc = 1 − ttc

T , where T
represents the maximum time that the prediction algorithm
can forecast. In cases where no collision interval exists, we
have ttc = T , resulting in Rttc = 0. By combining Rci

and Rttc, we obtain the overall relevance of the perception
data, represented as R = (Rci+Rttc)

2 . This approach offers
an efficient and accurate method for estimating the relevance
of perception data, enabling the prioritization of such data in
subsequent dissemination tasks.

For instance, in Fig. 7 (a), the predicted trajectories of
vehicles A and C intersect, forming a collision area indicated
by the red circle. The server calculates the passing times based
on the speeds of A and C, as shown in the timeline of Fig. 7
(b). The passing times of A and C overlap, suggesting a
potential collision within the collision area. Consequently, the
relevance between A and C is calculated using the formulas
for Rci and Rttc. On the other hand, for the pedestrian p and
vehicle G, their trajectories intersect but the passing times
through the collision area do not overlap, as depicted in
Fig. 7 (b). Therefore, both Rci and Rttc are 0, indicating the
perception data of p and G are irrelevant.

2) Relevance Estimation based on Car Following Model:
For the vehicles that are filtered out by the rules in Sec-
tion II-D, their trajectories are not predicted and hence their
relevance can not be estimated directly. However, it is impor-



tant to note that the relevance of these vehicles should not be
ignored since they can still pose potential threats to safety in
emergency situations. For example, consider the vehicle H in
Fig. 7 (a), which is following the leading vehicle A. Since A is
relevant to C, A will receive the perception data of C and slow
down to avoid a potential collision. Without being alerted in
advance, the driver of H needs some reaction time to respond
when A starts to brake, and a rear-end collision between H
and A may occur during this time. Therefore, the relevance
between the following vehicles and other objects should also
be estimated to ensure safety in case of emergencies.

According to the Rule 1, vehicles that are filtered out are
mostly followers which drive after the leaders. There are many
research that study on car following models for forecasting
the behaviors of followers based on the leading vehicles
[28]. In our proposed approach, we leverage these models to
determine the relevance of following vehicles, and we identify
two models that are well-suited for avoiding collisions in the
event of sudden deceleration by the leading vehicle. The first
is the Pipes’ Rule [36] that emphasizes the safety distance
between vehicles. It suggests that the safety distance between
the follower and the leader should be the length of a car,
i.e., 4 ∼ 5 meters, for every 10 mph at which the follower is
traveling. This rule allows enough distance for the follower to
decelerate before colliding with the leader. The second model
is the Gipps model [37] which take the driver’s reaction time
into consideration. In this model, the time gap between the
follower and the leader should be 1.5 times of the reaction
time. Typically, the human reaction time is one second on
average, so the time gap in this model should be 1.5 seconds
which ensures that the drivers have enough time to understand
the traffic situation and take appropriate actions.

We utilize these car following models on each following
vehicles to determine their relevance. If a following vehicle
does not meet the criteria of either the Pipes’ Rule or the Gipps
model, it is considered relevant as it may potentially collide
with its leader. Since the follower will only collide with the
leader when the leader receives a disseminated perception data
and decelerate, the relevance of the follower should be related
to the leader’s relevance. To this end, we define the follower’s
relevance as Rfollower = αRleader, where α ∈ (0, 1] is a predefined
decay factor, and it can be tuned based on different traffic
scenarios. In the scenarios that rear-end collisions happen
frequently, a larger decay factor could help since it lets the
system give more attentions to the followers. To simplify the
evaluation, we keep the decay factor as α = 0.8 in this paper.
For the example in Fig. 7 (a), if H fails to satisfy the car
following models, its relevance should be RH,C = αRA,C. As a
result, H will receive the perception data of C such that H’s
driver can foresee its leader A’s deceleration, and hence H
can avoid the rear-end collision with its leader.

B. Relevance-Aware Perception Dissemination

In our system, we disseminate the perception data, i.e.,
LiDAR points, to vehicles since the LiDAR points provide
abundant details about the 3D information which can be used

Algorithm 1 Perception Dissemination

Input: Perception data {o1, o2, · · · , on} and their data size
{s1, s2, · · · , sn}, relevance Ri,j , bandwidth constraint B

Output: Disseminated perception data Z
1: Z ← ∅
2: Data size of disseminated perceptions b← 0
3: while b < B do
4: Find the perception data oi and the vehicle j

which maximizes Ri,j/si
5: Z ← Z ∪ (oi, j)
6: b← b+ si
7: Ri,j ← 0
8: end while
9: return Z

for many general tasks, such as path planning, 3D object
detection and segmentation. The data size of the perception
data is proportional to the number of points that represent
the corresponding objects, and the size grows when more
vehicles are uploading their perception data, resulting in a
dense point cloud. Then, the bandwidth might become a
bottleneck for disseminating these perception data. Thus, our
goal is to only disseminating the most relevant perception data
to corresponding vehicles under some bandwidth constraints.

Definition 1 (Perception Dissemination Problem). Given the
perception data of n objects o1, o2, o3, · · · , on and their
data size s1, s2, s3, · · · , sn. Also given the relevance of these
objects Ri,j (i, j = 1, 2, 3, · · · , n). Our goal is to maximize
the total relevance with the bandwidth constraint B, and the
problem can be formulated as follow.

max

n∑
i=1

n∑
j=1

Ri,jzi,j s.t.
n∑

i=1

n∑
j=1

sizi,j ≤ B

where zi,j ∈ {0, 1} indicates whether the perception data
oi should be disseminated to vehicle (or pedestrian) j or not.
When zi,j = 1, the perception data should be disseminated;
otherwise, there is no dissemination.

This problem can be converted to a binary knapsack prob-
lem, which is proved to be NP-hard. In the binary knapsack
problem, there are n items and each item has a weight and
a value. Given a knapsack with a weight limit, the problem
is to select some items so that the total weight of selected
items is less than or equal to the weight limit and the total
value is maximized. Similarly, in the perception dissemination
problem, disseminating the perception data oi to vehicle j
transmits the data of size si (weight) and has a relevance Ri,j

(value). With the bandwidth constraint B (weight limit), the
perception dissemination problem is equivalent to maximizing
the total relevance (value) of the disseminated perception data
while the transmitted data size (weight) should not exceed the
bandwidth constraint (weight limit).

To solve the problem, we propose a greedy algorithm as
shown in Algo. 1. We define a relevance/size award Ri,j/si,



(a) Vehicle B’s view. (b) Vehicle A’s view

Fig. 8: The views of vehicles B and A.

which takes both relevance and the bandwidth consumption
into consideration, and our algorithm schedules the dissemina-
tion iteratively based on this award to maximize the relevance
while not exceeding the bandwidth constraint. Specifically,
as shown in Algo. 1, our algorithm starts from an empty
set Z, which is the perception data to be disseminated. In
each iteration, the algorithm selects the relevant perception
data oi and the vehicle j which maximize the relevance/size
award. Then, the algorithm adds the perception data oi and
the corresponding vehicle j to set Z and increases the total
perception data size b by si. Our algorithm stops when the total
amount of perception data b reaches the bandwidth constraint
B, and the edge server disseminates all perception data in Z
to the corresponding vehicles.

IV. PERFORMANCE EVALUATIONS

In this section, we first use a demo to show the effectiveness
of our system and then evaluate its performance with extensive
simulations.

A. Simulation Setup

To facilitate the collection of LiDAR data from multiple
vehicles simultaneously and control the vehicles to avoid
collisions upon receiving disseminated perception data, our
evaluations are conducted using the open-source simulator
CARLA [38], which is specifically designed for autonomous
driving. CARLA enables multiple vehicles within the same
scenario, allowing us to equip them with various sensors,
like LiDAR, to perceive the surrounding environment accu-
rately. Furthermore, CARLA provides a range of builtin high-
definition maps that include diverse traffic scenarios. We setup
two scenarios at an intersection where accidents are inevitable,
and in each scenario we position multiple vehicles, equipped
with 64-channel LiDAR sensors mounted on the roof. The
LiDAR sensors have a maximum perception range of 50
meters and they scan the surrounding environment 10 times per
second, generating 10 frames per second with over 1,000,000
points in each frame.

We emulate the computation capacity of the vehicles with
NVIDIA Jetson TX2 [39] which has 8 GB memory and a
NVIDIA Pascal GPU to process the LiDAR data. We deploy
the edge server on a machine with an Intel Core i7 3.80GHz
CPU and an NIVIDIA RTX 3080 GPU. To simulate the
bandwidth constraints of wireless communications, we use the
same maximum bandwidth as measured in [9].

B. Demo

Fig. 8 uses two traffic scenarios to demonstrate the effective-
ness of our system. For each scenario, the left figure provides
the camera view, and the right figure provides the LiDAR view.

In Fig. 8 (a), vehicle B is driving straight forward, and the
pedestrian p is crossing the road. As shown in the camera
view (left), p is obscured by the truck D and is not visible to
B’s LiDAR. Consequently, B might collide with p. However,
other vehicles such as E, can capture p and upload it to
the edge server. Using this data, the edge server predicts the
trajectories of B and p, and detects a potential collision. Then,
the edge server estimates the relevance between B and p,
and disseminates the perception data of p to vehicle B based
on our perception dissemination algorithm. As shown in the
LiDAR view (right) in Fig.8 (a), B will have p’s perception
data (represented by red points) and avoid the collision. In
contrast, although C is not visible to B, its perception data is
not disseminated. Because the trajectories of B and C will
not intersect, their relevance is 0 and there is no need to
disseminate C’s perception data.

In the second scenario shown in Fig. 8 (b), vehicle A intends
to turn left at the intersection while C goes straight. Due to
the occlusion caused by D, both vehicles cannot perceive each
other and an accident might happen. With our system, both
A and C are detected by the edge server, and the potential
collision can be detected based on their trajectories. With
the relevance estimation, the edge server disseminates the
perception data of C to A, represented by the red points in
Fig. 8 (b).

C. Simulation Results

In order to comprehensively evaluate the performance of our
proposed system, we conducted extensive simulations using
various metrics. We focused on two scenarios: the unprotected
left turn and the red-light violation at an intersection. Fig. 9
(a) illustrates the left turn scenario, where the black vehicle
intends to make a left turn while its view is obstructed by
the orange truck, rendering the red vehicle invisible to the
black one. Consequently, the black vehicle may collide with
the red vehicle at the intersection. In the red-light violation
scenario depicted in Fig. 9 (b), the black vehicle approaches
the intersection while the red vehicle runs red light. Due
to the presence of orange trucks waiting at the intersection,
obstructing the view of both the black and red vehicles, an
accident may become inevitable.

For both scenarios, we simulated a busy urban traffic
scenario by spawning 40 vehicles at the intersection. Based on
statistical projections [40], the usage of advanced driver assis-
tance systems is expected to reach 50% by 2030. Therefore, we
vary the percentage of connected vehicles from 20% to 50%
and evaluate the bandwidth consumption and performance
accordingly. Considering the varied speeds of vehicles in urban
traffic, we adjust the vehicle speed in both scenarios, ranging
from 20 km/h to 40 km/h. For each scenario and setup, we
performed five simulation runs and reported the average results
to ensure reliability and accuracy of our evaluations.



(a) (b)

Fig. 9: (a) Black vehicle: unprotected left turn. (b) Red vehicle:
red-light violation.

(a) (b)

Fig. 10: Safe passage rate with different (a) driving speeds
(Single are all 0%) (b) percentage of connected vehicles.

We conduct a comparative analysis of our method (Ours)
against several baseline approaches.

• Single: Vehicles only rely on their own LiDAR sensors to
perceive the surrounding environment while no data are
shared;

• EMP [9]: The road is partitioned into non-overlapping
regions using Voronoi diagrams, and each vehicle only
uploads the point cloud data corresponding to its desig-
nated region.

• Unlimited: Vehicles directly upload the entire raw LiDAR
point cloud and the edge server disseminates the entire
traffic map to all connected vehicles without bandwidth
constraints.

Although AUTOCAST [41] also shares perception data, it
is through V2V communication. Moreover, it is designed for
autonomous driving and assumes that the trajectories of all
vehicles are known as prior. However, such assumption is not
valid in real-world traffic scenarios, and thus is not compared
here.

1) Safe Passage: To show that our proposed system can im-
prove safety, we evaluate the traffic safety in this section with
the metric of safe passage rate, which measures the percentage
of vehicles passing the intersection without collisions. We use
the default controller in CARLA to control the vehicles, and
then implement a simple logic to simulate human drivers’
reactions to possible collisions. To account for human drivers’
reaction time, vehicles decelerate one second after receiving
the disseminated perception data. It is important to note that
our system disseminates relevant perception data to vehicles
which would be involved in potential accidents, thus only
vehicles with disseminated perception data decelerate while

(a) Unprotected left turn (b) Red-light violation

Fig. 11: Minimum distance between the vehicles.

other vehicles proceed normally.
In Fig. 10 (a), we study how the driving speed affects

the safe passage rate. The safe passage rates of Single are
always 0%, indicating that accidents are inevitable if there
is no sharing among vehicles. When the driving speed is
below 40 km/h, our system achieves 100% safe passage rate
and there is no collision in all cases, As the driving speed
increases to 40 km/h, the safe passage rates of all methods
drops. This is because the stopping distance increases as the
driving speed increases. Therefore, even with the disseminated
perception data, it is possible for the vehicles to collide when
driving in high speed. Nevertheless, our system still achieves
at least 85% of safe passage when vehicles are driving fast. In
contrast, EMP performs much worse when the driving speed
increases due to the following reasons. First, EMP uses the
Round Robin strategy, and the relevant perception data might
not be disseminated immediately due to bandwidth constraints.
Then, perception dissemination can be delayed, leading to
insufficient time for the vehicles to slow down. As the speed
increases, the impact of the delay is more significant and the
safe passage rate of EMP decreases dramatically. Second, as
discussed before, EMP might lose some information during
uploading due to the upload bandwidth constraints. As a result,
some relevant objects might be lost and even the edge server
is not aware of the potential accident.

Fig. 10 (b) shows the safe passage rate with varying percent-
ages of connected vehicles. Because the Single case has 0%
of connected vehicles, it is not depicted in the figure. A lower
percentage of connected vehicles (i.e., 20%) may leave some
areas of the intersection uncovered, causing delayed detection
of the relevant objects and a lower safe passage rate. As the
number of connected vehicles increases, more perception data
is shared with the edge server, leading to a more precise and
robust traffic map. Then, potential collisions can be detected
earlier. This results in an increased safe passage rate, as
indicated by Ours method. However, as the percentage of
connected vehicles increases, some relevant objects may not
be disseminated due to bandwidth limits in EMP, leading to
a decreased safe passage rate.

Fig. 11 compares the minimum distance between vehicles
in different traffic scenarios. Since collisions are inevitable
in the Single method, its minimum distance is always 0. In
both scenarios, with the perception data disseminated by our
system, the minimum distance between vehicles is much larger
than that of EMP. The distance become shorter as the driving
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Fig. 12: (a) Bandwidth consumption of the LiDAR data
uploading. (b) Number of objects in the uploaded LiDAR data.

speed increases, but our system still maintains distance longer
enough for safe passage, i.e., 3 meters in unprotected left turn
and 7 meters in red-light violation with 40 km/h.

While improving the traffic safety, our system also reduces
the bandwidth consumption, thereby enhancing the scalability,
which is evaluated in the next sections.

2) Data Uploading: Given that LiDAR sensors generate
10 frames per second, vehicles upload their LiDAR data 10
times per second. In this section, we evaluate the bandwidth
consumption when vehicles upload their perception data.

Fig. 12 (a) presents the average bandwidth consumption
for different percentages of vehicles uploading their LiDAR
data. By employing the Moving Object Extraction technique to
remove unnecessary points from the LiDAR data, our method
significantly reduces bandwidth consumption compared to the
Unlimited baseline. Additionally, our approach requires less
bandwidth than the EMP method since we further eliminate
the perception data of static objects like buildings and parked
vehicles. For example, in the red-light violation scenario
depicted in Fig. 9 (b), three trucks are waiting to turn. The
EMP method uploads the perception data of these trucks,
even though they are stationary and irrelevant to other vehicles
and pedestrians. In contrast, our system removes these static
objects, resulting in greater bandwidth savings. Furthermore,
Fig. 12 (a) demonstrates that the bandwidth consumption of
EMP almost reaches the bandwidth constraint. Consequently,
some perception data cannot be uploaded to the edge server,
leading to information loss, such as missing objects.

Fig. 12 (b) shows the number of moving objects detected
from the uploaded perception data. Due to the bandwidth
constraint, EMP detects fewer objects. Moreover, as the per-
centage of connected vehicles increases, the size of the per-
ception data grows, intensifying the impact of the bandwidth
constraint. Consequently, the number of objects detected by
EMP decreases, as shown in Fig. 12 (b). However, since our
system has sufficient bandwidth to support perception data
uploading, we can detect more objects. Remarkably, the results
are comparable to the Unlimited baseline, which utilizes raw
LiDAR data for object detection.

3) Perception Dissemination: After collecting the percep-
tion data from multiple vehicles, the data should be dis-
seminated to appropriate vehicles to notify drivers about the
potential accidents. We evaluate the bandwidth consumption
for the dissemination from the edge server to vehicles. For

Fig. 13: Bandwidth consumption of perception dissemination.

(a) (b)

Fig. 14: (a) End-to-end latency. (b) Runtime of different
modules.

comparison, we apply the Round Robin strategy in the EMP
method, which means the perception data of all objects in
the traffic map will be disseminated to all vehicles round by
round. Besides, we use the Unlimited baseline to show how
much bandwidth is needed to disseminate the whole traffic
map to all vehicles in one round.

Fig. 13 shows the bandwidth consumption during dissem-
ination as the percentage of connected vehicles increases. In
both our system and the Unlimited baseline, the bandwidth
requirement for dissemination increases. However, the increase
in bandwidth consumption for Unlimited is exponential, mak-
ing it impossible for wireless communication to support such
high bandwidth requirements. The bandwidth consumption of
EMP does not change significantly because it is constrained
by the bandwidth limitation. In contrast, our system selectively
disseminates relevant perception data to the appropriate vehi-
cles, resulting in significantly lower bandwidth consumption.

4) Latency: As the LiDAR sensors on vehicles operate
at a rate of 10 frames per second, we optimize the whole
system and reduce the end-to-end latency, ensuring that the
entire dissemination process can be completed within the time
interval between two LiDAR frames. Specifically, the end-to-
end latency encompasses the time from the moment LiDAR
sensors generate the point cloud to when the relevant data is
disseminated.

Fig.14 (a) shows the end-to-end latency of our system.
As the percentage of connected vehicles increases, more data
are uploaded, and longer processing delay is involved at the
edge server for analysis. As a result, the end-to-end latency
increases.

Fig.14 (b) shows a breakdown of the latency caused by
different modules in our system when the percentage of
connected vehicles is 20%. The Moving Object Extraction



module consumes the most time due to the limited computa-
tion capacity of the vehicles and the dense LiDAR point cloud.
Moreover, the complexity of processing the point cloud varies
as the surrounding environment of the vehicles changes, lead-
ing to a high variance in the runtime. After that, the reduced
point cloud is uploaded through the wireless communication
which takes about 24 ms. Then, the edge server takes about
3 ms to build the traffic map. Based on our proposed rules
that only predict the trajectory of representative vehicles and
pedestrians, the computation complexity of trajectory predic-
tion is significantly reduced, resulting in a short overhead, i.e.,
less than 10 ms. By leveraging our proposed greedy algorithm,
the perception dissemination process takes only about 1 ms to
make dissemination decisions.

V. RELATED WORK

Cooperative Perception: Our work is related to the field
of cooperative perception in vehicular networks [42]. In this
paper, we focus on data sharing among vehicles, and existing
studies [9], [41], [43], [44] have explored the transmission
of raw perception data, such as camera images and LiDAR
point clouds. For example, in AVR [45], Qiu et al. propose to
share the raw 3D sensor data among vehicles through V2V
communication. In EMP [9], LiDAR point clouds are up-
loaded to the edge server, and several techniques are proposed
to reduce the data size and bandwidth consumption during
uploading. AUTOCAST [41] shares the LiDAR data through
V2V communication and improve the scalability; however, it is
designed for autonomous driving and assumes that the trajec-
tories of all vehicles are known as prior, which is impractical
in real-world traffic scenarios nowadays. In [44], Wang et al.
proposed an edge-assistant camera selection system to achieve
cooperative perception in vehicular networks. By leveraging
camera metadata, the system selectively chooses essential
camera images, effectively reducing bandwidth, storage, and
processing requirements at the edge server.

In recent years, advancements in vehicle technology have
allowed for some computational tasks to be performed locally.
Some researchers propose processing perception data, such
as feature extraction, locally and sharing only the extracted
features [46], [47]. For instance, Chen et al. [46] introduced
a framework that fuses 3D features of perception data from
multiple vehicles for object detection. Certain works even
perform object detection locally, as demonstrated by VIPS
[48]. VIPS applies 3D object detection models on vehicles to
extract objects from LiDAR data, followed by reconstructing a
3D traffic map of the surroundings by aggregating information
from roadside infrastructures. However, these approaches do
not address the challenges of determining which perception
data are relevant and to which vehicles the perception data
should be disseminated.

Mobile Edge Computing: Leveraging edge computing
techniques, heavy computations can be offloaded to the edge
server [4], [49]–[53]. For example, in [54], computationally
intensive object detection tasks are offloaded to edge servers,
enhancing mobile AR applications with improved frame rates

and detection accuracy. Similarly, in vehicular networks, edge
servers play a crucial role in data processing and information
sharing. For instance, LiveMap [7] utilizes an edge server to
schedule vehicles for offloading camera images, minimizing
latency and enabling real-time processing for constructing
a dynamic traffic map. In [8], vehicles dynamically offload
images to an edge server for collaborative localization and
tracking. While we also leverage the capabilities of an edge
server to build a comprehensive traffic map, our focus is
on disseminating relevant perception data to corresponding
vehicles.

VI. CONCLUSIONS

In this paper, we have proposed an edge-assisted relevance-
aware perception dissemination system that collects percep-
tion data from multiple vehicles and selectively disseminates
only the necessary data to appropriate vehicles. To reduce
computational overhead, we have developed techniques for
clustering vehicles and pedestrians based on their locations
and orientations, enabling us to track representative entities
instead of individual objects. Moreover, we have proposed an
efficient approach to measure the relevance of perception data,
allowing us to prioritize the dissemination of the most relevant
information. By formulating and solving the relevance-aware
perception dissemination problem, we aim to maximize the
overall relevance of disseminated data while considering band-
width constraints. To evaluate the effectiveness and efficiency
of our proposed system, we have conducted comprehensive
experimental studies. The results demonstrate that our system
enhances the traffic safety while significantly reducing the
overall bandwidth consumption.
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