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ABSTRACT 

 
This paper presents the results of 1520, three-dimensional (3D), fully-coupled, effective-stress, finite-element 

simulations in OpenSees to evaluate the influence of a variety of intensity measures (IMs) on excess pore pressures 

and potential for surface ejecta in the free-field. The analyzed profiles showcase different layering, and vertical changes 

in the groundwater table. We investigate the peak excess pore water pressure ratio in the middle of the liquefiable layer 

(peak ru) and the ejecta potential index (EPI) as the primary engineering demand parameters (EDPs) of interest. A total 

of 20 IMs are considered as candidates, which represent a range of characteristics in terms of amplitude, frequency 

content, and duration of seismic loading. Efficiency, sufficiency, and predictability are used as the criteria to identify 

high-performing IMs for predicting the EDPs of interest. Based on the results from this preliminary parametric study, 

the average pseudo-spectral acceleration over the period range from 20% to 200% of the initial, small-strain site 

fundamental period, Sa,avg(0.2Tso, 2Tso) is identified as a high-performing IM for peak ru in the free-field. For EPI 

predictions, the high-performing IM was found to be the cumulative absolute velocity (CAV). Both IMs were on 

outcropping rock. 
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1 INTRODUCTION 
 

In performance-based earthquake engineering 

(PBEE), geotechnical engineers are often tasked with 

assessing the risk of liquefaction triggering and its 

subsequent consequences. A critical part of the PBEE 

framework is the choice of intensity measures (IMs). 

Prior studies have shown how variations of excess pore 

pressure ratio (i.e., ru,mean or ru,peak), are influenced by 

different IMs (Kramer and Mitchell 2006; Dashti and 

Karimi 2016; Wu et al. 2022). Nonetheless, a significant 

constraint observed in previous investigations is their 

inability to realistically represent variable deposits that 

account for heterogeneity and layering, as is often found 

in the field. Following the Christchurch earthquakes, 

ignoring interlayering led to an error of 50 to 91% in 

predicting far-field liquefaction triggering (Cubrinovski 

et al. 2019).  

In this study, an extensive array of IMs evaluated at 

the outcropping rock location is assessed concerning 

their predictive capability for peak excess pore pressure 

ratio (peak ru) in the middle of the liquefiable layer and 
the potential for surface ejecta. The potential for ejecta 

is indirectly evaluated through an index, referred to as 

the ejecta potential index (EPI), that depends on the 

extent of hydraulic gradients developed during dynamic 

loading (Hutabarat 2020). Ten individual profiles 

representing different layering, and vertical changes in 

the groundwater table in the free-field were modeled in 

OpenSees. Nonlinear dynamic simulations were 

performed on the profiles, utilizing 152 ground motion 

records. The engineering demand parameters (EDPs) 

considered are peak ru and EPI. The different IMs are 

evaluated and compared for each EDP in terms of their 

efficiency, sufficiency, and predictability. Finally, the 

high-performing IMs are determined for predicting peak 

ru and EPI in the free-field. 

 
2 NUMERICAL MODELING 
 

To identify the high-perfoming IMs for peak ru and 

EPI in layered profiles, 3D, fully coupled, nonlinear, 

effective stress finite-element (FE) simulations were 

performed in the object-oriented, open source, FE 

computational OpenSees platform (Mazzoni et al. 2006). 

The pressure-dependent, multi-yield surface, version 2, 

soil constitutive model (PDMY02), was used to 

represent the dynamic behavior of granular soils 

susceptible to liquefaction (Elgamal et al. 2002; Yang et 

al. 2008). The soil model parameters were adopted from 



 

Hwang et al. (2022). The calibration process was based 

on monotonic and cyclic, drained and undrained triaxial 

tests (Badanagki 2019), centrifuge test results modeling 

free-field soil conditions with the same soil types 

(Ramirez et al. 2018), and field observations (NCEER 

1997). The soil column was modeled with three-

dimensional 20-8 node BrickUP elements. Each model 

was divided into 48 elements with a uniform element 

thickness of 0.5 m. The fluid bulk modulus was assumed 

to be 2.2 x 106 kPa at atmospheric pressure. The 

displacements in all three directions located at the same 

elevation were tied together. Additionally, the nodes 

located perpendicular to shaking planes were fixed 

against out-of-plane (y-direction) displacements. For the 

models representing a dry crust, the soil nodes at or 

above the water table location were fixed in the fourth 

degree of freedom to simulate dry conditions. At the base 

of the model, nodes were fixed against vertical 

translation, and to replicate a compliant base boundary 

condition in the horizontal plane, a Lysmer-Kuhlemeyer 

(1969) dashpot was introduced. The dashpot consisted of 

two extra nodes in the same location as the soil base left 

hand corner node. One of the dashpot nodes was fixed in 

all directions, and the second node was fixed against 

vertical translation and tied to the soil base left hand 

corner node for horizontal translation. The dashpot was 

modeled with a zero-length element and assigned a 

viscous uniaxial material with a coefficient that is the 

product of the underlying bedrock layer's mass density 

and shear wave velocity. A mass density of 2.5 Mg/m3 

and a shear wave velocity of 1000 m/s were used as the 

bedrock properties in all the analyses (Tiznado et al. 

2021). The input motions were applied as a force time 

history to the base of the soil column, which was based 

on the velocity time history multiplied by the dashpot 

coefficient.   

 
3 NUMERICAL PARAMETRIC STUDY 
 

We performed 1520 simulations with the aid of the 

Alpine supercomputing facility at University of 

Colorado Boulder (CU). Five representative profiles 

were studied, varying the number of critical, loose, and 

saturated Ottawa sand layers and the number of low 

permeability silt layers distributed within the profile (see 

Fig. 1). In addition, the same 5 profiles were modeled 

with the groundwater table at the surface and at 2 m 

depth, resulting in 10 individual soil profiles. The 

selected soil profiles and groundwater table were 

determined based on observed trends in the Hutabarat 

(2020) case history database of site conditions with 

varying degrees of ejecta severity. 

The soil profiles in Fig. 1 vary in complexity. Soil ID 

1 and ID 2 represent a typical uniformly layered profile 

or one with the addition of a silt capping layer, both of 
which have been previously studied and validated with 

recordings from centrifuge experiments (Ramirez et al. 

2018; Brito et al. 2024). In soil ID 3, we maintain both 

the total thickness of the critical liquefiable layer (6 m) 

and the total profile thickness (24 m), while introducing 

4 silt layers around and within the liquefiable layer that 

disrupt its continuity. In soil ID 4, we introduce multiple 

loose Ottawa sand layers that add to the same cumulative 

liquefiable thickness as IDs 1-3 (6 m) but spread out to 

different depths and separated by dense sand interlayers. 

Lastly, in soil ID 5, we introduce silt caps at the 

boundaries of each of the liquefiable layers in ID 4. 

 

 

Fig. 1. Schematic of selected numerical parametric study soil 

profiles (dimensions are in meters). 

 
A suite of 152 outcropping rock motions was chosen 

from the Bullock et al. (2017) database and used as input 

for each model configuration. The selected suite of 

ground motions was collected from NGA-West2, 

KiK/K-Net, NZSMD, COSMOS, RENADIC, and CSN 

databases, each having two horizontal components. The 

two horizontal recordings were rotated to find the 

maximum rotated (RotD100) peak ground acceleration. 

The ground motions were baseline-corrected and filtered 

(using a band-pass filter with corner frequencies of 0.1 

and 12 Hz). This input ground motion set was recorded 

on outcropping rock (Vs,30 > 760 m/s) and encompassed 

74 records from normal, reverse, and strike-slip shallow 

crustal earthquakes and 77 records from interface and 

intraslab subduction earthquakes. Fig. 2 shows the 

distribution of the selected ground motion records in 

terms of moment magnitude (Mw), distance to rupture 

(Rrup), peak ground acceleration (PGA), and cumulative 

absolute velocity (CAV). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. Distribution of ground motion parameters as recorded at 

outcropping rock, employed as input in the numerical study. 
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Twenty IMs were evaluated as candidates, including 

11 peak transient IMs, 3 evolutionary IMs, 4 duration-

related IMs, and 2 frequency-related IMs (summarized 

in Table 1). We evaluated these IMs in terms of their 

efficiency and sufficiency in predicting peak excess pore 

pressures in the middle of the liquefiable layer and ejecta 

potential, as well as their predictability following the 

approach of Dashti and Karimi (2016). Efficiency 

reflects how well an IM can predict a given EDP with no 

other information, and is quantified by the standard 

deviation of the residuals around the regression relating 

the IM to the EDP, denoted σpeak ru and σln(EPI). 

Sufficiency is a measure of whether the IM is 

independent of earthquake source characteristics. It is 

quantified by the slope of a linear regression line, 

assessing the dependence of residuals about the EDP on 

Mw or Rrup. Lastly, predictability indicates the 

applicability and availability of ground motion 

prediction equations (GMPEs) for a given IM and is 

quantified by the standard deviation of logarithmic IMs 

from the existing GMPEs. We use the outcropping rock 

location in this study, which is more predictable than 

other locations, as suggested by Bullock et al., (2019). 

 
Table 1. Intensity measures considered in this study. 

IM Equation 

PGA PGA = max|a(t)| 

PGV PGV = max|v(t)| 

PGD PGV = max|u(t)| 

CAV CAV = ∫ 𝑎(𝑡)|𝑑𝑡
𝑡𝑡𝑜𝑡
0

| 

CAV5 CAV5 = ∫ 〈𝑥〉|𝑎(𝑡)|𝑑𝑡
𝑡𝑡𝑜𝑡
0

  

Ia Ia = 
𝜋

2𝑔
∫ 𝑎2(𝑡)𝑑𝑡
𝑡𝑡𝑜𝑡
0

 

D5-75 - 

D5-95 - 

SIR75 SIR75 = 
0.7𝐼𝑎

𝐷5−75
 

SIR95 SIR75 = 
0.9𝐼𝑎

𝐷5−95
 

Tm Tm = 
∑𝑐𝑖

2/𝑓𝑖

∑𝑐𝑖
2  

Tp - 

ASI ASI = ∫ 𝑆𝑎(𝜉 = 5%,𝑇)𝑑𝑇
0.5

0.1
 

VSI VSI = ∫ 𝑆𝑣(𝜉 = 5%, 𝑇)𝑑𝑇
0.5

0.1
 

Sa (1.0) - 

Sa (Tso) - 

Sa (1.5Tso) - 

Sa (2.0Tso) - 

Sa,avg(0.2Tso, 1.5Tso) - 

Sa,avg(0.2Tso, 2.0Tso) - 

 
 The EDPs under consideration are the peak excess 

pore water pressure ratio (peak ru = max EPWP/σzo') in 

the middle of the liquefiable layer and the EPI as defined 

by Hutabarat (2020). For peak ru, we consistently relied 

on numerically predicted excess pore pressures at the 

middle of the total thickness of the loose Ottawa sand 

layer/s (e.g., z = 5 m and z = 10.5 m for IDs 1 and 5, 

respectively). In Hutabarat’s procedure, the excess 

pressure head required (hexc = ue/γw) to produce surface 

ejecta manifestation corresponds to the existing excess 

head that exceeds the artesian excess head (hA). This 

artesian excess head is depicted as a linear relationship 

with a 1:1 sloped line across the depth of the profile, 

constrained within the limits of the maximum excess 

head (max hexc = σzo'/γw).  EPI is bound by the duration 

of artesian conditions (a minimum time when input 

acceleration reaches 0.05 g and a maximum of 150 s) and 

the upper 10 m of the profile, which is assumed to 

provide most of the demand. The ejecta manifestation 

severity is categorized as minor (10 - 40 m3·s), moderate 

(40 - 100 m3·s), severe (100 - 300 m3·s), and extreme 

(greater than 300 m3·s). For the purpose of identifying a 

high-performing IM for predicting EPI, we evaluated 

only cases where the severity category of ejecta 

manifestation was at least minor. This filtering process 

resulted in the inclusion of only those cases where the 

groundwater table was positioned at a depth of 2 m. In 

other words, none of the 5 profile configurations with the 

groundwater table at the surface produced an EPI value 

greater than 10 m3·s. This resulted from the limited σzo', 

preventing the excess hydraulic head from reaching the 

limit for initiating artesian flow.  

A logistic and beta regression models were employed 

to fit peak ru (Dashti and Karimi 2016; Wu et al. 2022). 

In evaluating the efficiency and sufficiency of the IMs 

considered in predicting peak ru, the results were 

relatively insensitive to the choice between the two 

regression models. Thus, for brevity, we only present the 

results from the logistic regression model in this paper. 

Similarly, for EPI in log-log scale, we employed linear 

and polynomial regression models, resulting in similar 

results. Therefore, we present only the results from the 

linear regression model in this paper. 

 
4 HIGH-PERFORMING IMS FOR PEAK PORE 

PRESSURES EVALUATION 
 

We utilized the set of 20 candidate IMs to perform 

logistic regression analyses with peak ru evaluated in the 

middle of the liquefiable layer. For each IM, one σpeak ru 

can be obtained for each individual soil profile (10 data 

points per IM considered).  Fig. 3 presents the 

efficiency plots for ID1gwt2m for a few representative 

outcropping rock motion IMs, highlighting σpeak ru. 

Fig. 4 summarizes the σpeak ru values for the 10 most 

efficient IMs (smaller values reflect higher efficiency) 

on outcropping rock out of 20 considered. The figure 

presents results for all the soil profiles considered. Arias 

Intensity (Ia), acceleration spectrum intensity (ASI), 

velocity spectrum intensity (VSI), average pseudo-

spectral acceleration over the period range from 20% to 

150% of the initial fundamental site period, Sa,avg(0.2Tso, 

1.5Tso), and average pseudo-spectral acceleration over 

the period range from 20% to 200% of the initial site 

period, Sa,avg(0.2Tso, 2Tso) demonstrated higher 
efficiencies compared to others. These last two peak 

transient IMs, encompass the frequency content over a 



 

range of periods. As highlighted by Bullock et al. (2019), 

this type of IM is often more effective than single-period 

values of Sa since the soil column’s site period could 

change as its strength and stiffness are altered by 

degradation and softening during dynamic loading. 

 

 
 

Fig. 3. Peak excess pore pressure ratio efficiency plots for 

ID1gwt2m using different outcropping rock motion IMs. 

 

 
 

Fig. 4. Standard deviation (σpeak ru) for the ten most efficient IMs 

considered. The red circles represent the mean across σpeak ru 
values for the 10 soil profiles. 

 
To evaluate sufficiency, as previously mentioned, we 

examined the slope of a linear regression line (cM and cR) 

through the residuals about peak ru with respect to Mw 

and Rrup. Fig. 5 represents this procedure for Ia in 

ID1gwt2m.  

For each IM, we averaged the absolute values of the 

slopes (cM and cR) from Mw and Rrup to obtain the cavg 

values presented in Fig. 6. The IMs of peak ground 

velocity (PGV), Ia, pseudo-spectral acceleration at the 

sites’ fundamental periods, Sa(Tso), Sa,avg(0.2Tso, 1.5Tso), 
and Sa,avg(0.2Tso, 2Tso) illustrate greater sufficiency with 

median cavg values smaller than 0.02. The best 

combination of efficiency and sufficiency was found on 

Sa,avg(0.2Tso, 2Tso) with a median σpeak ru of 0.11 and a 

median cavg of 0.017.  

As stated previously, predictability needs to be 

considered when selecting a high-performing IM. As 

stated by Bullock et al. (2019), GMPEs are available for 

Sa across various periods and different tectonic 

environments. Employing the selected GMPEs they can 

be integrated with the correlation models of Baker and 

Jayaram (2008) to make predictions of Sa,avg(0.2Tso, 

2Tso) as performed by Bullock et al. (2021). The small 

strain fundamental period of the site, Tso, may be 

estimated as 4H/Vs̅, where Vs is the average small-strain, 

shear wave velocity, and H is the total height of the soil 

column above bedrock (Dashti and Karimi 2016). More 

recent work by Davalos and Miranda (2021) provided 

GMPEs for Sa,avg across different periods, but only for 

the shallow crustal tectonic environment with a standard 

deviation range of 0.56-0.65. This study also highlighted 

how Sa,avg is more predictable than Sa (i.e., typical 

standard deviation range of 0.6-0.7). 

 

 
 

Fig. 5. Arias intensity (Ia) sufficiency with respect to source 

moment magnitude (Mw) and distance (R) for ID1wt2m. 

 

 
 

Fig. 6. Estimated cavg values for the residuals of peak ru from 

the ten most efficient IMs considered. The red circles represent the 

mean across cavg values for the 10 soil profiles. 

 
It is worth noting that the high-performing IM found 

for predicting peak ru in the free-field in this study differs 

from the one suggested by Dashti and Karimi (2016), 

Sa(Tso). While only considering relatively uniform 
granular soil profiles, in the Dashti and Karimi (2016) 

study, Sa,avg was not considered as a candidate IM. 



 

Nonetheless, Sa(Tso) was identified in our results as both 

in the top 10 most efficient IMs and top 5 most sufficient 

IMs. 

 
5 HIGH-PERFORMING IMS FOR EJECTA 

POTENTIAL EVALUATION  
 

The same procedure highlighted in the previous 

section was employed to evaluate the high-performing 

IM for EPI prediction. The σln(EPI) values for the 10 most 

efficient IMs are summarized in Fig. 7. The evolutionary 

IMs CAV, CAV5 and Ia show the highest efficiency, with 

the mean σln(EPI) in the range of 0.48 and 0.56. The 

calculated values for σln(EPI) being larger than for σpeak ru 

are partly due to the reduction in sample size (associated 

with exclusion of results with no to minor ejecta 

potential, explained in previous sections). 

Fig. 8 shows the distribution of cavg dispersion, with 

IMs CAV and CAV5 demonstrating the highest 

sufficiency with 0.08 and 0.07 mean cavg, respectively. 

Given the prediction uncertainty ranges outlined by 

Bullock et al. (2019), with a standard deviation that 

ranges from 0.4 to 0.7 for CAV and 0.7 to 0.9 for CAV5, 

CAV is deemed as the highest performing IM for 

predicting EPI in the free-field for the conditions 

evaluated. 

 

 
Fig. 7. Standard deviation σln(EPI) for the ten most efficient IMs 

considered. 

 

 
 

Fig. 8. Estimated cavg values for the residuals of EPI from the ten 

most efficient IMs considered. 

 

6 CONCLUSIONS 
 

This paper describes the results of a preliminary 

numerical parametric study to identify potential high-

performing IMs for predicting peak excess pore 

pressures and ejecta potential in free-field for realistic 

interlayered liquefiable deposits. Fully-coupled, 3D, 

nonlinear, effective stress finite-element analyses of 

realistically variable deposits were modeled in 

OpenSees. In each of the 10 individual soil profiles, 

dynamic analyses were conducted using a selection of 

152 ground motions as input, resulting in 1520 

simulations. Twenty IMs were adopted as the potential 

candidate IMs in this study. Peak ru in the middle of the 

liquefiable layer and ejecta potential index (EPI) were 

selected as the EDPs of interest. The pool of IMs was 

compared in terms of efficiency, sufficiency, and 

predictability in predicting the EDPs of interest. We 

employed logistic and linear regression analyses for 

peak ru and EPI, respectively, to establish relationships 

between the EDPs and the potential IMs. We identified 

the best combination of efficiency, sufficiency, and 

predictability in Sa,avg(0.2Tso, 2Tso) for peak ru and CAV 

for EPI predictions in the free-field of interlayered 

granular and liquefiable soil deposits. These IMs were 

only evaluated at the outcropping rock location. Though 

insightful in guiding future predictive models, additional 

simulations are needed in the future with more variations 

in soil conditions, rock properties, ground motions, as 

well as lateral variations in soil profile. These 

simulations are under way by the authors.  
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