
Sequential Kernelized Independence Testing

Aleksandr Podkopaev1∗, Patrick Blöbaum2,
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Abstract

Independence testing is a classical statistical problem that has been extensively studied in the batch
setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures
that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally,
such procedures should (a) stop earlier on easy tasks (and later on harder tasks), hence making better
use of available resources, and (b) continuously monitor the data and e�ciently incorporate statistical
evidence after collecting new data, while controlling the false alarm rate. Classical batch tests are not
tailored for streaming data: valid inference after data peeking requires correcting for multiple testing
which results in low power. Following the principle of testing by betting, we design sequential kernelized
independence tests that overcome such shortcomings. We exemplify our broad framework using bets
inspired by kernelized dependence measures, e.g., the Hilbert-Schmidt independence criterion. Our test is
also valid under non-i.i.d. time-varying settings. We demonstrate the power of our approaches on both
simulated and real data.
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1 Introduction

Independence testing is a fundamental statistical problem that has also been studied within information theory
and machine learning. Given paired observations (X,Y ) sampled from some (unknown) joint distribution
PXY , the goal is to test the null hypothesis that X and Y are independent. The literature on independence
testing is vast as there is no unique way to measure dependence, and di↵erent measures give rise to di↵erent
tests. Traditional measures of dependence, such as Pearson’s r, Spearman’s ⇢, and Kendall’s ⌧ , are limited to
the case of univariate random variables. Kernel tests [13, 15, 20] are amongst the most prominent modern
tools for nonparametric independence testing that work for general X ,Y spaces.

In the literature, heavy emphasis has been placed on batch testing when one has access to a sample whose
size is specified in advance. However, even if random variables are dependent, the sample size that su�ces to
detect dependence is never known a priori. If the results of a test are promising yet non-conclusive (e.g., a
p-value is slightly larger than a chosen significance level), one may want to collect more data and re-conduct
the study. This is not allowed by traditional batch tests. We focus on sequential tests that allow peeking at
observed data to decide whether to stop and reject the null or to continue collecting data.

Problem Setup. Suppose that one observes a stream of data: (Zt)t�1, where Zt = (Xt, Yt)
iid
⇠ PXY . We

design sequential tests for the following pair of hypotheses:

H0 : Zt

iid
⇠ PXY , t � 1 and PXY = PX ⇥ PY , (1a)

H1 : Zt

iid
⇠ PXY , t � 1 and PXY 6= PX ⇥ PY . (1b)

Following the framework of “tests of power one” [7], we define a level-↵ sequential test as a mapping
� : [

1

t=1(X ⇥ Y)t ! {0, 1} that satisfies

PH0 (9t � 1 : �(Z1, . . . , Zt) = 1)  ↵.

As is standard, 0 stands for “do not reject the null yet” and 1 stands for “reject the null and stop”. Defining
the stopping time ⌧ := inf {t � 1 : �(Z1, . . . , Zt) = 1} as the first time that the test outputs 1, a sequential
test must satisfy

PH0 (⌧ < 1)  ↵.

We work in a very general composite nonparametric setting: H0 and H1 consist of huge classes of distributions
(discrete/continuous) for which there may not be a common reference measure, making it impossible to define
densities and thus ruling out likelihood-ratio based methods.
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Our Contributions. Following the principle of testing by betting, we design consistent sequential nonpara-
metric independence tests. Our bets are inspired by popular kernelized dependence measures: Hilbert-Schmidt
independence criterion (HSIC) [13], constrained covariance criterion (COCO) [15], and kernelized canonical
correlation (KCC) [20]. We provide theoretical guarantees on time-uniform type I error control for these
tests — the type I error is controlled even if the test is continuously monitored and adaptively stopped
— and further establish consistency and asymptotic rates for our sequential HSIC under the i.i.d. setting.
Our tests also remain valid even if the underlying distribution changes over time. Additionally, while the
initial construction of our tests requires bounded kernels, we also develop variants based on symmetry-based
betting that overcome this requirement. This strategy can be readily used with a linear kernel to construct a
sequential linear correlation test. We justify the practicality of our tests through a detailed empirical study.

We start by highlighting two major shortcomings of existing tests that our new tests overcome.

(i) Limitations of Corrected Batch tests and Reduction to Two-sample Testing. Batch tests
(without corrections for multiple testing) have an inflated false alarm rate under continuous monitoring (see
Appendix A.1). Näıve Bonferroni corrections restore type I error control, but generally result in tests with
low power. This motivates a direct design of sequential tests (not by correcting batch tests). It is tempting
to reduce sequential independence testing to sequential two-sample testing, for which a powerful solution has
been recently designed [30]. This can be achieved by splitting a single data stream into two and permuting
the X data in one of the streams (see Appendix A.2). Still, the splitting results in ine�cient use of data and
thus low power, compared to our new direct approach (Figure 1).
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Figure 1: Valid sequential independence tests for: Yt = Xt� + "t, Xt, "t ⇠ N (0, 1). Batch + n-step is batch
HSIC with Bonferroni correction applied every n steps (allowing monitoring only at those steps). Seq-MMD
refers to the reduction to two-sample testing (Appendix A.2). Our test outperforms other tests.

(ii) Time-varying Independence Testing: Beyond the i.i.d. Setting. A common practice of using
a permutation p-value for batch independence testing requires (X,Y )-pairs to be i.i.d. (more generally,
exchangeable). If data distribution drifts, the resulting test is no longer valid, and even under mild changes,
an inflated false alarm rate is observed empirically. Our tests handle more general non-stationary settings.

For a stream of independent data: (Zt)t�1, where Zt ⇠ P (t)
XY

, consider the following pair of hypotheses:

H0 : P (t)
XY

= P (t)
X

⇥ P (t)
Y

, 8t, (2a)

H1 : 9t0 : P (t0)
XY

6= P (t0)
X

⇥ P (t0)
Y

. (2b)

Suppose that under H0 in (2a), it holds that either P (t�1)
X

= P (t)
X

or P (t�1)
Y

= P (t)
Y

for each t � 1, meaning
that either the distribution of X may change or that of Y may change, but not both simultaneously. In this
case, our tests control the type I error, whereas batch independence tests fail to.
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Example 1. Let ((Wt, Vt))t�1 be a sequence of i.i.d. jointly Gaussian random variables with zero mean and
covariance matrix with ones on the diagonal and ⇢ o↵ the diagonal. For t = 1, 2, . . . and i 2 {0, 1}, consider
the following stream: (

X2t�i = 2c sin(t) + W2t�1,

Y2t�i = 3c sin(t) + V2t�1,
(3)

Setting ⇢ = 0 falls into the null case (2a), whereas any ⇢ 6= 0 implies dependence as per (2b). Visually, it
is hard to distinguish between H0 and H1: the drift makes data seem dependent (see Appendix E.1). In
Figure 2(a), we show that our test controls type I error, whereas batch test fails1.
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(a) The null is true, meaning that W ?? V in Example 1.

(Batch) HSIC: dashed lines, SKIT: solid lines.
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(b) The alternative is true with ⇢ = 1/2.

Figure 2: Under distribution drift (3), SKIT controls type I error under H0 and has high power under H1.
Batch HSIC fails to control type I error under H0 (hence we do not plot its power).

Related Work. In addition to the aforementioned papers on batch independence testing, our work is
also related to methods for “safe, anytime-valid inference”, e.g., confidence sequences [32, and references
therein] and e-processes [17, 25]. Sequential nonparametric two-sample tests of Balsubramani and Ramdas
[1], based on linear-time test statistics and empirical Bernstein inequality for random walks, are amongst the
first results in this area. While such tests are valid in the same sense as ours, betting-based tests are much
better empirically [30].

The roots of the principle of testing by betting can be traced back to Ville’s 1939 doctoral thesis [31] and
was recently popularized by Shafer [28]. The latter work considered it mainly in the context of parametric and
simple hypotheses, far from our setting. The most closely related works to the current paper are [16, 27, 30]
which also handle composite and nonparametric hypotheses. Shekhar and Ramdas [30] use testing by betting
to design sequential nonparametric two-sample tests, including a state-of-the-art sequential kernel maximum
mean discrepancy test. Two recent works by Grünwald et al. [16], Shaer et al. [27], developed in parallel to the
current paper, extend these ideas to the setting of sequential conditional independence tests (H0 : X ?? Y | Z)
under the model-X assumption, i.e., when the distribution X | Z is assumed to be known. Our methods
are very di↵erent from the aforementioned papers because when Z = ;, the model-X assumption reduces
to assuming PX is known, which we of course avoid. The current paper can be seen as extending the ideas
from [30] to nonparametric independence testing.

1
This is also related to Yule’s nonsense correlation [8, 33], which would not pose a problem for our method.
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2 Sequential Kernel Independence Test

We begin with a brief summary of the principle of testing by betting [28, 29]. Suppose that one observes a
sequence of random variables (Zt)t�1, where Zt 2 Z. A player begins with initial capital K0 = 1. At round
t of the game, she selects a payo↵ function ft : Z ! [�1,1) that satisfies EZ⇠PZ [ft(Z) | Ft�1] = 0 for all
PZ 2 H0, where Ft�1 = �(Z1, . . . , Zt�1), and bets a fraction of her wealth �tKt�1 for an Ft�1-measurable
�t 2 [0, 1]. Once Zt is revealed, her wealth is updated as

Kt = Kt�1(1 + �tft(Zt)). (4)

A level-↵ sequential test is obtained using the following stopping rule: �(Z1, . . . , Zt) = {Kt � 1/↵}, i.e.,
the null is rejected once the player’s capital exceeds 1/↵. If the null is true, imposed constraints on sequences
of payo↵s (ft)t�1 and betting fractions (�t)t�1 prevent the player from making money. Formally, the wealth
process (Kt)t�0 is a nonnegative martingale. The validity of the resulting test then follows from Ville’s
inequality [31].

To ensure that the resulting test has power under the alternative, payo↵s and betting fractions have to be
chosen carefully. Inspired by sequential two-sample tests of Shekhar and Ramdas [30], our construction relies
on dependence measures: m(PXY ; C), which admit a variational representation:

sup
c2C

[EPXY c(X,Y ) � EPX⇥PY c(X,Y )] , (5)

for some class C of bounded functions c : X ⇥ Y ! R. The supremum above is often achieved at some c⇤ 2 C,
and in this case, c⇤ is called the “witness function”. In what follows, we use su�ciently rich functional classes
C for which the following characteristic condition holds:

(
m(PXY ; C) = 0, under H0,

m(PXY ; C) > 0, under H1,
(6)

for H0 and H1 defined in (1). To proceed, we bet on pairs of points from PXY . Swapping Y -components
in a pair of points from PXY : Z2t�1 and Z2t, gives two points from PX ⇥ PY : Z̃2t�1 = (X2t�1, Y2t) and
Z̃2t = (X2t, Y2t�1). We consider payo↵s f(Z2t�1, Z2t) of the form:

s ·

⇣
(c(Z2t�1) + c(Z2t)) � (c(Z̃2t�1) � c(Z̃2t))

⌘
, (7)

where the scaling factor s > 0 ensures that f(z, z0) 2 [�1, 1] for any z, z0 2 X ⇥Y . When the witness function
c⇤ is used in the above, we denote the resulting function as the “oracle payo↵” f⇤. Let the oracle wealth
process (K⇤

t
)
t�0 be defined by using f⇤ along with the betting fraction

�? =
E [f?(Z1, Z2)]

E [f?(Z1, Z2)] + E [(f?(Z1, Z2))2]
. (8)

We have the following result regarding the above quantities, whose proof is presented in Appendix B.2.2.

Theorem 1. Let C denote a class of functions c : X ⇥ Y ! R for measuring dependence as per (5).

1. Under H0 in (1a) and (2a), any payo↵ f of the form (7) satisfies EH0 [f(Z1, Z2)] = 0.

2. Suppose that C satisfies (6). Under H1 in (1b), the oracle payo↵ f⇤ based on the witness function c⇤

satisfies EH1 [f?(Z1, Z2)] > 0. Further, for �? defined in (8), it holds that EH1 [log(1 + �?f?(Z1, Z2)] >
0. Hence, K

?

t

a.s.
! +1, which implies that the oracle test is consistent: PH1(⌧

? < 1) = 1, where
⌧? = inf {t � 1 : K

?

t
� 1/↵}.

Remark 1. While the betting fraction (8) su�ces to guarantee the consistency of the corresponding test, the
fastest growth rate of the wealth process is ensured by considering

�?K 2 arg max
�2(0,1)

E [log(1 + �f?(Z1, Z2)] .

Overshooting with the betting fraction may, however, result in the wealth tending to zero almost surely.
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Example 2. Consider a sequence (Wt)t�1, where

Wt =

(
1, with probability 3/5,

�1, with probability 2/5.

In this case, we have �?K = 1/5 and E [log(1 + �?Wt)] > 0, implying that Kt

a.s.
! +1. On the other hand, it

is easy to check that for �̃ = 2�?K we have: E[log(1 + �̃Wt)] < 0. As a consequence, for the wealth process Kt

corresponding to the pair (f⇤, �̃) it holds that Kt

a.s.
! 0.

To construct a practical test, we select an appropriate class C for which the condition (6) holds and replace
the oracle f? and �? with predictable estimates (ft)t�1 and (�t)t�1, meaning that those are computed using
data observed prior to a given round of the game. We begin with a particular dependence measure, namely
HSIC [13], and defer extensions to other measures to Section 3.

HSIC-based Sequential Kernel Independence Test (SKIT). Let G be a separable RKHS2 with
positive-definite kernel k(·, ·) and feature map '(·) on X . Let H be a separable RKHS with positive-definite
kernel l(·, ·) and feature map  (·) on Y.

Assumption 1. Suppose that:

(A1) Kernels k and l are nonnegative and bounded by one: sup
x2X

k(x, x)  1 and sup
y2Y

l(y, y)  1.

(A2) The product kernel k ⌦ l : (X ⇥ Y)2 ! R, defined as (k ⌦ l)((x, y), (x0, y0)) := k(x, x0)l(y, y0), is a
characteristic kernel on the joint domain.

Assumption (A1) is used to justify that the mean embeddings introduced later are well-defined elements
of RKHSs, and the particular bounds are used to simplify the constants. Assumption (A2) is a su�cient
condition for the characteristic condition (6) to hold [11], and we use it to argue about the consistency of
our test. Under mild assumptions, it can be further relaxed to characteristic property of the kernels on the
respective domains [12]. We note that the most common kernels on Rd: Gaussian (RBF) and Laplace, satisfy
both (A1) and (A2). Define mean embeddings of the joint and marginal distributions:

µXY := EPXY ['(X) ⌦  (Y )] ,

µX := EPX ['(X)] , µY := EPY [ (Y )] .
(9)

The cross-covariance operator CXY : H ! G associated with the joint measure PXY is defined as

CXY := µXY � µX ⌦ µY ,

where ⌦ is the outer product operation. This operator generalizes the covariance matrix. Hilbert-Schmidt
independence criterion (HSIC) is a criterion defined as Hilbert-Schmidt norm, a generalization of Frobenius
norm for matrices, of the cross-covariance operator [13]:

HSIC(PXY ; G,H) := kCXY k
2
HS . (10)

HSIC is the squared kernel maximum mean discrepancy (MMD) between mean embeddings of PXY and
PX ⇥ PY in the product RKHS G ⌦ H on X ⇥ Y, defined by a product kernel k ⌦ l. We can rewrite (10) as

✓
sup

g2G⌦H

kgk
G⌦H

1

EPXY [g(X,Y )] � EPX⇥PY [g(X 0, Y 0)]

◆2

,

2
Recall that an RKHS is a Hilbert space G of real-valued functions over X , for which the evaluation functional �x : G ! R,

which maps g 2 G to g(x), is a continuous map, and this fact must hold for every x 2 X . Each RKHS is associated with a unique

positive-definite kernel k : X ⇥X ! R, which can be viewed as a generalized inner product on X . We refer the reader to [23] for

an extensive recent survey of kernel methods.
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which matches the form (5). The witness function for HSIC admits a closed form (see Appendix D):

g? =
µXY � µX ⌦ µY

kµXY � µX ⌦ µY k
G⌦H

, (11)

where µXY , µX and µY are defined in (9). The oracle payo↵ based on HSIC: f?(Z2t�1, Z2t), is given by

1

2

⇣
g?(Z2t�1) + g?(Z2t) � g?(Z̃2t�1) � g?(Z̃2t)

⌘
, (12)

which has the form (7) with s = 1/2. To construct the test, we use estimators (ft)t�1 of the oracle payo↵ f?

obtained by replacing g? in (12) with the plug-in estimator:

ĝt =
µ̂XY � µ̂X ⌦ µ̂Y

kµ̂XY � µ̂X ⌦ µ̂Y k
G⌦H

, (13)

where µ̂XY , µ̂X , µ̂Y denote the empirical mean embeddings, computed at round t as3

µ̂XY = 1
2(t�1)

2(t�1)X

i=1

'(Xi) ⌦  (Yi),

µ̂X = 1
2(t�1)

2(t�1)X

i=1

'(Xi), µ̂Y = 1
2(t�1)

2(t�1)X

i=1

 (Yi).

(14)

Note that in (13) the witness function is defined as an operator. We clarify this point in Appendix D. To
select betting fractions, we follow Cutkosky and Orabona [6] who state the problem of choosing the optimal
betting fraction for coin betting as an online optimization problem with exp-concave losses and propose
a strategy based on online Newton step (ONS) [18] as a solution. ONS betting fractions are inexpensive
to compute while being supported by strong theoretical guarantees. We also consider other strategies for
selecting betting fractions and defer a detailed discussion to Appendix C. We conclude with formal guarantees
on time-uniform type I error control and consistency of HSIC-based SKIT. In fact, we establish a stronger
result: we show that the wealth process grows exponentially and characterize the rate of the growth of wealth
in terms of the true HSIC score. The proof is deferred to Appendix B.2.2.

Algorithm 1 Online Newton step (ONS) strategy for selecting betting fractions

Input: sequence of payo↵s (ft(Z2t�1, Z2t))t�1, �
ONS
1 = 0, a0 = 1.

for t = 1, 2, . . . do
Observe ft(Z2t�1, Z2t);
Set zt = ft(Z2t�1, Z2t)/(1 + �ONS

t
ft(Z2t�1, Z2t));

Set at = at�1 + z2
t
;

Set �ONS
t+1 := 1

2 ^

⇣
0 _

⇣
�ONS
t

+ 2
2�log 3 ·

zt
at

⌘⌘
;

Theorem 2. Suppose that Assumption 1 is satisfied. The following claims hold for HSIC-based SKIT
(Algorithm 2):

1. Under H0 in (1a) or (2a), SKIT ever stops with probability at most ↵: PH0 (⌧ < 1)  ↵.

2. Suppose that H1 in (1b) is true. Then it holds that Kt

a.s.
�! +1, and thus SKIT is consistent:

PH1(⌧ < 1) = 1. Further, the wealth grows exponentially, and the corresponding growth rate satisfies

lim inf
t!1

logKt

t

a.s.
�

E[f?(Z1,Z2)]
4 ·

⇣
E[f?(Z1,Z2)]

E[(f?(Z1,Z2))2]
^ 1
⌘
, (15)

where f? is the oracle payo↵ defined in (12).
3
At round t, evaluating HSIC-based payo↵ requires a number of operations that is linear in t (see Appendix F.2). Thus after

T steps, we have expended a total of O(T
2
) computation, the same as batch HSIC. However, our test threshold is 1/↵, but

batch HSIC requires permutations to determine the right threshold, requiring recomputing HSIC hundreds of times. Thus, our

test is actually more computationally feasible than batch HSIC.
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Algorithm 2 HSIC-based SKIT

Input: significance level ↵ 2 (0, 1), data stream (Zi)i�1, where Zi = (Xi, Yi) ⇠ PXY , �ONS
1 = 0.

for t = 1, 2, . . . do
Use Z1, . . . , Z2(t�1) to compute ĝt as in (13);
Compute HSIC payo↵ ft(Z2t�1, Z2t);
Update the wealth process Kt as in (4);
if Kt � 1/↵ then

Reject H0 and stop;
else

Compute �ONS
t+1 (Algorithm 1);

Since E [f?(Z1, Z2)] =
p

HSIC(PXY ; G,H) and E
⇥
(f?(Z1, Z2))2

⇤
 1, Theorem 2 implies that:

lim inf
t!1

⇣
1
t
log Kt

⌘ a.s.
�

1
4 · HSIC(PXY ; G,H).

However, the lower bound (15) is never worse. Further, if the variance of the oracle payo↵s: �2 = V [f?(Z1, Z2)],
is small, i.e., �2

 E [f?(Z1, Z2)] (1�E [f?(Z1, Z2)]), we get a faster rate:
p

HSIC(PXY ; G,H)/4, reminiscent
of an empirical Bernstein type adaptation. Up to some small constants, we show that this is the best possible
exponent that adapts automatically between the low- and high-variance regimes. We do this by considering
the oracle test, i.e., assuming that the oracle HSIC payo↵ f? is known. Amongst the betting fractions that
are constrained to lie in [�0.5, 0.5], like ONS bets, the optimal growth rate is ensured by taking

�? = arg max
�2[�0.5,0.5]

E [log(1 + �f?(Z1, Z2))] . (16)

We have the following result about the growth rate of the oracle test, whose proof is deferred to Appendix B.2.2.

Proposition 1. The optimal log-wealth S? := E [log(1 + �?f?(Z1, Z2))] — that can be achieved by an oracle
betting scheme (16) which knows f? from (12) and the underlying distribution — satisfies:

S?


E [f?(Z1, Z2)]

2

✓
8E [f?(Z1, Z2)]

3E [(f?(Z1, Z2))2]
^ 1

◆
. (17)

Remark 2 (Minibatching). While our test processes the data stream in pairs, it is possible to use larger
batches of points from the joint distribution PXY . For a batch size is b � 2, at round t, the bet is placed on�
(Xb(t�1)+1, Yb(t�1)+1), . . . , (Xbt, Ybt)

 
. In this case, the empirical mean embeddings are computed analogous

to (14) but using {(Xi, Yi)}ib(t�1). We defer the details to Appendix D. Such payo↵ function satisfies the
necessary conditions for the wealth process to be a nonnegative martingale, and hence, the resulting sequential
test has time-uniform type I error control. The same argument as in the proof of Theorem 2 can be used to
show that the resulting test is consistent. The main downside of minibatching is that monitoring of the test
(and hence, optional stopping) is allowed only after processing every b points from PXY .

Distribution Drift. As discussed in Section 1, batch independence tests have an inflated false alarm rate
even under mild changes in distribution. In contrast, SKIT remains valid even when the data distribution
drifts over time. For a stream of independent points, we claimed that our test controls the type I error as
long as only one of the marginal distributions changes at each round. In Appendix D, we provide an example
that shows that this assumption is necessary for the validity of our tests. Our tests can also be used to test
instantaneous independence between two streams. Formally, define Dt := {(Xi, Yi)}i2t and consider:

H0 : 8t, X2t�1 ?? Y2t�1 | Dt�1 and X2t ?? Y2t | Dt�1, (18a)

H1 : 9t0 : X2t0�1 ⇢⇢?? Y2t0�1 | Dt�1 or X2t0 ⇢⇢?? Y2t0 | Dt�1. (18b)

Assumption 2. Suppose that under H0 in (18a), it also holds that:
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(a) The cross-links between X and Y streams are not allowed, meaning that for all t � 1,

Yt ?? Xt�1 | Yt�1, {(Xi, Yi)}it�2,

Xt ?? Yt�1 | Xt�1, {(Xi, Yi)}it�2.
(19)

(b) For all t � 1, either (Xt, Xt�1) or (Yt, Yt�1) are exchangeable conditional on {(Xi, Yi)}it�2.

In the above, (a) relaxes the independence assumption within each pair, and (b) generalizes the assumption
about allowed changes in the marginal distributions of X and Y . Under the above setting, we deduce that
our test retains type-1 error control, and the proof is deferred to Appendix B.2.2.

Theorem 3. Suppose that H0 in (18a) is true. Further, assume that Assumption 2 holds. Then HSIC-based
SKIT (Algorithm 2) satisfies: PH0 (⌧ < 1)  ↵.

Chwialkowski and Gretton [4] considered a related (at a high level) problem of testing instantaneous
independence between a pair of time series. Similar to distribution drift, HSIC fails to test independence
between innovations in time series since naively permuting one series destroys the underlying structure.
Chwialkowski and Gretton [4] used a subset of permutations — rotations by circular shifting (allowed by their
assumption of strict stationarity) of one series for preserving the structure — to design a p-value and used
the assumption of mixing (decreasing memory of a process) to justify the asymptotic validity. The setting we
consider is very di↵erent, and we make no assumptions of mixing or stationarity anywhere. Related works on
independence testing for time series also include [2, 5].

3 Alternative Dependence Measures

Let C1 and C2 denote some classes of bounded functions c1 : X ! R and c2 : Y ! R respectively. For a
class C of functions c : X ⇥ Y ! R that factorize into the product: c(x, y) = c1(x)c2(y) for some c1 2 C1 and
c2 2 C2, the general form of dependence measures (5) reduces to

m(PXY ; C1, C2) = sup
c12C1,c22C2

Cov (c1(X), c2(Y )) .

Next, we develop SKITs based on two dependence measures of this form: COCO and KCC. While the
corresponding witness functions do not admit a closed form, e�cient algorithms for computing the plug-in
estimates are available.

Witness Functions for COCO. Constrained covariance (COCO) is a criterion for measuring dependence
based on covariance between smooth functions of random variables:

sup
g,h:

kgk
G
1,khk

H
1

Cov (g(X), h(Y )) = sup
g,h:

kgk
G
1,khk

H
1

hg, CXY hiG ,
(20)

where the supremum is taken over the unit balls in the respective RKHSs [14, 15]. At round t, we are
interested in empirical witness functions computed from {(Xi, Yi)}i2(t�1). The key observation is that
maximizing the objective function in (20) with the plug-in estimator of the cross-covariance operator requires
considering only functions in G and H that lie in the span of the data:

ĝt =

2(t�1)X

i=1

↵i

✓
'(Xi) �

1

2(t � 1)

2(t�1)X

j=1

'(Xj)

◆
,

ĥt =

2(t�1)X

i=1

�i

✓
 (Yi) �

1

2(t � 1)

2(t�1)X

j=1

 (Yj)

◆
.

(21)

Coe�cients ↵ and � that solve the maximization problem (20) define the leading eigenvector of the following
generalized eigenvalue problem (see Appendix D):

 
0 1

2(t�1)K̃L̃
1

2(t�1) L̃K̃ 0

!✓
↵
�

◆
= �

✓
K̃ 0
0 L̃

◆✓
↵
�

◆
, (22)
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where K̃ = HKH, L̃ = HLH , and H = I2(t�1) � (1/(2(t� 1))11> is centering projection matrix. Computing
the leading eigenvector for (22) is computationally demanding for moderately large t. A common practice is
to use low-rank approximations of K and L with fast-decaying spectrum [20]. We present an approach based
on incomplete Cholesky decomposition in Appendix F.1.

Witness Functions for KCC. Kernelized canonical correlation (KCC) relies on the regularized correlation
between smooth functions of random variables:

sup
g2G,

h2H

Cov (g(X), h(Y ))q
V [g(X)] + 1 kgk2

G
·

q
V [h(Y )] + 2 khk

2
H

, (23)

where regularization is necessary for obtaining meaningful estimates of correlation [10, 20]. Witness functions
for KCC have the same form as for COCO (21), but ↵ and � define the leading eigenvector of a modified
problem (Appendix D).

SKIT based on COCO or KCC. Given a pair of the witness functions g? and h? for COCO (or KCC)
criterion, the corresponding oracle payo↵: f?(Z2t�1, Z2t), is given by

1

2
(g?(X2t) � g?(X2t�1)) (h?(Y2t) � h?(Y2t�1)) , (24)

which has the form (7) with s = 1/2. To construct the test, we rely on estimates (ft)t�1 of the oracle payo↵

f? obtained by using ĝt and ĥt, defined in (21), in (24). We assume that ↵ and � in (22) are normalized:
↵>K̃↵ = 1 and �>L̃� = 1. We conclude with a guarantee on time-uniform false alarm rate control of SKITs
based on COCO (Algorithm 3), whose proof is deferred to Appendix B.3.

Algorithm 3 SKIT based on COCO (or KCC)

Input: significance level ↵ 2 (0, 1), data stream (Zi)i�1, where Zi = (Xi, Yi) ⇠ PXY , �ONS
1 = 0.

for t = 1, 2, . . . do
Use Z1, . . . , Z2(t�1) to compute ĝt and ĥt as in (21);
Compute COCO payo↵ ft(Z2t�1, Z2t);
Update the wealth process Kt as in (4);
if Kt � 1/↵ then

Reject H0 and stop;
else

Compute �ONS
t+1 (Algorithm 1);

Theorem 4. Suppose that (A1) in Assumption 1 is satisfied. Then, under H0 in (1a) and (18a), COCO/KCC-
based SKIT (Algorithm 3) satisfies: PH0 (⌧ < 1)  ↵.

Remark 3. The above result does not contain a claim regarding the consistency of the corresponding tests. If
(A2) in Assumption 1 holds, the same argument as in the proof of Theorem 2 can be used to deduce that
SKITs based on the oracle payo↵s (with oracle witness functions g? and h?) are consistent. In contrast to
HSIC, for which the oracle witness function is closed-form and the respective plug-in estimator is amenable for
the analysis, to argue about the consistency of SKITs based on COCO/KCC, it is necessary to place additional
assumptions, especially since low-rank approximations of kernel matrices are involved. We note that a su�cient

condition for consistency is that the payo↵s are positive on average: lim inft!1
1
t

P
t

i=1 fi(Z2i�1, Z2i)
a.s.
> 0.

Synthetic Experiments. To compare SKITs based on HSIC, COCO, and KCC payo↵s, we use RBF
kernel with hyperparameters taken to be inversely proportional to the second moment of the underlying
variables; we observed no substantial di↵erence when such selection is data-driven (median heuristic). We
consider settings where the complexity of a task is controlled through a single univariate parameter:
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(a) Gaussian model. For t � 1, we consider Yt = Xt� + "t, where Xt, "t ⇠ N (0, 1). We have that � 6= 0
implies nonzero linear correlation (hence dependence). We consider 20 values for �, spaced uniformly in
[0,0.3], and use �X = 1/4 and �Y = 1/(4(1 + �2)) as kernel hyperparameters.

(b) Spherical model. We generate a sequence of dependent but linearly uncorrelated random variables by

taking (Xt, Yt) = ((Ut)(1), (Ut)(2)), where Ut

iid
⇠ Unif(Sd), for t � 1. Sd denotes a unit sphere in Rd

and u(i) is the i-th coordinate of u. We consider d 2 {3, . . . , 15}, and use �X = �Y = d/4 as kernel
hyperparameters.

We stop monitoring after 20000 points from PXY (if SKIT does not stop by that time, we retain the null)
and aggregate the results over 200 runs for each value of � and d. In Figure 3, we confirm that SKITs control
the type I error and adapt to the complexity of a task. In settings with a very low signal-to-noise ratio (small
� or large d), SKIT’s power drops, but in such cases, both sequential and batch independence tests inevitably
require a lot of data to reject the null. We defer additional experiments to Appendix E.4.
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(b) Spherical model.

Figure 3: Rejection rate and scaled sample size used to reject the null hypothesis for synthetic data. Inspecting
the rejection rate for � = 0 (independence holds) confirms that the type I error is controlled. Further, we
confirm that SKITs are adaptive to the complexity (smaller � and larger d correspond to harder settings).

4 Symmetry-based Betting Strategies

In this section, we develop a betting strategy that relies on symmetry properties, whose advantage is that it
overcomes the kernel boundedness assumption that underlined the SKIT construction. For example, using
this betting strategy with a linear kernel: k(x, y) = l(x, y) = hx, yi readily implies a valid sequential linear
correlation test. Consider

Wt = ĝt(Z2t�1) + ĝt(Z2t) � ĝt(Z̃2t�1) � ĝt(Z̃2t), (25)

where ĝt = µ̂XY � µ̂X ⌦ µ̂Y is the unnormalized plug-in witness function computed from {Zi}i2(t�1).
Symmetry-based betting strategies rely on the following key fact.

Proposition 2. Under any distribution in H0, Wt is symmetric around zero, conditional on Ft�1.

By construction, we expect the sign and magnitude of Wt to be positively correlated under the alternative.
We consider three payo↵ functions that aim to exploit this fact.

1. Composition with an odd function. This approach is based on the idea from sequential symmetry
testing [24] that composition with an odd function of a symmetric around zero random variable is
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mean-zero. Absent knowledge regarding the scale of considered random variables, it is natural to
standardize {Wi}i�1 in a predictable way. We consider

fodd
t

(Wt) = tanh (Wt/Nt�1), (26)

where Nt = Q0.9({|Wi|}it
) � Q0.1({|Wi|}it

), and Q↵({|Wi|}it
) is the ↵-quantile of the empirical

distribution of the absolute values of {Wi}it
. (The choices of 0.1 and 0.9 are heuristic, and can be

replaced by other constants without violating the validity of the test.) The composition approach has
demonstrated promising empirical performance for the betting-based two-sample tests of Shekhar and
Ramdas [30] and conditional independence tests of Shaer et al. [27].

2. Rank-based approach. Inspired by sequential signed-rank test of symmetry around zero of Reynolds Jr.
[26], we consider the following payo↵ function:

f rank
t

(Wt) = sign(Wt) ·
rk(|Wt|)

t
, (27)

where rk(|Wt|) =
P

t

i=1 {|Wi|  |Wt|}.

3. Predictive approach. At round t, we fit a probabilistic predictor pt : R+ ! [0, 1], e.g., logistic regression,
using {|Wi| , sign (Wi)}it�1 as feature-label pairs. We consider the following payo↵ function:

fpred
t

(Wt) = (2pt(|Wt|) � 1)+ · (1 � 2`t(Wt)) , (28)

where (·)+ = max {·, 0} and `t(|Wt| , sign (Wt)) is the misclassification loss of the predictor pt.

Next, we show that symmetry-based SKITs are valid; the proof is deferred to Appendix B.4.

Algorithm 4 SKIT with symmetry-based betting

Input: significance level ↵ 2 (0, 1), data stream (Zi)i�1, where Zi = (Xi, Yi) ⇠ PXY , �ONS
1 = 0.

for t = 1, 2, . . . do
After observing Z2t�1, Z2t, compute Wt as in (25) and fodd

t
(Wt) as in (26);

Update the wealth process Kt as in (4);
if Kt � 1/↵ then

Reject H0 and stop;
else

Compute �ONS
t+1 (Algorithm 1);

Theorem 5. Under H0 in (1a) or (18a), the symmetry-based SKIT (Algorithm 4) satisfies: PH0 (⌧ < 1)  ↵.

Synthetic Experiments. To compare the symmetry-based payo↵s, we consider the Gaussian model along
with aGRAPA betting fractions. For visualization purposes, we complete monitoring after observing 2000
points from the joint distribution. In Figure 4(a), we observe that the resulting SKITs demonstrate similar
performance. In Figure 4(b), we demonstrate that SKIT with a linear kernel has high power under the
Gaussian model, whereas its false alarm rate does not exceed ↵ under the spherical model. Additional
synthetic experiments can be found in Appendix E.3.

Real Data Experiments. We analyze average daily temperatures4 in four European cities: London,
Amsterdam, Zurich, and Nice, from January 1, 2017, to May 31, 2022. The processes underlying temperature
formation are complex and act both on macro (e.g., solar phase) and micro (e.g., local winds) levels.
While average daily temperatures in selected cities share similar cyclic patterns, one may still expect the
temperature fluctuations occurring in nearby locations to be dependent. We use SKIT for testing instantaneous
independence (as per (18)) between fluctuations (assuming that the conditions that underlie our test hold).

4
data source: https://www.wunderground.com
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Figure 4: (a) SKITs with symmetry-based payo↵s have high power under the Gaussian model. (b) SKIT with
linear kernel has high power under the Gaussian model (X and Y are linearly correlated for � 6= 0), and its
false alarm rate is controlled under the spherical model (X and Y are linearly uncorrelated but dependent).

We run SKIT with the rank-based payo↵ and ONS betting fractions for each pair of cities using 6/↵ as a
rejection threshold (accounting for multiple testing). We select the kernel hyperparameters via the median
heuristic using recordings for the first 20 days. In Figure 5, we illustrate that SKIT supports our conjecture
that temperature fluctuations are dependent in nearby locations. We also run this experiment for four cities
in South Africa (see Appendix E.5).

In addition, we analyze the performance of SKIT on MNIST data; the details are deferred to Appendix E.6.
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Figure 5: Solid lines connect cities for which the null is rejected. SKIT supports the conjecture regarding
dependent temperature fluctuations in nearby locations.

5 Conclusion

A key advantage of sequential tests is that they can be continuously monitored, allowing an analyst to
adaptively decide whether to stop and reject the null hypothesis or to continue collecting data, without
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inflating the false positive rate. In this paper, we design consistent sequential kernel independence tests
(SKITs) following the principle of testing by betting. SKITs are also valid beyond the i.i.d. setting, allowing
the data distribution to drift over time. Experiments on synthetic and real data confirm the power of SKITs.
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Appendix

A Independence Testing for Streaming Data

In Section A.1, we describe a permutation-based approach for conducting batch HSIC and show that
continuous monitoring of batch HSIC (without corrections for multiple testing) leads to an inflated false
alarm rate. In Section A.2, we introduce the sequential two-sample testing (2ST) problem and describe a
reduction of sequential independence testing to sequential 2ST. In Section A.3, we compare our test to HSIC
in the batch setting.

A.1 Failure of Batch HSIC under Continuous Monitoring

To conduct independence testing using batch HSIC, we use permutation p-value (with M = 1000 random

permutations): P = 1
M+1 (1 +

P
M

m=1 {Tm � T}), where Tm is the value of HS-norm computed from the
m-th permutation and T is HS-norm value on the original data. In other words, suppose that we are given
a sample Z1, . . . , Zt, where Zi = (Xi, Yi). Let St denote the set of all permutations of t indices and let
� ⇠ Unif(St) be a random permutation of indices. Then:

(X1, Y1), . . . , (Xt, Yt) =) T = \HSICb ((X1, Y1), . . . , (Xt, Yt))

(X1, Y�m(1)), . . . , (Xt, Y�m(t)), =) Tm = \HSICb

�
(X1, Y�m(1)), . . . , (Xt, Y�m(t))

�
, m 2 {1, . . . ,M} ,

where we use a biased estimator of HSIC:

\HSICb =
1

t2

X

i,j

KijLij +
1

t4

X

i,j,q,r

KijLqr �
2

t3

X

i,j,q

KijLiq =
1

t2
tr (KHLH) .

For brevity, we use Kij = k(Xi, Xj), Lij = l(Yi, Yj) for i, j 2 {1, . . . , t}. Next, we study batch HSIC under
(a) fixed-time and (b) continuous monitoring. We consider a simple case when X and Y are independent
standard Gaussian random variables. We consider (re)conducting a test at 12 di↵erent sample sizes:
t 2 {50, 100, . . . , 600}:

(a) Under fixed-time monitoring, for each value of t, we sample a sequence Z1, . . . , Zt (100 times for each t)
and conduct batch-HSIC test. The goal is to confirm that batch-HSIC controls type I error by tracking
the standard miscoverage rate.

(b) Under continuous monitoring, we sample new datapoints and re-conduct the test. We illustrate inflated
type I error by tracking the cumulative miscoverage rate, that is, the fraction of times, the test falsely
rejects the independence null.

The results are presented in Figure 6. For Bonferroni correction, we decompose the error budget as:
↵ =

P
1

i=1
↵

i(i+1) , that is, for t-th test we use threshold ↵t = ↵/(t(t + 1)) for testing.

A.2 Sequential Independence Testing via Sequential Two-Sample Testing

First, we introduce the sequential two-sample testing problem. Suppose that we observe a stream of data:

(X̃1, Ỹ1), (X̃2, Ỹ2), . . . , where (X̃t, Ỹt)
iid
⇠ P ⇥ Q. Two-sample testing refers to testing:

H0 : (X̃t, Ỹt)
iid
⇠ P ⇥ Q and P = Q, vs. H1 : (X̃t, Ỹt)

iid
⇠ P ⇥ Q and P 6= Q.

In Figure 1, we compared our test against the approach based on the reduction of independence testing
to two-sample testing. We used the sequential two-sample kernel MMD test of Shekhar and Ramdas [30]

16



100 200 300 400 500 600 700
Sample size

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

R
ej

ec
ti
on

ra
te

CM: Batch HSIC

CM: Batch HSIC + Bonferroni

FTM: Batch HSIC

� = 0.05

Figure 6: Inflated false alarm rate of batch HSIC under continuous monitoring (CM, red line with squares)
for the case when X and Y are independent standard Gaussian random variables. Bonferroni correction (CM,
blue line with triangles) restores type I error control. As expected, type I error is controlled at a specified
level under fixed-time monitoring (FTM, green line with circles).

with the product kernel K̃ (that is, a product of Gaussian kernels) and the same set of hyperparameters as
for our test for a fair comparison. To reduce sequential independence testing to any o↵-the-shelf sequential
two-sample testing procedure, we convert the original sequence of points from PXY to a sequence of i.i.d.
(X̃t, Ỹt)-pairs, where X̃t ⇠ PXY and Ỹt ⇠ PX ⇥ PY respectively; see Figure 7(a). At t-th round, we randomly
choose one point as X̃t, e.g., (X1, Y1) for the first triple. Next, we obtain Ỹt by randomly matching X and
Y from two other pairs, e.g., (X2, Y3) or (X3, Y2) for the first triple. In fact, the betting-based sequential
two-sample test of [30] allows removing the e↵ect of randomization (i.e., throwing away one observation in

each triple), by averaging payo↵s evaluated on (X̃t, Ỹ
(1)
t

) and (X̃t, Ỹ
(2)
t

). Other approaches — which do not
require throwing data away — are also available (Figures 7(b)) but those only yield an i.i.d. sequence only
under the null.

Additional Details of the Simulation Presented in Figure 1. We consider the Gaussian model:
Yt = Xt� + "t, where Xt, "t ⇠ N (0, 1), t � 1. We consider 10 values of �: � 2 {0, 0.04, . . . , 0.36}, and for
each � we repeat the simulation 100 times. In this simulation, we compare three approaches for testing
independence (valid under continuous monitoring):

1. HSIC-based SKIT proposed in this work (Algorithm 2);

2. Batch HSIC adapted to continuous monitoring via Bonferroni correction. We allow monitoring after
processing every n, n 2 {10, 100}, new points from PXY , that is, the permutation p-value (computed
over 2500 randomly sampled permutations) is compared against rejection thresholds: ↵n = ↵/(n(n+1)),
n = 1, 2, . . .

3. Sequential independence testing via reduction sequential 2ST as described above.

We use RBF kernel with the same set of kernel hyperparameters for all testing procedures: �X = 1/4,
�Y = 1/(4(1 + �2)).

A.3 Comparison in the Batch Setting

Sequential tests are complementary to batch tests and are not intended to replace them, and hence comparing
the two on equal footing is hard. To highlight this, consider two simple scenarios. If we have 2000 data points,
and HSIC fails to reject, there is not much we can do to rescue the situation. But if SKIT fails to reject, an
analyst can collect more data and continue testing, retaining type I error control. In contrast, with 2 million
points, HSIC will take forever to run, especially due to permutations. But if the alternative is true and the
signal is strong, then SKIT may reject within 200 samples and stop. In short, the ability of SKIT to continue

17



X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6
· · ·

X̃1 X̃2Ỹ (2)
1 Ỹ (2)

2
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Figure 7: Reducing sequential independence testing to sequential two-sample testing. Processing as per (a)
results in a sequence of i.i.d. observations both under the null and under the alternative (making the results
about power valid). Processing data as per (b) gives an i.i.d. sequence only under the null. Reduction (b) is
very similar to reduction (c). However, the latter makes X̃i, i � 2, dependent on the past, and thus can not
be used directly for considered sequential two-sample tests.

collecting and analyzing data is helpful for hard problems, and the ability of SKIT to stop early is helpful for
easy problems. There is no easy sense in which one can compare them apples to apples and there is no sense
in which batch HSIC uniformly dominates SKIT or vice versa. In a real setting, if an analyst has a strong
hunch that the null is false and has the ability to collect data and run HSIC, the question is how much data
should be collected? The answer depends on the underlying data distribution, which is of course unknown.
With SKIT, data can be collected and analyzed sequentially. Theorem 2 implies that SKIT will stop early on
easy problems and later on harder problems, all without knowing anything about the problem in advance. If
however, one has a fixed batch of data, no chance to collect more, and no computational constraints, then
running HSIC makes more sense.

To illustrate that batch HSIC can be superior to SKIT, we compare tests on a dataset with a prespecified
sample size (500 observations from the Gaussian model) and track the empirical rejection rates of two tests.
In Figure 8, we show that HSIC actually has higher power than SKIT. However, for � = 0.1 (where all tests
have low power), Figure 3(a) shows that collecting just a bit more data (which is allowed) is needed for SKIT
to reach perfect power. We also added a third method (D-SKIT) which removes the e↵ect of the ordering of
random variables under the assumptions that {(Xi, Yi)}ni=1 are independent draws from PXY . Let {�b}Bb=1
define B random permutations of n indices, and let K

b

n
denote the wealth after betting on a sequence ordered

according to �b. For each b, K
b

n
has expectation at most one, and hence (by linearity of expectation and

Markov’s inequality)
n

1
B

P
B

i=1 K
b

n
� 1/↵

o
is a valid level-↵ batch test. This test is a bit more stable: it

improves SKIT’s power on moderate-complexity setups at the cost of a slight power loss on more extreme
ones.
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Figure 8: Comparison of SKIT and HSIC under Gaussian model in the batch setting. Non-surprisingly, batch
HSIC performs best. D-SKIT improves over SKIT’s power on moderate-complexity setups at the cost of a
slight power loss on more extreme ones.
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B Proofs

Section B.1 contains auxiliary results needed to prove the results presented in this paper. In Section B.2, we
prove the results from Section 2. In Secton B.3, we prove the results from Section 3.

B.1 Auxiliary Results

Theorem 6 (Ville’s inequality [31]). Suppose that (Mt)t�0 is a nonnegative supermartingale process adapted
to a filtration {Ft : t � 0}. Then, for any a > 0 it holds that:

P (9t � 1 : Mt � a) 
E [M0]

a
.

Theorem 7 (Theorem 3 in [13]). Assume that k and l are bounded almost everywhere by 1, and are
nonnegative. Then for n > 1 and any � 2 (0, 1), it holds with probability at least 1 � � that:

���HSIC(PXY ; G,H) � \HSICb(PXY ; G,H)
��� 

r
log(6/�)

↵2n
+

C

n
,

where ↵2 > 0.24 and C are some absolute constants.

B.2 Proofs for Section 2

In Section B.2.1, we prove several intermediate results. The proofs of the main results are deferred to
Section B.2.2.

B.2.1 Supporting Lemmas

Before we state the first result, recall the definition of the empirical mean embeddings computed from the
first 2(t � 1) datapoints:

µ̂(t)
XY

=
1

2(t � 1)

2(t�1)X

i=1

'(Xi) ⌦  (Yi),

µ̂(t)
X

=
1

2(t � 1)

2(t�1)X

i=1

'(Xi), µ̂(t)
Y

=
1

2(t � 1)

2(t�1)X

i=1

 (Yi),

(29)

where we highlight the dependence on the number of processed datapoints. We have the following result.

Lemma 8. For the empirical (29) and population (9) mean embeddings, it holds that:

���µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y

���
G⌦H

a.s.
�! kµXY � µX ⌦ µY k

G⌦H
. (30)

Proof. We have
kµXY � µX ⌦ µY k

2
G⌦H

= HSIC(PXY ; G,H),
���µ̂(t)

XY
� µ̂(t)

X
⌦ µ̂(t)

Y

���
2

G⌦H

= \HSIC
(t)

b
(PXY ; G,H),

where the latter is a biased estimator of HSIC, computed from 2(t�1) datapoints from PXY . From Theorem 7
and the Borel-Cantelli lemma, it follows that:

���µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y

���
2

G⌦H

a.s.
�! kµXY � µX ⌦ µY k

2
G⌦H

.

The result then follows from the continuous mapping theorem.
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Lemma 9. Suppose that H1 in (1b) is true. Then for the oracle (11) and plug-in (13) witness functions, it
holds that:

hĝt, g
?
iG⌦H

a.s.
�! 1. (31)

As a consequence, kĝt � g?k
G⌦H

a.s.
�! 0.

Proof. Suppose that the alternative in (1b) happens to be true. Then since k and l are characteristic kernels,
it follows that:

kµXY � µX ⌦ µY k
G⌦H

> 0.

We aim to show that:
*

µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y���µ̂(t)

XY
� µ̂(t)

X
⌦ µ̂(t)

Y

���
G⌦H

,
µXY � µX ⌦ µY

kµXY � µX ⌦ µY k
G⌦H

+

G⌦H

a.s.
�! 1.

From Lemma 8, we know that:
���µ̂(t)

XY
� µ̂(t)

X
⌦ µ̂(t)

Y

���
G⌦H

a.s.
�! kµXY � µX ⌦ µY k

G⌦H
. Hence it su�ces to

show that D
µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y
, µXY � µX ⌦ µY

E

G⌦H

a.s.
�! kµXY � µX ⌦ µY k

2
G⌦H

. (32)

Recall that: µXY � µX ⌦ µY = E
h
'(X̃) ⌦  (Ỹ )

i
� E

h
'(X̃)

i
⌦ E

h
 (Ỹ )

i
. We have:

µ̂(t)
XY

�µ̂(t)
X

⌦µ̂(t)
Y

=

✓
1 �

1

2(t � 1)

◆
0

BB@
1

2(t � 1)

2(t�1)X

i=1

'(Xi) ⌦  (Yi) �
1

4(t � 1)2 � 2(t � 1)

2(t�1)X

j,k=1:
j 6=k

'(Xj) ⌦  (Yk)

1

CCA .

Further, it holds that:
D
µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y
, µXY � µX ⌦ µY

E

G⌦H

=

✓
1 �

1

2(t � 1)

◆0

@ 1

2(t � 1)

2(t�1)X

i=1

E
X̃,Ỹ

h
h'(X̃),'(Xi)iGh (Ỹ ), (Yi)iH

i
1

A

�

✓
1 �

1

2(t � 1)

◆
0

BB@
1

4(t � 1)2 � 2(t � 1)

2(t�1)X

j,k=1:
j 6=k

E
X̃

h
h'(X̃),'(Xj)iG

i
E
Ỹ

h
h (Ỹ ), (Yk)iH

i
1

CCA ,

For any (x, y) 2 X ⇥ Y, we have:
���E

X̃,Ỹ

h
h'(X̃),'(x)iGh (Ỹ ), (y)iH

i���  E
X̃,Ỹ

h���h'(X̃),'(x)iGh (Ỹ ), (y)iH
���
i

 E
X̃,Ỹ

q
k(X̃, X̃)k(x, x)l(Ỹ, Ỹ )k(y, y)

�

 1,

and similarly, for any (x, y) 2 X ⇥ Y it holds that:
���E

X̃

h
h'(X̃),'(x)iG

i
E
Ỹ

h
h (Ỹ ), (y)iH

i���  1.

Hence, by the SLLN, it follows that ((X,Y ), (X̃, Ỹ )
iid
⇠ PXY ):

1

2(t � 1)

2(t�1)X

i=1

E
X̃,Ỹ

h
h'(X̃),'(Xi)iGh (Ỹ ), (Yi)iH

i
a.s.
�! E

X,Y,X̃,Ỹ

h
h'(X̃),'(X)iGh (Ỹ ), (Y )iH

i

= hµXY , µXY i
G⌦H

.
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Similarly, by the SLLN for U-statistics with bounded kernel [19], it follows that:

1

4(t � 1)2 � 2(t � 1)

2(t�1)X

j,k=1:
j 6=k

E
X̃

h
h'(X̃),'(Xj)iG

i
E
Ỹ

h
h (Ỹ ), (Yk)iH

i

a.s.
�! E

X,X̃

h
h'(X̃),'(X)iG

i
E
Y,Ỹ

h
h (Ỹ ), (Y )iH

i

= hµX ⌦ µY , µX ⌦ µY i
G⌦H

.

Hence, we deduce that:
D
µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y
, µXY � µX ⌦ µY

E

G⌦H

a.s.
�! hµXY , µXY i

G⌦H
� hµX ⌦ µY , µX ⌦ µY i

G⌦H

= hµXY � µX ⌦ µY , µXY � µX ⌦ µY i
G⌦H

= kµXY � µX ⌦ µY k
2
G⌦H

.

Recalling (32), the proof of (31) is complete. To establish the consequence, simply note that:

kĝt � g?k
G⌦H

=
q

2
�
1 � hĝt, g?iG⌦H

�
,

and hence the result follows.

Lemma 10. Suppose that (xt)t�1 is a sequence of numbers such that limt!1 xt = x. Then the corresponding

sequence of partial averages also converges to x, that is, limn!1
1
n

P
n

t=1 xt = x. This also implies that if

(Xt)t�1 is a sequence of random variables such that Xt

a.s.
�! X, then (

P
n

t=1 Xt)/n
a.s.
�! X.

Proof. Fix any " > 0. Since (xt)t�1 is converging, then 9M > 0:

|xt � x|  M, 8t � 1.

Now, let n0 be such that |xt � x|  "/2 for all n > n0. Further, choose any n1 > n0: Mn0/n1  "/2. Hence,
for any ñ > n1, it holds that:

�����
1

ñ

ñX

t=1

xt � x

����� 

�����
1

ñ

n0X

t=1

xt � x

�����+

�����
1

ñ

ñX

t=n0+1

xt � x

�����


1

ñ

n0X

t=1

|xt � x| +
1

ñ

ñX

t=n0+1

|xt � x|


n0

ñ
M +

ñ � n0

ñ

"

2


"

2
+
"

2
= ",

which implies the result.

Before we state the next result, recall that HSIC-based payo↵s are based on the predictable estimates
{ĝi}i�1 of the oracle witness function g? and have the following form:

fi(Z2i�1, Z2i) =
1

2
(ĝi(Z2i�1) + ĝi(Z2i)) �

1

2

⇣
ĝi(Z̃2i�1) + ĝi(Z̃2i)

⌘
, i � 1.

f?(Z2i�1, Z2i) =
1

2
(g?(Z2i�1) + g?(Z2i)) �

1

2

⇣
g?(Z̃2i�1) + g?(Z̃2i)

⌘
.

(33)

Lemma 11. Suppose that H1 in (1b) is true. Then it holds that:

1

t

tX

i=1

fi(Z2i�1, Z2i)
a.s.
�! E [f?(Z1, Z2)] , (34)

1

t

tX

i=1

(fi(Z2i�1, Z2i))
2 a.s.

�! E
⇥
(f?(Z1, Z2))

2
⇤
. (35)
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Proof. We start by proving (34). Note that:

fi(Z2i�1, Z2i) =
1

2
(ĝi(Z2i�1) + ĝt(Z2i)) �

1

2

⇣
ĝi(Z̃2i�1) + ĝi(Z̃2i)

⌘

=
1

2
hĝi, ('(X2i) � '(X2i�1)) ⌦ ( (Y2i) �  (Y2i�1))iG⌦H

.

Next, observe that:
�����
1

t

tX

i=1

fi(Z2i�1, Z2i) � E [f?(Z1, Z2)]

����� 

�����
1

t

tX

i=1

fi(Z2i�1, Z2i) �
1

t

tX

i=1

f?(Z2i�1, Z2i)

�����

+

�����
1

t

tX

i=1

f?(Z2i�1, Z2i) � E [f?(Z1, Z2)]

�����
| {z }

a.s.
�! 0

,

where the second term converges almost surely to 0 by the SLLN. For the first term, we have that:
�����
1

t

tX

i=1

fi(Z2i�1, Z2i) �
1

t

tX

i=1

f?(Z2i�1, Z2i)

����� 
1

t

tX

i=1

|fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i)| .

Finally, note that:

|fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i)| =
1

2

��hĝi � g?, ('(X2i) � '(X2i�1)) ⌦ ( (Y2i) �  (Y2i�1))iG⌦H

��

 kĝi � g?k
G⌦H

a.s.
�! 0,

(36)

where the convergence result is due to Lemma 9. The result (34) then follows after invoking Lemma 10. Next,
we prove (35). Note that:

1

t

tX

i=1

(fi(Z2i�1, Z2i))
2 =

1

t

tX

i=1

(fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i) + f?(Z2i�1, Z2i))
2

=
1

t

tX

i=1

(fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i))
2

| {z }
a.s.
�! 0

+
2

t

tX

i=1

(f?(Z2i�1, Z2i))(fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i))

+
1

t

tX

i=1

(f?(Z2i�1, Z2i))
2

| {z }
a.s.
�! E[(f?(Z1,Z2))2]

,

where the first convergence result is due to (36) and Lemma 10 and the second convergence result is due to
the SLLN. Using (36) and Lemma 10, we deduce that:

�����
2

t

tX

i=1

(f?(Z2i�1, Z2i))(fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i))

�����  2 ·
1

t

tX

i=1

|fi(Z2i�1, Z2i) � f?(Z2i�1, Z2i)|
a.s.
�! 0,

and hence we conclude that the convergence (35) holds.
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B.2.2 Main Results

Theorem 1. Let C denote a class of functions c : X ⇥ Y ! R for measuring dependence as per (5).

1. Under H0 in (1a) and (2a), any payo↵ f of the form (7) satisfies EH0 [f(Z1, Z2)] = 0.

2. Suppose that C satisfies (6). Under H1 in (1b), the oracle payo↵ f⇤ based on the witness function c⇤

satisfies EH1 [f?(Z1, Z2)] > 0. Further, for �? defined in (8), it holds that EH1 [log(1 + �?f?(Z1, Z2)] >
0. Hence, K

?

t

a.s.
! +1, which implies that the oracle test is consistent: PH1(⌧

? < 1) = 1, where
⌧? = inf {t � 1 : K

?

t
� 1/↵}.

Proof. 1. Under H0 in (1a), we have that:

(X2t�1, Y2t�1)
d
= (X2t, Y2t)

d
= (X2t�1, Y2t)

d
= (X2t, Y2t�1),

and hence, the first part of the Proposition trivially follows from the linearity of expectation. Under
distribution drift, we use that at least one of the marginal distributions does not change at each round.
For example, suppose that at round t, it holds that: P 2t�1

X
= P 2t

X
. For the stream of independent

observations, we have: X2t ?? Y2t�1 and X2t�1 ?? Y2t. Further, under the H0 in (2a), it holds that:
X2t�1 ?? Y2t�1 and X2t ?? Y2t. Hence, we have:

(X2t�1, Y2t�1)
d
= (X2t, Y2t�1) and (X2t�1, Y2t)

d
= (X2t, Y2t),

and hence, we get the result using linearity of expectation.

2. Under the i.i.d. setting, we have

E [f?(Z2t�1, Z2t) | Ft�1] = E [f?(Z1, Z2)] = s · m(PXY ; C),

and hence the result follows from the fact that the functional class C satisfies the characteristic
condition (6).

3. Let W := f?(Z1, Z2), and consider EH1 [log(1 + �W )]. We know that EH1 [W ] > 0. We use the
following inequality [9, Equation (4.12)]: for any y � �1 and � 2 [0, 1), it holds:

log(1 + �y) � �y + y2 (log(1 � �) + �)

Hence
E [log(1 + �W )] � �E [W ] + E

⇥
W 2
⇤
(log(1 � �) + �) .

Finally, using that log(1 � x) + x � �x2/(2(1 � x)) for x 2 [0, 1), we get:

EH1 [log(1 + �?W )] �
(EH1 [W ])2/2

EH1 [W ] + EH1 [W 2]
> 0,

where recall that:

�? =
E [W ]

E [W ] + E [W 2]
2 (0, 1).

The wealth process corresponding to the oracle test satisfies:

Kt =
tY

i=1

(1 + �?f?(Z2i�1, Z2i)) = exp

 
t ·

1

t

tX

i=1

log(1 + �?f?(Z2i�1, Z2i))

!
.

By the Strong Law of Large Numbers (SLLN), we have:

1

t

tX

i=1

log(1 + �?f?(Z2i�1, Z2i))
a.s.
! E [log(1 + �?W )] > 0.

Hence, we get that Kt

a.s.
! +1, and hence, the oracle test is consistent.
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Theorem 2. Suppose that Assumption 1 is satisfied. The following claims hold for HSIC-based SKIT
(Algorithm 2):

1. Under H0 in (1a) or (2a), SKIT ever stops with probability at most ↵: PH0 (⌧ < 1)  ↵.

2. Suppose that H1 in (1b) is true. Then it holds that Kt

a.s.
�! +1, and thus SKIT is consistent:

PH1(⌧ < 1) = 1. Further, the wealth grows exponentially, and the corresponding growth rate satisfies

lim inf
t!1

logKt

t

a.s.
�

E[f?(Z1,Z2)]
4 ·

⇣
E[f?(Z1,Z2)]

E[(f?(Z1,Z2))2]
^ 1
⌘
, (15)

where f? is the oracle payo↵ defined in (12).

Remark 4. While it will be clear from the proof that the i.i.d. assumption is su�cient but not necessary for
asymptotic power one, the more relaxed su�cient conditions are slightly technical to state and thus omitted.

Proof. 1. First, let us show that the predictable estimates of the oracle payo↵ function are bounded when
the scaling factor s = 1/2 is used. Recall that:

ft((x
0, y0), (x, y)) =

1

2
(ĝt(x

0, y0) � ĝt(x
0, y) + ĝt(x, y) � ĝt(x, y

0))

=
1

2
hĝt,'(x0) ⌦  (y0) � '(x0) ⌦  (y) + '(x) ⌦  (y) � '(x) ⌦  (y0)i

G⌦H

=
1

2
hĝt, ('(x0) � '(x)) ⌦ ( (y0) �  (y))i

G⌦H
.

(37)

Note that:

|ft((x
0, y0), (x, y))| 

1

2
kĝtkG⌦H

k('(x0) � '(x)) ⌦ ( (y0) �  (y))k
G⌦H


1

2
k('(x0) � '(x)) ⌦ ( (y0) �  (y))k

G⌦H

=
1

2
k'(x0) � '(x)k

G
· k (y0) �  (y)k

H

=
1

2

p
2(1 � k(x0, x)) ·

p
2(1 � l(y0, y))

= 1.

and hence, ft((x0, y0), (x, y))  [�1, 1]. Next, we show that constructed payo↵ function yields a fair bet.
Indeed, we have that:

E [ft(Z2t�1, Z2t) | Ft�1] = hĝt, µXY � µX ⌦ µY i
G⌦H

,

and in particular, the above implies that EH0 [ft(Z2t�1, Z2t) | Ft�1] = 0 for H0 in (1a). For H0 in (2a),
it is easy to see that the result holds using the form (37). We use that X2t�1 ?? Y2t�1, X2t ?? Y2t,
X2t ?? Y2t�1, X2t�1 ?? Y2t, and the fact that at least one of the marginal distributions does not change.
Next, we show that for all strategies for selecting betting fractions that are considered in this work, the
resulting wealth process is a nonnegative martingale. In case aGRAPA/ONS strategies are used, the
resulting wealth process is clearly a nonnegative martingale since betting fractions are predictable. The
mixed wealth process

�
K

mixed
t

�
t�1

is a nonnegative martingale under the null H0, and hence

EH0

⇥
K

mixed
t

| Ft�1

⇤
= E

Z 1

0
K

�

t�1(1 + �ft(Z2t�1, Z2t))⌫(�)d� | Ft�1

�

=

Z 1

0
K

�

t�1EH0 [1 + �ft(Z2t�1, Z2t) | Ft�1] ⌫(�)d�

=

Z 1

0
K

�

t�1⌫(�)d�

= K
mixed
t�1 ,
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where the interchange of conditional expectation and integration is justified by the conditional monotone
convergence theorem. The assertion of the Theorem then follows directly from Ville’s inequality
(Proposition 6) when a = 1/↵.

2. Next, we establish the consistency of HSIC-based SKIT with ONS betting strategy. Under the ONS
betting strategy, for any sequence of outcomes (fi)i�1, fi 2 [�1, 1], i � 1, it holds that (see the proof of
Theorem 1 in [6]):

log Kt(�0) � log Kt = O

 
log

 
tX

i=1

f2
i

!!
, (38)

where Kt(�0) is the wealth of any constant betting strategy �0 2 [�1/2, 1/2] and Kt is the wealth
corresponding to the ONS betting strategy. It follows that the wealth process corresponding to the
ONS betting strategy satisfies

log Kt

t
�

log Kt(�0)

t
� C ·

log t

t
, (39)

for some absolute constant C > 0. Next, let us consider:

�0 =
1

2

  P
t

i=1 fiP
t

i=1 f
2
i

^ 1

!
_ 0

!
.

We obtain:
log Kt(�0)

t
=

1

t

tX

i=1

log(1 + �0fi)

(a)
�

1

t

tX

i=1

(�0fi � �20f
2
i
)

=

 
1
t

P
t

i=1 fi
4

_ 0

!
·

 
1
t

P
t

i=1 fi
1
t

P
t

i=1 f
2
i

^ 1

!
,

(40)

where in (a) we used5 that log(1 + x) � x � x2 for x 2 [�1/2, 1/2]. From Lemma 11, it follows for
fi = fi(Z2i�1, Z2i) that:

1
t

P
t

i=1 fi(Z2i�1, Z2i)

4
·

 
1
t

P
t

i=1 fi(Z2i�1, Z2i)
1
t

P
t

i=1(fi(Z2i�1, Z2i))2
^ 1

!
a.s.
�!

E [f?(Z1, Z2)]

4
·

✓
E [f?(Z1, Z2)]

E [(f?(Z1, Z2))2]
^ 1

◆
.

(41)
Further, note that:

E [f?(Z1, Z2)] = kµXY � µX ⌦ µY k
G⌦H

=
p

HSIC(PXY ; G,H),

which is positive if the H1 is true. Hence, using (39), we deduce that the growth rate of the ONS wealth
process satisfies

lim inf
t!1

log Kt

t
�

E [f?(Z1, Z2)]

4
·

✓
E [f?(Z1, Z2)]

E [(f?(Z1, Z2))2]
^ 1

◆
. (42)

We conclude that the test is consistent, that is, if H1 is true, then P(⌧ < 1) = 1.

Proposition 1. The optimal log-wealth S? := E [log(1 + �?f?(Z1, Z2))] — that can be achieved by an oracle
betting scheme (16) which knows f? from (12) and the underlying distribution — satisfies:

S?


E [f?(Z1, Z2)]

2

✓
8E [f?(Z1, Z2)]

3E [(f?(Z1, Z2))2]
^ 1

◆
. (17)

5
A slightly better constant for the growth rate (0.3 in place of 1/4) can be obtained by using the inequality: log(1+x) � x� 5

6x
2
,

that holds 8x 2 [�0.5, 0.5].
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Proof. We start by establishing the upper bound in (17). The fact that S?
 E [f?(Z1, Z2)] /2 trivially

follows from E [log(1 + �f?(Z1, Z2))]  �E [f?(Z1, Z2)]  E [f?(Z1, Z2)] /2. Since for any x 2 [�0.5, 0.5], it
holds that: log(1 + x)  x � 3x2/8, we know that:

S?
 max

�2[�0.5,0.5]

✓
�E [f?(Z1, Z2)] �

3

8
�2E

⇥
(f?(Z1, Z2))

2
⇤◆

, (43)

and by solving the maximization problem, we get the upper bound:

S?


2

3

(E [f?(Z1, Z2)])2

E [(f?(Z1, Z2))2]
, (44)

assuming (E [f?(Z1, Z2)])2/E
⇥
(f?(Z1, Z2))2

⇤
 3/8. On the other hand, it always holds that: S?



E [f?(Z1, Z2)] /2. To obtain the claimed bound, we multiply the RHS of (44) by two, which completes
the proof of (17).

Theorem 3. Suppose that H0 in (18a) is true. Further, assume that Assumption 2 holds. Then HSIC-based
SKIT (Algorithm 2) satisfies: PH0 (⌧ < 1)  ↵.

Proof. Recall that at round t, the payo↵ function has form:

ft((X2t�1, Y2t�1), (X2t, Y2t)) =
1

2
hĝt, ('(X2t) � '(X2t�1)) ⌦ ( (Y2t) �  (Y2t�1))iG⌦H.

Let Dt = {(Xi, Yi)}i2(t�1). To establish validity, we need to show that under H0 in (18a),

E [ft((X2t�1, Y2t�1), (X2t, Y2t)) | Dt] = 0, (45)

and hence it su�ces to show that:

E [('(X2t) � '(X2t�1)) ⌦ ( (Y2t) �  (Y2t�1)) | Dt] = 0.

Due to independence under the null H0, we have:

E ['(X2t�1) ⌦  (Y2t�1) | Dt] = E ['(X2t�1) | Dt] ⌦ E [ (Y2t�1) | Dt] =: µ2t�1
X

⌦ µ2t�1
Y

,

E ['(X2t) ⌦  (Y2t) | Dt] = E ['(X2t) | Dt] ⌦ E [ (Y2t) | Dt] =: µ2t
X

⌦ µ2t
Y
,

Consider one of the cross-terms '(X2t) ⌦  (Y2t�1). We have the following:

E ['(X2t) ⌦  (Y2t�1) | Dt]
a
= E [E ['(X2t) ⌦  (Y2t�1) | X2t�1,Dt] | Dt]

b
= E [E ['(X2t) | X2t�1,Dt] ⌦ E [ (Y2t�1) | X2t�1,Dt] | Dt]
c
= E [E ['(X2t) | X2t�1,Dt] ⌦ E [ (Y2t�1) | Dt] | Dt]

d
= E [E ['(X2t) | X2t�1,Dt] | Dt] ⌦ E [ (Y2t�1) | Dt]
e
= E ['(X2t) | Dt] ⌦ E [ (Y2t�1) | Dt]

f

= µ2t
X

⌦ µ2t�1
Y

.

In the above, (a) uses the law of iterated expectations and conditioning on X2t�1, (b) uses the assumption (19)
about conditional independence, (c) uses the independence null assumption (1a), (d) uses that E [ (Y2t�1) | Dt]
is �(Dt)-measurable, (e) uses the law of iterated expectations, and (f) uses the definitions of the mean
embeddings of conditional distributions. An analogous argument can be used to deduce:

E ['(X2t�1) ⌦  (Y2t) | Dt] = µ2t�1
X

⌦ µ2t
Y
.

We get that:

E [('(X2t) � '(X2t�1)) ⌦ ( (Y2t) �  (Y2t�1)) | Dt] = µ2t�1
X

⌦ µ2t�1
Y

+ µ2t
X

⌦ µ2t
Y

� µ2t�1
X

⌦ µ2t
Y

� µ2t
X

⌦ µ2t�1
Y

= (µ2t
X

� µ2t�1
X

) ⌦ (µ2t
Y

� µ2t�1
Y

),

and hence, if either (X2t�1, X2t) or (Y2t�1, X2t) are exchangeable conditional on Dt, it follows that either
µ2t
X

= µ2t�1
X

or µ2t
Y

= µ2t�1
Y

respectively. This, in turn, implies that (45) holds, and hence, the result follows.
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B.3 Proofs for Section 3

Theorem 4. Suppose that (A1) in Assumption 1 is satisfied. Then, under H0 in (1a) and (18a), COCO/KCC-
based SKIT (Algorithm 3) satisfies: PH0 (⌧ < 1)  ↵.

Proof. It su�ces to show that the proposed payo↵ functions are bounded. The rest of the proof follows will
follow the same steps as the proof of Theorem 2 (for a stream of independent observations) or Theorem 3
(for time-varying independence null), and we omit the details. Note that:

���ĥt(y
0) � ĥt(y)

��� =
���hĥt, (y0)iH � hĥt, (y)iH

���

=
���hĥt, (y0) �  (y)iH

���



���ĥt

���
H

k (y0) �  (y)k
H

 k (y0) �  (y)k
H

=
p

2(1 � l(y, y0))



p

2,

where we used that
���ĥt

���
H

 1 due to normalization. Analogous bound holds for |ĝt(x0) � ĝt(x)|. We conclude

that any predictable estimate of the oracle payo↵ function for COCO (or KCC) satisfies

|ft((x
0, y0), (x, y))|  1,

as proposed. The fact that the payo↵ function is fair trivially follows from the definition. Regarding the
existence of the oracle payo↵, whose mean is positive under H1 in (1b), note that if k and l are characteristic
kernels, then COCO and KCC satisfy the characteristic condition (6); see Gretton et al. [14, 15], Jordan and
Bach [20]. Hence, the result follows from Theorem 1. This completes the proof.

B.4 Proofs for Section 4

Theorem 5. Under H0 in (1a) or (18a), the symmetry-based SKIT (Algorithm 4) satisfies: PH0 (⌧ < 1)  ↵.

Proof. For any t � 1, we have that the payo↵s defined in (26), (27), and (28) are bounded: ft(w) 2

[�1, 1], 8w 2 R. Due to Proposition 2, we know that, under the null, Wt is a random variable that is
symmetric around zero (conditional on Ft�1). Hence, for the composition approach, it trivially follows that
EH0

⇥
fodd
t

(Wt) | Ft�1

⇤
= 0 since a composition with an odd function is used. For the rank and predictive

approaches, we use the fact that, under the null, sign(Wt) ?? |Wt| | Ft�1. Since, EH0 [sign(Wt) | Ft�1] = 0,
it then follows that EH0

⇥
f rank
t

(Wt) | Ft�1

⇤
= 0. Using that sign(Wt) ?? |Wt| | Ft�1 and by conditioning on

the sign of Wt, we get:

EH0 [`t(Wt) | Ft�1] =
1

2
PH0 (pt(|Wt|) � 1/2) +

1

2
PH0 (pt(|Wt|) < 1/2) =

1

2
.

Hence EH0 [1 � 2`t(Wt) | Ft�1] = 0. The rest of the proof regarding the validity of the symmetry-based
SKITs follows the same steps as the proof of Theorem 2, and we omit the details.
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C Selecting Betting Fractions

As alluded to in Remark 1, sticking to a single fixed betting fraction, �t = � 2 [0, 1], t � 1, may result in a
wealth process that either has a sub-optimal growth rate under the alternative or tends to zero almost surely
(see Figure 9). Mixing over di↵erent betting fractions is a simple approach that often works well in practice.
Given a fine grid of values: ⇤ =

�
�(1), . . . ,�(J)

 
, e.g., uniformly spaced values on the unit interval, consider

K
mixed
t

=
1

|⇤|

X

�(j)2⇤

Kt(�
(j)), (46)

where
�
Kt(�(j))

�
t�0

is a wealth process corresponding to a constant-betting strategy with betting fraction

�(j) 6.
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Figure 9: SKIT with HSIC payo↵ function on two particular realizations of streams of dependent data: Yt =
0.1 ·Xt +"t, Xt, "t ⇠ N (0, 1). For both cases, we consider a mixed wealth process for ⇤ = {0.05, 0.1, . . . , 0.95}.
We observe that the mixed wealth process follows closely the best of constant-betting strategies with
� 2 {0.5, 0.95}.

While mixing often works well in practice, it introduces additional tuning hyperparameters, e.g., grid
size. We consider two compelling approaches for the selection of betting fractions in a predictable way,
meaning that �t depends only on {(Xi, Yi)}i2(t�1). In addition to the ONS strategy (Algorithm 1), we also
consider aGRAPA strategy (Algorithm 5). The idea that e↵ective betting strategies are ones that maximize
a gambler’s expected log capital dates back to early works of Kelly [21] and Breiman [3]. Assuming that the
same betting fraction is used, the log capital after round (t � 1) is

log Kt�1(�) =
t�1X

i=1

log (1 + �fi(Z2i�1, Z2i)) .

Following Waudby-Smith and Ramdas [32], we set the derivative to zero and use Taylor’s expansion to get

�aGRAPA
t

=

  P
t�1
i=1 fi(Z2i�1, Z2i)P

t�1
i=1 (fi(Z2i�1, Z2i))

2

!
_ 0

!
^ c.

Truncation at zero is inspired by the fact that EH1 [f?(Z2t�1, Z2t) | Ft�1] > 0, whereas truncation at c 2 (0, 1]
(e.g., c = 0.9) is necessary to guarantee that the wealth process is indeed nonnegative.

6
Practically, it is advisable to start with a coarse grid (small J) at small t and occasionally add another grid point, so that

the grid becomes finer over time. Whenever a grid point is added, it is like adding another stock to a portfolio, and the wealth

must be appropriately redistributed; we omit the details for brevity.
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Algorithm 5 aGRAPA strategy for selecting betting fractions

Input: sequence of payo↵s (ft(Z2t�1, Z2t))t�1, �
aGRAPA
1 = 0, µ(1)

0 = 0, µ(2)
0 = 1, c = 0.9.

for t = 1, 2, . . . do

Set µ(1)
t

= µ(1)
t�1 + ft(Z2t�1, Z2t);

Set µ(2)
t

= µ(2)
t�1 + (ft(Z2t�1, Z2t))2;

Set �aGRAPA
t+1 = c ^

⇣
0 _

⇣
µ(1)
t

/µ(2)
t

⌘⌘
;

30



D Omitted Details for Sections 2 and 3

In this section, we complement the material presented in the main paper by deriving the forms of the witness
functions for the dependence criteria considered in this work.

Oracle Witness Function for HSIC. Let us derive the form of the oracle witness function for HSIC.
Note that:

sup
g:kgkG⌦H1

[EPXY [g(X,Y )] � EPX⇥PY [g(X 0, Y 0)]]

= sup
g:kgkG⌦H1

[EPXY [hg,'(X) ⌦  (Y )iG⌦H] � EPX⇥PY [hg,'(X 0) ⌦  (Y 0)iG⌦H]]

= sup
g:kgkG⌦H1

[hg,EPXY ['(X) ⌦  (Y )]iG⌦H � hg,EPX⇥PY ['(X 0) ⌦  (Y 0)]iG⌦H]

= sup
g:kgkG⌦H1

[hg, µXY iG � hg, µX ⌦ µY iG⌦H]

= sup
g:kgkG⌦H1

hg, µXY � µX ⌦ µY iG⌦H,

from which it is easy to derive the oracle witness function for HSIC.

Remark 5. Note that in (13) the witness function is defined as an operator: ĝt : X ⇥ Y ! R. To clarify, for
any z = (x, y) 2 X ⇥ Y, we have

(µ̂XY � µ̂X ⌦ µ̂Y )(z) =
1

2(t � 1)

2(t�1)X

i=1

k(Xi, x)l(Yi, y) �

0

@ 1

2(t � 1)

2(t�1)X

i=1

k(Xi, x)

1

A ·

0

@ 1

2(t � 1)

2(t�1)X

i=1

l(Yi, y)

1

A ,

and the denominator in (13) can be expressed in terms of kernel matrices K,L 2 R2(t�1)⇥2(t�1) with entries
Kij = k(Xi, Xj), Lij = l(Yi, Yj), i, j 2 {1, . . . , 2(t � 1)}, as:

kµ̂XY � µ̂X ⌦ µ̂Y k
G⌦H

=
1

2(t � 1)

p
tr(KHLH),

where H = I2(t�1) � (1/(2(t � 1))11> is the centering projection matrix.

Remark 6. While the empirical witness functions for COCO/KCC (21) are defined as operators, we use those
as functions in the definition of the corresponding payo↵ function. To clarify, for any x 2 X and y 2 Y, we
have

ĝt(x) =

2(t�1)X

i=1

↵i

0

@k(Xi, x) �
1

2(t � 1)

2(t�1)X

j=1

k(Xj , x)

1

A ,

ĥt(y) =

2(t�1)X

i=1

�i

0

@l(Yi, y) �
1

2(t � 1)

2(t�1)X

j=1

l(Yj , y)

1

A .

Minibatched Payo↵ Function for HSIC. The minibatched payo↵ function at round t has the following
form:

ft(Zb(t�1)+1, . . . , Zbt) =
1

b

bX

i=1

ĝt(Xb(t�1)+i, Yb(t�1)+i) �
1

b(b � 1)

bX

i,j=1
i 6=j

ĝt(Xb(t�1)+i, Yb(t�1)+j).

Note that:

ft(Zb(t�1)+1, . . . , Zbt) =
1

b

bX

i=1

hĝt,'(Xb(t�1)+i) ⌦  (Yb(t�1)+i)iG⌦H
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�
1

b(b � 1)

bX

i,j=1
i 6=j

hĝt,'(Xb(t�1)+i) ⌦  (Yb(t�1)+j)iG⌦H

=

*
ĝt,

1

2b(b � 1)

bX

i,j=1
i 6=j

�
'(Xb(t�1)+i) � '(Xb(t�1)+j)

�
⌦
�
 (Yb(t�1)+i) �  (Yb(t�1)+j)

�
+

G⌦H

.

Let F
0

t�1 = �({(Xi, Yi)}ib(t�1)). We have that:

E
⇥
ft(Zb(t�1)+1, . . . , Zbt) | F

0

t�1

⇤
= hĝt, µXY � µX ⌦ µY iG⌦H,

and in particular, EH0

⇥
ft(Zb(t�1)+1, . . . , Zbt) | F

0

t�1

⇤
= 0 if the null H0 in (1a) is true. It su�ces to show

that the payo↵ is bounded. Since kĝtkG⌦H
= 1, we can easily deduce that:

��ft(Zb(t�1)+1, . . . , Zbt)
��  1

2b(b � 1)

bX

i,j=1
i 6=j

���'(Xb(t�1)+i) � '(Xb(t�1)+j)
�

⌦
�
 (Yb(t�1)+i) �  (Yb(t�1)+j)

���
G⌦H

=
1

2b(b � 1)

bX

i,j=1
i 6=j

��'(Xb(t�1)+i) � '(Xb(t�1)+j)
��
G

�� (Yb(t�1)+i) �  (Yb(t�1)+j)
��
H

=
1

2b(b � 1)

bX

i,j=1
i 6=j

q
2(1 � k(Xb(t�1)+i, Xb(t�1)+j))

q
2(1 � l(Yb(t�1)+i, Yb(t�1)+j))

 1.

Hence, we conclude that the wealth process constructed using a minibatched version of the payo↵ function is
also a nonnegative martingale.

Example 3. For t � 1, consider

(Xt, Yt) =

✓
Vt + 1 � 1/t

2
,
V 0

t
+ 1 � 1/t

2

◆
,

where Vt, V 0

t

iid
⇠ Ber(1/2). Note that X = Y ✓ [0, 1], which means that a pair of linear kernels, k(x, x0) = xx0

and l(y, y0) = yy0 are nonnegative and bounded by one on X and Y respectively. Note that for a linear kernel,

ĝt(x, y) = ĝt · x · y.

Hence,

ft((X2t�1, Y2t�1), (X2t, Y2t)) =
ĝt
2

(X2t � X2t�1) (Y2t � Y2t�1)

=
ĝt
8

✓
V2t � V2t�1 +

1

2t(2t � 1)

◆✓
V 0

2t � V 0

2t�1 +
1

2t(2t � 1)

◆
.

In particular, E [ft((X2t�1, Y2t�1), (X2t, Y2t)) | Ft�1] 6= 0, implying that the wealth process (Kt)t�0 is no
longer a nonnegative martingale.

Witness Functions for COCO. Let � and  be a pair of matrices whose columns represent embeddings
of X1, . . . , X2(t�1) and Y1, . . . , Y2(t�1), that is, '(Xi) = k(Xi, ·) and  (Yi) = l(Yi, ·) for i = 1, . . . , 2(t � 1).
Recall that

ĝ =

2(t�1)X

i=1

↵i

0

@'(Xi) �
1

2(t � 1)

2(t�1)X

j=1

'(Xj)

1

A = �H↵,

ĥ =

2(t�1)X

i=1

�i

0

@ (Yi) �
1

2(t � 1)

2(t�1)X

j=1

 (Yj)

1

A =  H�,
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where H = I2(t�1) �
1

2(t�1)11> is the centering projection matrix. We have

hg, ĈXY hiG =
1

2(t � 1)
(↵>H�>)(�H >)( H�) =

1

2(t � 1)
↵>HKHLH� =

1

2(t � 1)
↵>K̃L̃�,

kgk2
G

= ↵>K̃↵,

khk
2
H

= �>L̃�,

where K̃ := HKH and L̃ := HLH are centered kernel matrices. Hence, the maximization problem in (20)
can be expressed as:

max
↵,�

1

2(t � 1)
↵>K̃L̃�

subject to ↵>K̃↵ = 1, �>L̃� = 1.

(47)

After introducing Lagrange multipliers, it can then be shown that ↵ and �, which solve (47), exactly
correspond to the generalized eigenvalue problem (22).

Witness Functions for KCC. Introduce empirical covariance operators:

ĈX =
1

2(t � 1)

2(t�1)X

i=1

'(Xi) ⌦ '(Xi) �

0

@ 1

2(t � 1)

2(t�1)X

i=1

'(Xi)

1

A⌦

 
1

2(t � 1)

nX

i=1

'(Xi)

!
=

1

2(t � 1)
�H�>,

ĈY =
1

n

2(t�1)X

i=1

 (Yi) ⌦  (Yi) �

0

@ 1

2(t � 1)

2(t�1)X

i=1

 (Yi)

1

A⌦

0

@ 1

2(t � 1)

2(t�1)X

i=1

 (Yi)

1

A =
1

2(t � 1)
 H >.

Then the empirical variance terms can be expressed as:

V̂ [g(X)] = hg, ĈXgiG =
1

2(t � 1)
(↵>H�>)(�H�>)(�H↵) =

1

2(t � 1)
↵>K̃2↵,

V̂ [h(Y )] = hh, ĈY hiH =
1

2(t � 1)
(�>H >)( H >)( H�) =

1

2(t � 1)
�>L̃2�.

Thus, an empirical estimator of the kernel canonical correlation (23) can be obtained by solving:

max
↵,�

1

2(t � 1)
↵>K̃L̃�

subject to
1

2(t � 1)
↵>K̃2↵+ 1↵

>K̃↵ = 1,

1

2(t � 1)
�>L̃2� + 2�

>L̃� = 1.

After introducing Lagrange multipliers, it can then be shown that ↵ and �, which solve (23), correspond to
the generalized eigenvalue problem:

 
0 1

2(t�1)K̃L̃
1

2(t�1) L̃K̃ 0

!✓
↵
�

◆
= �

 
1K̃ + 1

2(t�1)K̃
2 0

0 2L̃ + 1
2(t�1) L̃

2

!✓
↵
�

◆
,
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E Additional Simulations

This section contains: (a) additional experiments on synthetic dataset and (b) data visualizations of the
datasets used in this paper.

E.1 Test of Instantaneous Dependence

In Figure 10, we demonstrate it is hard to visually tell the di↵erence between independence and dependence
under distribution drift setting (2). See Example 1 for details.
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(a) Independent noise.
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(b) Dependent noise.

Figure 10: Sample of independent (subplot (a)) and dependent (⇢ = 0.5, subplot(b)) data according to (3).
The purpose of visualizing raw data is to demonstrate that dependence is hard to detect visually, and
dependence refers to more than temporal correlation which may be present due to cyclical trends.

E.2 Distribution Drift

In this section, we consider the linear Gaussian model with an underlying distribution drift:

Yt = Xt�t + "t, Xt, "t ⇠ N (0, 1), t � 1,

that is, in contrast to the Gaussian linear model (Section 3), �t changes over time. We gradually increase it
from �t = 0 to �t = 0.1 in increments of 0.02, that is:

�0, . . . , �b�1| {z }
=0

, �b, . . . , �2b�1| {z }
=0.02

, . . . , �5b�1, . . .| {z }
=0.1

and, starting with �5b, we keep it equal to 0.1. We consider b 2 {100, 200, 400} as possible block sizes. Note
that there is a transition from independence (first b datapoints in a stream) to dependence. In Figure 11, we
show that our test performs well under the distribution drift setting and consistently detects dependence.

E.3 Symmetry-based Payo↵ Functions

In this section, we complement the comparison presented in Section 4 between the rank- and composition-based
betting strategies (since those require minimal tuning) used with ONS or aGRAPA criteria for selecting
betting fractions. We also increase the monitoring horizon to 20000 datapoints. In Figure 12(a), we consider
the Gaussian linear model, but in contrast to the setting considered in Section 4, we focus on harder testing
settings by considering � 2 [0, 0.3]. In Figure 12(b), we compare composition- and rank-based approaches
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Figure 11: Rejection rate of sequential independence test under distribution drift setting. Focusing on the
non-i.i.d. time-varying setting, we confirm that our test has high power under the alternative.

when data are sampled from the spherical model. In both cases, composition and rank-based approaches are
similar; none of the payo↵s uniformly dominates the other. We also observe that selecting betting fractions
via aGRAPA criterion tends to result in a bit more powerful testing procedure.
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Figure 12: (a) Comparison of symmetry-based betting strategies under the Gaussian model. The betting
strategy based on composition with an odd function performs only slightly better than the rank-based strategy.
(b) SKIT with composition- and rank-based betting strategies under the spherical model. None of the betting
strategies uniformly dominates the other. aGRAPA criterion for selecting betting fractions tends to result in
a bit more powerful testing procedure.

E.4 Hard-to-detect Dependence

Hard-to-detect dependence. Consider the joint density p(x, y) of the form:

1

4⇡2
(1 + sin(wx) sin(wy)) ·

�
(x, y) 2 [�⇡,⇡]2

 
. (48)

With the null case corresponding to w = 0, the testing problem becomes harder with growing w. In Figure 13,
we illustrate the densities and a data sample for the hard-to-detect setting (48).

We use �X = �Y = 3/(4⇡2) as RBF kernel hyperparameters. For visualization purposes, we stop
monitoring after observing 20000 datapoints from PXY , and if a SKIT does not reject H0 by that time, we
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Figure 13: Visualization of the densities (top) and a dataset of size 5000 (bottom) sampled from the
corresponding distribution.

assume that the null is retained. The results are aggregated over 200 runs for each value of w. In Figure 14,
where the null case corresponds to w = 0, we confirm that SKITs have time-uniform type I error control.
The average rejection rate starts to drop for w � 3, meaning that observing 20000 points from PXY does not
su�ce to detect dependence.
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Figure 14: Rejection rate (solid) and fraction of samples used before the null hypothesis was rejected (dashed)
for hard-to-detect dependence model. By inspecting the rejection rate for w = 0 (independence holds), we
confirm that the type I error is controlled. Further, SKIT is adaptive to the complexity of a problem (larger
w corresponds to a harder setting).
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E.5 Additional Results for Real Data

In Figure 15, we illustrate that the average daily temperature in selected cities share similar seasonal patterns.
We repeat the same experiment as in Section 4, but for four cities in South Africa: Cape Town (CT), Port
Elizabeth (PE), Durban (DRN), and Bloemfontein (BFN). In Figures 15(d) and 15(e), we illustrate the
resulting wealth processes for each pair of cities and for each region. Finally, we illustrate the pairs of cities
for which the null has been rejected in Figure 15(c).

E.6 Experiment with MNIST data

In this section, we analyze the performance of SKIT on high-dimensional real data. This experiment is based
on MNIST dataset [22] where pairs of digits are observed at each step; under the null one sees digits (a, b)
where a and b are uniformly randomly chosen, but under the alternative one sees (a, a0), i.e., two di↵erent
images of the same digit. To estimate kernel hyperparameters, we deploy the median heuristic using 20 pairs
of images.

We illustrate the results in Figure 16. Under the null, our test does not reject more often than the required
5%, but its power increases with sample size under the alternative, reaching power one after processing ⇡ 500
pairs of digits (points from PXY ) on average.
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Figure 15: Temperatures for selected cities in Europe (subplot (a)) and South Africa (subplot (b)) share
similar seasonal patterns. Map (subplot (c)) where solid red lines connect those cities for which the null is
rejected. SKIT supports our conjecture about dependent temperature fluctuations for geographically close
cities. For completeness, we also plot wealth processes for SKIT used on weather data for Europe (subplot
(d)) and South Africa (subplot (e)).
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Figure 16: Rejection rate for SKIT on MNIST data. Under the null (red dashed line), our test does not reject
more often than the required 5%, but its power increases with sample size under the alternative (blue solid
line). Each pair corresponds to two points from PXY , and hence, SKIT reaches power one after processing
⇡ 500 pairs of images on average.

39



F Scaling Sequential Testing Procedures

Updating the wealth process at each round requires evaluating the payo↵ function at a new pair of observations
(and hence computing the witness function corresponding to a chosen dependence criterion). In this section,
we provide details about the ways of reducing the computational complexity of this step, which are necessary
to scale the proposed sequential testing frameworks to moderately large sample sizes. Note that the proposed
implementation of COCO allows updating kernel hyperparameters on the fly. In contrast, linear-time updates
for HSIC require fixing kernel hyperparameters in advance.

F.1 Incomplete/Pivoted Cholesky Decomposition for COCO and KCC

Suppose that we want to evaluate COCO payo↵ function on the next pair of points (X2t�1, Y2t�1), (X2t, Y2t).
In order to do so, we need to compute g1,t and g2,t, that is solve the generalized eigenvalue problem. Note that
solving generalized eigenvalue problem at each iteration could be computationally prohibitive. One simple
way is to use a random subsample of datapoints when performing witness function estimation, e.g., once the
sample size n exceeds ns, e.g., ns = 25, we randomly subsample (without replacement) a sample of size ns to
estimate witness functions. Alternatively, a common approach is to reduce computational burden through
incomplete Cholesky decomposition. The idea is to use the fact that kernel matrices tend to demonstrate
rapid spectrum decay, and thus low-rank approximations can be used to scale the procedures. Suppose
that K ⇡ G1GT

1 and L ⇡ G2GT

2 where Gi’s are lower triangular matrices of size n ⇥ M (M depends on the
preset approximation error level). After computing Cholesky decomposition, we center both matrices via left
multiplication by H and compute SVDs of HG1 and HG2, that is, HG1 = U1⇤1V >

1 and HG2 = U2⇤2V >

2 .
We have:

K̃ ⇡ U1⇤
2
1U

>

1 , L̃ ⇡ U2⇤
2
2U

>

2 .

Our goal is to find the largest eigenvalue/eigenvector pair for Ax = �Bx for a PD matrix B. Since:

Ax = �Bx () B�1/2AB�1/2(B1/2x) = �(B1/2x),

it su�ces to leading eigenvalue/eigenvector pair for:

B�1/2AB�1/2y = �y.

Then x = B�1/2y is a generalized eigenvector for the initial problem.

COCO. For COCO, we have:

B =

✓
K̃ 0
0 L̃

◆
⇡
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1U
>

1 0
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2

◆
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◆✓
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1 0

0 ⇤2
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U1 0
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=: U⇤�1
U

>.

We also have:

A ⇡

✓
0 1

n
U1⇤2

1U
>

1 U2⇤2
2U

>

2
1
n
U2⇤2

2U
>
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1 0

◆
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1
n
⇤2
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1 0
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U1 0
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.

Thus we have:

B�1/2AB�1/2
⇡

✓
U1 0
0 U2

◆✓
0 1

n
⇤1U>

1 U2⇤2
1
n
⇤2U>

2 U1⇤1 0

◆✓
U1 0
0 U2

◆>

.

Hence, we only need to compute the leading eigenvector (say, z⇤) for:
✓

0 1
n
⇤1U>

1 U2⇤2
1
n
⇤2U>

2 U1⇤1 0

◆
2 R(M1+M2)⇥(M1+M2).
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It implies that the leading eigenvector for B�1/2AB�1/2 is then Uz⇤, and the solution for the generalized
eigenvalue problem is given by:

U⇤�1z⇤ =

✓
U1⇤

�1
1 z⇤1

U2⇤
�1
2 z⇤2

◆
=:

✓
↵0

�0

◆
.

Next, we need to normalize this vector of coe�cients appropriately, i.e., we need to guarantee that
���K̃1/2↵

���
2

=

1 and
���L̃1/2�

���
2

= 1, and thus re-normalizing naively is quadratic in n. Instead, note that in order to compute

incomplete Cholesky decomposition, we choose a tolerance parameter � so that:
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1
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1
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 � (nuclear norm). Let � = K � G1G>

1 . We know that:

↵>K̃↵ = ↵>HKH↵ = ↵>H(�+ G1G
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1 H↵

First, note that ↵>H�H↵  �kH↵k
2
2. Next,
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1 .

Given an initial vector of parameters ↵0 and �0, vectors of coe�cients can be normalized in linear time using
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For small �, we essentially normalize by ↵>

0 K̃↵0 and �>

0 L̃�0 as expected. It also makes sense to use � = n · �0.
Still, re-estimating the witness functions after processing 2t, t � 1 points is computationally intensive. In
contrast to HSIC, for which there are no clear benefits of skipping certain estimation steps, for COCO we
estimate the witness functions after processing 2t2, t � 1 points.

KCC. For KCC, we have:
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Recall that:
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Equivalently,
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It implies that the leading eigenvector for B�1/2AB�1/2 is then Uz⇤. For the initial generalized eigenvalue
problem, an approximate solution (due to using low-rank approximations of kernel matrices) is given by:
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↵>K̃↵ = ↵>HKH↵ = ↵>H(�+ G1G
>

1 )H↵ = ↵>H�H↵+ ↵>HG1G
>

1 H↵

First, note that ↵>H�H↵  �kH↵k
2
2. Next,

G>

1 H = V1⇤1U
>

1 .

Given an initial vector of parameters ↵0 and �0, vectors of coe�cients can be normalized in linear time using

↵ =
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��2
2
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2
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=
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2
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=
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.

F.2 Linear-time Updates of the HSIC Payo↵ Function

Suppose that we want to evaluate HSIC payo↵ function on the next pair of points (X2t+1, Y2t+1), (X2t+2, Y2t+2).
In order to do so, we need to compute: ĝt(X2t+2, Y2t+2). It is clear that the computational of evaluating
µ̂XY (x, y) and (µ̂X ⌦ µ̂Y )(x, y) on a given pair (x, y) is linear in t. However, we also need to compute the
normalization constant:

kµ̂XY � µ̂X ⌦ µ̂Y k
G⌦H

. (49)

Recall that: ���µ̂(t)
XY

� µ̂(t)
X

⌦ µ̂(t)
Y

���
2

G⌦H

=
1

(2t)2
tr
⇣
K(t)H(t)L(t)H(t)

⌘
,

where K(t) and L(t) are kernel matrices corresponding to the first 2t pairs, H(t) := I2t �
1
2t12t1

>

2t. Instead of
computing the normalization constant naively, we next establish a more e�cient way of computing (49) in
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time linear in t by caching certain values. Introduce:

�(t)
1 =

2tX

i,j=1

KijLij = tr
⇣
K(t)L(t)

⌘
,

�(t)
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We have:
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4 .

Next, we show how to speed up computations via caching certain intermediate values. Kernel matrices have
the following structure:

K(t+1) =

0
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K(t) K·,2t+1 K·,2t+2

K>

·,2t+1 K2t+1,2t+1 K2t+1,2t+2

K>

·,2t+2 K2t+2,2t+1 K2t+2,2t+2

1
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A ,

where K·,2t+1,K·,2t+2, L·,2t+1, L·,2t+2 2 R2t contain kernel function evaluations:

K·,m =

0

B@
k(X1, Xm)

...
k(X2t, Xm)

1

CA , L·,m =

0

B@
l(Y1, Ym)

...
l(Y2t, Ym)

1

CA , m 2 {2t + 1, 2t + 2} .

First, it is easy to derive that:

tr
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K(t+1)L(t+1)

⌘
= tr
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⌘
+ 2(L>
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Thus, if the value tr
�
K(t)L(t)

�
is cached, then tr

�
K(t+1)L(t+1)

�
can be computed in linear time. Note that:

K(t+1)12t+2 =

0

@
K(t)12t + k·,2t+1 + k·,2t+2
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·,2t+112t + K2t+1,2t+1 + K2t+1,2t+2
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1

A ,

which can be computed in linear time if K(t)12t is stored (similar result holds for L(t+1)12t+2). It thus follows
that 1>

2t+2K
(t+1)12t+2, 1

>

2t+2L
(t+1)12t+2 and 1>

2t+2K
(t+1)L(t+1)12t+2 can all be computed in linear time. To

sum up, we need to cache tr
�
K(t)L(t)

�
, K(t)12t, L(t)12t to compute the normalization constant in linear

time.
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