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REGULARIZATION ESTIMATES OF THE LANDAU-COULOMB

DIFFUSION

RENE CABRERA, MARIA GUALDANI, AND NESTOR GUILLEN

Abstract. At the present moment, it remains uncertain whether the Landau-Coulomb equa-
tion possesses a unique smooth solution for arbitrarily large times. Alongside the diffusion term,
this equation includes a reaction term that could rapidly transform nice configurations into
singularities. In this manuscript we show that the diffusion operator in the Landau-Coulomb
equation provides much stronger L

1
→ L

∞ regularization effects than its linear counterpart,
the Laplace operator. Our novel quantification suggests that when seeking a proof of global
well-posedness, the nonlinear diffusion term could play a pivotal role.

1. Introduction and main result

We consider the diffusion equation

ut = div(A[u]∇u), x ∈ R
d, t > 0,(1.1)

where A[u] is a d× d matrix defined as

A[u](x, t) := cd

ˆ

Rd

P(x− y)

|x− y|
u(y, t) dy,

and P(z) is the projection matrix over the space perpendicular to z, defined as

P(z) :=

(

I−
z ⊗ z

|z|2

)

,

Hereafter the dimension d is greater or equal 3. Equation (1.1) represents the diffusion part of

the homogeneous Landau-Coulomb equation, which reads as

ut = div(A[u]∇u− u divA[u]),(1.2)

or alternatively in the non-divergence form

ut = Tr(A[u]D2u) + u2.

Equation (1.2) has attracted a lot of attention in the past two decades. Although the proof

of global-well-posedness for general initial data seems elusive at this moment, the collective

investigation for (1.2) of the past years has advanced forward the knowledge in several directions:

(i) The existence and uniqueness of smooth solutions for short times have been extensively

explored. Notably, Golding and Loher’s work [7] has established the most comprehensive result

for initial data in Lp(R3) with p > 3
2 , while the case p ≤ 3

2 remains an open question. (ii) Global

existence and uniqueness of smooth solutions with initial data close to equilibrium has been

addressed across various contexts. For initial data small in Sobolev spaces, contributions can be
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2 Regularization estimates of the Landau-Coulomb diffusion

found in [14, 2, 4] and and related references. The first work that considers initial data in L∞ is

the one by Kim, Guo and Hwang [15]. Recently, Golding, Gualdani and Loher [6] encompassed

the problem in all Lp spaces with p > 3
2 , leaving the case p ≤ 3

2 still unexplored. (iii) Conditional

regularity. This line of research concerns the investigations of conditions that guarantee global

well-posedness of solutions for arbitrarily large times. Silvestre [17] and Gualdani, Guillen [12]

showed that if the function u(x, t) ∈ Lp(R3) with p > 3
2 uniformly in time, then it is smooth.

Recently, Alonso, Bagland, Desvillettes, and Lods [1] showed that if u(x, t) ∈ Lq(0, T, Lp(R3)

for a certain range of q and p, then it is automatically in Lp(R3) with p > 3
2 and therefore

smooth. Regarding conditional uniqueness, Fournier in [5] showed that solutions which have

L∞ norm integrable in time are unique. Chern and Gualdani [3] showed that uniqueness holds

in the class of high integrable functions. (iv) Partial regularity. This line of research for the

Landau equation started with Golse, Gualdani, Imbert and Vasseur [8]. In this work it is shown

that, if singularities occur, they are concentrated in a time interval that has Hausdorff measure

at most 1
2 . Most recently, Golse, Imbert and Vasseur showed that the spatial and temporal

domain for singularities to happen has Hausdorff measure 1 + 5
2 [9]. (v) Study of modified

models that pertain the same difficulties of the Landau equation but seem analytically more

tractable. This line of research started with the work of Gressmann, Krieger and Strain [10, 16]

and their analysis of an isotropic version of (1.2),

ut = a[u]∆u+ αu2, α > 0.(1.3)

In [10, 16] they show that (1.3) is globally well-posed if initial data are radially symmetric and

monotonically decreasing and α ∈ (0, 7475). Later, Gualdani and Guillen [11] proved global well-

posedness for α = 1 also in the case when initial data are radially symmetric and monotonically

decreasing. These works proved the conjecture that, unlike what happens in the semilinear

heat or porous media equations, the nonlinear diffusion a[u]∆u is strong enough to overcome

the reaction u2. Later, Gualdani and Guillen [13] showed the the isotropic Landau equation

with less singular potentials (γ ∈ (−2.5,−2]) is also globally well-posed.

These findings lead us to the motivation behind the present manuscript. The proofs in groups

(i), (iii) and (iv) primarily rely on the ellipticity estimates provided by the lower bound of A[u].

Specifically, if the function u has mass, second moment and entropy bounded, the matrix A[u]

is uniformly bounded from below by

A[u] ≥
c

1 + |x|d
Id, x ∈ R

d,

where c only depends on mass, second moment and entropy of u. While a weighted Laplacian

operator is analytically more tractable then the full nonlinear nonlocal diffusion div(A[u]∇u),

one might argue that by using the lower bound on A[u] we discard an important element

that could actually prevent singularities following the intuition that when u is big so is the

diffusion coefficient A[u] and this strength could prevent formation of singularities. However,

this intuition has been very difficult to apply in practice. Interestingly, however, is the fact

that all the global-well-posedness results for general data mentioned above use the full power

of the diffusion operator. These include the results in [10, 16], which are a consequence of a

novel weighted Poincare inequality
ˆ

Rd

up+1 dx ≤

(

p+ 1

p

)2 ˆ

Rd

A[u]|∇u
p
2 |2 dx,
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the ones in [11], which use a geometric argument in which the coefficient a[u] plays a pivotal

rule, and lastly, the ones in [13], proven via new weighted Hardy inequalities of the form
ˆ

Rd

(u ∗ |x|γ)up dx ≤ cd,γ,p

ˆ

Rd

(u ∗ |x|γ+2)|∇u
p
2 |2 dx, γ > −d.

Lastly, it was already noted in [12] that conditional regularity result for (1.2) shows a rate of

regularization much stronger than what is usually expected for regular parabolic equations.

In this manuscript we provide a new and precise quantification of the regularization power of

the Landau diffusion operator. Notably, this regularization exhibits a significantly faster rate

than that achieved by the Laplacian operator.

Theorem 1.1. Let u(t, x) be a solution to (1.1) with initial data 0 ≤ uin that belongs to L1
m(Rd)

for some m > 3d(d − 2) and d ≥ 3. Then we have

sup
t>0

‖u‖L∞(Rd) ≤
c

t1+ε
,(1.4)

for ε as small as one wishes and c > 0 a constant that only depends on the L1
m-norm of the

initial data.

Hereafter, we denote by L1
m(Rd) the space of all L1(Rd) functions such that
ˆ

Rd

|f |(1 + |x|2)m/2 dx < +∞.

The proof of Theorem 1.1 follows from two steps. In the first one we show a L1 → Lp gain of

integrability for u, solution to (1.1). The second step includes a De Giorgi iteration that covers

the Lp → L∞ jump. The combination of these two steps yields (1.4).

2. Some technical lemmas

We first recall well-known results on the bounds of the diffusion matrix A[u]:

Lemma 2.1. There exist positive constants C0 and c0 depending on the dimension d ≥ 3 such

that

‖A[u]‖L∞(Rd) ≤ C0‖u‖
p(d−2)
d(p−1)

Lp(Rd)
‖u‖

2p−d
d(p−1)

L1(Rd)
, p >

d

2
,

and

‖divA[u]‖L∞(Rd) ≤ c0‖u‖
p(d−1)
d(p−1)

Lp(Rd)
‖u‖

p−d
d(p−1)

L1(Rd)
, p > d.

We will also use the following weighted Sobolev inequality: for f smooth enough and any

1 ≤ s ≤ 2d
d−2 we have

(
ˆ

Rd

|f |
2d
d−2 〈x〉−3d dx

)
d−2
d

≤ c1

ˆ

Rd

|∇f |2〈x〉−d dx+ c2

(
ˆ

Rd

|f |s dx

)2/s

.(2.1)

Here, 〈x〉 := (1 + |x|2)1/2. The derivation of (2.1) for d = 3 can be found in [6]. We use (2.1)

to prove the following interpolation inequality:
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Lemma 2.2. Let p > 1 and q such that p+ 2
d < q < p

(

1 + 2
d

)

. Let m be defined as

m :=
3d(d − 2)(p − 1)

(d+ 2)p− dq
.

For any g smooth function the following bound holds:

‖g‖q
Lq(Rd)

≤ C
(

‖〈·〉−
d
2∇g

p
2 ‖2L2(Rd) + ‖g‖p

Lp(Rd)

)

‖g‖
p

(

q−p− 2
d

p−1

)

Lp(Rd)
‖g〈·〉m‖

(d+2)p−dq
d(p−1)

L1(Rd)
.(2.2)

Proof. We first establish the following interpolation inequality

‖g‖qLq ≤ ‖〈·〉
−

3(d−2)
p g‖p

L
dp
d−2

‖g‖
p

(

q−p− 2
d

p−1

)

Lp ‖g 〈·〉m‖
(d+2)p−dq

d(p−1)

L1 ,(2.3)

that holds for any p+ 2
d < q < p

(

1 + 2
d

)

and m = 3d(d−2)(p−1)
(d+2)p−dq . The lemma follows easily once

we prove (2.3): use (2.1) with f = g
p
2 and s = 2 to bound the first term on the right hand side

of (2.3) and get

‖g‖qLq ≤ C
(

‖〈·〉−
d
2∇g

p
2 ‖2L2 + ‖g‖pLp

)

‖g‖
p

(

q−p− 2
d

p−1

)

Lp ‖g〈·〉m‖
(d+2)p−dq

d(p−1)

L1 .

Next, to show (2.3) we start with a weighted interpolation

‖g‖q
Lq(Rd)

≤

(
ˆ

Rd

g
dp
d−2 〈x〉

− dpα
θq(d−2) dx

)

θq(d−2)
dp

(
ˆ

Rd

gr〈x〉
rα

(1−θ)q dx

)

(1−θ)q
r

,

with α, θ and r satisfy














θq(d−2)
dp + (1−θ)q

r = 1,
θq(d−2)

dp = d−2
d ,

dpα
θq(d−2) = 3d.

The above system has solutions α = 3(d− 2), (1−θ)q
r = 2

d , r = d
2(q − p), and θ = p

q , which yield

ˆ

gq dx ≤

(
ˆ

g
dp
d−2 〈·〉−3d dx

)
d−2
d
(
ˆ

g
d
2
(q−p)〈·〉

3d(d−2)
2 dx

)
2
d

.

Let us focus on the last term: once more, use Hölder’s inequality and get

(
ˆ

g
d
2
(q−p)〈·〉

3d(d−2)
2 dx

)
2
d

=

(
ˆ

gαg
d
2
(q−p)−α 〈·〉

3d(d−2)
2 dx

)
2
d

≤

[

(
ˆ

gpdx

)
α
p
(
ˆ

g(
d
2
(q−p)−α)β〈·〉

3d(d−2)
2

βdx

)
1
β

]

2
d

,

(2.4)

where β := p
p−α . We chose α such that (d2 (q − p)− α)β = 1, which implies

α =

(

d

2
(q − p)− 1

)

p

p− 1
.
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Note that α > 0 requires q > p+ 2
d . Since also β has to be positive, and

β =
2(p − 1)

(d+ 2)p − dq
,

we require q <
(

d+2
d

)

p. Substitution of α and β in (2.4) yields

(
ˆ

g
d
2
(q−p)〈·〉

3d(d−2)
2 dx

)
2
d

≤

(
ˆ

gp dx

)

q−p− 2
d

p−1
(
ˆ

g〈x〉m
)

(d+2)p−dq
d(p−1)

,(2.5)

with m = 3d(d−2)(p−1)
(d+2)p−dq . This proves (2.3) and finishes the proof. �

Remark 2.3. The condition p + 2
d < q < d+2

d p indicates that m := 3d(d−2)(p−1)
(d+2)p−dq is such that

m > 3d(d−2)
2 .

3. L1 → Lp gain of integrability

The next theorem shows a L1 → Lp gain of integrability for solutions to (1.1). The proof

follows almost directly from the weighted Poincare’s inequality
ˆ

Rd

up+1 dx ≤

(

p+ 1

p

)2 ˆ

Rd

A[u]|∇up/2|2 dx,(3.1)

first proven in [10]. The gain of integrability we obtain is much faster that the one of the

solution to the heat equation, which is of the order of 1

t
d
2(1− 1

p)
.

Theorem 3.1. Let u(t, x) be a solution to (1.1). For any p > 1 we have

sup
t>0

‖u‖Lp(Rd) ≤
c

t
1− 1

p

,

with c a constant depending only on p and ‖uin‖L1(Rd).

Proof. Multiply (1.1) by ϕ := up−1 and integrate the resulting equation in R
d. Integration by

parts yields

∂t

ˆ

up dx = −
4(p − 1)

p

ˆ

〈

A[u]∇u
p
2 ,∇u

p
2

〉

dx.

Inequality (3.1) imply

(3.2) ∂t

ˆ

up(x) dx ≤ −
4p(p− 1)

(p+ 1)2

ˆ

up+1(x) dx.

Combining the interpolation inequality

‖u‖Lp ≤ ‖u‖θL1‖u‖
1−θ
Lp+1 , θ =

1

p2
,

with (3.2) yields

∂t‖u‖
p
Lp ≤ −C‖u‖

p2

(p−1)

Lp ,

with C = 4p(p−1)
(p+1)2

‖uin‖
− 1

p−1

L1 . Define y := ‖u‖pLp ; the solution to the differential inequality

y′ ≤ −Cy
p

p−1 ,
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has the bound

y ≤
1

(

y
− 1

p−1

0 + C
p−1t

)p−1 .

This implies that

sup
t>0

‖u‖Lp ≤

(

(p− 1)

C

)1− 1
p 1

t1−
1
p

,

and this finishes the proof. �

We also have the following moment estimate:

Lemma 3.2. Let u(t, x) be a smooth solution to (1.1) in the time interval [0, T ] with initial

datum uin ∈ L1
m(Rd) for some m ≥ 2. Then there exists a constant c that only depends on T

and the L1
m-norm of uin such that

sup
t∈[0,T ]

‖u(t, x)‖L1
m(Rd) ≤ c.

Proof. We start with m = 2. Testing with φ = (1 + |x|2) and integrating by parts yield

∂t

ˆ

u(1 + |x|2)dx ≤ 4

ˆ

u |x||∇A[u]| dx+ 4d

ˆ

u Tr(A[u]) dx

=: J1 + J2.

Let us first estimate J2. Applying the first estimate of Lemma 2.1 to J2, we get

J2 ≤ C0‖u‖
p(d−2)
(p−1)d

Lp(Rd)
‖u‖

2p−d
d(p−1)

+1

L1(Rd)
.(3.3)

Then an application of Theorem 3.1 to the Lp-norm of (3.3), gives

J2 .
1

t1−
2
d

‖u‖
2p−d
d(p−1)

+1

L1(Rd)
.(3.4)

Next, we estimate J1. We have

J1 ≤ ‖∇A[u]‖L∞

ˆ

u (1 + |x|2) dx.

Apply once more Lemma 2.1 and Theorem 3.1 to get

J1 .
1

t1−
1
d

ˆ

u(1 + |x|2) dx.

Gathering the estimates of J1 and J2 together, we acquire the bound

∂t

ˆ

u(1 + |x|2)dx = J1 + J2

≤
c

t
d−1
d

ˆ

u(1 + |x|2) dx+
C

t
d−2
d

,

where c := ‖u‖
p−d

d(p−1)

L1(Rd)
and C := ‖u‖

2p−d
d(p−1)

+1

L1 . The last inequality is equivalent to the differential

inequality

y′ ≤
c

t
d−1
d

y +
C

t
d−2
d

,(3.5)
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which, after multiplying by µ(s) = e−ds
1
d , reduces to

(yµ(s))′ ≤ µ(s)s−
d−2
d ,

and has solution:

y(t) = edt
1/d

{
ˆ t

0
e−ds1/ds

2−d
d ds+ y0e

−dt
1
d

}

.

Applying the same argument iteratively, we can get the estimate for any m > 2. �

Remark 3.3. Thanks to the bound on the second moments from Lemma 3.2, the conservation

of mass and the decay of entropy, the matrix A[u] satisfies the following ellipticity condition:

A[u](x, t) ≥
c(T )

〈x〉d
for any x ∈ R

d, t ∈ [0, T ].(3.6)

4. L1 → L∞ gain of integrability

In this section we first show the Lp → L∞ gain of integrability for solutions to (1.1). This,

combined with the estimate of Theorem 3.1 will conclude the proof of Theorem 1.1. We follow a

modification of the De Giorgi iteration previously used in [6] and [7]. We start with a technical

lemma. Let M > 0 and t > 0; for each k ∈ N, define

Ck := M(1− 2−k), Tk :=
t

2

(

1−
1

2k

)

.

We denote with (u− c)+ the maximum between 0 and (u− c).

Lemma 4.1. Let p > d/2, γ > 0 defined as

γ = −1 +
2

d
p−

3

m
(d− 2)(p − 1),

and m ≥ 2 such that

m >
3d(d− 2)

2
max

{

1,
p− 1

p− d
2

}

.

For each k ≥ 1 we have the bound

ˆ

Rd

(u− Ck)
p
+dx ≤

(

c02
k

M

)1+γ
(

‖〈·〉−d/2∇(u− Ck−1)
p
2
+‖

2
L2 + ‖(u− Ck−1)+‖

p
Lp

)

· ‖(u− Ck−1)+‖
p( 2

d
− 3

m
(d−2))

Lp ‖(u− Ck−1)+‖
3
m
(d−2)

L1
m

,

with c0 dimensionless constant.

Proof. Observe that 0 ≤ Ck−1 < Ck. From this we have

0 ≤ (u− Ck)+ ≤ (u− Ck−1)+.(4.1)

Moreover u− Ck−1 = u−Ck + Ck − Ck−1. Dividing by Ck − Ck−1 we acquire

u− Ck−1

Ck − Ck−1
=

u− Ck

Ck − Ck−1
+ 1 ≥ 1.
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This tells us that

1{u−Ck≥0} ≤
(u− Ck−1)+
Ck − Ck−1

.

Hence, for any a > 0 we have

1{u−Ck≥0} ≤

(

(u− Ck−1)+
Ck − Ck−1

)a

.

Multiplying the above inequality by (u− Ck)+ and using (4.1), we deduce

(u− Ck)+ ≤
(u− Ck−1)

1+a
+

(Ck − Ck−1)a
for any a > 0.(4.2)

Chose a = 1+γ
p for some γ > 0 to be defined later. Inequality (4.2) implies

ˆ

Rd

(u− Ck)
p
+ dx ≤

(

2k

M

)1+γ ˆ

Rd

(u− Ck−1)
p+1+γ
+ dx.

Lemma 2.2 with q = 1 + γ + p yields
ˆ

Rd

(u− Ck)
p
+ dx ≤ c0

(

2k

M

)1+γ (
∥

∥

∥
∇(u− Ck−1)

p
2
+〈·〉

− d
2

∥

∥

∥

2

L2
+ ‖(u− Ck−1)+‖

p
Lp

)

· ‖(u−Ck−1)+‖
p

( d−2
d

+γ

p−1

)

L2 ‖(u− Ck−1)+‖
2p−d−dγ
d(p−1)

L1
m

,

with c0 dimensionless constant and m = 3d(d−2)(p−1)
(d+2)p−d(1+γ+p) . Next, we express γ in terms of m,

and get γ = 2
dp− 1− 3(d−2)(p−1)

m , which implies, after substitution in the norms,

ˆ

Rd

(u− Ck)
p
+ dx ≤ c0

(

2k

M

)1+γ (
∥

∥

∥
〈·〉−d/2∇(u− Ck−1)

p
2
+

∥

∥

∥

2

L2
+ ‖(u− Ck−1)+‖

p
Lp

)

· ‖(u −Ck−1)+‖
p( 2

d
− 3

m
(d−2))

Lp ‖(u− Ck−1)+‖
3
m
(d−2)

L1
m

.

The constraint γ > 0 implies m > 3d(d−2)
2

(p−1)

p− d
2

. The proof of the lemma is complete after

recalling Remark 2.3. �

We are now ready to start the De Giorgi iteration. For any k ≥ 1 let us define the energy Ek
as

Ek(Tk+1, t) := sup
τ∈(Tk+1,t)

ˆ

(u− Ck)
p
+(τ, x)dx+ C(p)

ˆ t

Tk+1

ˆ

〈x〉−d
∣

∣

∣
∇(u− Ck)

p
2
+

∣

∣

∣

2

dxdτ,

and E0 as

E0 := sup
(t/4,t)

ˆ

Rd

up dx+ C(p)

ˆ t

t/4

ˆ

Rd

〈x〉−d
∣

∣

∣
∇u

p
2

∣

∣

∣

2
dx dτ.(4.3)

Lemma 4.2. Given p > d
2 , γ = −1 + 2

dp−
3(d−2)(p−1)

m and m > 3d(d−2)
2 max

{

1, p−1

p− d
2

}

. For all

k ≥ 1 we have

Ek(Tk+1, t) .
1

tM1+γ
Ek−1(Tk, t)

(1+ 2
d
− 3

m
(d−2)).
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Proof. We test (1.1) with (u − Ck)
p−1
+ , integrate in R

d × (s, τ) with 0 ≤ Tk ≤ s ≤ Tk+1 ≤ τ .

After averaging on s between Tk and Tk+1, and taking the supremum of τ in (Tk+1, t) we get

sup
τ∈(Tk+1,t)

ˆ

(u− Ck)
p
+(τ, x)dx+ C(p)

ˆ t

Tk+1

ˆ

A[u]
∣

∣

∣
∇(u− Ck)

p
2
+

∣

∣

∣

2
dxds

≤
1

Tk+1 − Tk

ˆ t

Tk

ˆ

(u− Ck)
p
+dx ds,

which can be also written as

Ek(Tk+1, T ) ≤
1

Tk+1 − Tk

ˆ t

Tk

ˆ

(u− Ck)
p
+dx ds.(4.4)

Since (Tk+1 − Tk) =
t

2k+2 , we apply the integral bound of Lemma 4.1 to get

Ek .
2k+1

t

(

2k

M

)1+γ

sup
(Tk,t)

‖(u− Ck−1)+‖
3(d−2)

m

L1
m

sup
(Tk,t)

‖(u− Ck−1)+‖
p( 2

d
− 3

m
(d−2))

Lp

·

[

sup
(Tk ,t)

‖(u− Ck−1)+‖
p
Lp +

ˆ t

Tk

‖〈·〉−d/2∇(u− Ck−1)
p
2
+‖

2
L2 ds

]

≤
2k+1

t

(

2k

M

)1+γ

sup
(Tk ,t)

‖(u− Ck−1)+‖
3(d−2)

m

L1
m

·

[

sup
(Tk ,t)

‖(u− Ck−1)+‖
p
Lp +

ˆ t

Tk

‖〈·〉−d/2∇(u− Ck−1)
p
2
+‖

2
L2 ds

]1+ 2
d
− 3

m
(d−2)

=
CkC0

tM1+γ
E
(1+ 2

d
− 3

m
(d−2))

k−1 ,

with C0 := sup(0,T ) ‖u‖
3
m
(d−2)

L1
m

. �

For simplicity in the notation, we define β1 :=
2
d − 3

m(d− 2). The inequality of the previous

lemma shows that, iteratively,

Ek .

(

c0

t
1
β1 M

(1+γ)
β1

E0

)(1+β1)k

.(4.5)

Recall the definition of E0:

E0 = sup
(t/4,t)

ˆ

up(s, x) dx+ C(p)

ˆ t

t/4

ˆ

A[u]
∣

∣

∣
∇u

p
2

∣

∣

∣

2
dx ds.

Since

E0 ≤ sup
(0,t)

ˆ

up(s, x) dx,

Theorem 3.1 implies

E0 ≤
c

tp−1
,
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where c only depends on p and on the L1-norm of the initial data. Passing to the limit k → +∞

in (4.5) we obtain

u ≤ M,

provided

M .
c0
t1+ε

,

with ε =
1− 2

d
1+γ and c0 only dependent on the L1

m-norm of the initial data. Note that ε > 0 can

be as small as one wishes by choosing p arbitrarily large. To see this, first note that if p is

greater than d− 1 then 1 < max

{

1, p−1

p− d
2

}

≤ 2. Then, taking m > 3d(d − 2), we get

ε =
1− 2

d

1 + γ
=

1− 2
d

2p
d − 3(d−2)(p−1)

m

≤
d− 2

p+ 1
.

This finishes the proof of Theorem 1.1.
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