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REGULARIZATION ESTIMATES OF THE LANDAU-COULOMB
DIFFUSION

RENE CABRERA, MARTA GUALDANI, AND NESTOR GUILLEN

ABSTRACT. At the present moment, it remains uncertain whether the Landau-Coulomb equa-
tion possesses a unique smooth solution for arbitrarily large times. Alongside the diffusion term,
this equation includes a reaction term that could rapidly transform nice configurations into
singularities. In this manuscript we show that the diffusion operator in the Landau-Coulomb
equation provides much stronger L' — L regularization effects than its linear counterpart,
the Laplace operator. Our novel quantification suggests that when seeking a proof of global
well-posedness, the nonlinear diffusion term could play a pivotal role.

1. INTRODUCTION AND MAIN RESULT

We consider the diffusion equation

(1.1) uy = div(A[u]Vu), = eR?  t>0,
where Afu| is a d x d matrix defined as
P(x —
Aot = ca [ D utyt) ay,
Re |7 =yl

and P(z) is the projection matrix over the space perpendicular to z, defined as

Hereafter the dimension d is greater or equal 3. Equation (1.1) represents the diffusion part of
the homogeneous Landau-Coulomb equation, which reads as

(1.2) up = div(Alu]|Vu — u divA[u)),
or alternatively in the non-divergence form
uy = Tr(Afu] D*u) + u?.

Equation (1.2) has attracted a lot of attention in the past two decades. Although the proof
of global-well-posedness for general initial data seems elusive at this moment, the collective
investigation for (1.2) of the past years has advanced forward the knowledge in several directions:
(i) The existence and uniqueness of smooth solutions for short times have been extensively
explored. Notably, Golding and Loher’s work [7] has established the most comprehensive result
for initial data in LP(R3) with p > %, while the case p < % remains an open question. (ii) Global
existence and uniqueness of smooth solutions with initial data close to equilibrium has been
addressed across various contexts. For initial data small in Sobolev spaces, contributions can be
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2 Regularization estimates of the Landau-Coulomb diffusion

found in [14, 2, 4] and and related references. The first work that considers initial data in L™ is
the one by Kim, Guo and Hwang [15]. Recently, Golding, Gualdani and Loher [6] encompassed
the problem in all LP spaces with p > %, leaving the case p < % still unexplored. (iii) Conditional
regularity. This line of research concerns the investigations of conditions that guarantee global
well-posedness of solutions for arbitrarily large times. Silvestre [17] and Gualdani, Guillen [12]
showed that if the function u(z,t) € LP(R3) with p > % uniformly in time, then it is smooth.
Recently, Alonso, Bagland, Desvillettes, and Lods [1] showed that if u(x,t) € L9(0,T, LP(R?)
for a certain range of ¢ and p, then it is automatically in LP(R®) with p > % and therefore
smooth. Regarding conditional uniqueness, Fournier in [5] showed that solutions which have
L*° norm integrable in time are unique. Chern and Gualdani [3] showed that uniqueness holds
in the class of high integrable functions. (iv) Partial regularity. This line of research for the
Landau equation started with Golse, Gualdani, Imbert and Vasseur [8]. In this work it is shown
that, if singularities occur, they are concentrated in a time interval that has Hausdorff measure
at most % Most recently, Golse, Imbert and Vasseur showed that the spatial and temporal
domain for singularities to happen has Hausdorff measure 1 + 5 [9]. (v) Study of modified
models that pertain the same difficulties of the Landau equation but seem analytically more
tractable. This line of research started with the work of Gressmann, Krieger and Strain [10, 16]
and their analysis of an isotropic version of (1.2),

(1.3) up = afu]Au + au?®, o > 0.

In [10, 16] they show that (1.3) is globally well-posed if initial data are radially symmetric and
monotonically decreasing and a € (0, %) Later, Gualdani and Guillen [11] proved global well-
posedness for o = 1 also in the case when initial data are radially symmetric and monotonically
decreasing. These works proved the conjecture that, unlike what happens in the semilinear
heat or porous media equations, the nonlinear diffusion a[u]Au is strong enough to overcome
the reaction u?. Later, Gualdani and Guillen [13] showed the the isotropic Landau equation
with less singular potentials (y € (—2.5, —2]) is also globally well-posed.

These findings lead us to the motivation behind the present manuscript. The proofs in groups
(1), (iii) and (iv) primarily rely on the ellipticity estimates provided by the lower bound of Afu].
Specifically, if the function v has mass, second moment and entropy bounded, the matrix Afu]
is uniformly bounded from below by

c
Alu] > TT1al Imld]Id, z e R4,

where ¢ only depends on mass, second moment and entropy of u. While a weighted Laplacian
operator is analytically more tractable then the full nonlinear nonlocal diffusion div(A[u]Vu),
one might argue that by using the lower bound on A[u] we discard an important element
that could actually prevent singularities following the intuition that when w is big so is the
diffusion coefficient A[u] and this strength could prevent formation of singularities. However,
this intuition has been very difficult to apply in practice. Interestingly, however, is the fact
that all the global-well-posedness results for general data mentioned above use the full power
of the diffusion operator. These include the results in [10, 16], which are a consequence of a
novel weighted Poincare inequality

2
/ uPt dx < (Iil> A]|Vu? ? de,
Rd p Rd
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the ones in [11], which use a geometric argument in which the coefficient a[u| plays a pivotal
rule, and lastly, the ones in [13], proven via new weighted Hardy inequalities of the form

[ laP e do < cay [ (el )VaEP do, v > -
R4 R4

Lastly, it was already noted in [12] that conditional regularity result for (1.2) shows a rate of
regularization much stronger than what is usually expected for regular parabolic equations.

In this manuscript we provide a new and precise quantification of the regularization power of
the Landau diffusion operator. Notably, this regularization exhibits a significantly faster rate
than that achieved by the Laplacian operator.

Theorem 1.1. Let u(t, ) be a solution to (1.1) with initial data 0 < u;, that belongs to L} (RY)
for some m > 3d(d — 2) and d > 3. Then we have

&
1.4 oy < ———
(1.4) igg”uHL ') < T

for € as small as one wishes and ¢ > 0 a constant that only depends on the L} -norm of the
initial data.

Hereafter, we denote by L. (R%) the space of all L'(R?) functions such that
[ 1+ JaPy? de < 4.
Rd

The proof of Theorem 1.1 follows from two steps. In the first one we show a L' — LP gain of
integrability for u, solution to (1.1). The second step includes a De Giorgi iteration that covers
the LP — L jump. The combination of these two steps yields (1.4).

2. SOME TECHNICAL LEMMAS

We first recall well-known results on the bounds of the diffusion matrix Aful:

Lemma 2.1. There exist positive constants Cy and ¢y depending on the dimension d > 3 such
that

A
lAfll oo ey < Collull pyiga) lull iz, 2> 35
and
sl
Idiv Alulll ety < eollull S0 el T, o> d.

We will also use the following weighted Sobolev inequality: for f smooth enough and any
1< s < 24 we have

2d % 2/s
(2.1) (/Rdlfl“<w>‘3ddx> < e /RdIVfl2<w>‘dd:c+C2(/Rdlflsdw> .

Here, () := (1 + |2[%)'/2. The derivation of (2.1) for d = 3 can be found in [6]. We use (2.1)
to prove the following interpolation inequality:
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Lemma 2.2. Let p > 1 and q such that p + % <qg<p (1 + %) Let m be defined as
~3d(d—-2)(p—1)
C (d+2p—dg

For any g smooth function the following bound holds:

2
”7d) (d+2)p—dq

_d L m
(22) ”gHLq(Rd < C (H<> ZVgg ”iQ(Rd) + ”gHip(Rd ) HgHLp(Rd ”g< > ”le((ﬂzdl)

Proof. We first establish the following interpolation inequality

_ 32 (q pi%) R
(2.3) lgllfe <) P 9||p ||9HLP g O™,

that holds for any p + % <q<p(l+ %) and m = 3c(lfii—2§;(fd—q1)

we prove (2.3): use (2.1) with f = g% and s = 2 to bound the first term on the right hand side
of (2.3) and get

. The lemma follows easily once

_p_2
(2 Ii d) (d+2)p—dq

_d P P —
lglige <€ (1) 5VgE 132 + gl ) llgllzs lg(y™ |, D

Next, to show (2.3) we start with a weighted interpolation

9q(d=2) (1=0)q

—d 122 d ro T
||gHLq(Rd < (/ g%@)_eq(im d;z:> P (/ gr<$>_(179)q d$> ,
R4 Rd

with «, 6 and r satisfy

Oq(d—2 1-0
ad=2) | (-0 _
2

The above system has solutions a = 3(d — 2), =2 r= %l(q —p), and 6 = B which yield

2 2
frae (el (fiemiea)

Let us focus on the last term: once more, use Holder’s inequality and get

2 2
</ gg(q—p)<.>73d(d{2) dm) ‘L (/ gag%(q—p)—a <.>73d(272) d$> !
- k/ gaz) ([ ot 50
d
2

where 3 := . We chose « such that ($(¢ — p) — a)8 = 1, which implies

=
| I
SYIN)
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Note that a > 0 requires ¢ > p + %. Since also [ has to be positive, and

5= 2(p—1)
(d+2)p—dgq’

we require ¢ < (d%z) p. Substitution of o and f in (2.4) yields

2 a-p-3 (d+2)p—da

d 3d(d—2) d p—1 d(p—1)
ey ([oorn ) <([ea) T (fawm) T
with m = %. This proves (2.3) and finishes the proof. O
Remark 2.3. The condition p + % <qg< d%;zp indicates that m := %% is such that
3d(d—2)

3. L' — [P GAIN OF INTEGRABILITY

The next theorem shows a L' — LP gain of integrability for solutions to (1.1). The proof
follows almost directly from the weighted Poincare’s inequality

2
(3.1) / P dr < <]il> / Alu)|VuP/?? d,
Rd p Rd

first proven in [10]. The gain of integrability we obtain is much faster that the one of the

solution to the heat equation, which is of the order of ﬁ.

2\ p

Theorem 3.1. Let u(t,x) be a solution to (1.1). For any p > 1 we have
c
sup [|ul| pp(ray < I
t>0 tp
with ¢ a constant depending only on p and ||wm| 11 (ga)-

Proof. Multiply (1.1) by ¢ := uP~! and integrate the resulting equation in R?. Integration by

parts yields
at/up dr = —¥/<A[U]Vug,Vug> dzx.

Inequality (3.1) imply

(32) ) / uP(z) dz

Combining the interpolation inequality

IN

—W/u (z) da.

ol < Il 0=,
with (3.2) yields 2
ArllullZy < —Cllul &7,
with C' = %?Huin“;f% . Define y := ||u||},; the solution to the differential inequality

/ _p_
y < —Cyrt,
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has the bound 1

< .
ki, o\

1
(p—D>PP 1
sup ||u||rr < )
t>0 H H ’ < C tl_%

and this finishes the proof. O

This implies that

We also have the following moment estimate:

Lemma 3.2. Let u(t,z) be a smooth solution to (1.1) in the time interval [0,T] with initial
datum wg, € L1 (RY) for some m > 2. Then there exists a constant ¢ that only depends on T
and the L,ln—norm of win such that

sup |lu(t, )11 (ray < c
te[0,T

Proof. We start with m = 2. Testing with ¢ = (1 + |z|?) and integrating by parts yield
8t/u(1 Fla?)de < 4/u ||V Alu] d:n—|—4d/u Tr(A[u]) do

=T+ Jo.
Let us first estimate [J5. Applying the first estimate of Lemma 2.1 to J5, we get
f)(d 1)21)1 dz(p (11)"‘1
(3.3) T2 < Collull gy lull 1 gy
Then an application of Theorem 3.1 to the LP-norm of (3.3), gives
= (f)"'
(34) j2 ~ 1 2 H ||L1p(Rd .

Next, we estimate J;. We have
T < VA= [ u (1 +[of?) do
Apply once more Lemma 2.1 and Theorem 3.1 to get

T S u(l+ |x|2) dx

Gathering the estimates of J; and J5 together, we acquire the bound

o, /u(l +2P)de = T+ T

c C
<5 [ult+ o) do+ s,
t—a t—a

p—d 2p—d +1
where ¢ := ||u\|z(1p &{2) and C := ||ul| =D The last inequality is equivalent to the differential
inequality
c C
(3.5) Y < =5y + o=
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1
which, after multiplying by u(s) = e=%?, reduces to

(yu(s)) < p(s)s™ @,

and has solution:

t 1
y(t) = e {/ =05 25 1o 1 et }
0

Applying the same argument iteratively, we can get the estimate for any m > 2. O

Remark 3.3. Thanks to the bound on the second moments from Lemma 3.2, the conservation
of mass and the decay of entropy, the matrix Afu| satisfies the following ellipticity condition:

(1)
()

4. L' — [°° GAIN OF INTEGRABILITY

o)

(3.6) Alu](z,t) > for any x € R% t€[0,T).

In this section we first show the LP — L gain of integrability for solutions to (1.1). This,
combined with the estimate of Theorem 3.1 will conclude the proof of Theorem 1.1. We follow a
modification of the De Giorgi iteration previously used in [6] and [7]. We start with a technical
lemma. Let M > 0 and t > 0; for each k € N, define

) k 1 1

We denote with (u — ¢)4+ the maximum between 0 and (u — ¢).

Lemma 4.1. Let p > d/2, v > 0 defined as

2 3
— 1+ Sp—Z[d=2)(p—-1
v +p mw )(p—1),

and m > 2 such that
d(d — 2 -1
m > %ma}({l,p—d}.
P—3
For each k > 1 we have the bound

o2\ ' _ g
[-corae< (55) (16029 Gnd s + 1w Gl

2_2(d-2) 3 (d-2)
= o) 253 Nw = Crr)o |7

1 )
m

with ¢y dimensionless constant.

Proof. Observe that 0 < C%_1 < Cj. From this we have
(4.1) 0 < (u - Ck)+ < (u — Ck_1)+.

Moreover u — Cy_1 = u — Cy + C;, — Cr._1. Dividing by C), — Cx_1 we acquire

u — Ck—l u — Ck
= +1>1.
Cr—Cro1  Cp—Ci_q n
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This tells us that

(u— Cr—1)+
R

Hence, for any a > 0 we have

(u—Cr1)+\"
e < (G 60

Multiplying the above inequality by (u — C)+ and using (4.1), we deduce

(u— Cr1)
(Cr — Cr—1)®

Chose a = 11’% for some v > 0 to be defined later. Inequality (4.2) implies

1+
/ (u— Cyp)t dx < 2" V/ (u— Cr_1)2 da.
R4 M Rd +

Lemma 2.2 with ¢ = 1+ v + p yields

/Rd(u — Cp)} dx < ¢ <§;>1+w <Hv(u —Oh1)2 ()8 ; 4l — C’k_l)+||’£p>

P
2
+
d—2
d f’) 2p—d—d~y

[(w—Cr—1)4 ||Ld(p v

(4.2) (u—Chr)+ < for any a > 0.

|[(u = Cg— 1)+HL2

with ¢y dimensionless constant and m = %
1 — 3d=2)(p-1)
m

, which implies, after substitution in the norms,

Next, we express v in terms of m,

and get v = %p—

/Rd(u— Cp) dz < ¢ <§;>1+w <H<,>—d/2v(u B Ck—l)_%; 2L2

= G 55 = G

3d(d-2) (p—1)
T p-d-

- ok_1>+u§;p)

> (d—2)

The constraint v > 0 implies m > The proof of the lemma is complete after

recalling Remark 2.3. O

We are now ready to start the De Giorgi iteration. For any k > 1 let us define the energy &
as

et )= s [w-Otmae+ o) [ [ |ve-colf

T€(Thy1,t
and &) as
t 2
(4.3) &y := sup / uP dx+C’(p)/ / (z)~@ ‘Vug dx dr.
(t/4,t) JRA t/4 JRA
Lemma 4.2. Given p > g, vy=-14+ %p - W and m > w max {1, ;’_i} For all
2

k > 1 we have

gk 1(Tk’ )(1+d m(d 2))

1
E(Tor1,t) S iy
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Proof. We test (1.1) with (u — C’k)’jr_l, integrate in R? x (s,7) with 0 < T}, < s < Ty < 7.
After averaging on s between Ty and Ty, and taking the supremum of 7 in (Tj1,t) we get

sup /(u — Cp)i (7, z)dz + C(p) /T;l /A[u] ‘V(u - Ck).%_ ’ dxds

TE(Tk+1,t)
< 1 /t /( Co)da d
_— u— x ds,
= Ty — Tk Jr, M

which can be also written as

1 t
(4.4) E(Ti41,T) < 7/ /(u — Cp)hda ds.
Tyt1 — Tk Jr,
Since (T — Tx) = 2,6’%, we apply the integral bound of Lemma 4.1 to get
oh+1 7ok \ 17 3(d-2) 2 3y,
st (3) s -Gy s - o)
t (Tkvt) m (Tk,t)
t 3
: [SUP [(w = Cr—1)+I7» +/ 1)~V (u — Cro1) 3 |17 dS]
(T ,t) Tk
ok+1 7ok 1+7 3(d—2)
<— (5 sup [[(u — Cg—1) 4.
t <M> (Tit) L,
. 1+2-2(d-2)
—d/2 22
sup [|(u = C—1)+ |70 +/ [(-)™"*V(u— Cp—1) 272 dS]
(Tkvt) Tk
et (3= @-2)
T oM TR ’

2)

] i(d_
with Co := supg 7 ”UHf}n -

For simplicity in the notation, we define 5y := % — %(d — 2). The inequality of the previous
lemma shows that, iteratively,

(14p1)*
Co

tb1 M A1

Recall the definition of &y:

& = sup)/up(s,a:) dz + C(p) /t/:/A[u] ‘Vu%

(t/At

2
dz ds.

Since

& < sup/up(s,a:) dx,
0.t)

Theorem 3.1 implies

50 S tp_l )
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where ¢ only depends on p and on the L'-norm of the initial data. Passing to the limit & — +o0
in (4.5) we obtain

u< M,
provided
M S,
with € = lljrj%y and cq only dependent on the L. -norm of the initial data. Note that ¢ > 0 can

be as small as one wishes by choosing p arbitrarily large. To see this, first note that if p is

greater than d — 1 then 1 < max {1, 1%} < 2. Then, taking m > 3d(d — 2), we get
2

1-2 1-2 d—2
€= = .
T4y 236260 = pi1

This finishes the proof of Theorem 1.1.

(1]
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