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Abstract

This paper introduces Learn-by-Compare (LbC), a novel ap-
proach for analog performance modeling by employing semi-
supervised contrastive regression. LbC employs a deep neu-
ral network encoder to come up with latent representations
of sizing solutions by comparing similarity/dissimilarity of
the underlying performance. Leveraging two levels of tran-
sistor level sizing data augmentation (DA), namely LS-DA
and GS-DA, LbC produces new data samples by employing
design knowledge. Experimental results highlight LbC’s su-
perior predictive accuracy compared to traditional regression
methods. Offering a streamlined semi-supervised learning
methodology, LbC effectively incorporates simple design
knowledge and representation learning for efficient analog
performance modeling.

Keywords: Analog Performance Modeling, Representation
Learning, Contrastive Regression Learning, Learning with
Design Knowledge

1 Introduction

Modeling the performance of analog circuits stands as a crit-
ical aspect in the domain of integrated circuit (IC) design
and verification. The essence of analog performance mod-
eling lies in establishing precise connections between the
performance of an analog circuit and its sizing parameters.
Traditional methods use analytical equations to detail these
performance dynamics in relation to sizing (as discussed in
[1, 6]), which works well for smaller-scale circuits. How-
ever, for complex designs at advanced technology nodes, the
application of analytical equations to predict performance
becomes increasingly challenging, primarily due to the intri-
cate complexity in representing such analytical formulations.

On the other hand, black-box performance models can
be built from circuit simulation data, e.g., collected from a
SPICE simulator that assesses the intricate relationship be-
tween analog sizing and performance. However, with the
escalating complexity of designs, simulation-based data col-
lection encounters challenges such as prolonged run times. In
these instances, users are constrained to a limited number of
high-accuracy samples from the circuit simulator. To address
this, black-box machine learning (ML) models have become
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popular for approximating analog circuit performance, of-
fering rapid performance modeling and prediction. [3] use
polynomial fitting on the simulation data to obtain regres-
sion models capable of predicting new performance values.
The work by [7] builds simple circuit performance models
using neural networks for analog performance modeling.
[9] use graph representations in conjunction with neural
networks to use topological information for efficient perfor-
mance modeling. However, the effectiveness of these large
neural network-based models heavily relies on the availabil-
ity of high-quality training data. With limited data, issues
like overfitting can lead to inaccurate predictions. This un-
derscores the need for analog performance modeling tools
that require minimal high-accuracy labeled data and ensure
quick inference.

In this paper, we introduce a novel analog performance
modeling approach Learn-by-Compare , where latent repre-
sentation learning is performed to ease the regression learn-
ing from sparse simulation data. In addition, we propose
GS-DA and LS-DA , two novel analog data augmentation tech-
niques for generating analog data from the existing dataset
by analog design knowledge. Furthermore, the proposed
augmentations are integrated into Learn-by-Compare to
achieve state-of-the-art performance in analog performance
modeling relying on limited data. The key contributions of
this work are as follows:

1. Propose a novel contrastive regression approach for
analog performance modeling, emphasizing captur-
ing the continuous nature of analog data in a latent
representation space.

2. Design a novel global sizing data augmentation tech-
nique (GS-DA ) for generating analog data and corre-
sponding performance, utilizing analog design princi-
ples, particularly simple analog scaling rules, to iden-
tify long-range correlations in the analog sizing space.

3. Introduce a local sizing data augmentation technique
(LS-DA ) that generates supplementary sizing data by
exploiting the continuous nature of analog perfor-
mance concerning sizing variations.

4. Experiment on benchmark circuits and evaluate LbC
by various analog performance modeling tasks, which
reveal significant improvements in accuracy over con-
ventional baseline methods.
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Figure 1. Learn-by-Compare framework consists two phases of training: (1) Training the encoder to learn latent representations;
(2) Training a regression head on the top of the pre-trained encoder to learn to make predictions.

2 Analog Circuit Performance Modeling as
a Regression Problem

In analog performance modeling, the design parameter vec-
tor x € RP is represented by the analog sizing solution.
The corresponding circuit performance measure (referred
to as the label), is represented by y = g(x) € RK. The goal
in analog performance modeling is to construct a model
f : RP — RK| that approximates the true circuit behavior
function ¢g : RP — RX. In modern machine learning, the
analog performance modeling function f is learned by a pa-
rameterized neural network with parameters 6. The output
y = fp(x) of the parameterized function is optimized to ap-
proximate the true performance measure y by minimizing a
loss function £ : RK x RK — R,

6" = arg ;ninﬁ(fe (%), y) 1)

In conventional regression learning methods, commonly
used loss functions include the L1 loss, MSE loss, Huber loss,
etc.

3 Semi-supervised Contrastive Regression
for Analog Performance Prediction
3.1 Contrastive Regression Framework

Deep regression models usually learn in an end-to-end fash-
ion without emphasis on the latent representation distribu-
tion. To fully utilize the limited amount of circuit simulation
data, we introduce an additional training phase coupled with
various data augmentation techniques for learning the rep-
resentation distribution of the sizing solution space during
analog performance modeling.

Instead of training an end-to-end regression model f(-),
we construct the model as a composition function consisting
of an encoder u(+) and a regression head h(-), i.e., f = howv.
Here, the encoder vy, (-) : RP — RM parameterized by
0., maps the sizing solution to a latent M-dimensional rep-
resentation space, and the parameterized regression head
hg, (-) : RM — RK uses these latent representations to pre-
dict circuit performance. The training procedure thus con-
sists of two phases and is depicted in Figure 1: (1) Learning

good latent representations by training the encoder; (2) Con-
necting a regression head to the pre-trained encoder and
tuning the model to learn to make predictions.

Learning an effective encoder is key to the overall perfor-
mance of the model. In order to make full use of the simula-
tion data and better train the encoder, we propose several
novel design knowledge incorporated data augmentation
approaches for generating ‘pseudo-labeled’ data from which
the encoder can be better trained. The proposed augmenta-
tions are discussed in detail in Section 4. With augmentation
functions T, (-) and T, () and labeled simulation data from
the labeled dataset (x;,y;) € Dy = {(x1,y1)s-- -5 (Xn, yn) },
new samples (x’,y") = (Ty(x;), Ty (y;)) are generated to form
Dy ={(x},y]), ..., (x),, Yr,) }. Such new samples are termed
as ‘pseudo-labeled’ dataset. The size of the original dataset
is thus enlarged by introducing pseudo-labeled data. A pro-
posed LbC loss Lpc is formulated to learn the optimal en-
coder from the enlarged ‘semi-supervised’ dataset {Dy, D, }.

0, = argmin L1pc(0e| D1, Dy) )
Z

e

We describe in detail the construction of L;;c in Section
3.2. After encoder training in Phase 1, a regression head
is connected to the encoder to learn to make predictions
on the performance in Phase 2 by calling a regression loss
Lregression (€.g., L1 loss, MSE loss, and Huber loss).

9;; = arg min Lregression(heh (092 (x))» yl (x, y) € Dl) (3)
On

3.2 Learning Latent Representations by Comparing
Label Distance

At the core of the above described contrastive regression is
the representation learning in Phase 1. However, traditional
contrastive learning is developed in the context of discrete
classification tasks [2], which is not capable of learning rep-
resentations that capture the continuous nature of circuit
performance in the latent representation space. Although a
recent work has shed light on contrastive learning in visual
regression problems [8], contrastive regression and its effec-
tiveness have not been explored extensively in circuit per-
formance modeling. We thus introduce Learn-by-Compare
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(LbC ), a contrastive regression approach that finds appli-
cation in accurately predicting continuous valued circuit
performance metrics, while retaining appealing properties
of contrastive learning. In LbC , the latent space similarity is
reflected by the data label distance, i.e., data samples with
similar labels (performance values) are designed to have
similar latent representations, so as to ultimately achieve
superior accuracy for circuit performance modeling.
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Figure 2. Pairs of data are compared according to their
label distance. LbC loss guides the representation learning
procedure.

Formally, given a mini-batch of N labeled data B = {x3, x2,
..., xn} and their corresponding labels (i.e., circuit perfor-
mance values) from the semi-supervised dataset, the label
distance from each sample to all the other samples is calcu-
lated by means of the Euclidean distance. The representations
of the batch B, = {21, z,, ...,zn} are calculated by feeding
data to the encoder, i.e., z; = vg, (x;). The label distance from
the i, sample label to the j;; one is denoted by d; ;. Next,
in order to generate label distance aware representations,
positive and negative pairs are formed in the batch according
to the label distance. Positive pairs constitute sizing solution
pairs whose performance values are similar, while negative
pairs constitute sizing solution pairs whose performance
values are dissimilar. Furthermore, such positive pairs are
pairs of data samples whose latent space similarities are max-
imized, while negative pairs are pairs of data samples whose
latent space similarities are minimized. As shown in Figure 2,
when a positive pair is formed between a chosen sample z;
and another sample z;, negative pairs are formed between
z; and all other samples zj, such that d;x > d; ;. Specifically,
we denote the set of negative samples for a positive pair
zi,zj as Njj = {zxlk # i,dix > dij}. We define a negative
log-likelihood loss for the positive pair z; and z; as follows:

exp(sim(z;, z;)/7)
I erens, exp(sim(zi, z6)/7)

where sim(-, -) normalizes two given representation vectors
and calculates the cosine similarity between them. 7 is a tem-
perature hyperparameter. Intuitively, minimizing ¢; ; is thus
equivalent to pulling together the latent space representa-
tions, z; and z; while simultaneously pushing apart negative
pair representations z; and zg.

[i,j =-lo (4)

In order to avoid bringing together very dissimilar samples,
for a given sample z;, positive pairs are formed between z;
and all other samples z; € P; = {z;|j # i,d;; < n}, where 5
is a threshold hyperparameter for filtering out samples with
dissimilar labels. We form positive pairs between z; and all
eligible samples z; in the batch and define the per-sample
LbC loss as follows:

/ 1 | exp(sim(z;, z;) /)
=—— E 0
LbC 12: 1l = Dizpen, exp(sim(zi, zi) /)

®)

Intuitively, given the i;; sample, its label distance to all
other samples is compared. z;’s that are chosen as positive
samples are brought close to z; in the representation space.
All z;’s whose label distance is greater than z; are required to
be aligned farther away from z; than z; is in the latent space.
This process is pictorially depicted in Figure 2, where latent
representations corresponding to a performance value of 0.9
form positive pairs with latent representations whose perfor-
mance values are similar (0.8, 1.0 etc.), while they form neg-
ative pairs with latent representations whose performance
values are dis-similar (1.1, 0.7, 0.6, 0.5 etc). Finally, the #;5¢
is summed up to form the LbC loss in mini-batches.

1 .
Lipe = _B Z [IibC
181 £,

_ _L Z 1 Z log exp(sim(z'i,zj)/r)
181 23, 1P 24" Teen, explsim(zi,z) 7)

(6)

4 Data Augmentation for Analog
Performance Prediction
4.1 Global Sizing Data Augmentation (GS-DA )

To overcome the problem of scarce data during analog per-
formance modeling, we propose Global Sizing Data Aug-
mentation (GS-DA ), a data augmentation approach that en-
hances the number of data points to refine the representa-
tions learned by the encoder. GS-DA uses approximate simple
scaling rules in the analog sizing space to generate new simu-
lation data in the form of pseudo-labeled data. The simple ap-
proximate scaling rules in traditional analog design suggest
how the performance values scale as the input sizing solu-
tions scale. For a sizing solution x € RP and a corresponding
performance value vector y € RX (denoted as x — y), simple
analog design scaling rules specify relationships of the form:

XDy = a-x—>fy (7)

for some a € RD,ﬁ € RX,

In large scale circuits, these rules may be approximate,
but provide valuable cues on the relationship between the
sizing solution and the ranges of performance values they
map to. We illustrate the use of such scaling rules on the two-
stage differential amplifier circuit. A schematic of the same
is provided in Figure 3(a). We track three metrics, namely the
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(a) Two-stage differential amplifier

(b) Folded cascode amplifier

(c) Hysteresis Comparator

Figure 3. Schematic of the three circuits used for experiments.

gain, the unity gain frequency (UGF) and the common-mode
rejection ratio (CMRR). The gain, CMRR and UGF [1, 6], of
the two-stage differential amplifier in terms of the small
signal parameters are defined as:

Gain= () (S )
9ds, + 9ds, 9ds; + 9ds,
gZ
CMRR= — ™ 9)
(gd33 + gd34) * 9dss
gmz
UGF = — 10

Scaling the sizing solution x, corresponds to scaling the
W/L ratio of the corresponding transistors or scaling the
capacitors, which scales the small signal parameters. This in
turn scales performance metrics such as the gain, UGF and
CMRR for instance. In Figure 4, we illustrate such simple
scaling rules for the two-stage differential amplifier circuit.
Scaling rules based on Equations 8, 9, 10, suggest that all the
three metrics remain unchanged while scaling the W /L ratio
(i-e. scaling the sizing solution). In Figure 4, we illustrate
the value of the metric (or equivalently the figure of merit
(FOM)) y, corresponding to the un-scaled sizing solution x
in Equation 7 on the X-axis. The Y-axis indicates the value
of the metric f§ - y corresponding to the scaled sizing solu-
tion « - x. All three illustrations in Figure 4 verify that the
simple scaling rules defined through design knowledge hold
in practice.

Next, we propose to use these scaling laws to increase
the number of ‘pseudo-labeled’ data points, i.e. for every
labeled data pair (x, y), we populate approximately accurate
(Tx(x), Ty(y)) = (a - x, B - y) pairs as pseudo-labeled data to
the current dataset.

In particular the scaling rules applied to the current sizing
solutions, x, can generate new sizing solutions, « - x, distant
from the current ones with approximately known values of
performance for the newer sizing solutions due to the use of
design knowledge. Such pseudo-labeled data in combination
with the original training data is used to provide greater
number of data points to train the encoder architecture in
Phase 1. By varying the scaling parameter a, GS-DA achieves
global coverage of the sizing solution space and extrapolates
to unseen regions of the sizing solution space. GS-DA also
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Figure 4. Simple, approximate scaling rules verify that scaled
sizing solutions provide scaled performance values

provides accurate labeling for such unseen sizing solutions
by employing simple scaling rules.

4.2 Local Sizing Data Augmentation (LS-DA)

In global sizing data augmentation (GS-DA ) long-range cor-
relations in the sizing solution space are captured through
simple scaling rules. In contrast, we additionally propose a
local data augmentation technique called local sizing data
augmentation (LS-DA ). In LS-DA , new sizing solutions x” €
RP : x” = x+Ax are generated from existing sizing solutions
x € RP by introducing local perturbations Ax € RP,

For small perturbations around a sizing solution, the per-
formance values stay consistent. We exploit this local conti-
nuity property of performance values to generate new per-
formance values for the newly generated sizing solution
x’. Thus LS-DA generates multiple pseudo-labeled data in
the neighborhood of the training data. Similar to GS-DA , the
LS-DA approach also increases the number of pseudo-labeled
data to train the encoder architecture in Phase 1.

In Figure 5, we illustrate the nature of data augmentations
GS-DA and LS-DA with a simple example. We consider the
two-stage differential amplifier circuit (Figure 3(a)) in which
only the normalized width of transistor M2 is taken to be the
1-dimensional sizing solution, while the normalized gain is
taken to be the 1-dimensional performance value. The sizing
solutions used as part of the training dataset are indicated
in the range (0.5, 1). LS-DA covers new sizing solutions in
the vicinity of the training sizing solutions. However, due to
the scaling associated with GS-DA , it discovers new sizing
solutions that are distant to the training sizing solutions and
extrapolates to unseen normalized sizing solutions in the
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Table 1. Performance comparison of LbC and existing regression learning methods. 100 simulation data samples are used for

training each method. MAE error is used as the metric.

2-Stage Folded Cascode Hysteresis
Methods ugf gain cmrr ugf gain cmrr gain bandwidth hyst. err.
L1 0.3527 0.3684 0.1881 0.1840 0.3402 0.3253 0.2519 0.1822 0.1747
MSE 0.4666 0.3760 0.2088 0.1995 0.3534 0.3497 0.2768 0.1974 0.1819
Huber 0.3798 0.3723 0.1925 0.1812 0.3599 0.3402 0.2697 0.1933 0.1820
GPR 0.3552 0.4705 0.4311 0.1668 0.3266 0.5079 0.2203 0.2151 0.1618
LbC(Ours) 0.2631 0.2723 0.1268 0.0803 0.2416 0.2448 0.1751 0.1106 0.0823

0.9

0.8

Normalized Gain values
o

07 e Taining Data . o
GS-DA
LS-DA °
0.6
0.0 0.2 0.4 06 0.8 10
Width of transistor M2

Figure 5. Simplified illustration of the coverage of the nor-
malized sizing solution space (consisting of only the width
of transistor M2 in Figure 3(a)) for the two-stage differen-
tial amplifier. GS-DA achieves global long range coverage far
away from the training sizing solution data, while LS-DA
achieves local coverage around the training data.

range (0,0.5) too. The scaling rules define the performance
values on the Y-axis. Thereby, the proposed data augmenta-
tion techniques (LS-DA and GS-DA ) demonstrate extensive
and global coverage of the sizing solution space, which gener-
ate pseudo-labeled data for training the encoder architecture
in Phase 1. This has the overall effect of increasing the ac-
curacy of analog performance modeling by ensuring richer
representations of the sizing solution space.

5 Experiments
5.1 Experiment Settings

We evaluate the effectiveness of the proposed LbC by com-
paring its performance on three different circuits which are
designed under a commercial 90nm CMOS technology frame-
work: a two-stage differential amplifier (2-Stage), a folded
cascode amplifier (FC), and a hysteresis comparator (Hyst)
topology, as illustrated in Figure 3. 2-Stage, FC, and Hyst are
designed with 14, 18, and 12 distinct parameters. We com-
pare LbC with other popular existing regression methods
L1 loss-based, MSE loss-based, Huber loss-based methods,
and Gaussian Process Regression [4] (GPR). Mean Absolute
Error (MAE) is adopted to demonstrate performance of all
methods. We focus on UGF, gain, and CMRR prediction for
2-Stage and FC. For Hyst, bandwidth , gain and hysteresis
error are considered as performance metrics.

Dataset. Synopsys HSpice is employed for simulating all
circuits. Each metric, as indicated above, is first normalized to

Table 2. Performance comparison of LbC and existing meth-
ods trained on different amount of data. MAE error is used
as the metric.

Number of simulation data

method 50 100 200 500 1000

L1 0.3909 0.3215 0.3112 0.2767 0.2353
MSE 0.3813 0.3279 0.3189 0.2896 0.2382
LbC(Ours)  0.2794 0.2592  0.2343  0.1952  0.1546

fit into a range of [—1, 1].Similarly, the sizing solution space
is normalized to a range [0, 1]. We generate labeled training
data samples (x,y) € D;, where the input normalized siz-
ing solution x € (0.5,1)P. To assess the generalizability of
trained models, we generate test sample (x;,y;) € D, where
x; are randomly sampled from a larger range (0, 1)".

LbC training settings. The model of LbC consists of two
parts, an encoder and a regression head. We adopt a two-
layer MLP (multi-layer perceptron) as the encoder whose
output embedding is 32-dimensional. The regression head
is another two-layer MLP for prediction. In phase 1, the
encoder is trained for 2000 epochs with an Adam optimizer
with a learning rate (Ir) of 10™%. In phase 2, the regression
head is connected to the trained encoder and trained for 3000
epochs with an Adam optimizer of Ir = 5 x 10™%. A cosine
scheduler is adopted for scheduling the Ir in both phases. The
threshold hyperparameter 7 is set to 0.2, and temperature is
set to 7 = 2.0.

Training setting of baseline methods. For fair com-
parisons, L1 loss-based, MSE loss-based, and Huber loss-
based methods are designed with a four-layer MLP with
32-dimensional latent embedding, identical to the model ar-
chitecture of LbC . Models are trained for 5000 epochs with
an Adam optimizer of Ir = 5 X 107%, and the Ir is scheduled
by a cosine scheduler. For GPR, we use Radial Basis Function
as the kernel function.

5.2 Results

Prediction accuracy comparison. Table 1 demonstrates
the comparison between LbC and other methods in predicting
various performance measures. Models are trained with only
100 data samples and tested on 20000 samples. Table 2 shows



Table 3. Performance comparison of LbC with and without
data augmentation. MAE error is used as the metric.

method 2-Stage Folded Cascode Hysteresis
L1 0.3741 0.3546 0.2618
LbC(w/o aug.) 0.3037 0.2771 0.1902
LbC(w/ aug.) 0.2709 0.2314 0.1750

Table 4. Comparison of LbC with and without GS-DA . Folded
cascode data is used for training and testing. Training and
testing dataset cover different areas in sizing solution space.

method ugf gain cmrr

L1 0.2591 0.4560 0.3632
LbC(w/o GSDA) 0.1347 0.3206 0.2198
LbC(w/ GSDA) 0.0850 0.2535 0.1885

the performance comparison in predicting all three perfor-
mance measures (used as weighted figures of merit (FOM))
of 2-Stage for methods trained on different amounts of data
samples. The averaged error of predicting all 3 measures
is reported. LbC achieves up to a two-fold reduction in
MAE which suggests that learning latent data representation
enhances the encoder’s performance in downstream analog
performance prediction. We further compare the latent data
representations in Figure 6. 1700 2-stage test dataset’s sam-
ple representations are plotted using UMAP [5], a dimension
reduction technique for visualizing high dimensional man-
ifold on a plane. Different colors represent corresponding
data label value (analog performance value), similar values
share similar colors. Compared to MSE-based method which
fails to understand the underlying continuous information
in analog performance, LbC captures data continuity w.r.t.
analog performance values.

(a) Learn-by-Compare (b) MSE-based regression
Figure 6. Representation space data distribution comparison
of LbC and MSE-based regression method.

Effectiveness of proposed augmentations. To evalu-
ate the LbC framework’s augmentations, we compare LbC
trained with and without these augmentations, as shown
in Table 3, including a comparison with L1 loss-based re-
gression. The results, presented as MAE of the FOM of each
circuit, show notable accuracy improvements with LbC even
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without augmentations, which are further enhanced by the
proposed augmentations due to increased data distribution
coverage.

To assess GS-DA ’s impact, we test LbC with and without
GS-DA on distinct test datasets (D; = (x4, y:)|x: € (0,0.5),
different from the training set D; = (x,y)|x € (0.5,1)). As
Table 4 shows, LbC notably improves the performance on
diverse distribution areas, with GS-DA reducing the error rate
by 1.8 to 3 times compared to the L1 loss-based method.

6 Conclusion

In this work, we introduce LbC , a novel semi-supervised
contrastive regression framework designed for precise ana-
log performance modeling in scenarios with limited data.
Learn-by-Compare leverages representation learning to ef-
fectively map the sizing solution space in alignment with
key performance metrics. To address the challenge of sparse
training data, we develop local and global data augmenta-
tion strategies that incorporate analog designers’ expertise,
enabling exploration of performance-correlated regions. In
addition to the improved accuracy in performance model-
ing,s The versatility of our representation learning and data
augmentation methods could also be applied to analog opti-
mization in Bayesian optimization and reinforcement learn-
ing contexts.
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