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1 Introduction

For years, interior point methods have dominated the field of linear constrained
convex minimization [16, 20]. These methods, though powerful, often exhibit three
downsides. First, many interior point methods do not lend themselves to parallel
implementations without imposing additional criteria. Second, they often require
the feasible space be nonempty, [12], or even require a starting feasible point, and
when one is unavailable fall back on a second optimization problem, Phase I Method
[5]. Third, they typically terminate when they are within an € > 0 distance of the
true optimal point, rendering their complexity a function of their accuracy [5, 10].
Here we introduce a linear-inequality-constrained convex minimization method
that alleviates these drawbacks. Our method can offer superior performance to state-
of-the-art methods when the number of processors is polynomial as a function
of the number of constraints in Euclidean space. When this is not the case,
though computationally more complex, our method’s simple implementation, non-
asymptotic convergence, and broad applicability offer considerable value.
Minimization of convex objective functions over non-convex polyhedra struggles
to balance slower accurate methods, those with global solutions, against heuristic
algorithms that offer a local optimum or pseudo optimal points that may or may not
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be in the feasible space, Diamond et al. [7]. We present a second algorithm, modified
from the first that optimizes over non-convex polyhedra. The method does not
compromise on accuracy and has similar complexity to the convex method. Our non-
convex method takes advantage of information about the non-convex polyhedron’s
faces for improved performance over the convex algorithm.

For a simple brute force approach to the three problems facing standard interior
point methods, [19] presents a progenitor to Algorithm 1, in finding the projection,
ITp(y), of a point, y € R”, onto a convex polyhedron, P C R". Their algorithm
first checks if y e P, and if it is not, considers each subset of P’s defining
inequality constraints, as equality constraints. Projections onto these sets of equality
constraints are easily found. A filter removes the affine projections that are outside
P, and of those that remain, the closest to y is [1p(y).

In expanding from polyhedral projections in R” to a generic convex objective
function in a Hilbert space, our algorithm makes use of a black-box linear-equality
constrained convex minimization method for our objective function f : H —
R. Textbooks and papers on unconstrained minimization in Hilbert spaces are
now ubiquitous, [3, 4, 6] provide examples. Recently [11] and [14] presented
unconstrained minimization methods atop the plethora of preceding research.
Given a set of linear-equality constraints, Boyd et al. [5], suggests eliminating
the linear equality constraints with a change in variable, reducing the problem
to unconstrained minimization in fewer dimensions. Reliance on our black-box
method is well-founded.

Unconstrained convex functions can often be optimized quickly. Some functions,
like projection functions can be optimized in 0(n?) operations over an affine space
in R", Plesnik [15]. Note that there is no € > 0 term in the complexity.

Our algorithm employs a test that, together with the black box method, reviews a
set of linear inequality constraints, L. The test passes L only if the black-box method
can generate the constrained optimal point by treating L’s elements as equality
constraints. Necessary criteria often allow for the test to fast fail . without using
the black-box method, instead looking back at previous applications of the test on
subsets of L that have one less inequality than L. This fast fail, as a function of the
number of dimensions, has quadratic sequential complexity, and can be completely
multi-threaded down to near constant complexity. When the test is unable to fast
fail, it resorts to calling the black-box method on the inequality turned equality
constraints in L. In both cases the test generates the optimal point of f over L.

Iterative and largely parallel application of the test over growing sets of inequality
constraints yields Algorithm 1, which returns argminp f. Algorithm 1 does not
employ the test for sets larger than min(r, n), where r is the total number of
constraints and n € N U {oo} the dimension of the Hilbert space H. Unlike [19],
which continues to project onto all the affine spaces after computing and in order
to confirm ITp(y), Algorithm 1 ceases its search as soon as the black-box method
computes the optimal points.

Our algorithm does not utilize an iterative minimization sequence and therefor
preserves valuable properties of the underlying unconstrained minimization method.
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When arg miny f finds an exact answer without the need for an iteration arriving
within an e distance of the optimal point, so too does our algorithm.

Because of the finite number of operations required to compute the projection
onto an arbitrary affine space, our methods excel as a projection function. Recently,
Rutkowski, [17], made progress with non-asymptotic parallel projections in a
Hilbert space. Where the number of inequality constraints is r, we figure the
complexity of their algorithm to be O(2"~!r3) before parallelization, and O(r3)
over 2"~ processors. Our method compares favorably with theirs as a function of
the number of constraints.

Contributions of the Paper: Our methods have distributed complexity. We
eliminate common assumptions like the needs for nonempty feasible spaces, a
starting feasible point, and a nonempty interior. We develop polyhedral properties
to construct easy-to-check, necessary conditions that allow for skipping many of
the affine spaces that slow down their forebears. All these reasons will likely lead
to the common usage of our convex algorithm on systems capable of large scale
multi threading and our non-convex algorithm when even a small amount of multi
threading is available and an accurate result is required.

For a quick peek at our algorithm’s complexity, let our objective function f :
H — R, where H is an n € N U {oo} dimensional Hilbert space with the standard
inner product, (-, -), be the projection function, O(ng), and have r € N inequality
constraints. If r >> n, the complexity comes out to O (r"*+'n*). This complexity
result is weaker than the polynomial time of interior point methods reviewed by
Polik et al. [16], however when a large number of threads are available to process
the problem in parallel, the time complexity of the algorithm is O (n*), constant as
a function of the number of inequalities.

In Sect.2, we introduce definitions necessary for reading the algorithm. In
Sect. 3, we present the algorithm. In Sect.4, we state and prove the algorithm’s
foundation. In Sect. 5, we prove that the algorithm works and find its complexity.
In Sect.6, we expand our work to minimization over non-convex polyhedra and
present Algorithm 2, the adaptation of Algorithm 1 for non-convex polyhedra.

2 Some Definitions

We present a handful of prerequisite definitions before proceeding to our algorithm.

Definition 2.1 Let P be a convex polyhedron and H p a finite collection of r € N
closed half-spaces in H, an n € N U {co} dimensional Hilbert space. This lets P =
() H p, the intersection of the r half spaces in Hp. For all H € Hp we define the
boundary hyperplane 8 H, the vector ng € H normal to 3 H, and by < R such that
H = {x € H|(x,ng) < by}. For any H € Hp we say that H is a half-space of P
and 9 H a hyperplane of P.

We use the term polyhedron to refer to convex polyhedra. For the non-convex
polyhedra we address in Sect. 6, we state their non convexity explicitly.
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Example 2.2 Examples of polyhedra include H, @, {42}, a rectangle, and a set we’ll
call the ‘A’ polyhedron, a simple unbounded example we will use to illustrate more
complex ideas later on. ‘A’:= {(x,y) € ]R2|y < % andx+y<land —x+y <1}
We have Hoar = {F, G, Ii‘} with F = {(x,y) € ]R2|y < %}, G = {(x,y) €
R2|x +y < 1}, and H = {(x,y) € R2| — X+ y < 1}. Both the name of the
‘A’ polyhedron and the half-space accents were selected for their iconicity to avoid
confusion when we come back to this example.

For a convex objective function, f : H — R, constrained to a polyhedron,
P, the minimization algorithm below determines if P is empty, or finds the set
argminp f. Throughout the paper we will use f : H — R for an arbitrary convex
objective function constrained by an arbitrary polyhedron, P.

Example 2.3 Given some y € H, let f(x) = ||x — y||. We consider the projection
problem I1p(y) := argminp f. Here, f is strictly convex and the optimal set
argminp f will always have a unique value, Boyd et al. [5].

Definition 2.4 We say A is an affine space of P if it is a nonempty intersection of a
subset of P’s hyperplanes. We will denote the set of P’s affine spaces with Ap :=
{Niey @HIn S Hp}\ {2). Note that Ap has at most Y 7, (}) < min(-",2")
elements since the intersection of more than n distinct hyperplanes will be an empty
set, or redundant with an intersection of fewer hyperplanes.

Example 2.5 If Hp = {F, G, H} then Ap = {H,8H,9G,8F,0H N3G, dH N
aF,dF N3G, dHNAG NAF).If P c R, 8 H might be a plane, 8 H N 3G aline,
and 0H NdG N 3 F asingle point. However, if any of those intersections are empty
then they are not included in .4 p. We have H € Ap since if we choose n = @ then
for all x € H we trivially have x € H for all H € n, thereforx € (y . H = H.

Example 2.6 Consider the ‘A’ polyhedron from Example 2.2. It’s worth noting that
‘A’ has an affine space, in this case the point 8G N H, that is disjoint with ‘A’. The
affine space that is a point at the top of the ‘A’ is outside of our polyhedron, but still
a member of .4:4'. This is a common occurrence.

Definition 2.7 For A € Ap, we define the P-cone of A as Py := [|{H €
Hp|dH D A}, the polyhedron whose hyperplanes, a subset of the hyperplanes of
P, intersect to equal A. These are subsets of f’s linear-inequality constraints.

Example 2.8 We have H € Ap, so it is appropriate to note that for a polyhedron, P
we have Py = H. We comment on this here since in the algorithm presented below
we will consider the P-cone for every A € Ap.

Example 2.9 If we use the ‘A’ polyhedron (2.2), then the ‘A’-cone of the top point

Ny = HNG.Notethat FNGNH = A C ‘A7,

Definition 2.10 For A, B € Ap, we say that B is an immediate superspace of A
if B D A and there exists an H € Hp such that A = 8§ H N B. We will also say that
A is an immediate subspace of B. We will denote the set of all of A’s superspaces
with B4.
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Algorithm 1: Finds arg minp f

conv.

Input: A set of half-spaces H p and a function f : H — R
Output: argminp f
fori < 0to min(n,r) do
for A € Ap with codim(A) =i in parallel do
if 3B € By s.t. mp N (P4 \ A) # @ then
| my <— mpg n PA
else
my < argmin, f is computed and saved.
ifmy N P # @ then
L returnmy N P

90 ~1 N o W b e

9 return argminp f is empty.

Example 2.11 In the ‘A’ example (2.2). The immediate superspaces of aG N aH
are G and 9 H. The immediate superspace of d F is R2. Observe that if an arbitrary
A has co-dimension i, then its immediate superspaces have co-dimensions i — 1.

3 The Optimization Algorithm

Algorithm 1 uses the test presented in the if else statement on Line 3 to find the
optimal point of f in P by iterating over all the affine spaces of P until an affine
space A € Ap that has nonempty argmin, f N P is found, and then returns
the optimal point courtesy of the black-box method. In Theorem 5.3 below, we
guarantee that the algorithm returns arg minp f.

In the Algorithm 1, for some A € Ap we use m 4 as a place to store arg minPA f,
previously computed with a call to the black-box method.

In the introduction we described the use of a test to determine if an affine space
A e Ap is the active set of constraints. What we really want to know is, does
ming f = minp f? For that matter, does such an A even exist? And if it does, how
will the test recognize it?

We prove our results regarding the answers to these questions in Sects. 4 and 5,
but we’ll work through a couple of examples for finding that A now. Yes, such an A
does exist, and when we refer to the test that recognizes that A, we’re referring to
lines 3 and 7. The purpose of these examples is to aid in an intuitive understanding
of the algorithm.

Example 3.1 Consider a polyhedron, P C R3, with a typical vertex, A, to which
we will apply the test, optimizing some strictly convex function, f.

When we say that A is a typical vertex, we mean that it’s the intersection of three
planes. That lets us build P4, a polyhedral cone, as the intersection of the three
plane’s half spaces.
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The test first looks at all the immediate superspaces of A. We find each of these
by removing one of the three planes. Each of A’s three immediate superspace is
the intersection of two planes. These lines are the edges of the cone that is Py, and
they intersect at A. We’ll call these lines B, C and D. Each one has its own P-
cone, Pg, Pc and Pp. These cones are all the intersections of two of P4’s three half
spaces.

By the time we arrive at the test for A, the algorithm has already computed the
optimal points for each of the cones, Pg, Pc and Pp. Those optimal points were
stored respectively as mp, m¢ and mp. Still on Line 3, the test checks if any of
those points are in Py4. If so, then A is not the active constraint set. This is the fast
fail since we don’t need to compute arg min 4 f. Suppose, without loss of generality,
the test found that mc € P4. A nice result of the fast fail is that we now know that
mc is the optimal point of P4. That is, myg < mc, which, if there were more
dimensions, would be useful later on.

If all mp, m¢ and m p are outside of P4, then we progress to the else statement
now knowing that minp, f = ming f. And that’s where the black-box method
comes in, because it can compute arg min, f. We save that computation as m 4 for
future use.

There’s one last thing to do. We've verified that mp,mc,mp € P,°, and
computed m4. If myq € P, then my is the optimal point over P and the algorithm
concludes. If it’s not, we move on to apply the test to some other affine space of P.

By checking the affine spaces in order of co-dimension, we ensure that we’ve
already done the work on immediate superspaces to set the test up for success.

There are lots of why questions to be asked about Example 3.1. Sections 4 and 5
should answer those questions. You can find a complete and detailed run through of
Algorithm 1 in Example 3.2.

Example 3.2 We will revisit Example 2.2 by walking the problem IT«w:(1, 1)
through Algorithm 1. Refer to Fig. 1 throughout this example for your convenience.

We begin Line 1 with i <— 0, setting us up to consider on Line 2 all the affine
spaces in A p with co-dimension 0. The only such affine space is H, so A < H.
On Line 3, we note that H has no immediate superspaces, so By = @, and the
condition in the if, statement is false. We proceed to the else statement and compute
myg < Ig(1,1) = (1,1). We now check the condition on Line 7 and find myg
as (1, 1) is not in P. The condition is false. The inner loop completes an iteration,
and with no more affine spaces of co-dimension 0, the inner loop concludes. The
outer loop on Line 1 progresses to i < 1, to look at all of P’s affine spaces of
co-dimension 1 on Line 2. o

There are three affine spaces of co-dimension 1, 9 H, 3G, and dF. Each affine
space of co-dimension 1 has the same set of immediate superspaces, B, 5 = B,z =
By = {H]}.

On Line 2, we will arbitrarily look at A <— 9 H first, though ideally all three affine
spaces would be considered in parallel. On Line 3, we review every B € B, ; = {H}

tocheckif mp € Pyy \8ﬁ. There’s just the one, myg = (1, 1), so the check is easy.
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Fig. 1 Example 3.2

Is (1,1) € Pyy \ 9 H? We have P,z = H.Yes, —1 +1 < 1. The condition on
Line 3 is true We proceed to Lme 4 and aSSLgI'l my; < (1, 1). Completing the
inner loop iteration for H we move onto A < 3G and A < 3F.

Forboth A < 9G and A < 8F on Line 3 we have mp as (1, 1). We check the
condition on Line 3. Is mp as (1, 1) in F A\ dF?Isitin G \ 3G? No. Both A as oF
and 0G go to the else statement where we compute myp = Il35(1, 1) = (1, ) and
mye = I~(1,1) = (%, %). However, on line 7, different things happen to them.
We check my, and m for membership in P on Line 7. The point (1, %) e P°,
but the point (%, %) € P, taking A as G to the return statement on Line 8. We
conclude Mex (1,1) = (3, 1).

Note that if both conditions on Line 7 had turned out false, we now know
mf, myg, and mg,, preparing us for the next iteration of the outer loop where we
cons1der afﬁne spaces of co-dimension i <— 2.

Remark 3.3 Below, in Theorem 5.11 we present the complexity of Algorithm 1. If
the Hilbert space is finite dimensional, uses the standard inner product, r >> n, and
the black-box method takes M (n) operations, then the complexity of the algorithm
is O(r" - (r - n + M (n))) when run sequentially, and O (n(n + M (n))) when run in
parallel.

4 Polyhedral Proofs

In this section we present novel necessary and sufficient conditions for an affine-
space A to have ming f = minp f and guarantee A’s existence for the case when
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argminp f # ©@. While The Sufficient Criteria (4.14) require the computation
ming f, The Necessary Criteria (4.10) do not. This significantly reduces the number
of affine spaces over which we call the black-box method to calculate argmin, f.

4.1 Preliminary Proofs

—
Definition 4.1 For a, b € H], we use a, b to denote the closed line segment from a
to b and a, b to denote the line containing a and b.

We include Lemma 4.2 and 4.3 for the reader’s convenience. They are proved in
Neimand et al. [13].

Lemmad4.2 Leta,b € H. If H is a half-space such that a € H and b € H®, then
—f
8H N a, b has exactly one point.

Lemma 4.3 Let a, b, and ¢ be distinct points in L with b € a.c.

L lla=bll+1b—c| = lla—cl|

2. lla —b| < lla—c]|.

3.If f : H— Risconvexand f(a) < f(c) then f(b) < f(c).
4. If f : H— Ris convexand f(a) < f(c) then f(b) < f(c).

Definition 4.4 We use the following notations. For any X  H we use aff(X) to
denote the affine hull of X, B,(y) to denote the open ball centered at y € H with
a radius of r € R, int(X) for the interior of X, and relint X to denote the relative
interior of X.

Lemma 4.5 Let K € P be a nonempty convex set and A be the smallest space with
regards to inclusion in Ap such that K € A, and let y < relint K, then for some
H e Hp (Def.2.1), ify € 8H then A € 3H.

Proof Let H € Hp such that y € dH N relint K. There exists an € > 0 and
N := B.(y) Naff(K),suchthat N € K € PN A.

Let us falsely assume A is not a subset of 9 H. If K € 9 H, then by the definition
of A, A € 9H in contradiction to the false assumption we just made. Therefor, K
is not a subset of 9 H and there exists ana € K \ dH. Since K < P it follows that
a cint(H).

Lett, :==1+ m € Rand ye := (1 — £)a + t.y. Observe that ||y — y| =
(1 —te)a+tey—yll = zpylla—yll = 5. giving ye € B.(y)Na,y. Note that any
line containing two points in an affine space is entirely in that affine space; since
a,y € aff K, we have a,y C aff K. Since y. € a,y, we have y. € aff K, and we
may conclude y. € N.

Letty := (la—yll+ 27 le)~! |la — y||. From our earlier definition of y., we have
Ye = (=27'la—y|~'©)a + 27" |]a — y| 7' 2]la — y|| + €)y. By isolating y and
substituting in t,, we gety = (1 — t;)a + £y¥., giving y € a, ye.
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If y. isin int(H), then by convexity of int(H), we have 'il,—)’e| C int(H), including
y, a contradictiontoy € 9H.
If y. is in d H, we have two points of a,y in d H. It follows thata,y € dH and
a € dH, a contradiction.
All that remains is fory. € H° € P°. Buty. € N and N C P, a contradiction.
o

Proposition 4.6 Let K € P be a nonempty convex set and A be the smallest space
with regards to inclusion in Ap such that K € A. Then for any x € relint K there
exists an € > 0 such that PA N B.(x) = P N B:(x).

Proof We may assume that H p is nonempty and that A 3 H, otherwise the proof
is trivial.

Let x € relintK. Let Q < H be a polyhedron such that Hg = Hp \ Hp,.
Then we can define € := minyeyg ||y — X||. If we falsely assume € = 0, then there
exists an H € Hg with x € dH N P. Since x € relint K, we may conclude from
Lemma 4.5 that A C 8H and that H € Hp,, a contradiction. We may conclude
e=>0.

(S) Lety € Bc(x) N Py4. Let’s falsely assume y € P€. There existsan H € Hp
such that y € H®. We have Hp = Hg U Hp,. Since y € P, it follows that
H € Hg.Sincex € P € H, by Lemma 4.2 we may consider the unique 3 H ﬂ'ﬁ',
and from Lemma 4.3 conclude that |6 H ﬂ'ﬂ'—xu < ||x—¥| < €, a contradiction
to our choice of epsilon. We may conclude that P4 N B.(x) € P N B (x).

(D) With P C Py, it follows that P4 N B.(x) 2 P N B.(x). O

Lemma 4.7 For any convex K C H, the set arg ming f is convex.

Lemma 4.7 is proved in Niemand et al. [13].

4.2 The Necessary Criteria

Definition 4.8 If argminp f # &, we define the min space of f on P as the
smallest A € Ap with regards to inclusion that has arg minp f < A. Equivalently,
the min space is the intersection of all the hyperplanes of P that contain arg minp f.
Where f and P are implied, we omit them.

Remark 4.9 If argminp f # o, then the min space exists and is unique. If there
are no hyperplanes of P that contain arg minp f, giving argminp f < arg ming f,
then the min space is H.

Theorem 4.10 (The Necessary Criteria) Let A be the min space for some f on
P, then A meets the Necessary Criteria which are as follows:

1. argminp f C argminy f

2. argminy f = argminp, f
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Proof (4.10.1) From Definition 4.8, we have ming f < minp f.
Let’s falsely assume there exists a a € A such that f(a) < minp f and let
X € relintarg minp f.
By Proposition 4.6, there exists an € > 0 such that B.(x) N P = B.(x) N P4. The
€

line segment a, X is entirely in A C P4, so we may choose ty, 1= 1— o] € (0,1)

sothaty :=(1 —ty)a+HXx € 'ﬁ' N B:(X) N Py. Since y € 'a,_x', by Lemma 4.3.3
we have f(y) < f(x) = minp f. Proposition 4.6 gives y € P, a contradiction. 0O

Proof (4.10.2) Let’s falsely assume that there exists an x € (P4 \ A) such that
f(x) < minp f, which by Definition 4.8 has argminp f C A, and lety €
relintarg minp f. Then by Proposition 4.6, we can let € > 0 such that B.(y) N P =
B.(y) N Pa.

Since x € P4 \ A, it follows from convexity of P4 that 'ﬂ'\ {y} c P4\A. If
there was a second point beside y in A, then by the definition of an affine space, x
would be in A as well.

As in 4.10.1, we may choose az € 'ﬂ' N Be(y) C P N P4 with a distance of%
fromy. We have z € P \ A, and by Lemma 4.3, f(z) < f(y).If f(z) = f(y), this
stands in contradiction to argminp f € A.If f(z) < f(y), we have a contradiction
toy € argminp f.

We may conclude that for all x € P4 \ A, f(Xx) > minp f. From 4.10.1, we
see that if x € A, then f(x) > minp f. Combining these two and the fact that
argminp f € A, we achieve the desired result. O

4.3 The Sufficient Criteria

For those affine spaces that meet the necessary criteria (4.10), we next consider The
Sufficient Criteria

Definition 4.11 Let A, B € Ap, with A C B. We can say that B disqualifies A
from P, with regards to f, if B is the min space of f on Pj4. If there is no such
B, then we say A is a candidate for f on P. Where f and P are implied, they are
omitted.

Lemma 4.12 The min space is a candidate.

Proof Let A, B € Ap such that B disqualifies A. The min space of P is B. There
exists an x € argminp, f\ A, otherwise A would be the min space over P4 and not
B. But this is a contradiction to The Necessary Criteria (4.10.2). O

Lemma 4.13 If and only if A € Ap is a candidate, then argmin, f =
argminp, f.
Proof Let A be a candidate, and falsely assume argminy f # argminp, f. This

means P4 has a min space other than A, and that min space disqualifies A, in
contradiction to A being a candidate.
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Let argminy f = argminp, f. Let’s falsely assume there exists a B that
disqualifies A. That means there exists an x € (P4 \ A) N argminp, f in
contradiction to argminp, f = argming, f. O

Proposition 4.14 (The Sufficient Criteria) Let A be a candidate and
argming f N P # @. Then argmin, f N P = argminp f.

Proof Let A be a candidate of P with argmin, f N P # &.

Letx ¢ argmjnPA f N P.Since P C Py, forally € P we have f(x) > y.
But x € P so x € argminp f. Therefore, (1) argminp, f N P < argminp f.
Let x € argminp f. Since f(Xx) = minp f = minp, f and x € P4 we have
X € argminp, f. That is to say, (2) argminp f < argminp, f. We also have
(3) argminp f < P. We can combine the three set inequalities to conclude
argminp, f N P = argminp f.

To complete the proof we again recall Lemma 4.13, and note argmin, f N P =
argminp, f N P = argminp f. O

Let A € Ap. If for all B € Ap with B D A we know argming f,
we can use disqualification to determine that A is not the min space, without
expensively computing arg min, f. Furthermore, if B disqualifies A, then we also
know argminp, f = argming f = argminp, f which was previously computed.
This is not our fast fail, A may have too many superspaces, but we’re getting closer.

Remark 4.15 1If A is the intersection of m hyperplanes of P, then it has m immediate
superspaces, each can be generated by taking the intersection of m — 1 of the
hyperplanes that intersect to make A. Note that m < min(n, r) since A can’t be
the intersection of more than the total number of hyperplanes, or more hyperplanes
than there are dimensions.

Theorem 4.16 Let A € Ap, then A is disqualified from P, if and only if there exists
an immediate superspace, B, such that argminp, f N (P4 \ A) is nonempty.

Proof (=) Let A € Ap, such that A is disqualified from P.

If A is disqualified by some B € B4, then there exists an x € argming f N P4 N
A€. Since B is a min space for P4, the Necessary Criteria (4.10) give argming f =
arg minp, f achieving the desired result.

If A is disqualified by some C that is not an immediate superspace of A, then
C is the min space of A, and there exists a ¢ € argming f = argming. f
(Theorem 4.10) with ¢ € P4 \ A, such that for all x € Pc, we have f(x) = f(c).
Since ¢ € Py and P4 € Pp we have ¢ € Ppg. Since Pp C Pc we have
¢ € argminp, f, the desired result.

(<) Let B be an immediate superspace of A, and letb € argminp, fN(Pa\A).
Since P4 C Pp and x € argminp, f, thenb € argminp, f. The min space of P4
contains b, which is in A, so that space is not A, and therefor disqualifies A. |

Remark 4.17 Let A € Ap. Proposition 4.16 and its results allow us to determine if
A meets the necessary criteria by looking exclusively at A’s immediate superspaces,
Ba, and their P-cones. For any B € By there exists an Hgp € Hp such that
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A =0HpNB;ifarg mjnPB fN(Hp\ A) is nonempty, then argminPB fN(Pa\A)
is nonempty, and A is disqualified. We check if any B < B, disqualifies A by
confirming (arg minp, f,nH,) < by is nonempty. If the complexity of computing
the inner product is n and m := codim A = |B4| < n, then when argminp, f is
known for all B € B4, Remark 4.15 and Theorem 4.16 let us check the Necessary
Criteria for A in O(m - n). This same check, when the inequality holds, yields
argminp, f. This is the fast fail.

We can now detail the test method introduced in Sect. 1. If the fast fail is
successful for an affine space A, then we have the optimal points of the disqualifying
set that are in P, as argminp, f; there is no need for any additional computation.
If the fast fail is unsuccessful, then A is a candidate and Lemma 4.13 tells us
we can use the black-box method to compute m4 < argminy f where my =
argminp, f. With the test complete and knowledge of argminp, f, we prepare to
apply the test to A’s immediate sub-spaces.

This result lends itself to Algorithm 1, wherein we begin by finding the optimum
over HI, then at each iteration find the optimum of all the P-cones of the immediate
sub-spaces, until one of those spaces meets the necessary and sufficient criteria.

5 Algorithm Proofs and Analysis

5.1 Proof of Function

Lemma 5.1 When the if else statement in Algorithm I Line 3 accesses mp for some
B € By that mp has already been saved to memory.

Proof We will prove by induction on the affine space’s co-dimension. The base A
is H, since it is the only affine space of P with co-dimension 0. The Hilbert space
has no immediate superspaces, that is By = @, and therefor mp for some B € By
is never called. For an affine space with co-dimension j, we will assume that all the
affine spaces of co-dimension j — 1 had their requisite input available. We note that
every affine space, B of co-dimension j — 1 was put up for review by Line 2, and
generated an mp on Line 4 or Line 6. The superspaces of A’s and the minimums
over their P-cones are all available. O

Lemma 5.2 The if else statement on Line 3 goes to the else statement, if and only
if A is a candidate.

Proof Let’s assume conditions in the if statement are not met and the else statement
is reached. This means the if statement on Line 3 determined that for every
immediate superspace, B € B4, we have mp N (P4 \ A) = . Equivalently,
argminp, f C (Pa \ A)° which by Corollary 4.16 gives A as a candidate.

Let A be a candidate, then the if statement on Line 3 will find that forall B € By
we have mp N (P4 \ A) = &, and the else statement will be reached. |
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Theorem 5.3 The return set of Algorithm 1 is equal to argminp f.

Proof By Remark 4.9, if argminp f # @, the min space exists, and by Lemma 4.12
the min space is a candidate. The two for loops will iterate over every affine space
of P until a candidate is found that meets the sufficient criteria, checked with a
true statement on line 7 and a false one on line 3. By Corollary 4.14 the min space
meets the Sufficient Criteria (4.14). If argminp f is nonempty, then a refurn set is
guaranteed.

Let A be candidate (see Lemma 5.2) and the else statement reached. If Line 7
finds that The Sufficient Criteria (4.14) are met, then the conditions for Proposi-
tion 4.14 are satisfied, insuring the algorithm returns arg minp f.

If argminp f = @, then the conditions for The Sufficient Criteria (4.14) are
never met and the if statement on Line 7 will reject every A. Once all the affine
spaces have been reviewed, the final refurn statement is called and an empty set is
returned. O

Example 5.4 Referring back to Example 3.2, 3G, whose minimum is the minimum
for ‘A’ is not the min space; dG N F is. However dG is a candidate and The
Sufficient Criteria are met. What the min space definition gives us is that if a
minimum exists, we can find its min space. But our set of candidates that meet
the Sufficient Criteria is broader.

Proposition 4.14 insures that, in spite of the algorithm not having found the min
space, argminp f is still returned.

5.2 Complexity

Lemma 5.5 If f is strictly convex, then for any convex K, argming f has at most
one element.

We will limit the scope of this complexity analysis to strictly-convex f. This
significantly simplifies our work and implementation of the algorithm by insuring
that each m g in Algorithm 1 has a single element. Computing weather mpNPy = &
then becomes mp € Pj4.

Definition 5.6 For clarity, we use brackets to indicate the computational complex-
ity of a process, as a function of n and possibly some € > 0. Thus [(-, -)] is the
number of steps it takes to compute inner product, ranging from n to n> for finite
inner products and likely a function of e for infinite Hilbert spaces. For some affine
space A, we have [arg min, f] as the number of steps it takes to compute our black-
box method.

Corollary 5.7 Checking if mp N Py # & on Line 3 has the same complexity as
computing inner product, O([(-,-)]).

Proof This is a direct result of Remark 4.17. O
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Lemma 5.8 Checking if 3B € By s.t. mp N (P4 \ A) # @ on Line 3 has
O(min(n, r) - [{-,-)]) sequential computational complexity and O([(-,-)]) time
complexity if run in parallel over min(n, r) processors.

Proof By Corollary 5.7, Checking m pN P4 # @ has complexity O([{(-, -)]). A loop
checks this once for each B € B4, with Remark 4.15 giving |B4| < min(n, r). Each
B € By can be checked for mp N (P4 \ A) # @ independently of one another, so
they can all be checked in parallel. O

Lemma 5.9 The if statement on Line 7 is O(r - [(-, -)]) sequential computational
complexity and O([(-, -)]) when run in parallel over r processors.

Proof Checking if a point is in P requires checking that the point is in each H €
‘H p. Checking if a point is in a half-space is O([{-, -}]) and since these r checks are
independent of one another, they can be done in parallel. O

Lemma 5.10 Running the entire if else statement that begins on Line 3 has
O(r - [{-,-)] + [argmin 4 f]) sequential computational complexity, or O ([(-, -)] +
[arg min, f]) fime complexity if run in parallel over r processors.

Proof We saw in Lemma 5.8 the if statement’s complexity. If there is no fast fail,
the else portion computes arg min, f.

The inner if statement on Line 7 is O(r), so adding these three components we
get O(min(n, r) - [{-, -})] + [argmin, f]+r - [{-, -})]) computational complexity. In
simplifying, note that min(n, r) <r.

For the parallel case, we have, O([(-, -)] + [argmin, f] + [{-, -}]), which also
simplifies to the desired expression.

The same r threads that are used on Line 3 can be used again on Line 7, so there’s
no need for more than r processors. O

Theorem 5.11 Algorithm I has O (min(r", 2")-(r-[(-, -)]+[arg min 4 f1)) sequen-
tial computational complexity, and O(min(n, r) - ([{-,-)] + [argmin, f])) time
complexity when run in parallel over O(mjn(r% . 2’+% s r"“)) processors.

Proof For computational complexity we note that the two for loops in Algorithm 1
iterate over all the affine spaces in .4 p, so we multiply our results from Lemma 5.10
by |Apl|.

For the parallel case, the outer loop cannot be run in parallel. The inner can.
The number of iterations for the inner loop, for any i < min(r, n) is (‘:), because
each affine space of co-dimension i is the intersection of i hyperplanes of P.
Consequently, with max; - min(r,n) (:) processors, the inner loop approaches O(1)
parallel time complexity. The number of iterations of the outer loop is min(n, r).

We note that r is a maximum number of iterations for the outer loop since the
co-dimension of an affine space A € .Ap is the number of hyperplanes that intersect
to make A. That number of hyperplanes, and therefore the co-dimension, cannot
exceed the number of P’s hyperplanes, r. We have n as a maximum because the
intersection of more than n hyperplanes will be an empty set or redundant with the
intersection of fewer hyperplanes.
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All that remains is to compute max; <min(n,r) (;)- If n > %, Pascal’s triangle tells
us that we have the maximum at i = 7, the Central Binomial Coefficient. Stirling’s

formula [18] tells us (g) ~ (:rrr)_%Z“’%. If n < %, then the maximum number
of processors for the inner loop becomes (;) < r". This puts the total number of

processors for the inner loop at O(min(r_% . 2’+% ,rM).
Multiplying by the number of processors we need for the if else statement gives
us the desired result. O

When r >> n we have polynomial sequential complexity as a function of r,
and parallel complexity that’s constant using a polynomial number of threads, as
function of r. When n >> r then sequential and parallel complexities, as well as
the number of processors, as a function of n are the complexity of the black-box
method plus the inner product method.

Note that unlike many interior point methods, the complexity is not a function
of accuracy; outside of the black-box method, there is no € term that compromises
speed with the desired distance from the correct answer.

6 Non-Convex Polyhedra

This section expands the results of the previous section to conclude with a multi-
threaded algorithm for computing the global minimum in the case of non-convex
polyhedral constraints. Since the algorithm is not dependent on a starting feasible
point, we find all the local optimum as they meet the necessary criteria, and the
optimal of the points that meet the necessary criteria is the global optimum. Our non-
convex constraints algorithm exploits the representation of non-convex polyhedra to
achieve faster results than the convex algorithm presented above.

We will work with the description from [8] for non-convex polyhedra, where the
polyhedron is represented by its faces, where each face, a convex polyhedron itself,
has knowledge of its own faces and its neighbors. Together with the definition of
non-convex polyhedra in [9], we define a non-convex polyhedron as follows.

Definition 6.1 A non-convex polyhedron P C R”" is the union of a set of convex
polyhedra, P. Namely, P = [ JP. We denote the set of faces of P with Fp and
include P € Fp as the lone exception to the requirement that P’s faces be convex.
Note that Fp is closed to intersections.

Definition 6.2 We can redefine P’s affine spaces, Ap so that Ap = {A|VPIQ €
P, with A € Ag and 3F € Fp such that aff F = A} U {R"}.

Lemma 6.3 If P is convex, then Ap under Definition 6.2 is a subset of Ap under
Definition 2.4, and that subset includes every daffine space that has a non empty
intersection with P.
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Proof Let A € Ap for Definition 6.2. Then there exists some Q € P and F € Fp
so that aff ¥ = A. Each n — 1 dimensional face in F has aff F = 8 H for some
H e Hp, and each lower dimensional face is an intersection of those hyperplanes.
We may conclude that A € Ap for Definition 2.4 since it is the intersection of
hyperplanes of P. The intersection of A and P is nonempty since A contains a face
of P. O

Though 9P < U Ap, in many cases, Ap under Definition 6.2 is substantially
smaller than it is under Definition 2.4. Definition 6.2 excludes affine spaces that
have an empty intersection with P. The pruning is possible because of the additional
information in our non-convex polyhedral representation.

We use the following result to construct A p, Definition 6.2.

Lemma 6.4 A necessary condition for a set of n — 1-dimensional faces ¢ < Fp to

have aff((p. s F) € Ap is that the angles between every pair of faces in ¢ is less

than 180 degrees.

Proof Let F,G € ¢ with the angle between them greater than 180 degrees,
—_—

we can choose a pomt X € int(F) so that the angle between x, I1png(x) and

HG(x) Hmc(x) is greater than 180 degrees. While x € P and Ilg(x) € P the

—

line x, I1g(x), excluding its endpoints, is outside of P. There is no convex set with
faces F and G, and therefor it is possible to construct an arrangement for P without
the affine space. O

We can restrict the elements of A p because an optimal point x over P is also the
optimal point over some polyhedron Q € P, and therefore it can be found with the
necessary criteria by looking at all the affine spaces of Q that contain faces of P.

Algorithms exist for decomposing non-convex polyhedra into their convex
components, [2], however we achieve better results by maintaining the non-convex
form. By iterating over .Ap from definition 6.2, we iterate over every face of each
polyhedron in P that might contain P’s optimal point.

Corollary 6.5 Let G € P, then if the optimal point x of P has x € G, either
X € argming, f orx € dP.

Proof We may consider the more general statement: If x is an optimal point of P,
then X € arg ming. f or X € argming p f which is a direct result of the convexity of

f- o

For purposes of checking the necessary criteria, we need to define the P-cone of
an affine space, A € Ap, where P is non convex. The natural choice is to find a
convex Q@ € P and use Q4. However, since we don’t know the composition of P,
we need a practical way to build P4. We do this exactly as we did in Algorithm 1.

Definition 6.6 If A € Ap, then there exists an F € Fp such that aff F = A. Every
such F is the intersection n — 1 dimensional faces, ¢ € Fp such that F = (] ¢. For
each G € ¢ we have an Hg € Hp such that d H; = aff G. Then Py = ﬂGE¢ Hg.
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Lemma 6.7 If P is convex, then Definition 6.6 is equivalent tfo Definition 2.7.

Remark 6.8 Let Q, R be convex polyhedra with A € Ag N Ap and Hg, = Hr,.
then if A meets the Necessary Criteria 4.10 for Q, it also does for R. That is to say,
the elements of P don’t matter, only the neighborhood of A.

Definition 6.9 We redefine a min space and say that A € Ap is a min space on a
non-convex polyhedron, P, if there is a convex polyhedron Q € P such that A isa
min space on Q.

Existence of a min space (Definition 6.9) is immediate from the definition of
a non-convex polyhedron, though unlike in Definition 4.8, it is not unique. The
following corollary follows.

Corollary 6.10 Each min space (Definition 6.9) meets The Necessary Crite-
ria 4.10.

Proof The necessary conditions for a space to be a min space remain the same,
because for any x € argmin, f we have a Q € P so that x € arg min, f. O

This means that if some A € Ap meets the Necessary Criteria (4.10), exactly
which Q € P it’s in doesn’t matter.

The sufficient conditions, checking if x € P change a bit. We don’t know the
polyhedra of @ and it will not work to check if the point is in all of the half spaces
of P, since P is not necessarily the intersection of half spaces. We therefor do not
check The Sufficient Criteria (4.14).

Proposition 6.11 (The Sufficient Criteria for a Non-convex Polyhedron) Let M
be the set of affine spaces that are candidates and have that for each A € M there
exists an F € F, such that aff F = A with argminy f € F, then argminp f =
arg min{ f (x)|x € [ J M}

Proof Letx € A € M, then by the assumptions set above, x € P.
Remark 6.10 gives us argminp f = argmin{f(x)|x € P and x € argmin, f
where A meets the Nec. Criteria }. O

Since the minimum on the right hand side of the equation is a taken from a finite
set, it’s easy to compute.

Remark 6.12 We have P € Fp, often with aff P = R"” € Ap. f R" € M,
we can check argming, f for membership in P with an algorithm like the one
in Akopyan et al. [1]. For checking membership in any other F' € Fp, we note that
F is a convex polyhedron. Checking membership in a F is substantially faster than
checking membership P.

With the curated .4p, and the adjusted membership test, Algorithm 1 may
proceed as above, except that when a point is found to be in P, it is saved and
the algorithm continues. On completion, the minimum of all the points that have
been saved is the minimum of P. If the set of saved points is empty, there is no
minimum. For details, see Algorithm 2.
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Algorithm 2: Finds arg minp f for a non-convex polyhedron P

(=B -IN-- B - N R SN

o

—
o

conv.

Input: A set of faces Fp and a function f : R" — R

Output: minp f

M@

fori < 0 to min(n, r) do

for A € Ap with codim(A) = i in parallel do

if 3B € By s.t. mg N (P4 \ A) # @ then

| ma < mpg M Py

else
my < argmin, f is computed and saved.
Let F € Fsuchthataff F = A
ifma N F 3 & then

|_ add ma to M.

re_turn arg min{ f (x)|x € | M}
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