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AN ALMGREN MONOTONICITY FORMULA

FOR DISCRETE HARMONIC FUNCTIONS

MARIANA SMIT VEGA GARCIA AND STEFAN STEINERBERGER

Abstract. The celebrated Almgren monotonicity formula for harmonic func-
tions u : Rn

→ R says that its L2
−energy concentrated on a sphere of radius

r, when measured in a suitable sense, is non-decreasing: if u oscillates at a
certain scale, it has even larger oscillations at a larger scale. We prove a dis-
crete analogue of the Almgren monotonicity formula for harmonic functions
on infinite combinatorial graphs G = (V, E). Some applications are discussed.

1. Introduction and Results

1.1. Introduction. We will show that the classical Almgren monotonicity formula
for harmonic functions u : R

n → R has an extension to the setting of discrete
harmonic functions on combinatorial graphs. The celebrated Almgren monotonicity
formula [1, 2] is a cornerstone in the study of harmonic functions. It also plays a
crucial role in studying unique continuation, and has been used extensively in free
boundary problems [3, 8, 9]. It is usually stated as follows: let u : Rn → R be a
harmonic function and let Br denote a ball of radius r, then

N(r) =
r
∫

Br
|∇u|2dx

∫

∂Br
u(x)2dσ

is non-decreasing.

One often lets r → 0 to deduce information from the limit. Conversely, the presence
of oscillation implies the existence of larger oscillations at a larger scale. Using
integration by parts, the Dirichlet energy can be written as

∫

Br

|∇u|2dx =

∫

∂Br

u
∂u

∂n
dσ

=
1

2

d

dr

∫

∂Br

u(x)2dσ − n− 1

r

∫

∂Br

u(x)2dσ.

Therefore, Almgren’s monotonicity can be equivalently written as saying that

N(r) = r
d

dr
log

(∫

∂Br

u(x)2dσ

)

is non-decreasing.

This implies that if a harmonic function is large in L2 on a sphere, then it will
be even larger on spheres with the same center and larger radius. After suitably
adapting the functional to the setting of combinatorial graphs, we will obtain an
analogous identity with the same consequences.
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1.2. Discrete Almgren Monotonicity. We can now introduce our discrete ana-
logue. Recall that a function u : V → R is harmonic if, for each vertex x ∈ V ,

∑

(x,y)∈E

(u(x)− u(y)) = 0 or, equivalently u(x) =
1

deg(x)

∑

(x,y)∈E

u(y).

Such functions have been intensively studied and have a rich theory, see, for example
[4, 5, 6, 7]. We assume we are given a connected graph G = (V,E). The graph may
be finite (in which case our result will be trivial: harmonic functions are constant).
If the graph is infinite, we require that it is locally finite: each vertex has finite
degree. We interpret Almgren’s functional quite literally and regard

∫

∂Br

u(x)2dx as
∑

d(x,y)=k

u(y)2,

where x ∈ V is an arbitrary vertex. The differentiation in r is replaced by a discrete
difference between k+ 1 and k. There is an important conceptual change: vertices
with a higher degree have a bigger impact on their neighborhood and this has to
be accounted for. Fixing the base vertex x ∈ V induces a partition of the vertex
set by distance from x (see Fig. 1). We introduce the in-degree of a vertex v ∈ V

din(v) = # {w ∈ V : (w, v) ∈ E and d(w, x) = d(v, x)− 1}
and, completely analogously, the out-degree as

dout(v) = # {w ∈ V : (w, v) ∈ E and d(w, x) = d(v, x) + 1} .
We always have din(v) ≥ 1 as well as din(v) + dout(v) ≤ deg(v).

. . .

x d(v, x) = 1 d(v, x) = 2 d(v, x) = k

Figure 1. Ordering vertices by distance from a fixed vertex.

Theorem (Discrete Almgren Monotonicity Formula). Let G = (V,E) be locally

finite, let x ∈ V and let u : V → R be harmonic. Then, for k ≥ 0,

N(k) =
∑

d(x,y)=k+1

din(y) · u(y)2 −
∑

d(x,y)=k

dout(y) · u(y)2

is non-negative and satisfies N(k + 1) ≥ N(k).

The result has an immediate extension to weighted graphs, see §2.5. If there is a
dramatic change in the (suitably normalized) ℓ2−energy on a sphere, then this is
indicative of even larger fluctuations at larger spheres. When u ≡ 1 is constant, we
have N ≡ 0 since the number of incoming edges in {y : d(x, y) = k + 1} is exactly
the same as the number of outgoing edges from {y : d(x, y) = k}. The inequality is
sharp in the sense that N(k + 1)−N(k) may tend to 0, see §2.4.
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1.3. Doubling estimates. The continuous Almgren monotonicity formula imme-
diately leads to doubling estimates. Something similar is true in the discrete setting.
Let 0 ≤ a ≤ b < ∞ be two integers, then the quantities N(a) and N(b) are related
to the growth of the harmonic function. We say that a graph is locally expansive

in {v ∈ V : a ≤ d(x, v) ≤ b} if for all vertices satisfying a ≤ d(v, x) ≤ b, we have

dout(v) ≥ din(v).

Likewise, we say that the graph is locally contractive if dout(v) ≤ din(v) for every
vertex in that region. In either of these cases, we can obtain bounds on the growth
in terms of N(k) via a simple telescoping argument.

Corollary 1. Let G = (V,E) be locally finite, let x ∈ V and let u : V → R be a

harmonic function. If G is locally expansive in {v ∈ V : a ≤ d(x, v) ≤ b}, then
∑

d(x,y)=b+1

din(y) · u(y)2 ≥ (b− a+ 1)N(a) +
∑

d(x,y)=a

dout(y) · u(y)2.

If G is locally contractive in the same region, then
∑

d(x,y)=b+1

din(y) · u(y)2 ≤ (b− a+ 1)N(b) +
∑

d(x,y)=a

dout(y) · u(y)2

One way of phrasing the corollary is that in locally expansive regions, the size of
N(a) can be seen as a lower bound on the guaranteed ℓ2−growth of the harmonic
function. In locally contractive regions, the size of N(b) provides an upper bound
on how much growth can have happened in that region. We note that, in contrast to
Euclidean space, these estimates are weaker insofar as they provide only additive (as
opposed to multiplicative) control; this reflects the fact that harmonic functions on
graphs are more versatile than they are in Euclidean space (see §2.4 for an example).

1.4. A continuous application. The purpose of this section is to consider a par-
ticularly natural example, the lattice graph, and to deduce a continuous result
from it. We consider the lattice graph V = Z

d where (x, y) ∈ E if and only if
‖x− y‖ℓ1 = 1. This is a 2d−regular graph (see Fig. 2 for an example in Z

2).

0

1

11

1

22

2

2

2

2

2

2

Figure 2. Left: elements of a grid graph enumerated by distance
from a fixed element. Right: the ℓ1−unit ball in R

2.

Fixing a vertex x ∈ V , one sees that once we are far away from that vertex and
consider Vk = {y ∈ V : d(x, y) = k}, ‘most’ vertices in Vk will satisfy din(y) = d =
dout(y). There are exceptions (the ‘tips’ of the diamond) but the set of exceptional
vertices is ‘small’ as k becomes large. This suggests an interesting continuous
analogue in the plane since Vk, in a suitable limit, is simply an ℓ1−ball in R

2. An
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ℓ1−ball in R
2 is simply a rotated cube. Finally, in the setting where vertices satisfy

din(y) = d = dout(y) the discrete Almgren monotonicity formula simplifies to
∑

d(x,y)=k+1

u(y)2 − 2
∑

d(x,y)=k+1

u(y)2 +
∑

d(x,y)=k−1

u(y)2 ≥ 0

which is the discrete analogue of convexity. We will prove that this purely discrete
result has a ‘continuous limit’ in the form of an analogous convexity result in R

d.

Corollary 2. Let u : Rd → R be harmonic. Then

E(t) =

∫

‖x‖ℓ∞=t

u(x)2 dHn−1 is convex on [0,∞].

Since harmonic functions remain harmonic under rescaling and under orthogonal
transformations and rotations, the result is naturally also true for ‘tilted’ cubes.
When d = 2 and u ≡ 1 is a constant function, then E(t) is a linear function and
E′′(t) ≥ 0 cannot be improved. The proof is not literally a Corollary of our main
result (though philosophically inspired). We give a self-contained argument in §2.3.
Corollary 2 suggests a couple of natural questions. It is clear that the proof can
be (slightly) extended to other shapes such as the ℓ1−unit ball. It would be in-
teresting to understand under which assumptions on the underlying geometry such
a convexity statement holds. Another natural question is dictated by scaling: the
set {‖x‖ℓ∞ = t} grows like ∼ cdt

d−1 and one might be inclined to believe that the
average of a harmonic function on the boundary should be increasing, which would
suggest that the first d derivatives might be positive. This would coincide with
Corollary 2 when d = 2. It might be interesting to see whether the Discrete Alm-
gren Monotonicity Formula, when applied to other types of graphs, might suggest
other continuous analogues.

2. Proofs

2.1. Proof of the Theorem.

Proof. For simplicity of exposition, we give the proof when the graph is simple,
which means no self-loops and the edges are unweighted. The argument generalizes
easily once the notion of in-degree and out-degree are refined to account for weights,
see §2.5. We fix x ∈ V and start by showing that N(0) ≥ 0. Note that

N(0) =





∑

(x,y)∈E

u(y)2



− deg(x) · u(x)2.

Since the function is harmonic,

u(x) =
1

deg(x)

∑

(x,y)∈E

u(y),

which simplifies the problem to showing that

∑

(x,y)∈E

u(y)2 ≥ 1

deg(x)





∑

(x,y)∈E

u(y)





2

.
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This follows from the Cauchy-Schwarz inequality. It remains to prove the mono-
tonicity. We will work with the decomposition

V =

∞
⋃

k=0

Vk where Vk = {w ∈ V : d(x,w) = k} .

We will also introduce an abbreviation for edges that run between Vk and Vk+1,

Ek = {e ∈ E : e runs between Vk and Vk+1} .

For each vertex y ∈ Vk+1 there exist y1, . . . , yℓ ⊂ Vk that are connected to y by an
edge. We have ℓ ≥ 1 because there exists a shortest path from y to x. Then

din(y) · u(y)2 =

ℓ
∑

i=1

(u(yi) + (u(y)− u(yi))
2

≥
ℓ

∑

i=1

u(yi)
2 + 2u(yi)(u(y)− u(yi)).

We sum this inequality over all vertices y ∈ Vk+1 and obtain

∑

y∈Vk+1

din(y) · u(y)2 ≥
∑

z∈Vk

dout(z)u(z)
2 +

∑

e=(z,y)
e∈Ek

2u(z)(u(y)− u(z)).

We rewrite the second sum as
∑

e=(z,y)
e∈Ek

2u(z)(u(y)− u(z)) =
∑

z∈Vk

∑

e=(z,y)
y∈Vk+1

2u(z)(u(y)− u(z))

=
∑

z∈Vk

2u(z)
∑

e=(z,y)
y∈Vk+1

(u(y)− u(z)).

At this point, we use that u is harmonic. For each z ∈ Vk, we have

∑

(z,w)∈E

(u(w) − u(z)) = 0.

All the neighbors of z ∈ Vk are either in Vk−1, in Vk or in Vk+1 and thus

∑

(z,w)∈E
w∈Vk+1

(u(w)− u(z)) =
∑

(z,w)∈E
w∈Vk−1

(u(z)− u(w)) +
∑

(z,w)∈E
w∈Vk

(u(z)− u(w)).

We first argue that, when summing over all z ∈ Vk, the second sum on the right-
hand side can be simplified since we sum over each edge twice and

∑

z∈Vk

∑

(z,w)∈E
w∈Vk

u(z)(u(z)− u(w)) =
∑

e=(a,b)∈E
a∈Vk,b∈Vk

u(a)(u(a)− u(b)) + u(b)(u(b)− u(a))

=
∑

e=(a,b)∈E

a∈Vk,b∈Vk

(u(a)− u(b))2 ≥ 0.
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This implies

∑

z∈Vk

2u(z)
∑

e=(z,y)
y∈Vk+1

(u(y)− u(z)) ≥
∑

z∈Vk

2u(z)
∑

e=(z,w)
w∈Vk−1

(u(z)− u(w))

=
∑

z∈Vk

∑

e=(z,w)
w∈Vk−1

2u(z)(u(z)− u(w)).

Using

2u(z)2 − 2u(z)u(w) ≥ u(z)2 − u(w)2,

we have

∑

z∈Vk

∑

e=(z,w)
w∈Vk−1

2u(z)(u(z)− u(w)) ≥
∑

z∈Vk

∑

e=(z,w)
w∈Vk−1

u(z)2 − u(w)2.

This sum, in turn, is merely the sum over all edges Ek−1 and can be rewritten as

∑

z∈Vk

∑

e=(z,w)
w∈Vk−1

u(z)2 − u(w)2 =
∑

z∈Vk

din(z)u(z)
2 −

∑

w∈Vk−1

dout(w)u(w)
2.

Altogether, we see that

∑

y∈Vk+1

din(y)u(y)
2 −

∑

z∈Vk

dout(z)u(z)
2 ≥

∑

z∈Vk

din(z)u(z)
2 −

∑

w∈Vk−1

dout(w)u(w)
2.

This is the desired statement. �

2.2. Proof of Corollary 1.

Proof. The argument follows from telescoping the monotonicity formula. We have

b
∑

k=a

N(k) =
b

∑

k=a





∑

d(x,y)=k+1

din(y) · u(y)2 −
∑

d(x,y)=k

dout(y) · u(y)2


 .

If the Graph is locally expansive, meaning dout(y) ≥ din(y), then

(b− a+ 1)N(a) ≤
b

∑

k=a

N(k) ≤
∑

d(x,y)=b+1

din(y) · u(y)2 −
∑

d(x,y)=a

dout(y) · u(y)2.

Likewise, if the graph is locally contractive, meaning dout(y) ≤ din(y), then

(b− a+ 1)N(b) ≥
b

∑

k=a

N(k) ≥
∑

d(x,y)=b+1

din(y) · u(y)2 −
∑

d(x,y)=a

dout(y) · u(y)2.

�
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2.3. Proof of Corollary 2.

Proof. We give a proof when d = 2, where the proof can be nicely visualized; the
higher-dimensional case is completely analogous. We consider a square Qt centered
at a point and define the energy

E(t) =

∫

∂Qt

u(x)2dσ.

For comparison, we also consider a slightly larger square Qt+ε centered in the same
point. We also consider the ‘reduced’ larger cube Q∗

t+ε that is obtained by simply
translating part of Qt a distance ε along a coordinate axis (see Fig. 3 for a sketch).
We note that ∂Qt+ε and ∂Q∗

t+ε differ by line segments of size ∼ ε2 and thus

∫

∂Qt+ε

u(x)2dσ =

∫

∂Q∗

t+ε

u(x)2dσ +O(ε2).

Qt

∂Qt+ε

∂Q∗
t+ε

Figure 3. The cube Qt, the boundary ∂Qt+ε of the slighly larger
cube and the reduced boundary of the larger cube ∂Q∗

t+ε.

At the same time, we see that we can control the change of u(x)2 from Qt+ε to Q∗
t+ε

by simply differentiating in the direction of x and the direction of y, respectively,
and these directions correspond to the normal directions on Qt. Therefore

∫

∂Q∗

t+ε

u(x)2dσ =

∫

∂Qt

u(x)2dσ + ε

∫

∂Qt

2u
∂u

∂n
dσ +O(ε2).

This implies that

E′(t) = 2

∫

∂Qt

u
∂u

∂n
dσ.

Rewriting this using the Green’s identity, we obtain

E′(t) = 2

∫

∂Qt

u
∂u

∂n
dσ = 2

∫

Qt

|∇u|2dx ≥ 0.

As t gets larger, we simply integrate a non-negative function over a larger domain
and therefore E′(t) is also non-decreasing and E(t) is convex. �
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2.4. An example. The geometry of infinite graphs can be quite different from
that of the Euclidean space. Liouville’s theorem can fail and bounded harmonic
functions can exist, which leads to several other interesting consequences. The
purpose of this section is to construct an explicit example of a harmonic function
to illustrate our Theorem. We will work on the infinite 3-regular tree. Note that,
except in the root, din(v) = 1 while dout(v) = 2. The function is sketched in Fig.
4. We fix a vertex to be the root and set the function to be 0 there and in an
entire branch leading away from it. We moreover set the harmonic function to
be a function that is ‘symmetric’ around the middle and merely a function of the
distance to the origin. This leads to the sequence

a0 = 0, a1 = 1 and ak+1 =
3ak − ak−1

2
.

On easily sees that, for n ≥ 1

an = 2− 1

2n−1
.

0

0 1-1

00

Figure 4. Sketch of the function: a symmetric function around
the root at 0, the third branch (going up) is set to always be 0.

On the ‘left’ branch, the values are simply −an. This leads to a non-constant
harmonic function with values between −2 and 2. We can now illustrate the discrete
Almgren Monotonicity Formula for this function. It states that

N(k) =
∑

d(x,y)=k+1

u(y)2 − 2
∑

d(x,y)=k

u(y)2

is non-negative and that N(k) is monotonically increasing in k. There are 2k points
at distance k (counting both branches) and thus

∑

d(x,y)=k

u(y)2 = 2k
(

2− 1

2k−1

)2

.

A short computation shows that

N(k) = 2k+1

(

2− 1

2k

)2

− 2k+1

(

2− 1

2k−1

)2

= 8− 3

2k−1
.

N(k) non-negative and monotonically increasing and converges to 8.
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2.5. Weighted Graphs. We briefly comment on the setting of weighted graphs
G = (V,E,w) where every edge e ∈ E is additionally equipped with a weight
we > 0. Harmonic functions are now functions u : V → R satisfying

∑

(x,y)∈E

wxy(u(y)− u(x)) = 0.

We note that, in principle, we could even allow for self-loops (x, x) ∈ E since they
automatically disappear when considering harmonic functions. In the weighted
setting, we can adapt the notion of in-degree and out-degree for v ∈ Vk as

din(v) =
∑

e=(x,v)∈E
x∈Vk−1

wxv and dout(v) =
∑

e=(v,x)∈E
x∈Vk+1

wvx.

Note that if the edges all have weight 1, then these definitions reduce themselves
to the definitions already used above. Having these definitions in place, we will
conclude just as above that

N(k) =
∑

d(x,y)=k+1

din(y) · u(y)2 −
∑

d(x,y)=k

dout(y) · u(y)2

is non-negative and satisfies N(k + 1) ≥ N(k). Showing that N(1) ≥ N(0) then
amounts to showing that

∑

d(x,y)=1

wxyu(y)
2 ≥





∑

d(x,y)=1

wxy



u(x)2 =
1

dout(x)





∑

d(x,y)=1

wxyu(y)





2

which follows from applying Cauchy-Schwarz to




∑

d(x,y)=1

wxyu(y)





2

=





∑

d(x,y)=1

(√
wxyu(y)

)

· √wxy





2

.

As for the remainder of the argument, we argue in parallel and obtain
∑

y∈Vk+1

din(y) · u(y)2 ≥
∑

z∈Vk

dout(z)u(z)
2 +

∑

e=(z,y)
e∈Ek

2weu(z)(u(y)− u(z)).

The weight we can then be carried through the rest of the argument without having
any further impact and the result follows.
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