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Abstract

Planted dense cycles are a type of latent structure that appears in many applications, such as small-
world networks in social sciences and sequence assembly in computational biology. We consider a
model where a dense cycle with expected bandwidth n7 and edge density p is planted in an Erd&s—
Rényi graph G(n, ¢). We characterize the computational thresholds for the associated detection and
recovery problems for the class of low-degree polynomial algorithms. In particular, a gap exists
between the two thresholds in a certain regime of parameters. For example, if n=%/* <« 7 < n~1/2
and p = Cq = O(1) for a constant C' > 1, the detection problem is computationally easy while the
recovery problem is hard for low-degree algorithms.

Keywords: Planted dense cycle, low-degree polynomial, computational lower bound, detection-
recovery gap

1. Introduction

Recovering latent structures in networks is a broad class of problems that are essential both in
theory and for applications in the social and biological sciences Watts (2004); Barabasi (2012). In
this work, we study the detection and recovery of a hidden cyclic structure in an observed network, a
type of structure found in many real-world applications. For example, the celebrated Watts—Strogatz
small-world model Watts and Strogatz (1998) assumes that n nodes have latent positions on a circle,
and they have stronger connections with their k-nearest neighbors and weaker connections with all
other nodes. Observing such a small-world network, the problem of interest is to recover the relative
positions of the nodes—which nodes are k-nearest neighbors of each other—and hence the overall
structure of the network. Since its proposal, the Watts—Strogatz model has been used extensively
to study, for example, epidemic behavior Moore and Newman (2000), collaboration networks Uzzi
and Spiro (2005), and brain networks Bassett and Bullmore (2006). More generally, the problem
of recovering a one-dimensional embedding of n objects from pairwise similarities between them
arises in a wider range of applications, including relative dating in archaeology Robinson (1951),
de novo genome assembly in computational biology Lieberman-Aiden et al. (2009), and angular
synchronization in tomography Singer (2011).

Despite the vast literature on related models and algorithms, the statistical and computational
limits of this problem are not yet well-established in a rigorous framework. The information-
theoretic thresholds for the Watts—Strogatz model are studied in Cai et al. (2017), but the upper
bounds achieved by computationally efficient algorithms are far from the information-theoretic
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thresholds. It is unknown whether these statistical-to-computational gaps are inherent, or whether
they can be closed by other efficient algorithms. In the case where the bandwidth k is at most ne),
sharp characterizations of recovery conditions are given in Bagaria et al. (2020); Ding et al. (2020a)
under a more general model. Moreover, several other algorithms and analyses have been intro-
duced for related models from the perspective of graphon estimation by Janssen and Smith (2022);
Natik and Smith (2021); Giraud et al. (2021). However, none of the previous works have shown
computational lower bounds against a class of efficient algorithms.

Moreover, the Watts—Strogatz small-world model can be seen as modeling a one-dimensional,
noisy random geometric graph with latent locations on a circle. Random geometric graphs have
long been studied in a variety of scientific fields; see, e.g., Penrose (2003) and a recent survey by
Duchemin and De Castro (2022). In particular, detection or testing thresholds for high-dimensional,
noiseless random geometric graphs were studied by Bubeck et al. (2016) and improved by Brennan
etal. (2020); Liu et al. (2022). Variants of the model with edge noise have also been studied recently
by Liu and Racz (2021); Liu and Racz (2021). Recovery or reconstruction of the latent geometry
from a random geometric graph has also been long studied in various models, especially using
spectral techniques; see, e.g., Sussman et al. (2013); Araya Valdivia and Yohann (2019); Eldan
et al. (2022). Despite the vast literature, the discrepancy between detection and recovery thresholds
is yet to be understood in a single model.

In this work, we propose a variant of the Watts—Strogatz small-world model, which is a random
graph with a planted dense cycle, and study the computational complexities of the associated detec-
tion and recovery problems in the framework of low-degree polynomial algorithms. This framework
has proven to be successful at probing the computational complexity of detecting and estimating
hidden structures in high-dimensional settings Hopkins and Steurer (2017); Kunisky et al. (2019);
Schramm and Wein (2022) and is closely related to the sum-of-squares hierarchy Hopkins et al.
(2017); Hopkins (2018). For problems such as planted clique, community detection, and sparse
PCA, the conjectured hard regime where no polynomial-time algorithms are known to exist co-
incides with the regime where low-degree polynomials fail to solve the problem. For the planted
dense cycle problem, we identify the regimes where low-degree polynomial algorithms fail to detect
and recover the hidden cycle respectively. In particular, we show that the threshold for detection is
drastically different from that for recovery, so there is a detection-recovery gap for this problem.

Notation Let [n] := {1,2,...,n} and ([g]) :={(4,4) : 1,7 € [n], i < j}. We use the standard
asymptotic notation O(-),0(-), 2(-),w(:), ©(-) as n — oo, and a tilde is added if the asymptotic
relation holds up to a polylogarithmic factor in n.

Any subset o C ([g]) can be identified with the graph on vertex set [n] induced by edges in
a. Therefore, we can say “graph «” without ambiguity. Then || denotes the number of edges in
the graph a. Let V(«) C [n] denote the vertex set of a, i.e., the set of vertices v € [n] that are
non-isolated by the edges of a.

2. Models and main results
2.1. Planted dense cycles

We now formally introduce our models. For any a, b € [0, 1], define

9(a,b) := min{|a — b|,1 — |a — b|}.



DETECTION-RECOVERY GAP FOR PLANTED DENSE CYCLES

In other words, ?(a, b) is the distance between a and b on a circle of circumference 1. Throughout
the paper, we consider the setting where the number of vertices n grows, and other parameters p, q,
and 7 may depend on n.

Definition 1 (Model P, Planted Dense Cycle) Suppose that0 < ¢ < p < land0 <7 < 1/2.
Let z € [0, 1]™ be a latent random vector whose entries z1, . . . , z, are i.i.d. Unif([0, 1]) variables.
We observe an undirected graph with adjacency matrix A € R™*" whose edges, conditional on
21,...,2n, are independently sampled as follows: A;; ~ Bern(p) if 9(2;,25) < 7/2 and A;; ~
Bern(q) otherwise, where (i, j) € ([g]). We write A ~ P.

In short, a graph A from model P is a G(n, q) ErdGs—Rényi graph with a planted dense cycle that
has edge density p and expected bandwidth n7. The location of the cycle is determined by the latent
variable z. For comparison, the Watts—Strogatz model plants a dense cycle of bandwidth exactly
nT; it also assumes that the average degree is matched to that in the noiseless case where p = 1
and ¢ = 0, s0 7 = 7p + (1 — 7)g in Watts and Strogatz (1998); Cai et al. (2017). Moreover,
the bandwidth nr is typically much smaller than n in small-world networks, so we may assume
7 < 1/2 throughout the paper to ease the presentation.
In addition, we use Q to denote an Erdés—Rényi graph model.

Definition 2 (Model Q, Erdds—Rényi graph) Suppose that0 < ¢ <p <land0 <71 <1/2. Let
r:=71p+ (1 — 7)q. We observe a G(n,r) Erdés—Rényi graph with adjacency matrix A € R™*"™.
We write A ~ Q.

Note that the condition » = 7p + (1 — 7)q is imposed so that the average degrees are matched in
the two models P and Q.

There are two problems associated with the model of planted dense cycle, detection and recov-
ery. Detection of the planted cycle is formulated as a statistical hypothesis testing problem.

Problem 3 (Detection) Observing the adjacency matrix A € R™™™ of a graph, we test A ~ P
against A ~ Q.

Recovery of the planted cycle is formulated as determining whether vertices ¢ and j are neigh-
bors in the cycle for (i, j) € ([g]) ,i.e., whether 9(z;, z;) < 7/2. By symmetry, it suffices to consider
the pair of vertices (1, 2) and estimate 1{0(z1, 22) < 7/2}.

Problem 4 (Recovery) Observing the adjacency matrix A € R™™ " of a graph A ~ P with a
planted cycle, we aim to recover x := 1{0(z1, 22) < 7/2}.

2.2. Overview of results

Our results fall within the framework of low-degree polynomial algorithms (see Kunisky et al.
(2019)). Let R[A]<p denote the set of multivariate polynomials in the entries of A with degree at
most D. The scaling of D = D,, will be made precise later, but in general, when we speak of a
“low-degree” polynomial, its degree is at most D = n°(1).

For the detection problem, we study the ability of such a polynomial to distinguish the two
distributions P and Q, in the following sense (Bandeira et al., 2022, Definition 1.6).
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Definition 5 (Strong separation) A polynomial f = f, € R[A]<p is said to strongly separate P
and Q over A if

v/ Varp[f(A)] V Varg[f(A)] = o (|Ep[f(4)] — Eqlf(A)]])

as n — oQ.

By Chebyshev’s inequality, strong separation implies that, by thresholding the value f(A), one can
test between A ~ P and A ~ Q with both type I and type II errors of order o(1).

For the recovery problem, recall that we aim to estimate x = 1{9(z1, 22) < 7/2}. The quantity
of interest is the degree- D minimum mean squared error (see Schramm and Wein (2022))

MMSE<p := inf E A) —v)?].
<pi= inf P [(f(4) = x)?]

It is equivalent to consider the degree-D maximum correlation

Corr<p := sup w (1)

feR[Al<p, VEp[f(A4)?]
Ep[f(A)2]£0

because of the following relation (Schramm and Wein, 2022, Fact 1.1)
MMSE<p = Ep[x?] — CoerSD.
The trivial estimator f(A) = Ep|[x] of x achieves a correlation

Ep[f(4) - x|
Ep[f(A)?]

which motivates the following definition.

= Ep[x],

Definition 6 (Weak recovery) A polynomial f = f, € R[A]<p is said to weakly recover an
estimand x given A ~ P if
Ep[f(A)-x
EPI A _ (Bpiy))
Ep[f(A)?]

as n — oQ.

Note that for the estimand x = 1{d(z1, z2) < 7/2} in Problem 4, we have Ep[x]| = 7.

For both the detection and the recovery problem, we establish low-degree upper and lower
bounds that match up to an n° factor for an arbitrarily small constant § > 0. Our main results are
summarized in the following theorem.

Theorem 7 (Summary of the detection-recovery gap) Suppose that Cq < p < C’q for con-

stants C' > C > 1. Fix any constant § € (0,0.1). Suppose that 2/6 < D < 0((1Og’ﬁ)gn)2) and
8

7 < (logn)~°.
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* (Detection) Consider Problem 3 and Definition 5. If n3pr* < n=°, then no polynomial
in R[A]<p strongly separates P and Q. If n3p3t* = w(1), then there is a polynomial in
R[A]<p that strongly separates P and Q.

* (Recovery) Consider Problem 4 and Definition 6. If npt®> < n=%, then no polynomial in

R[A]<p weakly recovers x. If npt? > n®, then there is a polynomial in R[A]<p that weakly
recovers .

Proof The four bounds are established in Theorems 8, 9, 12, and 13, respectively. It suffices to note
that under the assumptions of the theorem, the conditions (4), (7), (9), and (17) are all satisfied. See
also the discussion after each of the theorems. |

By the above theorem, there is a gap between the detection threshold and the recovery threshold
for planted dense cycles if we focus on low-degree polynomials. To better illustrate the detection-
recovery gap, let us suppose p = n~* and 7 = n" for constants a, b € (0,1). Then the detection
threshold is given by 3 — 3a — 4b = 0, while the recovery threshold is given by 1 —a — 2b = 0. We
plot the phase diagram in Figure 1. In particular, in region B of the figure, detection is easy while
recovery is hard.

0.75 1

b 051 B

Figure 1: The detection-recovery gap for planted dense cycles with p = n~® and 7 = n°. Detec-
tion is hard in region A, and easy in regions B and C. Recovery is hard in regions A and
B, and easy in region C.

In Theorem 7, we have assumed that p and ¢ are of the same order, which is a standard simpli-
fication in the literature for related problems (see, e.g., Hajek et al. (2015)). In fact, for three of the
four bounds (Theorems 8, 9, and 12, except the recovery upper bound), the edge density p in the
cycle can be much higher than the edge density ¢ outside the cycle; for the detection and recovery
lower bounds (Theorems 8 and 12), p can also approach ¢ in the sense that p — ¢ is of a smaller order
than p or ¢q. The latter regime is also addressed in a related but different context of computational
lower bounds by Brennan et al. (2019).

For the recovery upper bound, our proposed statistic and analysis yield stronger results than
weak recovery if we consider efficient algorithms beyond low-degree polynomials. Namely, we
produce an estimator x € {0,1} that recovers x = 1{0(z1,22) < 7/2} with high probability,
and also a consistent estimator of the underlying random geometric graph. See Theorem 14 and
Corollary 15.
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Technical contributions It is worth noting that none of the four bounds follow trivially from
existing work. For the detection lower bound, while the framework of low-degree polynomials is
well-understood (see, e.g., Hopkins (2018); Bandeira et al. (2022)), we provide a new application to
random geometric graphs. The analysis also prompts us to study the signed triangle count proposed
by Bubeck et al. (2016) in the noisy case, proving the detection upper bound. For the recovery lower
bound, we generalize the technique developed by Schramm and Wein (2022) for the planted clique
problem to a general binary observation model, and then apply it to our problem. Finally, the most
technical part of this work is the recovery upper bound, where we provide a delicate analysis of
self-avoiding walks between two vertices in the observed graph. The same statistic has been used
by Hopkins and Steurer (2017) for community detection, but we perform a new analysis of certain
probabilistic and combinatorial properties of self-avoiding walks in random geometric graphs.

Open problems While we have characterized the detection and recovery thresholds for low-
degree polynomial algorithms, the information-theoretic thresholds for both problems remain largely
open. Most existing results in the literature of small-world graphs or random geometric graphs fo-
cus on different regimes and are not comparable to our results. For example, Ding et al. (2020a)
consider the regime 7n = n°(!) and Liu and Récz (2021) assume a constant p. One possible ex-
ception is the work by Cai et al. (2017), which assumes a bandwidth exactly 7n instead of 7n in
expectation. Ignoring this difference, their results can be compared to ours for p, ¢, and 7 all of
the order n~¢, i.e., on the diagonal @ = b in Figure 1. One of their results states that detection
is information-theoretically possible if a < 1/2. Consequently, the information-theoretic threshold
for detection would be inside region A in Figure 1, and there would be a statistical-to-computational
gap for the detection problem. However, since the comparison between Cai et al. (2017) and our
work is not fully rigorous, we leave the study of information-theoretic thresholds to future work.

Another interesting question left open by our work is what the detection and recovery thresholds
are for higher-dimensional geometry. For example, the latent locations 21, . . . , 2, may be distributed
on the unit sphere S*! in R? for d > 3, rather than on a circle. We believe many of the results
in this work extend to the case of a fixed d, but if d grows with n, then the problem becomes
significantly more difficult and novel ideas are required.

In the sequel, we present low-degree lower bounds before upper bounds for both the detection
and the recovery problem. The rationale behind this nonstandard order of presentation is in fact
an important advantage of the low-degree framework: The proof of a low-degree lower bound will
naturally suggest an efficient algorithm that potentially achieves the matching upper bound.

3. The detection problem

As discussed in the introduction, the planted dense cycle model is a one-dimensional random ge-
ometric graph model. Detection of geometry in random graphs has been studied, and a canonical
algorithm for this task is counting signed triangles proposed by Bubeck et al. (2016). On the other
hand, computational lower bounds for random geometric graphs are not well-understood even in
the one-dimensional case. We first present the low-degree lower bounds, whose proof suggests that
the statistic of signed triangles has the best distinguishing power. Then we give a self-contained
analysis of signed triangles in our case.
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3.1. Lower bound

The standard procedure for proving low-degree lower bounds consists in analyzing the distinguish-
ing power of an orthonormal basis of functions of the observations under model Q. Towards this
end, for (i,7) € ([g]), define

T Aij - T

A= ——. 2
NG ”

For o C ([g]), define

ba(A) = Aij,
(i,5)Ea

and let ¢5(A) = 1. Then {¢a} (i) is an orthonormal basis for functions on the hypercube
=\2

[n] . . o
{0, 1}( >) under Q. Moreover, since r is the average edge density in both models P and Q, the
larger p is compared to r, the larger signal we have at each edge. Hence we define a quantity
p—r

=t 3
p 1) €

that can be understood as the signal-to-noise ratio of model P. We have the following theorem.

Theorem 8 (Detection lower bound) Consider Problem 3. Fix any constant § € (0,0.1). No
polynomial f € R[A|<p strongly separates P and Q in the sense of Definition 5, if

_ ~ logn \2
TR =T p=0(Q1), D 0(<loglogn) > “)

To clarity, O(l) in (4) does not stand for a specific bound but rather allows u = u, to be
any sequence that scales as O(l), and similarly for the condition on D. In addition, to ease the
presentation, we have assumed the conditions in (4) that are stronger than what is required by the
proof: It suffices to assume n374u8 < n=°1) for an appropriately defined o(1) quantity, and the
degree D can be polylogarithmic in n or even n°!) if 1 is sufficiently small.

The proof of the above theorem is deferred to Section A.1. We now provide a proof sketch. To
show that no polynomial of degree at most D strongly separates P and O, it suffices to prove that
the “advantage”

Adv<p := sup M(A)L
ferAl<p, VEolf(A)?]
Eg[f(A)?]#0

is O(1); see (Bandeira et al., 2022, Proposition 6.2). Furthermore, it is known (Hopkins, 2018,
Section 2.3) that
Advip = Y (Ep[sa(A))* ©)

ag([g]) |la|<D

The rest of the proof consists in controlling all the summands in (5), which is done in Section A.1.
This eventually leads to Proposition 20, from which Theorem 8§ easily follows.

To further clarify the intuition behind the sum in (5), for each subgraph o C ([g]), we can
understand the quantity Ep[¢,(A)] as the “power” of the statistic ¢, (A) in distinguishing P from
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Q. The lower bound requires that the total distinguishing power, as a sum of (Ep[@q(A)])? over
all low-degree «, is bounded. On the other hand, if Ep[¢,(A)] is large for a particular choice of «,
then the corresponding statistic ¢, (A) can be used for testing between P and Q. A careful study
of E[¢,(A)] in Proposition 20 suggests that the bottleneck case is when the graph « is a triangle.
Therefore, it is natural to consider signed triangles for the upper bound.

3.2. Upper bound

While signed triangles have been analyzed for random geometric graphs in previous works such as
Bubeck et al. (2016); Brennan et al. (2020); Liu and Racz (2021); Liu et al. (2022), none of these
results apply in our case. For example, the setup closest to ours can be found in Liu and Récz
(2021), where high-dimensional random geometric graphs are studied but the probability p has to
be fixed. Therefore, we present a self-contained analysis of the signed triangle statistic

S3(A) = Z H Ajj. (6)

He(l) @e(y)

Note that if flij were replaced by A;; in the above definition, then S3(A) would be the number of
triangles in the graph A. Hence S5(A) is a standardized version of triangle count.

Theorem 9 (Detection upper bound) Consider Problem 3. Suppose that p > Cq for a constant
C > 1. The degree-3 polynomial S3(A) defined in (6) strongly separates P and Q in the sense of
Definition 5, if

n3r4pt /rd = w(1), n372p® = w(1). 7

The proof of the theorem is deferred to Section A.2. In short, we control the two expecta-
tions Ep[f(A)], Eg[f(A)] and the two variances Varp[f(A)], Varg[f(A)] in Propositions 21, 23,
and 24, which together result in Theorem 9. We have again chosen simplicity over generality for
the statement of the above theorem by assuming p > C'q for C' > 1. A more general condition
can be obtained from a refined comparison between the bounds in Propositions 21 and 24. The two
conditions in (7) can be interpreted as follows. First, as we see in the proof, u = ©(p/r/?), so
the first condition in (7) matches the first condition in (4) up to an n? factor; they together give the
detection threshold stated in Theorem 7. Next, for any three vertices, the probability that they are
neighbors in the planted cycle and form a triangle in A is ©(72p?); as a result, there are O (n®72p?)
triangles in the planted cycle on average. Therefore, the second condition in (7) is a minimal condi-
tion guaranteeing the existence of triangles in the planted cycle in the first place. Further, note that
if p and ¢ are of the same order, then n372p® = Q(n374p%/r?), so the second condition in (7) is
subsumed by the first condition.

4. The recovery problem

Similar to the previous section, we start with the low-degree lower bound, whose proof suggests an
optimal efficient algorithm. Then we analyze the algorithm to establish the matching upper bound.
The optimal statistic for recovery turns out to be a signed count of self-avoiding walks between
vertices 1 and 2, a statistic that has been used for related problems such as community detection in
Hopkins and Steurer (2017) and spiked matrix models in Ding et al. (2020b).
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4.1. Lower bound

A general strategy for proving low-degree lower bounds for estimation problems was proposed by
Schramm and Wein (2022). We provide a lower bound in Proposition 11 that extends the one in
(Schramm and Wein, 2022, Section 3.5) for the planted clique problem. Let us start with a general
recovery problem with binary observations.

Definition 10 For an integer N > 1, let By, ..., By be i.i.d. Bern(q) variables. Consider a latent
random subset W C [N] from an arbitrary prior over subsets of [N|. Conditional on W, we define
the observation A € RY as follows. If i ¢ W, then let A; := B;. If i € W, then sample an
independent A; ~ Bern(p).

Given A from the above model, we aim to estimate y := 1{1 € W}. For a positive integer D,

define y
Corr<p := sup Elf(4) A
rerAl<p, VE[f(A)?]
E[f(A)?]#0
asin (1). Let
Nim P4 ®)

Val—q)

which is a signal-to-noise ratio analogous to p in (3) for the detection problem (here in the recovery
problem, model Q is irrelevant, so r is replaced by ¢ in the definition of A\). The following result is
proved in Section A.3.

Proposition 11 Assume the model in Definition 10. For 3 C o C [N], let
Pag :=P{a\ W = 8}

Suppose Pno > 0 for all o C [N]. Then we have

CO”’2§D < Z p2 N2l
aC[N]: |a|<D

where p,, is defined recursively by py := P{1 € W} and
1
Pa = P(P{a U{1} W} = pp Paﬁ)
ao BCa
We now return to the problem of planted dense cycle and present the following result.
Theorem 12 (Recovery lower bound) Consider Problem 4. Fix any constant § € (0,0.1). No

polynomial f € R[A]<p weakly recovers x = 1{0(z1, z2) < 7/2} given A ~ P in the sense of
Definition 6, if

] 2
X <n®  A=0(1), D= o<<k);i;1) ) 7D* < 0.1. 9)

9
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Let us discuss the conditions in (9), which are analogous to those in (4). First, the main condition
is n72\2 < n?%, which can be weakened to n72\? < n=°1) for an appropriately defined o(1)
quantity by a closer inspection of the above proof. Also, the degree D can be polylogarithmic in
n or even n°M if X is sufficiently small. Finally, the technical condition 7D* < 0.1 is inactive if
nA? > 1; even if it is active, the condition is mild because the interesting regime of small-world
networks is where the bandwidth n7 is much smaller than the total number of vertices n.

Theorem 12 is proved in Section A.3 and we now provide a sketch. To apply Proposition 11,
we note that model P in Definition 1 is a special case of the model in Definition 10. Namely, let
N = (5), use an index pair (i, j) € ([Z]) instead of a single index, and let

W= {(i,j) € <[Z]> (2, 2) < 7/2}. (10)

In addition, we have
x = 1{o(21,22) < 7/2} = 1{(1,2) e W}

Proposition 11 then implies that

Corr’p, < oo piael, (1)
ag([g]) |la|<D

where p,, is defined recursively by py = P{9(z1, 22) < 7/2} = 7, and

o= (Pla U102} W)= 3 s Pan) (12

ax 5g0¢

Then the bulk of the proof consists in bounding p?2 for each « using the above recursion. This is
done in Section A.3, eventually leading to the bounds on Corr’ p in Proposition 29. Theorem 12
then follows as a consequence. -

The recursive definition (12) is similar to that for joint cumulants of the random variables x
and (Aij)(i,j)e(x (see Schramm and Wein (2022)). Intuitively, for each oo C ([g]), the cumulant-like
quantity p, measures the amount of “information” (Aij)(i’ j)ea contains about the estimand y. The
above lower bound controls the total amount of information that all subgraphs with at most D edges
have about . On the other hand, if p, is large for a particular choice of «, then the corresponding
subgraph (A;;); j)eo may be useful for recovering x. The analysis of p,, in Proposition 29 turns out
to suggest that we should consider self-avoiding walks between vertices 1 and 2, which we study in
the next subsection for the upper bound.

4.2. Upper bound
Similar to A in (2), we consider a standardized version A of the observed graph, defined by
5 A —
Ay=—2-4 (13)
q(1—q)

for (i,j) € ([g}). Compared to (2), the parameter r is replaced by ¢ in (13) because model Q is
irrelevant for the recovery problem. Moreover, for oo C ([72”), define

Aa = H Az] (14)
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As discussed above, the proof of the recovery lower bound suggests that self-avoiding walks
between vertices 1 and 2 are informative about x = 1{0(z1,22) < 7/2}, which motivates us to
consider the following. Fix an integer ¢ > 1. Let SAW, be the set of all length-(¢ + 1) self-avoiding
walks from vertex 1 and to vertex 2, i.e.,

SAW, = {{(1,i1), (i1,d2), (i, 83), - - (ie—1,74¢), (i, 2)} < i1, - . . yig, 1, 2 are all distinct}. (15)

Define the signed count of SAW, in the observed graph A as

T(A) = Z A~O¢ - Z A1i1A~’i1i2Ai2i3 e Aig_ligAng' (16)
OéESAWg 217£7£Z[7£17£2
As discussed above, this statistic has appeared in, e.g., Hopkins and Steurer (2017) for community
detection. The following theorem shows that the statistic 7'(A) achieves weak recovery of y, and
its proof can be found in Section A 4.

Theorem 13 (Recovery upper bound) Consider Problem 4. Suppose that Cq < p < C'q for

constants C' > C > 1. For any constant § € (0,0.1), fix an integer { > 1/§. The degree-({ + 1)

polynomial T'(A) defined in (16) weakly recovers x = 1{0(z1,z2) < 7/2} given A ~ P in the
sense of Definition 6, if

nr’p > n, T =o(1). (17)

If p and q are of the same order, then we have A = —2=2_ = ©(p'/?). Therefore, the main

va(l-q)

condition n73p > n® in (17) matches the first condition in (9) up to an nd factor; they together
give the recovery threshold stated in Theorem 7. We can also obtain a more general condition for
the upper bound using Propositions 31 and 38, but the condition is not tight in the regime where
p/q > n€ for a constant ¢ > 0. Proving a tight condition requires more technical work beyond
the scope of this paper. Moreover, as we have explained, the condition 7 = o(1) in (17) is natural
because the bandwidth is usually much smaller than the total number of vertices.

We have focused on weak recovery in the sense of Definition 6 and established the detection-
recovery gap in the framework of low-degree polynomials. Let us now consider the more practical
problem of exactly recovering the indicator x = 1{9(z1, 22) < 7/2} with high probability using a
polynomial-time algorithm. Towards this end, fix a quantity € € (0,7/2) and define

B E[T|0(21,22) = 3] + E[T|0(21,22) = § + €]

k= k(€)== 5 . (18)

By Proposition 31, the quantity ~ can be computed explicitly. We then threshold the statistic 7'(A)
in (16) at k to obtain the estimator

X = {T(A) > k}.

The following result is a consequence of our analysis of the statistic 7'(A), and its proof is deferred
to the end of Section A 4.
Theorem 14 In the setting of Theorem 13, we additionally assume { > 3/9 and set € := Tn0/4,
Then the estimator x = 1{T(A) > k} of x = 1{0(21, 22) < 7/2} satisfies

E[(R —x)°] = P{X #x} < Corn™/?

for a constant Cy > 0 depending only on (.

11
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Since 0(z1, 22) < 7/2 with probability 7, a trivial estimator Y = 0 makes an error with probability
7. Therefore, the above error probability O(7n~9/2) is small.

An immediate consequence of the above result is that we can estimate the underlying random
geometric graph consistently. To be more precise, we denote the adjacency matrix of the geometric
graph by X € {0,1}"*", which is defined by X;; := 1{0(2;, z;) < 7/2}.

Corollary 15 In the setting of Theorem 14, there is an estimator X € {0,1}" " of the random
geometric graph X € {0, 1}"*" such that

E[|X — X|[}] < Corn®~/?
for a constant Cy > 0 depending only on £.

This result follows immediately from Theorem 14, because by symmetry, it suffices to estimate each
edge X;; = 1{0(2;, z;) < 7/2} in the same way as we did for (7, j) = (1,2).
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Appendix A. Additional proofs

A.1. Detection lower bound

In this subsection, we establish Proposition 20 which leads to Theorem 8. Recall the models P and
Q in Definitions 1 and 2 respectively. For a C ([g]), define

n(za) == [{(i,5) € a:0(z,2) < 7/2}].
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Lemma 16 For o C ([g]), let v := |V («)| and suppose that the graph « is connected. Then we
have

1 2
< 2vv—lal-1
= [TW(Z;a)] =T ‘

Proof Suppose that V(«) = {i1,...,4,}. For any realization of z, there is a unique partition
By U---UB,, of {i1,...,i,} such that the following two conditions hold:

1. For any distinct j, 5/ € [m] and any ¢ € B; and ' € Bj/, we have d(z¢, z¢r) > 7/2;
2. For any j € [m], B; cannot be partitioned into two sub-blocks satisfying Condition 1.

In other words, we partition z;,, .. ., 2;, into blocks so that the distance between two consecutive
points in the same block is at most 7/2.
Now fix a partition {iy,...,i,} = By U--- U B,,. We claim that

[P.{Conditions 1 and 2 are satisfied for By, ..., B,,} < (v7)"" ™. (19)
To prove (19), it suffices to use Condition 2. Fix ¢; € Bj for j € [m]. By Condition 2, for any
J € [m] and £ € Bj, we have d(2¢, z¢;) < |B;j| 7/2 < v7/2. For any realization of 2y, , ..., 2,,, it
holds that

m
P.{d(2, 2¢,) < vr/2forall £ € Bjandall j € [m] | z,,..., 2, } < [J(or) P17 = (vr)>—™.
j=1

Then (19) follows.
Since the graph « is connected, there are at least m — 1 edges between vertices £ € B; and
¢" € By for distinct j, j* € [m]. If Condition 1 is satisfied, then we have

n(z;a) = {6, 0) € a:0(zp, 20r) < 7/2} < a]—(m — 1). (20)

Combining (19) and (20), we obtain

1 1
< v—m < v _v—|al—1
E. {777(2;04)} = 2. )™ o < 2. v '
B1U~~~UBm:{i1,.4.,i1,} B1U~~~UBm:{i1,.‘.,iv}
Finally, bound the number of partitions by v". |

Lemma 17 For o C ([g]), let v := |V ()|, and let m be the number of connected components of

the graph o. Then we have

1 2
< 2v_v—lal-m
E: [ <o

Proof Let oY) U --- U a(™ denote the partition of « into connected components, and note that

o= la],  v=V(@)|=) VD), a(za) =) a(zal).
i=1 i=1 i=1

15
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Lemma 16 shows that for each connected component o(¥), we have

E[;} < [V (@) AV @ V(@)=la®-1 2V (@)] V(@) —|al|-1,
7n(zal)
Crucially, the random variables 7(z; 1), ..., 7(z; ™) are independent because the connected

components have mutually disjoint vertex sets and thus involve independent collections of latent
variables z;. We conclude that

1 1 i i i i
Ez[ _ } — HEz[ } < T o2Vl AVE@I—a®l=1 _ 20 zo-jal-m,
=1

Lemma 18 For a C ([g]), let v := |V ()
the graph o. Recall that p = —2=

Nz

, and let m be the number of connected components of
. Then we have

Eplpa(A)] < () v,

1—71
Proof We have

Erlon()] = (g I (45 =7)

(4,9)Ea

1
~ G| IL B =19

) (r(l—lr)ﬂ“'/?Ez [0 — )70 (g = p)lel=ntz].

Recall that 7 = 7p + (1 — 7)g so that 2=2 = 7=L ‘and y = —2="__ Tt follows that
q—r

()]

Ep [¢a (A)]

By Lemma 17, we obtain

Erisaa < (£7) "B ] = (7)o,

1—7 71(z50) 1—71

finishing the proof. |

Lemma 19 [f the graph « has a dangling edge, i.e., an edge (i, j) where i is connected only to j
in o, then Ep[pq(A)] = 0.
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Proof Letz_; = (z1,...,2i—1,%i+1,---,2n). Since ¢ is connected only to j in «, conditional on
z_;, the edges { Ay : (i',5) € &\ {(i,7)}} are mutually independent; further, they are indepen-
dent from z; and A;;. It follows that

Eplon(A] = .| T] Epliey -] =0

(i",5)€a
because
Ep[Ayj —71]z] 1p—7r)+(1—-7)(g—7)

Epldij | 2 = r(l—r) - r(l—r) =0

by the definition r := 7p + (1 — 7)q. [ |

Proposition 20 Recall (5). We have Adv2§ p < 2in either of the following situations:
. 27137'4(2D)13RG‘/5 < 1/2, where R := max {2D*-,1};
« L(2D1£)* < 1/2 and n?74(2D)"(+£-)® < 1/2, where L := max{n7?(2D)*, 1}.

Proof To ease the notation, we consider D such that /D /3 is an integer; the proof can be easily
adapted to the general case by using floors |- | or ceilings [-].
We start with (5) which states

Advip= Y (Eplda(4)])*.

ag([g]) :|la|<D

Recall that ¢ = 1. Let c(«) denote the number of connected components of «. If any connected
component of « has less than three edges, then it must contains a dangling edge; if the number of
vertices of o exceeds the number of edges, then « also has a dangling edge. Therefore, Lemma 19
shows that Ep[¢pq(A)] = 0if |a|< 3c(a) or [V (a)|> |a|. Then, by Lemma 18, we obtain

D/3 D D

2 1% 2 4y 292 2
TP 3D 3D () otrrmam 1o < 0 < o22)
m=1{=3m v=3m aC [n]) . c(a):m,

la|=L, [V () |=v

There are at most (7)) [((%)) A 2(5)] graphs o with |V (a)|= v and |a|= ¢. By the inequalities

(M) <nv, ((%)) < v* < (2D)*, and 2(3) < 2°, we have

D/3 D D

Advip <1+ % >

m=1{=3m v=3m

[(2D)2€ A 2“2} : (

1— T>2£<n72(2D>4)”T‘2m o <L <02} @b

Let us consider two cases.
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Case 1: We bound (21) by splitting it into the following terms according the value of v:

D/3 VD D
Advip <143 Y Y ( ) (n72(2D)4) r=2m . 1{0 < v2/2} (22a)
m=1v=3m {=3m
b/3 2
+2 S S en P(E2) e enyty e, (220)

v=vDV3m {=3m

We then bound (22a) and (22b) respectively. Recall that R := max {2D £
31 (2D)13R6‘F <'1/2, we have

1}. By the assumption

1-7°

722D)*RYP <1/2,  n3r2D)2RVP < 1/2.

For v < \/E, we have 20 < v? < \/Ev, so the sum in (22a) is bounded by

D/3 VD D/3
S % D RVP?(nr2(2D)4)"r~2m < 2D 3 (nr2(2D)*RYD)3my—2m
m=1v=3m m=1

< 4D n374(2D)2R¥D < 1/2
by the assumption 2n37'4(2D)131‘26\/5 < 1/2. Next, using
2(2D)* < 1/2, n3r4(2D)? < 1/2,

we see that the sum in (22b) is bounded by

D/3

Z DRQD(nT2(2D)4)x/5v3mT—2m

m=1
VD/3 D/3

< 3" DR (nr?(2D)")VPr=2P 1 N DRPP(ndri(2D)1?)"
m=1 m=vD/3

< D3/2R2D(n37'4(2D)12)\/5/3+DR2D(7”L37'4(2D)12)\/5/3

vD/3
< <n37_4(2D)12(2D)9/(2\/5)R6\/5) / < 1/2
by the assumption 27137'4(2D)13]%6\/5 < 1/2. Combining the two terms yields Adv2§ p <2
Case 2: It follows from (21) that

D/3 D

AdV<D <14+ Z Z Z 2D 2€<1le> é(QD)4UTQU_2m

m=1¢=3m v=3m

D/3 D Nt ¢
=1+ Z Tom Z ((2D1 ﬁ T) ) Z (nr?(2D)*4)".
m=1 {=3m v=3m
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Recall that L := max{nr2(2D)*, 1}, L(2D£-)* < 1/2, and n®74(2D)"*(+£-)° < 1/2. We

have

D/3 D ¢
2
Advip <1+ 7y <(2D1 f T) ) (€ — 3m + 1)(nr2(2D))3m Lt=3m
m=1 {=3m
D/3 D 1 o\ £
-3,.3_4 12\m
<1+DY (L *nPr(2D))™ Y <L(2D1_T> )
m=1 {=3m
D/3 m 2 3m
<142D S (L7334 (2D)12)™ L<2D )
<1+2D ) (L *n*7'(2D)") T
m=1
D/3 m
— 1420 (n*reD) (L )6
= 1—7
34 18 po\S
<1+ 4Dn?r(2D) (—1 ) <2,
-7
finishing the proof. |

We are ready to prove Theorem 8.
Proof [Proof of Theorem 8] To prove that no polynomial of degree at most D strongly separates P
and Q, recall the discussion after Theorem 8: it suffices to show that the advantage in (5) is O(1).
Note that it is bounded by 2 in Proposition 20, which we now apply. It suffices to verify that (4)
implies the assumptions of Proposition 20. To this end, we consider two cases:

e If p = (1), n?>r* < n % and D = o((log)ﬁ)gn)2>, then we can check the first set of

conditions in Proposition 20: R = max {2D#-,1} = O(1) and 27137'4(2D)13R6‘/5 <
ndrt . net) < 1/2.

» Next, suppose that ;1 < (logn)~19, n374u6 < n=% and D < (logn)'°. We can check the
second set of conditions in Proposition 20 by further considering two subcases:

2
—If 1 < 02, then L = max{nr2(2D)*, 1} < (2D), L<2Dﬁ> < u2(4D)S <
6
1/2, and n374(2D)19<£> < n=%(4D)19 < 1/2.
2
- If 7 > n~/2, then L = nr?(2D)* and L<2Dﬁ> < nr2u%(4D)% < 1/2 because

1—-7

6
nrp? = (n3r0u8)1/3 < (n3r4ub)Y/3 < n=9/3. Finally, n®74(2D)"9 (£ ) <1/2

as in the previous subcase.

Combining all the cases completes the proof. |
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A.2. Detection upper bound

While it suffices to focus on the signed triangle count for the upper bound, we consider cliques with
v > 3 vertices, because some intermediate results hold for a general v > 3 and may be interesting

in their own right. Define
S A= > I A4
Ae(®) Ge()

Recall the models P and Q in Definitions 1 and 2 respectively.

Proposition 21 We have

BolS(4)] =0, Varo(s,(4) = (7).

v
Proof It is clear that Eg[S,(A)] = 0. Moreover, the variance of S, (A) under Q is equal to

Bols, (4= X Bo| [T I Avdw|= X Bo| TI #]=(7).

mae() () @ane(’y) (t)  aoes)
|

For H € ("), define
sty =|{i.ir e () o < w2 . 23)

Lemma 22 Suppose that 3 < v <nand (0 < 7 < W If |H|= v, then

(_1)(;) Ez[(T ; 1>C(z;H)] > W

Proof Without loss of generality, we assume that H = [v]. It holds that

(—1)(3) .EZKT - 1>C(Z;H)}

G m
= ()G Y P ) = m) - (7o)

=0
(5)-1

sz{C(z;H)= (;>}~<1;T>@ — 3" PAC(5 H) =m}- (1;T>m. (24)

m=0

We now further bound this quantity from below.
First, conditional on any realization of 21, it holds that

P.{0(21,2) < 1/Aforalli € H |z} = (1/2)"" L.

20
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If 0(z1,2) < 7/4forall i € H, then d(z;,2;) < 7/2forall i,j € H so that ((z; H) = (5).
Consequently,

e =G} ()2 07 i g @

where the last step holds because 7 < ﬁ by assumption.
Second, we have
(3)—v m ()
1—7 1 1
> PA¢(z H) = m} - <| D PACH)=m} |- —m— < = (26)
m—0 T m—0 7-(2)_” 7-(2>_U

Third, for (;) —v+2<m< (72’) — 1and {(z; H) = m, the graph on H with the edge set

{te (§) otz <} @

must be connected. As a result, 9(z1, z;) < v7/2 for all i € H. Conditional on any realization of
z1, it holds that
P.{0(z1,2) < wr/2forallie H | z1} < (vr)° L.

Then we obtain

() Lam )
Z PZ{C(Z7H) - m} ’ ( - ) < < Z Pz{(('sz) = m}> ’ (u)_l
m=(3)-v+2 m=(3)-v+2 ™
v—1 1 U’Uil
SR e @

Fourth, for {(z; H) = (g) — v + 1, the graph on H with the edge set (27) is either connected
or has only one isolated vertex z;+. Let j* = j*(i*) be any vertex in H not equal to i*. Then
0(2j+,2;) <wr/2foralli € H \ {i*}. Conditional on any realization of z;=, it holds that

P.{0(2j=,2) <wvr/2foralli € H\ {i*} | zj=} < (m_)va.

Then we obtain

P, {C(z;H) = (72)) —v+ 1} : (1 _T>(g)_v+1 <w(vr)'?- L . Uv)__l (29)

T T(g)—v—&—l a 7-(2

where we used the assumption v > 3 in the last step.
Finally, combining (24), (25), (26), (28), and (29) yields that

T — 1\ ((=:H) 1 i v-l 1
EZ |:( ) ] 2 v - v - v - v Z v )
T 21;7_(2)7v+1 7'(2)71} 7‘(2)71} 7‘(2)7’” 20+17_(2)7v+1
since 71— > 2(1 4 20¥~!) by assumption. [ |
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Proposition 23 Suppose that 3 < v <nand(0 <71 < Wl%v,l)

Eris. > (1) (1)

. It holds that

Proof We have

Ep[Su(A)] = ) EP[ 11 AU}

T
m
—~
°E
N—
~
<
m
—~
N
S~—

Recall that = 7p + (1 — 7)q so that 2= = =1 and p = —2=Z—. It follows that

Ep[S,(A)] = <7_'Lf1>(g) Z EzKT;l)C(z;H)]

Then, by Lemma 22, we obtain

Epls, ()] 2 ({7 T)(Z) ()

completing the proof. |

Proposition 24 There is an absolute constant C' > 0 such that

Varp(S3(4)) < M(n4<fp+q+r2><r—q>2<p—q>2+n3<q3+r6+7pq2+7pr4+72p3>).

Proof For brevity, let o := /r(1 — r) in this proof. The variance of S3(A) under P is

Varp (S3(A)) = Ep[S3(A)%] — Ep[Ss(A)]?

= > Ep [ 11 11 Aiin’j’] - > Ep [ Aij:| Ep [ 11
mae(y) T Ee(s) @ane(y) #He(F) T Eae() (W.39e(’y)

For fixed H, H' C [n] with |H|= |H'|= 3, consider the following cases:

e |[HN H'|= 0: We have that {z; : ¢ € H} and {z; : ' € H'} are independent, and conse-
quently, {A;; : (i,5) € (§)} and {4y : (i',5') € (Ié/)} are independent. Therefore,

Ep[ I 11 Aiin,j,}_EP{ I /L-]}Ep[ 11 Ai,j,}:o.

el @ ne() @e(l) (@.3ne(’y)
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e |HN H'|=1: Suppose H N H' = {i*}. Conditional on z;+, we have that {z; : i € H \ {i*}}
and {z; : i’ € H'\ {i*}} are independent. Moreover, {4;; : (i,7) € (gf)} and {A;j :
(7, 5" € (g/)} are conditionally independent, and their distributions are not changed by the
conditioning on z;+. Therefore, we still have

Ep[ I 11 Aiin,j,}_Ep[ 11 Aij}Ep[ 11 Ai,j,}:o.

@ne(’) @.ane('t) (i.9)€(%) (i".3)e(%)

* |H N H'|= 2: Without loss of generality, suppose that H = {1,2,3} and H' = {1,2,4}.
Then

EP{ I1 I 4 A"’j']
@ie(y) @.ane(®)
—E. [EP[A%Q | 2] EplAus | 2] - Ep[Az | 2] - EplAia | 2] - Ep[Az | 2]

]‘ Z1,% T Z1,% T
= 5B |(p(1 =)+ (1= p)r?) OB g1 — 1) 4 (1= g)r?) 02>/

C(Z)( 4—((2)

(p=7r)""(g—r1) :

where ((z) = [{(i,5) € {(1,3),(2,3),(1,4),(2,4) : d(z;,2;) < 7/2}|. We have the
following:

— It is obvious that
P{0(21,22) <7/2,{(2) =0} <7,  P.{0(21,22) >7/2,{(2) =0} < 1.

— Condition on any realization of (z1, z2). If 1 < {(z) < 2, then one of the following four
events must occur: (1) 9(z1, 23) < 7/2, (2) 0(22,23) < 7/2, (3) 0(z1,24) < 7/2, 01 (4)
0(22, z4) < 7/2; this holds with conditional probability at most 47. Therefore,

P {1 <{(2) <2 21,2} < 47,
SO we obtain
P.{d(21,22) <7/2,1 < {(2) <2} <47?,  P{0(21,22) > 7/2, 1 < ((2) <2} < 4r.

— Condition on any realization of (21, z2). If 3 < CN (z) < 4, then one of the following
four events must occur: (1) 9(z1,23) < 7/2 and 0(z1, 24) < 7/2, (2) 0(21,23) < 7/2
and 0(z2,24) < 7/2, (3) 0(22,23) < 7/2and 0(z1, z4) < 7/2, (4) 0(22,23) < 7/2 and
(22, z4) < 7/2; this holds with conditional probability at most 472. Therefore,

P.{3 <((z) <4|z1,2} <472
SO we obtain

P.{0(z1,22) < 7/2,3<C(2) <4} <4r®,  P{o(z1,20) > 7/2, 3 < ((2) < 4} < 472,
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Combining the above bounds, we see that
Ge(y) @.3ne()

4
- % {ZPZ{M 22) <7/2,((2) = 0} (p(1 = 1)* + (L= p)r*)p = )" (q = )"
=0

4
+ 3 P21, 20) > 7/2, {(2) =} (gL =12+ (1= q)rP)(p— 1) (g — r)“]
/=0

< % [(p(l —7)?+ (1 —p)r?) (T(r —) 4 (p— 1)’ (r— @) + 47 (p - 7«)4)

Fla =+ 0= ) (0= )+ arlp - e -+ a2 - )|

where we omitted negative terms where ¢ is odd. Recall that 7(p—r) = (1—7)(r—q) < r—q.
Also, the condition 0 < ¢ < r < p < 1 implies that

p(I =72+ (1 —pr? <p+r2<2p,  ql-r +1—-qr*<qg+r%  (30)

It then follows that

e TI TT Awey]
e() (.)€ (™)
(T =+ 0=+ =24 (= ) (- 0+ 2m(p 1))

et at ) (-0 +2r ) -1)

2

IA

IN

%(2717 +q+77)(r—q)%p—q)>*

* |H N H'|= 3: Without loss of generality, suppose that H = H' = {1,2,3}. Then

Ep[ I 10 AijAl./j,} _ Ep[ 11 A%} - IE[ I Erl22 2]
@)e(y) @.ne() (i.9)€(h) (5)e(’)
1 . (e
= o5 B (1 =)+ (1 =) g1 =) 4 (1= )]
We have P,{0(z1, 22) < 7/2} = 7, so by symmetry, P.{((z; H) = 1} < 37. Moreover, let
us condition on any realization of z1. If ((z; H) > 2, then 9(21, 22) < 7 and 0(21,23) < 7,
which occurs with conditional probability at most (27)2. Therefore, P.{((z; H) > 2} <
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(27)%. We then obtain

e T1 T1 o]

@i)e(3) @ane(y)

3
= 5 SO PAC H) = 0 (o1~ 4 (1= ) (a1 ) 4 (1= )
=0

IN

% [(Q(l =)+ (1= q)r®) +37(p(1 = r)° + (1 = p)r?)(q(1 = 1)’ + (1 — ¢)r?)?

+ @2 (00 =) + (1= p)r)*(a(1 = 1) + (1= @r®) + (p(1 = 1)? + (1 = p)r?)*)
< % [(q + 1)+ 67p(q+ 1)’ + 647'2p3:| :
where the last step follows from (30).

In summary, we have

Varp(53(A))
4 2 2 1 2\2 2,3
< — — il
< D S@mtatr)r—g? + ) UG[CHT +67p(q + %)% + 647%p
HH () e('y)
|[HNH'|=2

C
=56 (n4(7-p +a+7)0r =)0 - 0)* + (¢ + r° + g + Tt + 7‘2103))
for an absolute constant C' > 0. .

We are ready to prove Theorem 9.
Proof [Proof of Theorem 9] In view of the assumption p > Cq for a constant C' > 1 and the defini-
tion r = 7p + (1 — 7)g where 7 < 1/2, we have p = p(_lr s = O(p/r'/?). By Propositions 21
r(l—"r
and 23, we obtain

Eplsa()] ~ Ealsaa)] > (3 ) (125) T = 0tn'rpt )

and
Varg(S3(A)) < n?.

Moreover, the definition 7 = 7p + (1 — 7)q where 7 < 1/2 implies r — ¢ = 7=(p — r) < 27p.
Hence, the bound in Proposition 24 simplifies to

1
Varp(53(A4)) = O( 3 (nt73p° + 0t 2ptr + 033 4 ndrpr? 4 n37'2p3)>

Consequently, for S3(A) to strongly separate P and Q, it suffices to have

/1B + nd3p5 /e 4 ndr2pt [r2 4 n3rp/r + n372p3 3 = o(n®r2pd /r3/?),
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which (by dividing the square of the RHS by each term on the LHS) is equivalent to
min {n374p0 /73, n?rp, n?72p? fr,n373p% fr? n3r7pP = w(d).

The first and the last quantity on the LHS are assumed to be w(1) in (7), and the middle three

quantities are w(1) because (n?7p)3 > (n372p3)2, (n272p?/r)3 > (N340 /r?) - (n372p?), and

(n37'3p5/7‘2)3 > (n3T4p6/’r3)2 . (n3T2p3). ]

A.3. Recovery lower bound

We first prove Proposition 11.

Proof [Proof of Proposition 11] Recall Definition 10. Define Z,Y € RN by Z; := % and
q(l—q
Y = Azl_q ) for i € [N]. Since any polynomial of in (A;);c|n) is also a polynomial in (Y;);c|n]
q(l—q

of the same degree (and vice versa), we have

E[f(Y) -]

su .
feRY]<p, VE[f(Y)?]
E[f(Y)?]#0

COI’I’SD =

For f € R[Y]<p, we can write

f(Y) = Z faya,

aC[N]: |a|<D

where Y := [, Yi and fa denotes the coefficient of f in the basis {Y* : a C [N]}.
Recall that \ = \/p%q). Then we have E[Y; | ¢ € W] = A. It holds that
a(1—q

EfV)x = Y, [aEY*x = (f,0),

aC[N]:|a|<D
where
Vo = E[Y*x] = P{a U {1} C W} - Al 3D

Moreover, by Jensen’s inequality,

E[/(V)?] 2 E|(Bf(Y) | 2))°] = Elg(2)?),

where

9(2):=E[f(Y)|Z]= >  [f«E[Y*|Z].

aC[N]:|a|<D
Moreover, we have
EY®|Z] =Y Pla\W =g} ZO\=Iol,
BCa
Together with the definitions of g(Z) and P,g, this implies that

o2)= Sz S faep, = Y g2t

BC[N]:BI<D  aC[N]:a2B, |a|<D BE[N]:|B|<D
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where

gp = Z fa Alel=18l P.gs.
aC[N]:a28,|a|<D

Therefore, we have § = M f where the matrix M is indexed by 3, o« € [N] with ||, |o|< D, and
M is defined by
Mgy = Lgca AN=1BI P4 (32)

Since the basis {ZfB :  C [N]} is orthonormal, we have E[f(Y)Q] > E[Q(Z)Q] — ||g||2
Note that M is jnvenible because it is upper triangular with nonzero diagonal entries. This means
E[f(Y)x] = (f,v) = v M~1§. Therefore,

E[f(Y TM—1g
Corep=  sup O v MIG Ty ), 63)

FERY]<p, Elf (V)220 VE[F(Y)2] ~ g20  ll9l

where w is defined by w' M = v . Moreover, we can solve for w recursively as

1
Wo = Mo <va — ;C: wﬁMlga). (34)

Let us define po, := wo A~1%. Then by (31), (32), and (34),
pg:wg:vg:PﬂEW},

and

1 a (lal— 1
pa = 77 <)\ \ 'va—ZA (laf |5)pﬁM5a) :P<P{au{1}gw}—zpﬁPa5>.

BGa BCa

The conclusion then follows from (33) together with the definition of p,,. |
We assume model P in the rest of this section.
Lemma 25 Forany a C ([g}), we have
Poo > 1—1lal (2lal-1) > 1 — 27]al?.
Proof Recall that P, = P{a\ W = a} = P{a N W = @&}. By (10), we have

P{laNW = @} = P{d(z, z;) > /2 forall (3, 5) € a}
> P{0(z;,25) > 7/2foralli,j € V(a),i# j}
IV (a)|-1

> J[ a-mn>1-r <’V(20‘)’>.

m=1

Since |V («)|< 2 |, the desired bound follows. [

Lemma 26 For o # &, suppose that Pgg > 0 for all 3 C o. We have p, = 0 in either of the
following situations:

27



MAO WEIN ZHANG

e 1¢V(a)or2 ¢ V(ia),
* « is a disconnected graph.

Proof To facilitate the proof, we consider two cases that are split in a different way from the two
cases in the statement of the lemma:

1. either 1 ¢ V(«), 2 ¢ V(«), or vertices 1 and 2 are in different connected components of «;
2. «is disconnected, but vertices 1 and 2 are in the same connected component of a.

Note that |«|> 1 in Case 1 and |«r|> 2 in Case 2. For both cases, we prove p, = 0 by induction on
|cr|. Each proof will establish the base case and the induction step simultaneously.

Case 1: Let G be the union of the graph « and the (potentially isolated) vertices 1 and 2. Let G
denote the connected component of G that contains 1, and let G5 be the complement of GG; in G.
Let F(G;) denote the (potentially empty) edge set of G; for i = 1,2. By (10) and the fact that G
is not connected to G5 , we see that

P{aU{(1,2)} CW} =P{E(G)) C W}-P{(1,2) € W} -P{E(Gy) C W}
= P{E(G1) CW}-P{E(G2) C W}
=7P{a CW} =7 P,p.

In the base case |a|= 1, there is no nonempty 5 C «; in the case |a|> 1, if @ C 8 C «, then
pp = 0 by the induction hypothesis. Combining these facts with (12) gives

po Poa =P{aU{(1,2)} CSW} = > ps Pap =7 Pag — po Pas = 0.

BGa
Since P, > 0 by assumption, we conclude that p, = 0.

Case 2: Consider a subgraph § C «. If 1 ¢ V(«), 2 ¢ V(«), or vertices 1 and 2 are in different
connected components of /3, then pg = 0 by Case 1 above. If 3 is disconnected while 1 and 2
are in the same connected component of 3, then pg = 0 by the induction hypothesis (and there is
simply no such 3 in the base case |«|= 2). Therefore, if pg # 0, then 5 must be a connected graph
containing both vertices 1 and 2.

Let ~y be the connected component of « that contains vertices 1 and 2. We obtain from (12) that

po Poo = P{aU{(1,2)} CW} = > ps Pag
BCy

=P{a\yC W} P{yU{(1,2)} SW} — py Pay — > ps Pas.
BSY

Furthermore, using (12) again yields

- P{WU{(;j}CW} 5, D

BSy R
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The above two equations together imply
Poy Pyg
paPaa:P{’yU{(lv2)}gW} IP){OL\’}/QW}—T _Zpﬁ Paﬁ_Pa’Y? - (35)
Y By Y

In view of the assumption P, > 0, it remains to show that the two terms in the brackets are zero.
First, by definition,

Poy=Pla\W =~} =Pla\yCW,ynW =2}
Since 7 is disconnected from « \ y by construction, we obtain
Py =Pla\yC W} -P{ynW =2} =P{a\yC W} P,,.

Hence the first term in (35) is zero.
Second, since 3 C v C a, we have « \ W = Sif and only if v\ W = S and o\ v C W. Thus

Paﬁ _IP{’}/\W:,B,CV\’YQW}

Py P{y\W =3}

where the last equality holds because ~ is disconnected from o\ -y and thus o\ vy C W is independent
of v\ W = j3. Note that this ratio does not depend on /3, so we can set 5 =  and obtain

=P{a\y C W},

Pa»y Paﬁ
— =Pla\yCW}=—.
Py Py
Consequently, P,g — Paw%j = 0 and so the second term in (35) is also zero. |

Lemma 27 Fix a C ([g]) such that 1,2 € V(«) and « is a connected graph. We have
P{aU{(1,2)} CW} < Pag < (r|V(a))V I, (36)
Moreover, fix 3 C ([g]) suchthat @ C  C aand 1,2 € V([3). We have
P.s < (7 ,V(a),)\v(a)l—l‘/(ﬁ)l. (37)
Proof By the definition of W, it holds that

P{aU{(1,2)} C W} =P{0(zi,25) < 1/2forall (4,5) € «U{(1,2)}},
Py =Pla\ W = @} =P{0(2, 2;) < 7/2forall (i,j) € a},

so the first inequality in (36) is obvious. Next, suppose 0(z;,z;) < 7/2 for all (i,j) € «. Fix
¢ € V(«). Since « is a connected graph, there is a path from £ to any i € V' («) that has length at
most |V («)|. As aresult, 9(z;,2¢) < |V(«)|-7/2 for all i € V(«). Conditional on any realization
of z, the probability that d(z;, z¢) < |V (a)|-7/2 for all i € V() is at most (7 |V (a))V (@1,
Hence (36) follows.
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Next, we have
Paﬁ = P{Og \ W = ﬁ} < P{D(zi,zj) < 7‘/2 for all (Z,]) ca \ ﬁ}

Suppose (z;, z;) < 7/2 for all (i,5) € o\ f. Fix any vertex s € V(a) \ V(). We claim that
there is a path from s to a vertex t; € V() which has length at most |V ()| and lies entirely in
a\ . Given the claim, it follows that 9(z, z¢,) < |V («)|-7/2. Now, conditional on any realization
of {z; : i € V(B)}, the probability that 9(zs, z,) < |V (a)|-7/2 forall s € V(a) \ V(B) is at most
(7 |V () )V @I=IVB Hence (37) follows.

It remains to prove the claim. Pick any » € V() and take a path from s to 7 in the graph
a U{(1,2)}. Since 1,2 € V(f), the first edge in the path (that is, the edge adjacent to s €
V(a) \ V(B)) is neither (1, 2) nor belongs to 3, and so it must belong to a \ 3. Following the path,
we can find the first vertex ¢, that is in V'(/3). For the same reason, all edges between s and ¢5 must
belong to « \ 3, proving the claim. [ |

Lemma 28 Fix o C ([72‘]) such that 1,2 € V(a) and « is a connected graph. Suppose that
T|a|*< 0.1. If o* consists of the single edge (1,2), then |po+|< 7. More generally,

[pal< (L + laf*) (lal+ 1) (7 |V (@) YV
Proof We prove the result by induction on |a|. First, consider the base case |a|= 1. We must have
(1,2) € asince 1,2 € V(). By (12) and Lemma 25, we have

T —72

’pa*

1
< —_— (]P){O[* g W} —_ p@ Pa*@) = = T’

“1-7 1—17

since P{a* C W} = Py+p =P{0(1,2) < 7/2} = 7.
Next, fix o C (I71) with |a|> 2. Assume |pg|< (1 + 7|8]Y) (|181+D) (7 |V (8))V I for
all 8 C « as the induction hypothesis. Applying (12) and Lemma 25 again, we obtain

1
<—— | P{aUui{(1,2)} CW P, P
al =g (POU L2} € W) +1no SN )

where pg = 0 if either 1 or 2 is not in V() by Lemma 26. We then apply (36) and (37) for 3 such
that 1,2 € V(3) to obtain

1 ol -
ool < Tg (L D V@Y R Ve,

Then, by the induction hypothesis |ps|< (147|8|%) (|8]+1)18 (7 |V (8))]V D)1= together with the
assumption 7|a|*< 0.1, we see that

[pal < 2(7 |V (@))VI7T + 1_21|a| - ﬁZC;(l + 71811 (1B1+ DV (7 |V (@) )V (I
_ IV (o)~ . E
L C— X asrae )
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Finally, since 7|a|*< 0.1 and |3|< |a|—1, we have m(l +718|*) < (1 + 7|al*), and then

la]—1
2t S BN (B <24 (el Y Y (1)

1 —27|c)?
8:2CACa i=1 §:BCa, |fl=i
laj-1

=2+ (L+7lalh) Y (’j‘) (i + 1)

=1

SRS (e

=0
= (1+ 7laf*) (Jaf+1)"!

Combining the above two displays finishes the induction. |

Proposition 29 Recall (11) and (12). Suppose that TD* < 0.1. We have:
o IfnT?(D + 1)2624\/5 < 1/2 where Q := max{\(D + 1)2,1}, then
Cor2p < r2(1+ A2 4 4n7?(D + 1)°Q*VP).

o If\2(D +1)*M < 1/2 where M := max{n7?(D + 1)2, 1}, then
Corr2p < T*(1+4X*(D +1)"M).

Proof To ease the notation, we consider D such that v/D /2 is an integer; the proof can be easily
adapted to the general case by using floors |- | or ceilings [-].

To bound Corr’ p» we apply (11) and (12). By Lemma 26, it suffices to consider connected
graphs o C ([g‘]) such that 1,2 € V(«), for otherwise p, = 0. In the sequel, we focus on such
« but suppress the conditions for brevity. Note that there is only one such « with |a|= 1, i.e., the
graph o* consisting of a single edge (1,2). For other graphs, we have |a|> 2 and |V (a)|> 3.
Since the graph « is connected, we have |V («)|< |a|+1. Applying (11), (12), Lemma 28, and the
assumption 7D* < 0.1, we obtain

Corr2§D < pE AR+ Z A2l (1 4 7)) )? (Ja]+1) 2o (7 |V (a) )2V (@) =2
a:2<|a|<D
D D+1

<N 42) ) >

=2 v=3 a:|a|=¢, |V (a)|=v
AD+1))* (r(D+ 1) 2 1{v — 1 < € <v?/2}.

Since 1,2 € V(«), there are at most (") {((%)) A 2(;)} graphs « with |V (a)|= v and |a|= ¢. By
the bounds (,",) < n""2, ((%)) < (g)é < (v —1)2 < (D +1)%, and 2(3) < 2°°, it follows that

CoerSD <714 A% +273(D + 1)
D D+1
3 [(D +1)% A 2”2} MD + 1) (nr2(D + 1)2)* 2 1{v — 1 < £ < v2/2}. (38)
(=2 v=3
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Let us consider two cases.

Case 1: 'We bound the summation in (38) by splitting it into the following terms according to the
value of v:

CorrZp < 7%(1+ A?) +27%(D + 1)*

[222” (D+1))* (nr2(D+1)%) 2 1{¢ <v?/2}  (39)

v=3 (=2
D D+1
+Z ST D+ D)*AD+1)* (nr (D + 1% (39b)
v=vD+1

Recall that QQ := max{\(D + 1)2,1}. Moreover, by assumption,
Q\/Em-2(D +1)* < 1/2.
For v < v/D, we have 2¢ < v2 < /D v, so the sum in (39a) is bounded by

VD VD
> DQYP (D +1)2)" 7 = DQPVP 3 (QVP nr¥(D +1)%)

v=3 v=3
< QDQQ‘/EQ\/5 nr?(D + 1)2.

v—2

Next, n72(D + 1)? < 1/2 by assumption, so the sum in (39b) is bounded by

D D+l
Z Z Qze (n72(D+1)2)”_2 < 2DQ2D(nT2(D+1)2)\/5—1
(=2 y=/D+1

< 2D(Q"Pnr(D + 1)2)VP/?

< 2DQ4\/5n7'2(D + 1)2,

where the last step holds because Q4\/5n7'2 (D +1)? < 1/2. Plugging the above two bounds into
(39a) and (39b) respectively, we complete the proof.

Case 2: Continuing from (38), we have

D (42
Corlp < 7°(1+ M%) +2r2(D+ 1)) ) (MD +1)*)* (n7*(D + 1)%)" 2
(=2 v=3

Recall that M = max{n7%(D + 1)%,1} and A2(D + 1)*M < 1/2. We conclude that

D
Corlp < 72(1+ M%) +2r2(D+ 1)) (W (D +1)*) MY
(=2
<2142 +272(D+1)2-2X3(D + 1)*MD

2(1+4(D +1)"\*M),
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finishing the proof. n

We now prove Theorem 12.
Proof [Proof of Theorem 12] It suffices to apply Proposition 29 to bound Corr2§ p- Consider two
cases:

o If (logn) 190 < X < O(1), then nr? < n=%/2 by (9). We now apply the first statement of

Proposition 29. Since D = o((lolgoﬁ)gn)Q), we have Q = max{\(D + 1)%,1} = O(1) and

n?(D + 1)2624*/5 < nr?-n°M < 1/2. It follows that

CoerSD <731+ X +4n7?(D + 1)5Q4\/5) <21+ A2 4 nr? - n°M) = 0(72).

* Next, suppose that A < (logn) =100, nr2)\% < n%, and D < (logn)'°, which hold by (9).
We apply the second statement of Proposition 29 in each of the following two subcases:

- If 7 <n Y2 then M = max{n7?(D +1)%,1} < (D+1)?>and N*(D+1)*M < 1/2.
Therefore, CO”'2§D < 12(14+4X2(D +1)"M) = O(7?).

- If7>n"'2 then M = n7?(D +1)? and \*(D + 1)*M = nm2X2(D + 1)¢ < 1/2.
We again obtain Corr2 , < 72(1+4X\%(D +1)"M) = O(7?).

Combining the above cases, we conclude that Corr<p = O(7) if (9) holds. This completes the
proof once we recall Definition 6 and that Ep[x] = 7. [

A.4. Recovery upper bound

For brevity, write 7' = T'(A) in the sequel. We let iy := 1 and iy41 := 2, so that a length-(¢ + 1)
self-avoiding walk in consideration is through vertices 7; for j = 0,1,...,¢ + 1. Hence we can
rewrite (16) as

14
T = Z H Aijij+1 . (40)

3<i1,.yig<n j=0
ey
We assume 27(¢ 4 1) < 1 in the rest of this section.
Lemma 30 Let flij be defined by (13) and X\ be defined by (8). We have

’ E[Aiﬂ%zj} = A 1{0(2i, %)) < 7/2}

. E[A?ﬂzi,zj} <p/q.

Proof The first statement is obvious in view of (13) and (8). For the second statement, note that if
(2, 2;) > 7/2, then E[Afj]zi,zj} =1, and if 0(2;, 2j) < 7/2, then

p(1-9?+ (1 -p)¢® _p(l—q) +q°
q(1—q) - q

E[fl?j]zi,zj} = < g
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Proposition 31 Ifd(z1, 2) > LU then BIT | 21, 25] = 0. If0(21, 22) < “EDT, then

£ (21,22) | 1

n—2 PR
E[T!z1,zz]:< ' )7—15)\12+1A e fe(t)dt, 41)

st=——F"=—3

where fy(x) is the probability density function of the Irwin-Hall distribution with parameter ¢, i.e.,

)
— 1 k t /-1
ﬁ@)w_lﬁg%<n Q)u R forz €[04, (“42)
and fo(x) = 0 otherwise. Moreover, w — E[T|0(z1,22) = u| is a decreasing function on

[0, (f+21)T]‘

Proof Throughout this proof, we condition on z; and z2, and use [E and PP to denote the conditional

expectation and conditional probability respectively. By (40) and the independence of (A
{41

. )E
25%5+1/5=0

conditional on (z;;);Z, we have
¢
A ¢
Erl= Y E|]] E[Aijw | (zl-s);g}] :
3<in,ig<n Lj=0
iy

Applying the first statement of Lemma 30, we then obtain

E[T]=X"" Y P{a(z, 2,,,) < 7/2forall s € [(]}. (43)
3<it,yig<n
i1
If (2, 2i,,,) < 7/2for all s € [/], then 0(2z1,22) < (£ + 1)7/2 by the triangle inequality.
Therefore, we see that E[T'] = 0if 0(21, 22) > (£ + 1)7/2.
Next, suppose that 9(z1, 22) < (¢ + 1)7/2. Fix vertices i1, . . ., iy and define

L
T
ES = {D(Zisazis+1) S 5}7 g = ﬂ E57
s=0

where we suppress the dependency on i1, . . . , iy for brevity. We now compute P{£}, i.e., the prob-
ability in (43). Let us write

V4 s—1
ma:ﬂﬂ& ﬂ@} (44)
5=0 =0

Since (z;,)%_, are i.i.d. uniform random variables in [0, 1], it is not hard to see that

IP’{ES

It remains to compute the conditional probability P{Eg | ﬂ?;é E; } Forany 0 < s </¢—1,

s—1
ﬂEj}_T for0<s</¢—1. (45)
=0

conditional on any realization of z;, 2;,, . .., z;, and the event E, the random variable z;  , — 2;

s
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is uniform [—7/2, 7/2]. Crucially, this distribution does not depend on z;,, z;,, . . ., z,. Applying
this argument for s = 0,1,...,¢ — 1, we see that conditional on ﬂﬁ;é E;, the random variables
Ziy — Zigs Zig — Ziys - -s iy — Zi,_, are 1.1.d. and uniform in [—7/2, 7/2]. We can write
-1
T Zigw, — %y 1
ZZ'ZZZZ'O—I—TIg—?, where I, =Z<%+§>

s=0

Since I, is a sum of / i.i.d. uniform random variables in [0, 1], it has the Irwin—Hall distribution with
parameter ¢ (see, e.g., Johnson et al. (1995)). Moreover, since ig = 1 and 4411 = 2, the event Fj
occurs if and only if 9(22, 21 + 71y — %T) <7/2ie.,

zo—z1 ¢ 1 29—21 ¢ 1
S - 4o
T taTasNsT T TaTy
Let fy(z) be the PDF of the Irwin—Hall distribution with parameter ¢. Then

IP’{Eg

Plugging (45) and (46) into (44) and then combining the result with (43), we obtain

L | 22—21 1
-2 PRI
E[T] = A1 <” ) Tfﬁ ’ fo(t)dt,

14 zp=2 1
2+ T 2

1 s+ 4
N Ej} = / ) fo(t)dt. (46)
=0 s+

2

which is almost (41). It remains to show that the above quantity is an even function in v := 23 — 21

and decreasing for u € [0, @] Its derivative as a function of « is proportional to
£ u 1 (L u 1
f(z++3) R+ 5 -3) “n

The PDF f;(t) is symmetric around ¢/2, increasing on [0, ¢/2], decreasing on [¢/2,¢], and zero
outside [0, ¢] (and the monotonicity of f,(¢) on [0,¢/2] and [¢/2, /] is strict if £ > 1). Hence,

the difference in (47) is an odd function in w; it is positive if v € [— (H;)T, 0] and negative if
u € [0, @] Consequently, E[T] is an even function in u = z9 — 21, and it is increasing on

[_ (+1)7

5, 0] and decreasing on [0, (€+21)T

|, proving the last statement. |

Lemma 32 Let e € (0,7/2). There is a constant ¢y > 0 depending only on { such that
Ale) := E[T |0(21, 22) = g] — E[T |0(21, 22) = g + e] > confer!™INFL (48)

Proof It follows from Proposition 31 that

Ale) = ( - ﬁmf fg(t)dt> <” S 2)#%1

J
s+e 545 n—2

= / fo(t)dt — / fo(t)dt < )#WI.
L L4 14
2 2
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By the mean value theorem, there exists £; € (%, % + f) and & € (g +1, g + 14 f) such that

€ n—2

2 = St - st (", *) e, )
If ¢ =1, then fo(&1) — fe(§2) = lase/T € (0,1/2);if £ > 1, then fy(z) is strictly decreasing for
x € [0/2,0],s0 fi(&1) — fe(&2) > ¢ for a constant ¢, > 0. The conclusion follows from (49). W

Recall that we identify an edge set o C ([g]) with the graph induced by «, and V() C [n]
denotes the vertex set of a. Recall (15). For o, 3 € SAW,, we consider the graph a/AS and
introduce the following notation which will be used in the rest of this section:

e:= |aAf|, (50a)
vi=[V(atB)], (50b)
¢ := number of connected components of a/Af. (50¢)

Lemma 33 For a, 8 € SAW,, let e, v, and c be defined in (50). Recall (14). We have

(p/q)"+! ifal\B = @,

E|A2.;A, 22| <
[ angAass | 21 22} - {(p/q)”le/2 Ae(r) =Tl ifalB # 2.

Proof For brevity, write z = {z; : ¢ € V(awU 3)}, and let E and P be the expectation and proba-

bility conditional on z1, 2 in the proof. By the independence of (4;;)(; j)eans and (flij)@ jlears
conditional on z, we have

E[Aimﬁjlmﬁ]:l@[ I1 E[Afj\z]. 11 E[AMZH.
(i,j)€ang (i,j)€EarB

It then follows from Lemma 30 that
E[AimﬁAaAﬁ} < (p/q)'amm A - P{0(z,2;) < 7/2forall (i,7) € aAB}. 5D

If aAS = @, then e = 0 and |a N B|= ¢ + 1, so the first bound of the lemma follows. For the
second bound where aA3 # @, note that [a N 3= % (|a|+|B|—|aAB|) = 2(2¢ + 2 — e). Hence,
it remains to bound the probability in (51) by (¢7)V=¢~1,

Suppose that 9(z;, z;) < 7/2 for all (4,5) € aApB. Choose vertices ji,...,jc € V(aAp),
one from each of the ¢ connected components of a/Af; in particular, if 1 € V(aApB), we choose
j1 = 1. Forevery i € V(a/Ap) \ {1, 2}, there is a path of length at most ¢ from vertex i to vertex
Js; for some s; € [c] such that the path lies entirely in (the sth connected component of) aAS. It
follows that d(z;, 2;,.) < £7/2. Therefore,

P{0(zi,2;) < 7/2forall (i,j) € aAB}
< P{D(zi,zjsl_) < tr/2foralli € V(aAB)\ ({1, ... jc} U {1,2})} < ()L (52)

since the random variables {z; : i € V(aAB) \ ({j1,--.,jc} U{1,2})} are i.i.d. uniform in [0, 1]
conditional on any realization of z;,, ..., zj., 21, 22. Plugging the above bound into (51) completes
the proof. |

We now state a slightly improved version of the above lemma when z; and z, are far apart.
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Lemma 34 [n the setting of the above lemma, if 0(z1, z2) > (E—gl)T and a\f # &, we have

E [Aiﬂ,BAaA,B | 21, 22| < (p/q)g"‘l_e/2 A(L)V.

Proof The only difference from the above lemma is that we now have (¢7)"~ instead of (¢7)¥~°1.
This difference originates from (52). Recall that we suppose d(z;, zj) < 7/2 for all (4, j) € a/AB.
However, since 9(z1, z2) > @, vertices 1 and 2 cannot be in the same connected components of
a/\S. Therefore, when selecting the vertices j1, . . ., jc, we can choose j; = 1 and jo = 2 without

loss of generality. Then (52) becomes

P{0(z;, z;) < 7/2forall (i,j) € aAS}
< P{o(zi,2,,) < fr/2foralli € V(@AB)\ {1, ek} < (),

thereby improving the bound by a factor ¢7. |

Lemma 35 For «, 3 € SAW,, let e, v, and c be defined in (50). We have
1
[V(aeUup)| <v-— §e—c+€—i—2.

Proof Note that the graph o U S is the disjoint union of a/AS and a N 5. To bound the number of
vertices of a U 3, we start from the graph K = oA, which has v vertices, and then sequentially
add vertices and edges of o N /3 to K until we eventually reach K = « U 3. Hence, |V (aU )| will
be bounded by v plus the total number of vertices we add in this procedure.

To be more precise, at each step, we choose an edge (4, j) of & N /3 that has not yet been added
to the current K, such that ¢ € V(K). Such an edge exists because the eventual graph o U 3
is connected. Now we add (7, 7j) to K, and there are two cases: j € V(K)orj ¢ V(K). If
j € V(K), then |V (K)| does not increase; if j ¢ V(K), then |V (K)| increases by 1. Moreover,
the number of connected components of K may decrease by 1 if j € V(K) (when (4, j) connects
two components); the number of connected components of K will not decrease if j ¢ V(K). Since
the number of connected components of K decreases from c to 1 in the entire procedure, the first
case must occur at least ¢ — 1 times, so |V (K)| does not increase in at least c — 1 steps. Since there
are |« N S| steps of adding an edge in total, the number of vertices added is at most |ae N 3]—c + 1.
Therefore, we obtain

[V(ieUB)| <v+|anp]—c+1.
To complete the proof, it suffices to recall that |a|= |f|= ¢+ 1 sothat2laNf|+e=2(+2. A

Lemma 36 For o, 3 € SAW,, let v be defined in (50). Suppose o N 3 # &. Then we have v < 24.
Proof Let (i,j) € anpwherei < j. Ifi =1,then 1 ¢ V(aAS) and |[V(aU S5)|< 20+ 1. We

see that v < [V (a U B)|—1 < 2¢. The case j = 2 is similar. In other cases where ¢ # 1 and j # 2,
we have v < |V (U B)|< 20 [ |
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Lemma 37 For o, € SAWy, let e, v, and c be defined in (50). Suppose a\3 # &. Then the
graph a/AS does not contain any dangling edge, i.e., an edge (i, j) such that vertex j is connected
to only vertex i in a/\S. As a result, we have c +e —v > 1.

Proof The quantity c + e — v is known as the excess of the graph a/AS; it is always nonnegative
and is zero only if a/AS is a forest. Since a forest obviously contains a dangling edge, it remains to
prove that /A8 does not contain a dangling edge.

To see this, it is convenient to view o U 3 as a multigraph, which has even degree at each vertex.
Further, to obtain a/AS from a U 3, we delete all the double edges in o N 3, so a/AS also has even
degree at each vertex. As a result, «/\S does not contain a dangling edge. |

Proposition 38 There is a constant Cy > 0 that depends only on £ such that

1

P /+1 D ) P [_2
Var(T | 21, 22) < Ce [nz <) + 22020205 4 pfta )3 <> ]
q q q

. /+1
Moreover, if0(z1, z2) > #, then

041 1
Var(T | z1, z2) < Oy [ne <p> yop2-1,20-1320 P ] 243 <p> ]
q q q

Proof Throughout this proof, we condition on z; and 29, and the notations E, P, and Var are all
with respect to the conditional probability. By (16), we have

Var(T) =E[T?] - (ET)* = > E[AaAg] — E[A,] - E[4g]. (53)
a,BESAW,

Note that ¢ + 2 < |V (a U 5)|< 20 + 2.

Let us first consider the extreme case |V (a U §)|= 2¢ + 2, where the two walks « and
have disjoint edge sets and only common vertices 1 and 2. By the independence of (Aij)(i,j)eau 3
conditional on ( zi)iev(au ) and the first statement of Lemma 30, we have

Bliadd =B I Bls | Gievias)
(3,5)€aUp
= NP2 PLd(2, 25) < /2 forall (i, §) € a U BY.

Similarly,
E[A,]-E[Ag] = N2 P{0(2, 2;) < 7/2forall (i, ) € a}-P{d(2;,2;) < 7/2forall (i,j) € 5}.

Recall that we already condition on z; and z2, and the variables {z; : ¢ € V(«a), i # 1,2} and
{zi :1 € V(pB), i # 1,2} are independent. Hence, the above two displays are equal, i.e.,

E[A,Ag] — E[A,] - E[Ag] = 0.
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In all other case where £+2 < [V(aUB)[< 2£+1, we have that N 3 # @. The first statement
of Lemma 30 implies E[A,], E[Ag] > 0. Therefore, we conclude from (53) that

2041

Var(T Z Z E[A,Ag].

v=_0+2 a,FESAW,,
[V (aUB)|=v
If [V (o U B)|= v, there are ("~2) < n"~2 choices of the vertices in V(o U 8) \ {1,2}. With the
vertices of arU 3 fixed, the number of possible graphs avU 3 is bounded by a constant Cy = C £) >
0. Moreover, we can write A Ag = A2 o 5AQA5 It follows that

20+1
Var(T) < C E[A2 A )
ar(T 1 Z n’ ,Egsa/i(wz, [AansAans]
v=L+2 IV (aUB)|=v

Let e, v, and c be defined in (50). If aAS = @, then |V (a U B)|= £ + 2; if aAS # @, then
|[V(aUB)|> ¢+ 3. Applying Lemmas 33 and 35 together with the above bound on Var(7'), we
obtain

2041

Var(T) < 01 [nf(p/q)é—i—l + Z aﬁIgSaAXW v—e/2—c+€(p/q)€+1—e/2 )\e(ET)V_C_I:|
v=_(+3 \V(aU,B)|—[171
<O [né(p/q)ﬁ—i-l 4/ max nv—e/2—c+€(p/q)€+1—e/2 )\e(&_)v—c—l] )
a,BESAW,,

£4+3<|V (aUB)|<20+1

It follows that, for a sufficiently large constant Cy = C(¢) > 0,

0+1 242
1 A
Var(T) < Cynt (p) [1 + - max (m’ q>
q T a,BESAW,, P

(+3<|V (aUB)|<20+1

N|=

(v—c) 2 %(c+efv)
()‘q> ] . (54)
np

To further control the above maximum, we consider the two factors:

* Since A = —E= we have 224 — (2=0° < 1 14 addition, ¢ + e —v > 1by Lemma 37.
Va(l—q)’ np — np(l—q) — ’ =
H holds th 2(che) 2q :
ence, it ho stat(p) _<np) .

* By Lemma 36 and ¢ > 1, we have v — ¢ < 2¢ — 1. By Lemma 37, oA does not contain
any dangling edge, so every connected component of it has at least three vertices, and thus

1 1
5(v—=c) -1
v — ¢ > 2. It follows that <@) 2 < (@) 2y (@)‘

Combining these facts with the above bound on Var(7'), we see that

0+1 2v2,\ 3 £2)2 3
1 2 2 2
van <eat (2) [l ((550) T () 2 (57) (5]
q T p T
0+1 -3
<Oy [ne (P) 4 21,2 2)\2317 +n“27')\3 (p) ]
o q q q
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for a constant Cy = Cy(¢) > 0.

Finally, if 9(z1, 22) > @, then the application of Lemma 33 can be replaced by Lemma 34
in the above proof, so that we gain a factor 7 in the case a/AS # &. As a result, we do not have the
factor 1/7 before the max in (54). Consequently, we gain a factor 7 in the second and the third term

of the eventual bound. [ |

We now prove Theorems 13 and 14.

Proof [Proof of Theorem 13] For brevity, write T = T'(A). We need to show that % =

w(7). Without loss of generality, we may condition on z; = 0 throughout the proof, because the
distribution of A does not change if we condition on any realization of z;. Let E and P be the
expectation and the probability with respect to the conditional distribution respectively.

Using x = 1{0(0, z2) < 7/2} and Proposition 31, we obtain

/2 —9
E[Tx] :/ /QE[T]zQ] dzo > T7E[T |22 = 7/2] = T<" ' )#V“Cl > confrHINL

where C = C1({) = 2“

Next, we have

fe(t)dt with f, defined in (42), and ¢z = c(¢) > 0.

E(T?] = E[E[T? | 2o]] = E[Var(T | 2)] + E[(E[T'| 22))*].

By Proposition 31 again,
L+1)T
2 2 2
BIEIT|2)?) = [ 7 (BIT] ) dz

_ L+1)T

< (6 + D)7 (BT | 25 = 0])2
= (L+1)7 K” , 2> TW“O?,} 2

< 04 n24T2€+1 )\2€+27

where C5 = C5(¢ f ; 2 fe(t)dt, and Cy = C4(£) > 0. Moreover, recall that p and ¢ are of the

2
same order by assumptlon so for any realization of z3, Proposition 38 gives

Var(T'| z2) < Cs (nz + 212672020 n£+1/27-)\3>
for a constant C5 = C5(¢) > 0. Therefore, for a constant Cg = Cg(¢) > 0,
E[T?] < Cs <n675+1/2)\5+1 4pl/2 4 opt1/2p0-150 ne/2+1/471/2)\3/2> .

Combining the above bounds on E[T"x] and \/E[T"?], we conclude that

E[T - x] e bty 1
E[T?] ~ Cs  nbrtH12)\+1 /2 L pl=1/200=1\0  pt/2+1/471/2)3/2

> ¢- min {7_1/27 nz/27e+1)\e+1’ n1/272)\, ne/2—1/47_e+1/2)\e—1/2} ‘
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For this bound to be of order w(7), it suffices to have

T =0(1), A2 = (1), i\ = w(1).
Since Cq < p < C’qfor C" > C > 1, we have \ = \/% = O(p'/?). Therefore, the above
a(l—q
conditions all hold by the assumptions ¢ > 1/6 and (17). |

Proof [Proof of Theorem 14] Similar to the proof of Theorem 13, we write 7' = T'(A) and condition
on z; = ( throughout the proof. We start by rewriting the expectation as the sum of type I and type
I errors:

E[(x - x)?] =P #x} =P{x = 1x =0} + P{x =0,y = 1}.
Since x = 1{—7/2 < 29 < 7/2} and x = 1{T < K}, we have

P{x:1,>z=0}=/2 P{T < k| 22} des,
-3

P{X:0,>2:1}:/ P{T > k| 22} dz

T<|za|<1

§26+/ P{T > k| 2o d22+/ P{T > k| 22} dzs.
%ﬁﬂ@ﬁﬁ¥z{ = i%mﬂmgl{ =

It remains to bound the above three integrals:

* Consider zo € [—7/2,7/2]. Let A(e) be defined in (48) and x be defined in (18). By
Proposition 31 and Chebyshev’s inequality,

PAT < |z} SP{IT—E[T|22]\ > Ale) ‘ ZQ} < w'

T Afe)
Lemma 32 and Proposition 38 together imply that

1
Var(T | 22) <C nt 4 n2t-1720-2)20 4 0503
W =1 n2¢e2720—2)20+2

<c 1 1 1
= Y\ ez 20-2)\20+2 + Ne2\2 + nt—1/22,720-3 201

for a constant C; = C(¢) > 0. Using the assumptions n72\2 = ©(nr2p) > n’, £ > 3/0,

and € = Tn_5/4, we can check

Var(T' | 22)

NCE <30 n %2 (55)

Therefore,

2 —46/2
/ P{T <K ’ ZQ}dZQ < 12017‘72 .

T
2
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* For § +e<| 22|< ) , again, by Proposition 31, Chebyshev’s inequality, and (55),

A 4 T
P(T > 5|20} < PLT — BT | 29 > 20 | oy L < VAT 2) _yp o2
2 A(e)?
Therefore,
P{T > k| 2z} dzy < 12(£ +1)Cyrn %2,
Te<|zg|<EELT
* For (”1 < |2z2|< 1, we have E[T' | z3] = 0 by Proposition 31. Combining Chebyshev’s

inequahty, the second bound in Proposition 38, (18), and Proposition 31, we obtain

P{T > k| 2} <

1
V&I‘(T | 22) <c nt + n26—1,20-152¢ + n€+§7_2)\3
2 =2 20720\ 2042

< 1 1 1
S\ aneme T e T nl—1/2,20)\20-1

for Cy = Cy(¢) > 0. Using the assumptions n72\? = O(n72p) > n’ and £ > 3/4, we can
check
P{T > K|z} < 3Cy Tn /2,

Therefore,

—5/2
[Hm <Joal< P{T > k| ztdz <30y )

In summary, we have obtained E[({ — x)?] = P{x # x} < Cs3rn~%/2for C3 = C5(¢) > 0. W
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