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Abstract

Planted dense cycles are a type of latent structure that appears in many applications, such as small-

world networks in social sciences and sequence assembly in computational biology. We consider a

model where a dense cycle with expected bandwidth nτ and edge density p is planted in an Erdős±

RÂenyi graph G(n, q). We characterize the computational thresholds for the associated detection and

recovery problems for the class of low-degree polynomial algorithms. In particular, a gap exists

between the two thresholds in a certain regime of parameters. For example, if n−3/4 ≪ τ ≪ n−1/2

and p = Cq = Θ(1) for a constant C > 1, the detection problem is computationally easy while the

recovery problem is hard for low-degree algorithms.

Keywords: Planted dense cycle, low-degree polynomial, computational lower bound, detection-

recovery gap

1. Introduction

Recovering latent structures in networks is a broad class of problems that are essential both in

theory and for applications in the social and biological sciences Watts (2004); BarabÂasi (2012). In

this work, we study the detection and recovery of a hidden cyclic structure in an observed network, a

type of structure found in many real-world applications. For example, the celebrated Watts±Strogatz

small-world model Watts and Strogatz (1998) assumes that n nodes have latent positions on a circle,

and they have stronger connections with their k-nearest neighbors and weaker connections with all

other nodes. Observing such a small-world network, the problem of interest is to recover the relative

positions of the nodesÐwhich nodes are k-nearest neighbors of each otherÐand hence the overall

structure of the network. Since its proposal, the Watts±Strogatz model has been used extensively

to study, for example, epidemic behavior Moore and Newman (2000), collaboration networks Uzzi

and Spiro (2005), and brain networks Bassett and Bullmore (2006). More generally, the problem

of recovering a one-dimensional embedding of n objects from pairwise similarities between them

arises in a wider range of applications, including relative dating in archaeology Robinson (1951),

de novo genome assembly in computational biology Lieberman-Aiden et al. (2009), and angular

synchronization in tomography Singer (2011).

Despite the vast literature on related models and algorithms, the statistical and computational

limits of this problem are not yet well-established in a rigorous framework. The information-

theoretic thresholds for the Watts±Strogatz model are studied in Cai et al. (2017), but the upper

bounds achieved by computationally efficient algorithms are far from the information-theoretic
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thresholds. It is unknown whether these statistical-to-computational gaps are inherent, or whether

they can be closed by other efficient algorithms. In the case where the bandwidth k is at most no(1),

sharp characterizations of recovery conditions are given in Bagaria et al. (2020); Ding et al. (2020a)

under a more general model. Moreover, several other algorithms and analyses have been intro-

duced for related models from the perspective of graphon estimation by Janssen and Smith (2022);

Natik and Smith (2021); Giraud et al. (2021). However, none of the previous works have shown

computational lower bounds against a class of efficient algorithms.

Moreover, the Watts±Strogatz small-world model can be seen as modeling a one-dimensional,

noisy random geometric graph with latent locations on a circle. Random geometric graphs have

long been studied in a variety of scientific fields; see, e.g., Penrose (2003) and a recent survey by

Duchemin and De Castro (2022). In particular, detection or testing thresholds for high-dimensional,

noiseless random geometric graphs were studied by Bubeck et al. (2016) and improved by Brennan

et al. (2020); Liu et al. (2022). Variants of the model with edge noise have also been studied recently

by Liu and RÂacz (2021); Liu and Racz (2021). Recovery or reconstruction of the latent geometry

from a random geometric graph has also been long studied in various models, especially using

spectral techniques; see, e.g., Sussman et al. (2013); Araya Valdivia and Yohann (2019); Eldan

et al. (2022). Despite the vast literature, the discrepancy between detection and recovery thresholds

is yet to be understood in a single model.

In this work, we propose a variant of the Watts±Strogatz small-world model, which is a random

graph with a planted dense cycle, and study the computational complexities of the associated detec-

tion and recovery problems in the framework of low-degree polynomial algorithms. This framework

has proven to be successful at probing the computational complexity of detecting and estimating

hidden structures in high-dimensional settings Hopkins and Steurer (2017); Kunisky et al. (2019);

Schramm and Wein (2022) and is closely related to the sum-of-squares hierarchy Hopkins et al.

(2017); Hopkins (2018). For problems such as planted clique, community detection, and sparse

PCA, the conjectured hard regime where no polynomial-time algorithms are known to exist co-

incides with the regime where low-degree polynomials fail to solve the problem. For the planted

dense cycle problem, we identify the regimes where low-degree polynomial algorithms fail to detect

and recover the hidden cycle respectively. In particular, we show that the threshold for detection is

drastically different from that for recovery, so there is a detection-recovery gap for this problem.

Notation Let [n] := {1, 2, . . . , n} and
(

[n]
2

)

:= {(i, j) : i, j ∈ [n], i < j}. We use the standard

asymptotic notation O(·), o(·),Ω(·), ω(·), Θ(·) as n → ∞, and a tilde is added if the asymptotic

relation holds up to a polylogarithmic factor in n.

Any subset α ⊆
(

[n]
2

)

can be identified with the graph on vertex set [n] induced by edges in

α. Therefore, we can say ªgraph αº without ambiguity. Then |α| denotes the number of edges in

the graph α. Let V (α) ⊆ [n] denote the vertex set of α, i.e., the set of vertices v ∈ [n] that are

non-isolated by the edges of α.

2. Models and main results

2.1. Planted dense cycles

We now formally introduce our models. For any a, b ∈ [0, 1], define

d(a, b) := min{|a− b|, 1− |a− b|}.
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In other words, d(a, b) is the distance between a and b on a circle of circumference 1. Throughout

the paper, we consider the setting where the number of vertices n grows, and other parameters p, q,

and τ may depend on n.

Definition 1 (Model P , Planted Dense Cycle) Suppose that 0 ≤ q < p ≤ 1 and 0 ≤ τ ≤ 1/2.

Let z ∈ [0, 1]n be a latent random vector whose entries z1, . . . , zn are i.i.d. Unif([0, 1]) variables.

We observe an undirected graph with adjacency matrix A ∈ Rn×n whose edges, conditional on

z1, . . . , zn, are independently sampled as follows: Aij ∼ Bern(p) if d(zi, zj) ≤ τ/2 and Aij ∼
Bern(q) otherwise, where (i, j) ∈

(

[n]
2

)

. We write A ∼ P .

In short, a graph A from model P is a G(n, q) Erdős±RÂenyi graph with a planted dense cycle that

has edge density p and expected bandwidth nτ . The location of the cycle is determined by the latent

variable z. For comparison, the Watts±Strogatz model plants a dense cycle of bandwidth exactly

nτ ; it also assumes that the average degree is matched to that in the noiseless case where p = 1
and q = 0, so τ = τp + (1 − τ)q in Watts and Strogatz (1998); Cai et al. (2017). Moreover,

the bandwidth nτ is typically much smaller than n in small-world networks, so we may assume

τ ≤ 1/2 throughout the paper to ease the presentation.

In addition, we use Q to denote an Erdős±RÂenyi graph model.

Definition 2 (Model Q, Erdős±RÂenyi graph) Suppose that 0 ≤ q < p ≤ 1 and 0 ≤ τ ≤ 1/2. Let

r := τp + (1 − τ)q. We observe a G(n, r) Erdős±RÂenyi graph with adjacency matrix A ∈ Rn×n.

We write A ∼ Q.

Note that the condition r = τp + (1 − τ)q is imposed so that the average degrees are matched in

the two models P and Q.

There are two problems associated with the model of planted dense cycle, detection and recov-

ery. Detection of the planted cycle is formulated as a statistical hypothesis testing problem.

Problem 3 (Detection) Observing the adjacency matrix A ∈ Rn×n of a graph, we test A ∼ P
against A ∼ Q.

Recovery of the planted cycle is formulated as determining whether vertices i and j are neigh-

bors in the cycle for (i, j) ∈
(

[n]
2

)

, i.e., whether d(zi, zj) ≤ τ/2. By symmetry, it suffices to consider

the pair of vertices (1, 2) and estimate 1{d(z1, z2) ≤ τ/2}.

Problem 4 (Recovery) Observing the adjacency matrix A ∈ Rn×n of a graph A ∼ P with a

planted cycle, we aim to recover χ := 1{d(z1, z2) ≤ τ/2}.

2.2. Overview of results

Our results fall within the framework of low-degree polynomial algorithms (see Kunisky et al.

(2019)). Let R[A]≤D denote the set of multivariate polynomials in the entries of A with degree at

most D. The scaling of D = Dn will be made precise later, but in general, when we speak of a

ªlow-degreeº polynomial, its degree is at most D = no(1).

For the detection problem, we study the ability of such a polynomial to distinguish the two

distributions P and Q, in the following sense (Bandeira et al., 2022, Definition 1.6).
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Definition 5 (Strong separation) A polynomial f = fn ∈ R[A]≤D is said to strongly separate P
and Q over A if

√

VarP [f(A)] ∨VarQ[f(A)] = o (|EP [f(A)]− EQ[f(A)]|)

as n → ∞.

By Chebyshev’s inequality, strong separation implies that, by thresholding the value f(A), one can

test between A ∼ P and A ∼ Q with both type I and type II errors of order o(1).

For the recovery problem, recall that we aim to estimate χ = 1{d(z1, z2) ≤ τ/2}. The quantity

of interest is the degree-D minimum mean squared error (see Schramm and Wein (2022))

MMSE≤D := inf
f∈R[A]≤D

EP
[

(f(A)− χ)2
]

.

It is equivalent to consider the degree-D maximum correlation

Corr≤D := sup
f∈R[A]≤D,

EP [f(A)2] ̸=0

EP [f(A) · χ]
√

EP [f(A)2]
(1)

because of the following relation (Schramm and Wein, 2022, Fact 1.1)

MMSE≤D = EP [χ
2]− Corr

2
≤D.

The trivial estimator f(A) ≡ EP [χ] of χ achieves a correlation

EP [f(A) · χ]
√

EP [f(A)2]
= EP [χ],

which motivates the following definition.

Definition 6 (Weak recovery) A polynomial f = fn ∈ R[A]≤D is said to weakly recover an

estimand χ given A ∼ P if
EP [f(A) · χ]
√

EP [f(A)2]
= ω (EP [χ])

as n → ∞.

Note that for the estimand χ = 1{d(z1, z2) ≤ τ/2} in Problem 4, we have EP [χ] = τ .

For both the detection and the recovery problem, we establish low-degree upper and lower

bounds that match up to an nδ factor for an arbitrarily small constant δ > 0. Our main results are

summarized in the following theorem.

Theorem 7 (Summary of the detection-recovery gap) Suppose that Cq ≤ p ≤ C ′q for con-

stants C ′ > C > 1. Fix any constant δ ∈ (0, 0.1). Suppose that 2/δ ≤ D ≤ o
(

( logn
log logn)

2
)

and

τ ≤ (log n)−8.
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• (Detection) Consider Problem 3 and Definition 5. If n3p3τ4 ≤ n−δ, then no polynomial

in R[A]≤D strongly separates P and Q. If n3p3τ4 = ω(1), then there is a polynomial in

R[A]≤D that strongly separates P and Q.

• (Recovery) Consider Problem 4 and Definition 6. If npτ2 ≤ n−δ, then no polynomial in

R[A]≤D weakly recovers χ. If npτ2 ≥ nδ, then there is a polynomial in R[A]≤D that weakly

recovers χ.

Proof The four bounds are established in Theorems 8, 9, 12, and 13, respectively. It suffices to note

that under the assumptions of the theorem, the conditions (4), (7), (9), and (17) are all satisfied. See

also the discussion after each of the theorems.

By the above theorem, there is a gap between the detection threshold and the recovery threshold

for planted dense cycles if we focus on low-degree polynomials. To better illustrate the detection-

recovery gap, let us suppose p = n−a and τ = n−b for constants a, b ∈ (0, 1). Then the detection

threshold is given by 3− 3a− 4b = 0, while the recovery threshold is given by 1− a− 2b = 0. We

plot the phase diagram in Figure 1. In particular, in region B of the figure, detection is easy while

recovery is hard.

A
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a
0 1

0

1

0.5

0.75

Figure 1: The detection-recovery gap for planted dense cycles with p = n−a and τ = n−b. Detec-

tion is hard in region A, and easy in regions B and C. Recovery is hard in regions A and

B, and easy in region C.

In Theorem 7, we have assumed that p and q are of the same order, which is a standard simpli-

fication in the literature for related problems (see, e.g., Hajek et al. (2015)). In fact, for three of the

four bounds (Theorems 8, 9, and 12, except the recovery upper bound), the edge density p in the

cycle can be much higher than the edge density q outside the cycle; for the detection and recovery

lower bounds (Theorems 8 and 12), p can also approach q in the sense that p−q is of a smaller order

than p or q. The latter regime is also addressed in a related but different context of computational

lower bounds by Brennan et al. (2019).

For the recovery upper bound, our proposed statistic and analysis yield stronger results than

weak recovery if we consider efficient algorithms beyond low-degree polynomials. Namely, we

produce an estimator χ̂ ∈ {0, 1} that recovers χ = 1{d(z1, z2) ≤ τ/2} with high probability,

and also a consistent estimator of the underlying random geometric graph. See Theorem 14 and

Corollary 15.
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Technical contributions It is worth noting that none of the four bounds follow trivially from

existing work. For the detection lower bound, while the framework of low-degree polynomials is

well-understood (see, e.g., Hopkins (2018); Bandeira et al. (2022)), we provide a new application to

random geometric graphs. The analysis also prompts us to study the signed triangle count proposed

by Bubeck et al. (2016) in the noisy case, proving the detection upper bound. For the recovery lower

bound, we generalize the technique developed by Schramm and Wein (2022) for the planted clique

problem to a general binary observation model, and then apply it to our problem. Finally, the most

technical part of this work is the recovery upper bound, where we provide a delicate analysis of

self-avoiding walks between two vertices in the observed graph. The same statistic has been used

by Hopkins and Steurer (2017) for community detection, but we perform a new analysis of certain

probabilistic and combinatorial properties of self-avoiding walks in random geometric graphs.

Open problems While we have characterized the detection and recovery thresholds for low-

degree polynomial algorithms, the information-theoretic thresholds for both problems remain largely

open. Most existing results in the literature of small-world graphs or random geometric graphs fo-

cus on different regimes and are not comparable to our results. For example, Ding et al. (2020a)

consider the regime τn = no(1) and Liu and RÂacz (2021) assume a constant p. One possible ex-

ception is the work by Cai et al. (2017), which assumes a bandwidth exactly τn instead of τn in

expectation. Ignoring this difference, their results can be compared to ours for p, q, and τ all of

the order n−a, i.e., on the diagonal a = b in Figure 1. One of their results states that detection

is information-theoretically possible if a < 1/2. Consequently, the information-theoretic threshold

for detection would be inside region A in Figure 1, and there would be a statistical-to-computational

gap for the detection problem. However, since the comparison between Cai et al. (2017) and our

work is not fully rigorous, we leave the study of information-theoretic thresholds to future work.

Another interesting question left open by our work is what the detection and recovery thresholds

are for higher-dimensional geometry. For example, the latent locations z1, . . . , zn may be distributed

on the unit sphere Sd−1 in Rd for d ≥ 3, rather than on a circle. We believe many of the results

in this work extend to the case of a fixed d, but if d grows with n, then the problem becomes

significantly more difficult and novel ideas are required.

In the sequel, we present low-degree lower bounds before upper bounds for both the detection

and the recovery problem. The rationale behind this nonstandard order of presentation is in fact

an important advantage of the low-degree framework: The proof of a low-degree lower bound will

naturally suggest an efficient algorithm that potentially achieves the matching upper bound.

3. The detection problem

As discussed in the introduction, the planted dense cycle model is a one-dimensional random ge-

ometric graph model. Detection of geometry in random graphs has been studied, and a canonical

algorithm for this task is counting signed triangles proposed by Bubeck et al. (2016). On the other

hand, computational lower bounds for random geometric graphs are not well-understood even in

the one-dimensional case. We first present the low-degree lower bounds, whose proof suggests that

the statistic of signed triangles has the best distinguishing power. Then we give a self-contained

analysis of signed triangles in our case.
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3.1. Lower bound

The standard procedure for proving low-degree lower bounds consists in analyzing the distinguish-

ing power of an orthonormal basis of functions of the observations under model Q. Towards this

end, for (i, j) ∈
(

[n]
2

)

, define

Āij :=
Aij − r
√

r(1− r)
. (2)

For α ⊆
(

[n]
2

)

, define

ϕα(A) :=
∏

(i,j)∈α
Āij ,

and let ϕ∅(A) ≡ 1. Then {ϕα}α⊆([n]
2 )

is an orthonormal basis for functions on the hypercube

{0, 1}(
[n]
2 ) under Q. Moreover, since r is the average edge density in both models P and Q, the

larger p is compared to r, the larger signal we have at each edge. Hence we define a quantity

µ :=
p− r

√

r(1− r)
(3)

that can be understood as the signal-to-noise ratio of model P . We have the following theorem.

Theorem 8 (Detection lower bound) Consider Problem 3. Fix any constant δ ∈ (0, 0.1). No

polynomial f ∈ R[A]≤D strongly separates P and Q in the sense of Definition 5, if

n3τ4µ6 ≤ n−δ, µ = Õ(1), D = o

(

( log n

log log n

)2
)

. (4)

To clarify, Õ(1) in (4) does not stand for a specific bound but rather allows µ = µn to be

any sequence that scales as Õ(1), and similarly for the condition on D. In addition, to ease the

presentation, we have assumed the conditions in (4) that are stronger than what is required by the

proof: It suffices to assume n3τ4µ6 ≤ n−o(1) for an appropriately defined o(1) quantity, and the

degree D can be polylogarithmic in n or even no(1) if µ is sufficiently small.

The proof of the above theorem is deferred to Section A.1. We now provide a proof sketch. To

show that no polynomial of degree at most D strongly separates P and Q, it suffices to prove that

the ªadvantageº

Adv≤D := sup
f∈R[A]≤D,

EQ[f(A)2] ̸=0

EP [f(A)]
√

EQ[f(A)2]

is O(1); see (Bandeira et al., 2022, Proposition 6.2). Furthermore, it is known (Hopkins, 2018,

Section 2.3) that

Adv
2
≤D =

∑

α⊆([n]
2 ) : |α|≤D

(EP [ϕα(A)])2. (5)

The rest of the proof consists in controlling all the summands in (5), which is done in Section A.1.

This eventually leads to Proposition 20, from which Theorem 8 easily follows.

To further clarify the intuition behind the sum in (5), for each subgraph α ⊆
(

[n]
2

)

, we can

understand the quantity EP [ϕα(A)] as the ªpowerº of the statistic ϕα(A) in distinguishing P from

7
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Q. The lower bound requires that the total distinguishing power, as a sum of (EP [ϕα(A)])2 over

all low-degree α, is bounded. On the other hand, if EP [ϕα(A)] is large for a particular choice of α,

then the corresponding statistic ϕα(A) can be used for testing between P and Q. A careful study

of E[ϕα(A)] in Proposition 20 suggests that the bottleneck case is when the graph α is a triangle.

Therefore, it is natural to consider signed triangles for the upper bound.

3.2. Upper bound

While signed triangles have been analyzed for random geometric graphs in previous works such as

Bubeck et al. (2016); Brennan et al. (2020); Liu and RÂacz (2021); Liu et al. (2022), none of these

results apply in our case. For example, the setup closest to ours can be found in Liu and RÂacz

(2021), where high-dimensional random geometric graphs are studied but the probability p has to

be fixed. Therefore, we present a self-contained analysis of the signed triangle statistic

S3(A) :=
∑

H∈([n]
3 )

∏

(i,j)∈(H2 )

Āij . (6)

Note that if Āij were replaced by Aij in the above definition, then S3(A) would be the number of

triangles in the graph A. Hence S3(A) is a standardized version of triangle count.

Theorem 9 (Detection upper bound) Consider Problem 3. Suppose that p ≥ Cq for a constant

C > 1. The degree-3 polynomial S3(A) defined in (6) strongly separates P and Q in the sense of

Definition 5, if

n3τ4p6/r3 = ω(1), n3τ2p3 = ω(1). (7)

The proof of the theorem is deferred to Section A.2. In short, we control the two expecta-

tions EP [f(A)], EQ[f(A)] and the two variances VarP [f(A)], VarQ[f(A)] in Propositions 21, 23,

and 24, which together result in Theorem 9. We have again chosen simplicity over generality for

the statement of the above theorem by assuming p ≥ Cq for C > 1. A more general condition

can be obtained from a refined comparison between the bounds in Propositions 21 and 24. The two

conditions in (7) can be interpreted as follows. First, as we see in the proof, µ = Θ(p/r1/2), so

the first condition in (7) matches the first condition in (4) up to an nδ factor; they together give the

detection threshold stated in Theorem 7. Next, for any three vertices, the probability that they are

neighbors in the planted cycle and form a triangle in A is Θ(τ2p3); as a result, there are Θ(n3τ2p3)
triangles in the planted cycle on average. Therefore, the second condition in (7) is a minimal condi-

tion guaranteeing the existence of triangles in the planted cycle in the first place. Further, note that

if p and q are of the same order, then n3τ2p3 = Ω(n3τ4p6/r3), so the second condition in (7) is

subsumed by the first condition.

4. The recovery problem

Similar to the previous section, we start with the low-degree lower bound, whose proof suggests an

optimal efficient algorithm. Then we analyze the algorithm to establish the matching upper bound.

The optimal statistic for recovery turns out to be a signed count of self-avoiding walks between

vertices 1 and 2, a statistic that has been used for related problems such as community detection in

Hopkins and Steurer (2017) and spiked matrix models in Ding et al. (2020b).

8
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4.1. Lower bound

A general strategy for proving low-degree lower bounds for estimation problems was proposed by

Schramm and Wein (2022). We provide a lower bound in Proposition 11 that extends the one in

(Schramm and Wein, 2022, Section 3.5) for the planted clique problem. Let us start with a general

recovery problem with binary observations.

Definition 10 For an integer N ≥ 1, let B1, . . . , BN be i.i.d. Bern(q) variables. Consider a latent

random subset W ⊆ [N ] from an arbitrary prior over subsets of [N ]. Conditional on W , we define

the observation A ∈ RN as follows. If i /∈ W , then let Ai := Bi. If i ∈ W , then sample an

independent Ai ∼ Bern(p).

Given A from the above model, we aim to estimate χ := 1{1 ∈ W}. For a positive integer D,

define

Corr≤D := sup
f∈R[A]≤D,

E[f(A)2] ̸=0

E[f(A) · χ]
√

E[f(A)2]

as in (1). Let

λ :=
p− q

√

q(1− q)
, (8)

which is a signal-to-noise ratio analogous to µ in (3) for the detection problem (here in the recovery

problem, model Q is irrelevant, so r is replaced by q in the definition of λ). The following result is

proved in Section A.3.

Proposition 11 Assume the model in Definition 10. For β ⊆ α ⊆ [N ], let

Pαβ := P{α \W = β}.

Suppose Pαα > 0 for all α ⊆ [N ]. Then we have

Corr
2
≤D ≤

∑

α⊆[N ] : |α|≤D

ρ2α λ
2|α|,

where ρα is defined recursively by ρ∅ := P{1 ∈ W} and

ρα :=
1

Pαα

(

P{α ∪ {1} ⊆ W} −
∑

β⊊α

ρβ Pαβ

)

.

We now return to the problem of planted dense cycle and present the following result.

Theorem 12 (Recovery lower bound) Consider Problem 4. Fix any constant δ ∈ (0, 0.1). No

polynomial f ∈ R[A]≤D weakly recovers χ = 1{d(z1, z2) ≤ τ/2} given A ∼ P in the sense of

Definition 6, if

nτ2λ2 ≤ n−δ, λ = O(1), D = o

(

( log n

log log n

)2
)

, τD4 ≤ 0.1. (9)

9
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Let us discuss the conditions in (9), which are analogous to those in (4). First, the main condition

is nτ2λ2 ≤ n−δ, which can be weakened to nτ2λ2 ≤ n−o(1) for an appropriately defined o(1)
quantity by a closer inspection of the above proof. Also, the degree D can be polylogarithmic in

n or even no(1) if λ is sufficiently small. Finally, the technical condition τD4 ≤ 0.1 is inactive if

nλ2 ≥ 1; even if it is active, the condition is mild because the interesting regime of small-world

networks is where the bandwidth nτ is much smaller than the total number of vertices n.

Theorem 12 is proved in Section A.3 and we now provide a sketch. To apply Proposition 11,

we note that model P in Definition 1 is a special case of the model in Definition 10. Namely, let

N =
(

n
2

)

, use an index pair (i, j) ∈
(

[n]
2

)

instead of a single index, and let

W =

{

(i, j) ∈
(

[n]

2

)

: d(zi, zj) ≤ τ/2

}

. (10)

In addition, we have

χ = 1{d(z1, z2) ≤ τ/2} = 1{(1, 2) ∈ W}.
Proposition 11 then implies that

Corr
2
≤D ≤

∑

α⊆([n]
2 ) : |α|≤D

ρ2α λ
2|α|, (11)

where ρα is defined recursively by ρ∅ = P{d(z1, z2) ≤ τ/2} = τ , and

ρα =
1

Pαα

(

P{α ∪ {(1, 2)} ⊆ W} −
∑

β⊊α

ρβ Pαβ

)

. (12)

Then the bulk of the proof consists in bounding ρ2α for each α using the above recursion. This is

done in Section A.3, eventually leading to the bounds on Corr
2
≤D in Proposition 29. Theorem 12

then follows as a consequence.

The recursive definition (12) is similar to that for joint cumulants of the random variables χ
and (Aij)(i,j)∈α (see Schramm and Wein (2022)). Intuitively, for each α ⊆

(

[n]
2

)

, the cumulant-like

quantity ρα measures the amount of ªinformationº (Aij)(i,j)∈α contains about the estimand χ. The

above lower bound controls the total amount of information that all subgraphs with at most D edges

have about χ. On the other hand, if ρα is large for a particular choice of α, then the corresponding

subgraph (Aij)(i,j)∈α may be useful for recovering χ. The analysis of ρα in Proposition 29 turns out

to suggest that we should consider self-avoiding walks between vertices 1 and 2, which we study in

the next subsection for the upper bound.

4.2. Upper bound

Similar to Ā in (2), we consider a standardized version Ã of the observed graph, defined by

Ãij :=
Aij − q
√

q(1− q)
(13)

for (i, j) ∈
(

[n]
2

)

. Compared to (2), the parameter r is replaced by q in (13) because model Q is

irrelevant for the recovery problem. Moreover, for α ⊂
(

[n]
2

)

, define

Ãα :=
∏

(i,j)∈α
Ãij . (14)

10
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As discussed above, the proof of the recovery lower bound suggests that self-avoiding walks

between vertices 1 and 2 are informative about χ = 1{d(z1, z2) ≤ τ/2}, which motivates us to

consider the following. Fix an integer ℓ ≥ 1. Let SAWℓ be the set of all length-(ℓ+1) self-avoiding

walks from vertex 1 and to vertex 2, i.e.,

SAWℓ :=
{

{(1, i1), (i1, i2), (i2, i3), . . . , (iℓ−1, iℓ), (iℓ, 2)} : i1, . . . , iℓ, 1, 2 are all distinct
}

. (15)

Define the signed count of SAWℓ in the observed graph A as

T (A) :=
∑

α∈SAWℓ

Ãα =
∑

i1 ̸=···̸=iℓ ̸=1 ̸=2

Ã1i1Ãi1i2Ãi2i3 · · · Ãiℓ−1iℓÃiℓ2. (16)

As discussed above, this statistic has appeared in, e.g., Hopkins and Steurer (2017) for community

detection. The following theorem shows that the statistic T (A) achieves weak recovery of χ, and

its proof can be found in Section A.4.

Theorem 13 (Recovery upper bound) Consider Problem 4. Suppose that Cq ≤ p ≤ C ′q for

constants C ′ > C > 1. For any constant δ ∈ (0, 0.1), fix an integer ℓ > 1/δ. The degree-(ℓ + 1)
polynomial T (A) defined in (16) weakly recovers χ = 1{d(z1, z2) ≤ τ/2} given A ∼ P in the

sense of Definition 6, if

nτ2p ≥ nδ, τ = o(1). (17)

If p and q are of the same order, then we have λ = p−q√
q(1−q)

= Θ(p1/2). Therefore, the main

condition nτ2p ≥ nδ in (17) matches the first condition in (9) up to an nδ factor; they together

give the recovery threshold stated in Theorem 7. We can also obtain a more general condition for

the upper bound using Propositions 31 and 38, but the condition is not tight in the regime where

p/q ≥ nc for a constant c > 0. Proving a tight condition requires more technical work beyond

the scope of this paper. Moreover, as we have explained, the condition τ = o(1) in (17) is natural

because the bandwidth is usually much smaller than the total number of vertices.

We have focused on weak recovery in the sense of Definition 6 and established the detection-

recovery gap in the framework of low-degree polynomials. Let us now consider the more practical

problem of exactly recovering the indicator χ = 1{d(z1, z2) ≤ τ/2} with high probability using a

polynomial-time algorithm. Towards this end, fix a quantity ϵ ∈ (0, τ/2) and define

κ = κ(ϵ) :=
E
[

T | d(z1, z2) = τ
2

]

+ E
[

T | d(z1, z2) = τ
2 + ϵ

]

2
. (18)

By Proposition 31, the quantity κ can be computed explicitly. We then threshold the statistic T (A)
in (16) at κ to obtain the estimator

χ̂ := 1{T (A) ≥ κ}.
The following result is a consequence of our analysis of the statistic T (A), and its proof is deferred

to the end of Section A.4.

Theorem 14 In the setting of Theorem 13, we additionally assume ℓ > 3/δ and set ϵ := τn−δ/4.

Then the estimator χ̂ = 1{T (A) ≥ κ} of χ = 1{d(z1, z2) ≤ τ/2} satisfies

E
[

(χ̂− χ)2
]

= P{χ̂ ̸= χ} ≤ Cℓ τn
−δ/2

for a constant Cℓ > 0 depending only on ℓ.

11
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Since d(z1, z2) ≤ τ/2 with probability τ , a trivial estimator χ̃ ≡ 0 makes an error with probability

τ . Therefore, the above error probability O(τn−δ/2) is small.

An immediate consequence of the above result is that we can estimate the underlying random

geometric graph consistently. To be more precise, we denote the adjacency matrix of the geometric

graph by X ∈ {0, 1}n×n, which is defined by Xij := 1{d(zi, zj) ≤ τ/2}.

Corollary 15 In the setting of Theorem 14, there is an estimator X̂ ∈ {0, 1}n×n of the random

geometric graph X ∈ {0, 1}n×n such that

E[∥X̂ −X∥2F ] ≤ Cℓ τn
2−δ/2

for a constant Cℓ > 0 depending only on ℓ.

This result follows immediately from Theorem 14, because by symmetry, it suffices to estimate each

edge Xij = 1{d(zi, zj) ≤ τ/2} in the same way as we did for (i, j) = (1, 2).
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Appendix A. Additional proofs

A.1. Detection lower bound

In this subsection, we establish Proposition 20 which leads to Theorem 8. Recall the models P and

Q in Definitions 1 and 2 respectively. For α ⊆
(

[n]
2

)

, define

η(z;α) := |{(i, j) ∈ α : d(zi, zj) ≤ τ/2}|.

14
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Lemma 16 For α ⊆
(

[n]
2

)

, let v := |V (α)| and suppose that the graph α is connected. Then we

have

Ez

[ 1

τη(z;α)

]

≤ v2vτ v−|α|−1.

Proof Suppose that V (α) = {i1, . . . , iv}. For any realization of z, there is a unique partition

B1 ⊔ · · · ⊔Bm of {i1, . . . , iv} such that the following two conditions hold:

1. For any distinct j, j′ ∈ [m] and any ℓ ∈ Bj and ℓ′ ∈ Bj′ , we have d(zℓ, zℓ′) > τ/2;

2. For any j ∈ [m], Bj cannot be partitioned into two sub-blocks satisfying Condition 1.

In other words, we partition zi1 , . . . , ziv into blocks so that the distance between two consecutive

points in the same block is at most τ/2.

Now fix a partition {i1, . . . , iv} = B1 ⊔ · · · ⊔Bm. We claim that

Pz{Conditions 1 and 2 are satisfied for B1, . . . , Bm} ≤ (vτ)v−m. (19)

To prove (19), it suffices to use Condition 2. Fix ℓj ∈ Bj for j ∈ [m]. By Condition 2, for any

j ∈ [m] and ℓ ∈ Bj , we have d(zℓ, zℓj ) ≤ |Bj | τ/2 ≤ vτ/2. For any realization of zℓ1 , . . . , zℓm , it

holds that

Pz{d(zℓ, zℓj ) ≤ vτ/2 for all ℓ ∈ Bj and all j ∈ [m] | zℓ1 , . . . , zℓm} ≤
m
∏

j=1

(vτ)|Bj |−1 = (vτ)v−m.

Then (19) follows.

Since the graph α is connected, there are at least m − 1 edges between vertices ℓ ∈ Bj and

ℓ′ ∈ Bj′ for distinct j, j′ ∈ [m]. If Condition 1 is satisfied, then we have

η(z;α) = |{(ℓ, ℓ′) ∈ α : d(zℓ, zℓ′) ≤ τ/2}| ≤ |α|−(m− 1). (20)

Combining (19) and (20), we obtain

Ez

[ 1

τη(z;α)

]

≤
∑

B1⊔···⊔Bm={i1,...,iv}
(vτ)v−m · 1

τ |α|−(m−1)
≤

∑

B1⊔···⊔Bm={i1,...,iv}
vvτv−|α|−1.

Finally, bound the number of partitions by vv.

Lemma 17 For α ⊆
(

[n]
2

)

, let v := |V (α)|, and let m be the number of connected components of

the graph α. Then we have

Ez

[ 1

τη(z;α)

]

≤ v2vτv−|α|−m.

Proof Let α(1) ⊔ · · · ⊔ α(m) denote the partition of α into connected components, and note that

|α|=
m
∑

i=1

|α(i)|, v = |V (α)|=
m
∑

i=1

|V (α(i))|, η(z;α) =
m
∑

i=1

η(z;α(i)).
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Lemma 16 shows that for each connected component α(i), we have

Ez

[ 1

τη(z;α
(i))

]

≤ |V (α(i))|2|V (α(i))| τ |V (α(i))|−|α(i)|−1 ≤ v2|V (α(i))| τ |V (α(i))|−|α(i)|−1.

Crucially, the random variables η(z;α(1)), . . . , η(z;α(m)) are independent because the connected

components have mutually disjoint vertex sets and thus involve independent collections of latent

variables zj . We conclude that

Ez

[ 1

τη(z;α)

]

=

m
∏

i=1

Ez

[ 1

τη(z;α
(i))

]

≤
m
∏

i=1

v2|V (α(i))| τ |V (α(i))|−|α(i)|−1 = v2vτ v−|α|−m.

Lemma 18 For α ⊆
(

[n]
2

)

, let v := |V (α)|, and let m be the number of connected components of

the graph α. Recall that µ = p−r√
r(1−r)

. Then we have

|EP [ϕα(A)]| ≤
( µ

1− τ

)|α|
v2vτ v−m.

Proof We have

EP [ϕα(A)] =
1

(r(1− r))|α|/2
EP

[

∏

(i,j)∈α
(Aij − r)

]

=
1

(r(1− r))|α|/2
Ez

[

∏

(i,j)∈α
E[Aij − r | z]

]

=
1

(r(1− r))|α|/2
Ez

[

(p− r)η(z;α)(q − r)|α|−η(z;α)
]

.

Recall that r = τp+ (1− τ)q so that p−r
q−r = τ−1

τ , and µ = p−r√
r(1−r)

. It follows that

EP [ϕα(A)] =

(

µτ

τ − 1

)|α|
Ez

[

(τ − 1

τ

)η(z;α)
]

.

By Lemma 17, we obtain

|EP [ϕα(A)]| ≤
(

µτ

1− τ

)|α|
Ez

[ 1

τη(z;α)

]

≤
(

µτ

1− τ

)|α|
v2vτv−|α|−m,

finishing the proof.

Lemma 19 If the graph α has a dangling edge, i.e., an edge (i, j) where i is connected only to j
in α, then EP [ϕα(A)] = 0.
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Proof Let z−i = (z1, . . . , zi−1, zi+1, . . . , zn). Since i is connected only to j in α, conditional on

z−i, the edges
{

Ai′j′ : (i
′, j′) ∈ α \ {(i, j)}

}

are mutually independent; further, they are indepen-

dent from zi and Aij . It follows that

EP [ϕα(A)] = Ez−i

[

∏

(i′,j′)∈α
EP [Āi′j′ | z−i]

]

= 0,

because

EP [Āij | z−i] =
EP [Aij − r | zj ]
√

r(1− r)
=

τ(p− r) + (1− τ)(q − r)
√

r(1− r)
= 0

by the definition r := τp+ (1− τ)q.

Proposition 20 Recall (5). We have Adv
2
≤D ≤ 2 in either of the following situations:

• 2n3τ4(2D)13R6
√
D ≤ 1/2, where R := max {2D µ

1−τ , 1};

• L(2D µ
1−τ )

2 ≤ 1/2 and n3τ4(2D)19( µ
1−τ )

6 ≤ 1/2, where L := max{nτ2(2D)4, 1}.

Proof To ease the notation, we consider D such that
√
D/3 is an integer; the proof can be easily

adapted to the general case by using floors ⌊·⌋ or ceilings ⌈·⌉.

We start with (5) which states

Adv
2
≤D =

∑

α⊆([n]
2 ) : |α|≤D

(EP [ϕα(A)])2.

Recall that ϕ∅ ≡ 1. Let c(α) denote the number of connected components of α. If any connected

component of α has less than three edges, then it must contains a dangling edge; if the number of

vertices of α exceeds the number of edges, then α also has a dangling edge. Therefore, Lemma 19

shows that EP [ϕα(A)] = 0 if |α|< 3 c(α) or |V (α)|> |α|. Then, by Lemma 18, we obtain

Adv
2
≤D ≤ 1 +

D/3
∑

m=1

D
∑

ℓ=3m

D
∑

v=3m

∑

α⊆([n]
2 ) : c(α)=m,

|α|=ℓ, |V (α)|=v

( µ

1− τ

)2ℓ
v4vτ2v−2m · 1{v ≤ ℓ ≤ v2/2}.

There are at most
(

n
v

)

[

((v2)
ℓ

)

∧ 2(
v
2)
]

graphs α with |V (α)|= v and |α|= ℓ. By the inequalities

(

n
v

)

≤ nv,
((v2)

ℓ

)

≤ v2ℓ ≤ (2D)2ℓ, and 2(
v
2) ≤ 2v

2
, we have

Adv
2
≤D ≤ 1 +

D/3
∑

m=1

D
∑

ℓ=3m

D
∑

v=3m
[

(2D)2ℓ ∧ 2v
2
]

·
( µ

1− τ

)2ℓ
(nτ2(2D)4)vτ−2m · 1{v ≤ ℓ ≤ v2/2}. (21)

Let us consider two cases.
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Case 1: We bound (21) by splitting it into the following terms according the value of v:

Adv
2
≤D ≤ 1 +

D/3
∑

m=1

√
D
∑

v=3m

D
∑

ℓ=3m

2v
2
( µ

1− τ

)2ℓ
(nτ2(2D)4)vτ−2m · 1{ℓ ≤ v2/2} (22a)

+

D/3
∑

m=1

D
∑

v=
√
D∨3m

D
∑

ℓ=3m

(2D)2ℓ
( µ

1− τ

)2ℓ
(nτ2(2D)4)vτ−2m. (22b)

We then bound (22a) and (22b) respectively. Recall that R := max {2D µ
1−τ , 1}. By the assumption

2n3τ4(2D)13R6
√
D ≤ 1/2, we have

nτ2(2D)4R
√
D ≤ 1/2, n3τ4(2D)12R3

√
D ≤ 1/2.

For v ≤
√
D, we have 2ℓ ≤ v2 ≤

√
Dv, so the sum in (22a) is bounded by

D/3
∑

m=1

√
D
∑

v=3m

DR
√
Dv(nτ2(2D)4)vτ−2m ≤ 2D

D/3
∑

m=1

(nτ2(2D)4R
√
D)3mτ−2m

≤ 4Dn3τ4(2D)12R3
√
D ≤ 1/2

by the assumption 2n3τ4(2D)13R6
√
D ≤ 1/2. Next, using

nτ2(2D)4 ≤ 1/2, n3τ4(2D)12 ≤ 1/2,

we see that the sum in (22b) is bounded by

D/3
∑

m=1

DR2D(nτ2(2D)4)
√
D∨3mτ−2m

≤

√
D/3
∑

m=1

DR2D(nτ2(2D)4)
√
Dτ−2

√
D/3 +

D/3
∑

m=
√
D/3

DR2D(n3τ4(2D)12)m

≤ D3/2R2D(n3τ4(2D)12)
√
D/3 +DR2D(n3τ4(2D)12)

√
D/3

≤
(

n3τ4(2D)12(2D)9/(2
√
D)R6

√
D
)

√
D/3

≤ 1/2

by the assumption 2n3τ4(2D)13R6
√
D ≤ 1/2. Combining the two terms yields Adv2≤D ≤ 2.

Case 2: It follows from (21) that

Adv
2
≤D ≤ 1 +

D/3
∑

m=1

D
∑

ℓ=3m

ℓ
∑

v=3m

nv(2D)2ℓ
( µ

1− τ

)2ℓ
(2D)4vτ2v−2m

= 1 +

D/3
∑

m=1

τ−2m
D
∑

ℓ=3m

(

(

2D
µ

1− τ

)2
)ℓ ℓ

∑

v=3m

(nτ2(2D)4)v.
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Recall that L := max{nτ2(2D)4, 1}, L(2D µ
1−τ )

2 ≤ 1/2, and n3τ4(2D)19( µ
1−τ )

6 ≤ 1/2. We

have

Adv
2
≤D ≤ 1 +

D/3
∑

m=1

τ−2m
D
∑

ℓ=3m

(

(

2D
µ

1− τ

)2
)ℓ

(ℓ− 3m+ 1)(nτ2(2D)4)3mLℓ−3m

≤ 1 +D

D/3
∑

m=1

(L−3n3τ4(2D)12)m
D
∑

ℓ=3m

(

L
(

2D
µ

1− τ

)2
)ℓ

≤ 1 + 2D

D/3
∑

m=1

(L−3n3τ4(2D)12)m
(

L
(

2D
µ

1− τ

)2
)3m

= 1 + 2D

D/3
∑

m=1

(

n3τ4(2D)18
( µ

1− τ

)6
)m

≤ 1 + 4Dn3τ4(2D)18
( µ

1− τ

)6
≤ 2,

finishing the proof.

We are ready to prove Theorem 8.

Proof [Proof of Theorem 8] To prove that no polynomial of degree at most D strongly separates P
and Q, recall the discussion after Theorem 8: it suffices to show that the advantage in (5) is O(1).
Note that it is bounded by 2 in Proposition 20, which we now apply. It suffices to verify that (4)

implies the assumptions of Proposition 20. To this end, we consider two cases:

• If µ = Θ̃(1), n3τ4 ≤ n−δ, and D = o
(

( logn
log logn)

2
)

, then we can check the first set of

conditions in Proposition 20: R = max {2D µ
1−τ , 1} = Õ(1) and 2n3τ4(2D)13R6

√
D ≤

n3τ4 · no(1) ≤ 1/2.

• Next, suppose that µ ≤ (log n)−100, n3τ4µ6 ≤ n−δ, and D ≤ (log n)10. We can check the

second set of conditions in Proposition 20 by further considering two subcases:

± If τ ≤ n−1/2, then L = max{nτ2(2D)4, 1} ≤ (2D)4, L
(

2D µ
1−τ

)2
≤ µ2(4D)6 ≤

1/2, and n3τ4(2D)19
(

µ
1−τ

)6
≤ n−δ(4D)19 ≤ 1/2.

± If τ > n−1/2, then L = nτ2(2D)4 and L
(

2D µ
1−τ

)2
≤ nτ2µ2(4D)6 ≤ 1/2 because

nτ2µ2 = (n3τ6µ6)1/3 ≤ (n3τ4µ6)1/3 ≤ n−δ/3. Finally, n3τ4(2D)19
(

µ
1−τ

)6
≤ 1/2

as in the previous subcase.

Combining all the cases completes the proof.
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A.2. Detection upper bound

While it suffices to focus on the signed triangle count for the upper bound, we consider cliques with

v ≥ 3 vertices, because some intermediate results hold for a general v ≥ 3 and may be interesting

in their own right. Define

Sv(A) :=
∑

H∈([n]
v )

∏

(i,j)∈(H2 )

Āij .

Recall the models P and Q in Definitions 1 and 2 respectively.

Proposition 21 We have

EQ[Sv(A)] = 0, VarQ(Sv(A)) =

(

n

v

)

.

Proof It is clear that EQ[Sv(A)] = 0. Moreover, the variance of Sv(A) under Q is equal to

EQ[Sv(A)
2] =

∑

H,H′∈([n]
v )

EQ

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

=
∑

H∈([n]
v )

EQ

[

∏

(i,j)∈(H2 )

Ā2
ij

]

=

(

n

v

)

.

For H ∈
(

[n]
v

)

, define

ζ(z;H) :=

∣

∣

∣

∣

{

(i, j) ∈
(

H

2

)

: d(zi, zj) ≤ τ/2

}
∣

∣

∣

∣

. (23)

Lemma 22 Suppose that 3 ≤ v ≤ n and 0 < τ ≤ 1
2v+1(1+2vv−1)

. If |H|= v, then

(−1)(
v
2) · Ez

[(τ − 1

τ

)ζ(z;H)]

≥ 1

2v+1τ(
v
2)−v+1

.

Proof Without loss of generality, we assume that H = [v]. It holds that

(−1)(
v
2) · Ez

[(τ − 1

τ

)ζ(z;H)]

= (−1)(
v
2) ·

(v2)
∑

m=0

Pz{ζ(z;H) = m} ·
(τ − 1

τ

)m

≥ Pz

{

ζ(z;H) =

(

v

2

)}

·
(

1− τ

τ

)(v2)
−

(v2)−1
∑

m=0

Pz{ζ(z;H) = m} ·
(

1− τ

τ

)m

. (24)

We now further bound this quantity from below.

First, conditional on any realization of z1, it holds that

Pz{d(z1, zi) ≤ τ/4 for all i ∈ H | z1} = (τ/2)v−1.
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If d(z1, zi) ≤ τ/4 for all i ∈ H , then d(zi, zj) ≤ τ/2 for all i, j ∈ H so that ζ(z;H) =
(

v
2

)

.

Consequently,

Pz

{

ζ(z;H) =

(

v

2

)}

·
(

1− τ

τ

)(v2)
≥
(τ

2

)v−1
· 1− τ

(

v
2

)

τ(
v
2)

≥ 1

2vτ(
v
2)−v+1

, (25)

where the last step holds because τ ≤ 1
v(v−1) by assumption.

Second, we have

(v2)−v
∑

m=0

Pz{ζ(z;H) = m} ·
(

1− τ

τ

)m

≤
( (v2)−v
∑

m=0

Pz{ζ(z;H) = m}
)

· 1

τ(
v
2)−v

≤ 1

τ(
v
2)−v

. (26)

Third, for
(

v
2

)

− v + 2 ≤ m ≤
(

v
2

)

− 1 and ζ(z;H) = m, the graph on H with the edge set

{

(i, j) ∈
(

H

2

)

: d(zi, zj) ≤ τ/2

}

(27)

must be connected. As a result, d(z1, zi) ≤ vτ/2 for all i ∈ H . Conditional on any realization of

z1, it holds that

Pz{d(z1, zi) ≤ vτ/2 for all i ∈ H | z1} ≤ (vτ)v−1.

Then we obtain

(v2)−1
∑

m=(v2)−v+2

Pz{ζ(z;H) = m} ·
(

1− τ

τ

)m

≤
( (v2)−1

∑

m=(v2)−v+2

Pz{ζ(z;H) = m}
)

· 1

τ(
v
2)−1

≤ (vτ)v−1 · 1

τ(
v
2)−1

=
vv−1

τ(
v
2)−v

. (28)

Fourth, for ζ(z;H) =
(

v
2

)

− v + 1, the graph on H with the edge set (27) is either connected

or has only one isolated vertex zi∗ . Let j∗ = j∗(i∗) be any vertex in H not equal to i∗. Then

d(zj∗ , zi) ≤ vτ/2 for all i ∈ H \ {i∗}. Conditional on any realization of zj∗ , it holds that

Pz{d(zj∗ , zi) ≤ vτ/2 for all i ∈ H \ {i∗} | zj∗} ≤ (vτ)v−2.

Then we obtain

Pz

{

ζ(z;H) =

(

v

2

)

− v + 1

}

·
(

1− τ

τ

)(v2)−v+1

≤ v(vτ)v−2 · 1

τ(
v
2)−v+1

≤ vv−1

τ(
v
2)−v

, (29)

where we used the assumption v ≥ 3 in the last step.

Finally, combining (24), (25), (26), (28), and (29) yields that

∣

∣

∣

∣

Ez

[(τ − 1

τ

)ζ(z;H)]
∣

∣

∣

∣

≥ 1

2vτ(
v
2)−v+1

− 1

τ(
v
2)−v

− vv−1

τ(
v
2)−v

− vv−1

τ(
v
2)−v

≥ 1

2v+1τ(
v
2)−v+1

,

since 1
2vτ ≥ 2(1 + 2vv−1) by assumption.
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Proposition 23 Suppose that 3 ≤ v ≤ n and 0 < τ ≤ 1
2v+1(1+2vv−1)

. It holds that

|EP [Sv(A)]| ≥
(

n

v

)

( µ

1− τ

)(v2) τ v−1

2v+1
.

Proof We have

EP [Sv(A)] =
∑

H∈([n]
v )

EP

[

∏

(i,j)∈(H2 )

Āij

]

=
∑

H∈([n]
v )

Ez

[

∏

(i,j)∈(H2 )

EP [Āij | z]
]

=
1

(r(1− r))(
v
2)/2

∑

H∈([n]
v )

Ez

[

(p− r)ζ(z;H)(q − r)(
v
2)−ζ(z;H)

]

.

Recall that r = τp+ (1− τ)q so that p−r
q−r = τ−1

τ , and µ = p−r√
r(1−r)

. It follows that

EP [Sv(A)] =

(

µτ

τ − 1

)(v2) ∑

H∈([n]
v )

Ez

[(τ − 1

τ

)ζ(z;H)]

.

Then, by Lemma 22, we obtain

|EP [Sv(A)]| ≥
(

µτ

1− τ

)(v2)
(

n

v

)

1

2v+1τ(
v
2)−v+1

,

completing the proof.

Proposition 24 There is an absolute constant C > 0 such that

VarP(S3(A)) ≤ C

r3(1− r)3

(

n4(τp+q+r2)(r−q)2(p−q)2+n3(q3+r6+τpq2+τpr4+τ2p3)
)

.

Proof For brevity, let σ :=
√

r(1− r) in this proof. The variance of S3(A) under P is

VarP(S3(A)) = EP [S3(A)2]− EP [S3(A)]2

=
∑

H,H′∈([n]
3 )

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

−
∑

H,H′∈([n]
3 )

EP

[

∏

(i,j)∈(H2 )

Āij

]

EP

[

∏

(i′,j′)∈(H
′

2 )

Āi′j′

]

.

For fixed H,H ′ ⊆ [n] with |H|= |H ′|= 3, consider the following cases:

• |H ∩ H ′|= 0: We have that {zi : i ∈ H} and {zi′ : i′ ∈ H ′} are independent, and conse-

quently, {Āij : (i, j) ∈
(

H
3

)

} and {Āi′j′ : (i
′, j′) ∈

(

H′

3

)

} are independent. Therefore,

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

− EP

[

∏

(i,j)∈(H2 )

Āij

]

EP

[

∏

(i′,j′)∈(H
′

2 )

Āi′j′

]

= 0.

22



DETECTION-RECOVERY GAP FOR PLANTED DENSE CYCLES

• |H ∩H ′|= 1: Suppose H ∩H ′ = {i∗}. Conditional on zi∗ , we have that {zi : i ∈ H \ {i∗}}
and {zi′ : i′ ∈ H ′ \ {i∗}} are independent. Moreover, {Āij : (i, j) ∈

(

H
3

)

} and {Āi′j′ :

(i′, j′) ∈
(

H′

3

)

} are conditionally independent, and their distributions are not changed by the

conditioning on zi∗ . Therefore, we still have

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

− EP

[

∏

(i,j)∈(H2 )

Āij

]

EP

[

∏

(i′,j′)∈(H
′

2 )

Āi′j′

]

= 0.

• |H ∩ H ′|= 2: Without loss of generality, suppose that H = {1, 2, 3} and H ′ = {1, 2, 4}.

Then

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

= Ez

[

EP [Ā
2
12 | z] · EP [Ā13 | z] · EP [Ā23 | z] · EP [Ā14 | z] · EP [Ā24 | z]

]

=
1

σ6
Ez

[

(p(1− r)2 + (1− p)r2)1{d(z1,z2)≤τ/2}(q(1− r)2 + (1− q)r2)1{d(z1,z2)>τ/2}

· (p− r)ζ̃(z)(q − r)4−ζ̃(z)
]

,

where ζ̃(z) := |{(i, j) ∈ {(1, 3), (2, 3), (1, 4), (2, 4) : d(zi, zj) ≤ τ/2}|. We have the

following:

± It is obvious that

Pz{d(z1, z2) ≤ τ/2, ζ̃(z) = 0} ≤ τ, Pz{d(z1, z2) > τ/2, ζ̃(z) = 0} ≤ 1.

± Condition on any realization of (z1, z2). If 1 ≤ ζ̃(z) ≤ 2, then one of the following four

events must occur: (1) d(z1, z3) ≤ τ/2, (2) d(z2, z3) ≤ τ/2, (3) d(z1, z4) ≤ τ/2, or (4)

d(z2, z4) ≤ τ/2; this holds with conditional probability at most 4τ . Therefore,

Pz{1 ≤ ζ̃(z) ≤ 2 | z1, z2} ≤ 4τ,

so we obtain

Pz{d(z1, z2) ≤ τ/2, 1 ≤ ζ̃(z) ≤ 2} ≤ 4τ2, Pz{d(z1, z2) > τ/2, 1 ≤ ζ̃(z) ≤ 2} ≤ 4τ.

± Condition on any realization of (z1, z2). If 3 ≤ ζ̃(z) ≤ 4, then one of the following

four events must occur: (1) d(z1, z3) ≤ τ/2 and d(z1, z4) ≤ τ/2, (2) d(z1, z3) ≤ τ/2
and d(z2, z4) ≤ τ/2, (3) d(z2, z3) ≤ τ/2 and d(z1, z4) ≤ τ/2, (4) d(z2, z3) ≤ τ/2 and

d(z2, z4) ≤ τ/2; this holds with conditional probability at most 4τ2. Therefore,

Pz{3 ≤ ζ̃(z) ≤ 4 | z1, z2} ≤ 4τ2,

so we obtain

Pz{d(z1, z2) ≤ τ/2, 3 ≤ ζ̃(z) ≤ 4} ≤ 4τ3, Pz{d(z1, z2) > τ/2, 3 ≤ ζ̃(z) ≤ 4} ≤ 4τ2.
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Combining the above bounds, we see that

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

=
1

σ6

[ 4
∑

ℓ=0

Pz{d(z1, z2) ≤ τ/2, ζ̃(z) = ℓ} · (p(1− r)2 + (1− p)r2)(p− r)ℓ(q − r)4−ℓ

+

4
∑

ℓ=0

Pz{d(z1, z2) > τ/2, ζ̃(z) = ℓ} · (q(1− r)2 + (1− q)r2)(p− r)ℓ(q − r)4−ℓ

]

≤ 1

σ6

[

(p(1− r)2 + (1− p)r2)
(

τ(r − q)4 + 4τ2(p− r)2(r − q)2 + 4τ3(p− r)4
)

+ (q(1− r)2 + (1− q)r2)
(

(r − q)4 + 4τ(p− r)2(r − q)2 + 4τ2(p− r)4
)

]

,

where we omitted negative terms where ℓ is odd. Recall that τ(p−r) = (1−τ)(r−q) ≤ r−q.

Also, the condition 0 < q < r < p < 1 implies that

p(1− r)2 + (1− p)r2 ≤ p+ r2 ≤ 2p, q(1− r)2 + (1− q)r2 ≤ q + r2. (30)

It then follows that

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

≤ 1

σ6

(

τ(p(1− r)2 + (1− p)r2) + (q(1− r)2 + (1− q)r2)
)(

(r − q)2 + 2τ(p− r)2
)2

≤ 1

σ6
(2τp+ q + r2)

(

(r − q)2 + 2(r − q)(p− r)
)2

≤ 4

σ6
(2τp+ q + r2)(r − q)2(p− q)2.

• |H ∩H ′|= 3: Without loss of generality, suppose that H = H ′ = {1, 2, 3}. Then

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

= EP

[

∏

(i,j)∈(H2 )

Ā2
ij

]

= Ez

[

∏

(i,j)∈(H2 )

EP [Ā
2
ij | z]

]

=
1

σ6
Ez

[

(p(1− r)2 + (1− p)r2)ζ(z;H)(q(1− r)2 + (1− q)r2)3−ζ(z;H)
]

.

We have Pz{d(z1, z2) ≤ τ/2} = τ , so by symmetry, Pz{ζ(z;H) = 1} ≤ 3τ . Moreover, let

us condition on any realization of z1. If ζ(z;H) ≥ 2, then d(z1, z2) ≤ τ and d(z1, z3) ≤ τ ,

which occurs with conditional probability at most (2τ)2. Therefore, Pz{ζ(z;H) ≥ 2} ≤
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(2τ)2. We then obtain

EP

[

∏

(i,j)∈(H2 )

∏

(i′,j′)∈(H
′

2 )

ĀijĀi′j′

]

=
1

σ6

3
∑

ℓ=0

Pz{ζ(z;H) = ℓ} · (p(1− r)2 + (1− p)r2)ℓ(q(1− r)2 + (1− q)r2)3−ℓ

≤ 1

σ6

[

(q(1− r)2 + (1− q)r2)3 + 3τ(p(1− r)2 + (1− p)r2)(q(1− r)2 + (1− q)r2)2

+ (2τ)2
(

(p(1− r)2 + (1− p)r2)2(q(1− r)2 + (1− q)r2) + (p(1− r)2 + (1− p)r2)3
)]

≤ 1

σ6

[

(q + r2)3 + 6τp(q + r2)2 + 64τ2p3
]

,

where the last step follows from (30).

In summary, we have

VarP(S3(A))

≤
∑

H,H′∈([n]
3 ):

|H∩H′|=2

4

σ6
(2τp+ q + r2)(r − q)2(p− q)2 +

∑

H∈([n]
3 )

1

σ6

[

(q + r2)3 + 6τp(q + r2)2 + 64τ2p3
]

≤ C

σ6

(

n4(τp+ q + r2)(r − q)2(p− q)2 + n3(q3 + r6 + τpq2 + τpr4 + τ2p3)
)

for an absolute constant C > 0.

We are ready to prove Theorem 9.

Proof [Proof of Theorem 9] In view of the assumption p ≥ Cq for a constant C > 1 and the defini-

tion r = τp + (1 − τ)q where τ ≤ 1/2, we have µ = p−r√
r(1−r)

= Θ(p/r1/2). By Propositions 21

and 23, we obtain

|EP [S3(A)]− EQ[S3(A)]| ≥
(

n

3

)

( µ

1− τ

)3 τ2

16
= Ω(n3τ2p3/r3/2)

and

VarQ(S3(A)) ≤ n3.

Moreover, the definition r = τp + (1 − τ)q where τ ≤ 1/2 implies r − q = τ
1−τ (p − r) ≤ 2τp.

Hence, the bound in Proposition 24 simplifies to

VarP(S3(A)) = O
( 1

r3
(n4τ3p5 + n4τ2p4r + n3r3 + n3τpr2 + n3τ2p3)

)

.

Consequently, for S3(A) to strongly separate P and Q, it suffices to have

√

n3 + n4τ3p5/r3 + n4τ2p4/r2 + n3τp/r + n3τ2p3/r3 = o(n3τ2p3/r3/2),

25



MAO WEIN ZHANG

which (by dividing the square of the RHS by each term on the LHS) is equivalent to

min
{

n3τ4p6/r3, n2τp, n2τ2p2/r, n3τ3p5/r2, n3τ2p3
}

= ω(1).

The first and the last quantity on the LHS are assumed to be ω(1) in (7), and the middle three

quantities are ω(1) because (n2τp)3 ≥ (n3τ2p3)2, (n2τ2p2/r)3 ≥ (n3τ4p6/r3) · (n3τ2p3), and

(n3τ3p5/r2)3 ≥ (n3τ4p6/r3)2 · (n3τ2p3).

A.3. Recovery lower bound

We first prove Proposition 11.

Proof [Proof of Proposition 11] Recall Definition 10. Define Z, Y ∈ RN by Zi :=
Bi−q√
q(1−q)

and

Yi :=
Ai−q√
q(1−q)

for i ∈ [N ]. Since any polynomial of in (Ai)i∈[N ] is also a polynomial in (Yi)i∈[N ]

of the same degree (and vice versa), we have

Corr≤D = sup
f∈R[Y ]≤D,

E[f(Y )2] ̸=0

E[f(Y ) · χ]
√

E[f(Y )2]
.

For f ∈ R[Y ]≤D, we can write

f(Y ) =
∑

α⊆[N ] : |α|≤D

f̂α Y
α,

where Y α :=
∏

i∈α Yi and f̂α denotes the coefficient of f in the basis {Y α : α ⊆ [N ]}.

Recall that λ = p−q√
q(1−q)

. Then we have E[Yi | i ∈ W ] = λ. It holds that

E[f(Y )χ] =
∑

α⊆[N ] : |α|≤D

f̂α E[Y
α χ] =: ⟨f̂ , v⟩,

where

vα := E[Y α χ] = P{α ∪ {1} ⊆ W} · λ|α|. (31)

Moreover, by Jensen’s inequality,

E[f(Y )2] ≥ E
[

(E[f(Y ) | Z])2
]

=: E[g(Z)2],

where

g(Z) := E[f(Y ) | Z] =
∑

α⊆[N ] : |α|≤D

f̂α E[Y
α | Z].

Moreover, we have

E[Y α | Z] =
∑

β⊆α

P{α \W = β} · Zβλ|α|−|β|.

Together with the definitions of g(Z) and Pαβ , this implies that

g(Z) =
∑

β⊆[N ] : |β|≤D

Zβ
∑

α⊆[N ] :α⊇β, |α|≤D

f̂α λ
|α|−|β| Pαβ =

∑

β⊆[N ] : |β|≤D

ĝβZ
β ,
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where

ĝβ =
∑

α⊆[N ] :α⊇β, |α|≤D

f̂α λ
|α|−|β| Pαβ .

Therefore, we have ĝ = Mf̂ where the matrix M is indexed by β, α ⊆ [N ] with |β|, |α|≤ D, and

M is defined by

Mβα := 1β⊆α λ
|α|−|β| Pαβ . (32)

Since the basis {Zβ : β ⊆ [N ]} is orthonormal, we have E[f(Y )2] ≥ E[g(Z)2] = ∥ĝ∥2.

Note that M is invertible because it is upper triangular with nonzero diagonal entries. This means

E[f(Y )χ] = ⟨f̂ , v⟩ = v⊤M−1ĝ. Therefore,

Corr≤D = sup
f∈R[Y ]≤D,E[f(Y )2] ̸=0

E[f(Y )χ]
√

E[f(Y )2]
≤ sup

ĝ ̸=0

v⊤M−1ĝ

∥ĝ∥ = ∥v⊤M−1∥=: ∥w∥, (33)

where w is defined by w⊤M = v⊤. Moreover, we can solve for w recursively as

wα =
1

Mαα

(

vα −
∑

β⊊α

wβMβα

)

. (34)

Let us define ρα := wαλ
−|α|. Then by (31), (32), and (34),

ρ∅ = w∅ = v∅ = P{1 ∈ W},

and

ρα =
1

Mαα

(

λ−|α|vα −
∑

β⊊α

λ−(|α|−|β|)ρβMβα

)

=
1

Pαα

(

P{α ∪ {1} ⊆ W} −
∑

β⊊α

ρβ Pαβ

)

.

The conclusion then follows from (33) together with the definition of ρα.

We assume model P in the rest of this section.

Lemma 25 For any α ⊆
(

[n]
2

)

, we have

Pαα ≥ 1− τ |α| (2|α|−1) ≥ 1− 2τ |α|2.

Proof Recall that Pαα = P{α \W = α} = P{α ∩W = ∅}. By (10), we have

P{α ∩W = ∅} = P{d(zi, zj) > τ/2 for all (i, j) ∈ α}
≥ P{d(zi, zj) > τ/2 for all i, j ∈ V (α), i ̸= j}

≥
|V (α)|−1
∏

m=1

(1−mτ) ≥ 1− τ

(|V (α)|
2

)

.

Since |V (α)|≤ 2 |α|, the desired bound follows.

Lemma 26 For α ̸= ∅, suppose that Pββ > 0 for all β ⊆ α. We have ρα = 0 in either of the

following situations:
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• 1 /∈ V (α) or 2 /∈ V (α);

• α is a disconnected graph.

Proof To facilitate the proof, we consider two cases that are split in a different way from the two

cases in the statement of the lemma:

1. either 1 /∈ V (α), 2 /∈ V (α), or vertices 1 and 2 are in different connected components of α;

2. α is disconnected, but vertices 1 and 2 are in the same connected component of α.

Note that |α|≥ 1 in Case 1 and |α|≥ 2 in Case 2. For both cases, we prove ρα = 0 by induction on

|α|. Each proof will establish the base case and the induction step simultaneously.

Case 1: Let G be the union of the graph α and the (potentially isolated) vertices 1 and 2. Let G1

denote the connected component of G that contains 1, and let G2 be the complement of G1 in G.

Let E(Gi) denote the (potentially empty) edge set of Gi for i = 1, 2. By (10) and the fact that G1

is not connected to G2 , we see that

P{α ∪ {(1, 2)} ⊆ W} = P{E(G1) ⊆ W} · P{(1, 2) ∈ W} · P{E(G2) ⊆ W}
= τ P{E(G1) ⊆ W} · P{E(G2) ⊆ W}
= τ P{α ⊆ W} = τ Pα∅.

In the base case |α|= 1, there is no nonempty β ⊊ α; in the case |α|> 1, if ∅ ⊊ β ⊊ α, then

ρβ = 0 by the induction hypothesis. Combining these facts with (12) gives

ρα Pαα = P{α ∪ {(1, 2)} ⊆ W} −
∑

β⊊α

ρβ Pαβ = τ Pα∅ − ρ∅ Pα∅ = 0.

Since Pαα > 0 by assumption, we conclude that ρα = 0.

Case 2: Consider a subgraph β ⊊ α. If 1 /∈ V (α), 2 /∈ V (α), or vertices 1 and 2 are in different

connected components of β, then ρβ = 0 by Case 1 above. If β is disconnected while 1 and 2
are in the same connected component of β, then ρβ = 0 by the induction hypothesis (and there is

simply no such β in the base case |α|= 2). Therefore, if ρβ ̸= 0, then β must be a connected graph

containing both vertices 1 and 2.

Let γ be the connected component of α that contains vertices 1 and 2. We obtain from (12) that

ρα Pαα = P{α ∪ {(1, 2)} ⊆ W} −
∑

β⊆γ

ρβ Pαβ

= P{α \ γ ⊆ W} · P{γ ∪ {(1, 2)} ⊆ W} − ργ Pαγ −
∑

β⊊γ

ρβ Pαβ .

Furthermore, using (12) again yields

ργ =
P{γ ∪ {(1, 2)} ⊆ W}

Pγγ
−
∑

β⊊γ

ρβ
Pγβ

Pγγ
.
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The above two equations together imply

ρα Pαα = P{γ ∪ {(1, 2)} ⊆ W}
(

P{α \ γ ⊆ W} − Pαγ

Pγγ

)

−
∑

β⊊γ

ρβ

(

Pαβ − Pαγ
Pγβ

Pγγ

)

. (35)

In view of the assumption Pαα > 0, it remains to show that the two terms in the brackets are zero.

First, by definition,

Pαγ = P{α \W = γ} = P{α \ γ ⊆ W, γ ∩W = ∅}.

Since γ is disconnected from α \ γ by construction, we obtain

Pαγ = P{α \ γ ⊆ W} · P{γ ∩W = ∅} = P{α \ γ ⊆ W} · Pγγ .

Hence the first term in (35) is zero.

Second, since β ⊆ γ ⊆ α, we have α \W = β if and only if γ \W = β and α \ γ ⊆ W . Thus

Pαβ

Pγβ
=

P{γ \W = β, α \ γ ⊆ W}
P{γ \W = β} = P{α \ γ ⊆ W},

where the last equality holds because γ is disconnected from α\γ and thus α\γ ⊆ W is independent

of γ \W = β. Note that this ratio does not depend on β, so we can set β = γ and obtain

Pαγ

Pγγ
= P{α \ γ ⊆ W} =

Pαβ

Pγβ
.

Consequently, Pαβ − Pαγ
Pγβ

Pγγ
= 0 and so the second term in (35) is also zero.

Lemma 27 Fix α ⊆
(

[n]
2

)

such that 1, 2 ∈ V (α) and α is a connected graph. We have

P{α ∪ {(1, 2)} ⊆ W} ≤ Pα∅ ≤ (τ |V (α)|)|V (α)|−1. (36)

Moreover, fix β ⊆
(

[n]
2

)

such that ∅ ⊊ β ⊊ α and 1, 2 ∈ V (β). We have

Pαβ ≤ (τ |V (α)|)|V (α)|−|V (β)|. (37)

Proof By the definition of W , it holds that

P{α ∪ {(1, 2)} ⊆ W} = P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α ∪ {(1, 2)}},
Pα∅ = P{α \W = ∅} = P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α},

so the first inequality in (36) is obvious. Next, suppose d(zi, zj) ≤ τ/2 for all (i, j) ∈ α. Fix

ℓ ∈ V (α). Since α is a connected graph, there is a path from ℓ to any i ∈ V (α) that has length at

most |V (α)|. As a result, d(zi, zℓ) ≤ |V (α)|·τ/2 for all i ∈ V (α). Conditional on any realization

of zℓ, the probability that d(zi, zℓ) ≤ |V (α)|·τ/2 for all i ∈ V (α) is at most (τ |V (α)|)|V (α)|−1.

Hence (36) follows.
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Next, we have

Pαβ = P{α \W = β} ≤ P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α \ β}.

Suppose d(zi, zj) ≤ τ/2 for all (i, j) ∈ α \ β. Fix any vertex s ∈ V (α) \ V (β). We claim that

there is a path from s to a vertex ts ∈ V (β) which has length at most |V (α)| and lies entirely in

α \β. Given the claim, it follows that d(zs, zts) ≤ |V (α)|·τ/2. Now, conditional on any realization

of {zi : i ∈ V (β)}, the probability that d(zs, zts) ≤ |V (α)|·τ/2 for all s ∈ V (α) \ V (β) is at most

(τ |V (α)|)|V (α)|−|V (β)|. Hence (37) follows.

It remains to prove the claim. Pick any r ∈ V (β) and take a path from s to r in the graph

α ∪ {(1, 2)}. Since 1, 2 ∈ V (β), the first edge in the path (that is, the edge adjacent to s ∈
V (α) \ V (β)) is neither (1, 2) nor belongs to β, and so it must belong to α \ β. Following the path,

we can find the first vertex ts that is in V (β). For the same reason, all edges between s and ts must

belong to α \ β, proving the claim.

Lemma 28 Fix α ⊆
(

[n]
2

)

such that 1, 2 ∈ V (α) and α is a connected graph. Suppose that

τ |α|4≤ 0.1. If α∗ consists of the single edge (1, 2), then |ρα∗ |≤ τ . More generally,

|ρα|≤ (1 + τ |α|4) (|α|+1)|α| (τ |V (α)|)|V (α)|−1.

Proof We prove the result by induction on |α|. First, consider the base case |α|= 1. We must have

(1, 2) ∈ α since 1, 2 ∈ V (α). By (12) and Lemma 25, we have

|ρα∗ |≤ 1

1− τ

(

P{α∗ ⊆ W} − ρ∅ Pα∗∅

)

=
τ − τ2

1− τ
= τ,

since P{α∗ ⊆ W} = Pα∗∅ = P{d(1, 2) ≤ τ/2} = τ .

Next, fix α ⊆
(

[n]
2

)

with |α|≥ 2. Assume |ρβ |≤ (1 + τ |β|4) (|β|+1)|β| (τ |V (β)|)|V (β)|−1 for

all β ⊊ α as the induction hypothesis. Applying (12) and Lemma 25 again, we obtain

|ρα|≤
1

1− 2τ |α|2
(

P{α ∪ {(1, 2)} ⊆ W}+ |ρ∅|Pα∅ +
∑

β⊊α

|ρβ |Pαβ

)

,

where ρβ = 0 if either 1 or 2 is not in V (β) by Lemma 26. We then apply (36) and (37) for β such

that 1, 2 ∈ V (β) to obtain

|ρα| ≤
1

1− 2τ |α|2
(

(1 + τ) (τ |V (α)|)|V (α)|−1 +
∑

β⊊α

|ρβ | (τ |V (α)|)|V (α)|−|V (β)|
)

.

Then, by the induction hypothesis |ρβ |≤ (1+τ |β|4) (|β|+1)|β| (τ |V (β)|)|V (β)|−1 together with the

assumption τ |α|4≤ 0.1, we see that

|ρα| ≤ 2(τ |V (α)|)|V (α)|−1 +
1

1− 2τ |α|2 ·
∑

β⊊α

(1 + τ |β|4) (|β|+1)|β|(τ |V (α)|)|V (α)|−1

= (τ |V (α)|)|V (α)|−1

(

2 +
1

1− 2τ |α|2 ·
∑

β :∅⊊β⊊α

(1 + τ |β|4) (|β|+1)|β|
)

.
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Finally, since τ |α|4≤ 0.1 and |β|≤ |α|−1, we have 1
1−2τ |α|2 (1 + τ |β|4) ≤ (1 + τ |α|4), and then

2 +
1

1− 2τ |α|2
∑

β :∅⊊β⊊α

(1 + τ |β|4) (|β|+1)|β| ≤ 2 + (1 + τ |α|4)
|α|−1
∑

i=1

∑

β :β⊊α, |β|=i

(i+ 1)i

= 2 + (1 + τ |α|4)
|α|−1
∑

i=1

(|α|
i

)

(i+ 1)i

≤ (1 + τ |α|4)
|α|
∑

i=0

(|α|
i

)

|α|i

= (1 + τ |α|4) (|α|+1)|α|.

Combining the above two displays finishes the induction.

Proposition 29 Recall (11) and (12). Suppose that τD4 ≤ 0.1. We have:

• If nτ2(D + 1)2Q4
√
D ≤ 1/2 where Q := max{λ(D + 1)2, 1}, then

Corr
2
≤D ≤ τ2(1 + λ2 + 4nτ2(D + 1)5Q4

√
D).

• If λ2(D + 1)4M ≤ 1/2 where M := max{nτ2(D + 1)2, 1}, then

Corr
2
≤D ≤ τ2(1 + 4λ2(D + 1)7M).

Proof To ease the notation, we consider D such that
√
D/2 is an integer; the proof can be easily

adapted to the general case by using floors ⌊·⌋ or ceilings ⌈·⌉.

To bound Corr
2
≤D, we apply (11) and (12). By Lemma 26, it suffices to consider connected

graphs α ⊆
(

[n]
2

)

such that 1, 2 ∈ V (α), for otherwise ρα = 0. In the sequel, we focus on such

α but suppress the conditions for brevity. Note that there is only one such α with |α|= 1, i.e., the

graph α∗ consisting of a single edge (1, 2). For other graphs, we have |α|≥ 2 and |V (α)|≥ 3.

Since the graph α is connected, we have |V (α)|≤ |α|+1. Applying (11), (12), Lemma 28, and the

assumption τD4 ≤ 0.1, we obtain

Corr
2
≤D ≤ ρ2∅ + λ2ρ2α∗ +

∑

α : 2≤|α|≤D

λ2|α| (1 + τ |α|4)2 (|α|+1)2|α| (τ |V (α)|)2|V (α)|−2

≤ τ2 + λ2τ2 + 2
D
∑

ℓ=2

D+1
∑

v=3

∑

α : |α|=ℓ, |V (α)|=v

(λ(D + 1))2ℓ (τ(D + 1))2v−2
1{v − 1 ≤ ℓ ≤ v2/2}.

Since 1, 2 ∈ V (α), there are at most
(

n
v−2

)

[

((v2)
ℓ

)

∧ 2(
v
2)
]

graphs α with |V (α)|= v and |α|= ℓ. By

the bounds
(

n
v−2

)

≤ nv−2,
((v2)

ℓ

)

≤
(

v
2

)ℓ ≤ (v − 1)2ℓ ≤ (D + 1)2ℓ, and 2(
v
2) ≤ 2v

2
, it follows that

Corr
2
≤D ≤ τ2(1 + λ2) + 2τ2(D + 1)2·

D
∑

ℓ=2

D+1
∑

v=3

[

(D + 1)2ℓ ∧ 2v
2
]

(λ(D + 1))2ℓ (nτ2(D + 1)2)v−2
1{v − 1 ≤ ℓ ≤ v2/2}. (38)
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Let us consider two cases.

Case 1: We bound the summation in (38) by splitting it into the following terms according to the

value of v:

Corr
2
≤D ≤ τ2(1 + λ2) + 2τ2(D + 1)2·

[

√
D
∑

v=3

D
∑

ℓ=2

2v
2
(λ(D + 1))2ℓ (nτ2(D + 1)2)v−2

1{ℓ ≤ v2/2} (39a)

+

D
∑

ℓ=2

D+1
∑

v=
√
D+1

(D + 1)2ℓ(λ(D + 1))2ℓ (nτ2(D + 1)2)v−2

]

. (39b)

Recall that Q := max{λ(D + 1)2, 1}. Moreover, by assumption,

Q
√
D nτ2(D + 1)2 ≤ 1/2.

For v ≤
√
D, we have 2ℓ ≤ v2 ≤

√
Dv, so the sum in (39a) is bounded by

√
D
∑

v=3

DQ
√
Dv (nτ2(D + 1)2)v−2 = DQ2

√
D

√
D
∑

v=3

(

Q
√
D nτ2(D + 1)2

)v−2

≤ 2DQ2
√
DQ

√
D nτ2(D + 1)2.

Next, nτ2(D + 1)2 ≤ 1/2 by assumption, so the sum in (39b) is bounded by

D
∑

ℓ=2

D+1
∑

v=
√
D+1

Q2ℓ (nτ2(D + 1)2)v−2 ≤ 2DQ2D(nτ2(D + 1)2)
√
D−1

≤ 2D(Q4
√
Dnτ2(D + 1)2)

√
D/2

≤ 2DQ4
√
Dnτ2(D + 1)2,

where the last step holds because Q4
√
Dnτ2(D + 1)2 ≤ 1/2. Plugging the above two bounds into

(39a) and (39b) respectively, we complete the proof.

Case 2: Continuing from (38), we have

Corr
2
≤D ≤ τ2(1 + λ2) + 2τ2(D + 1)2

D
∑

ℓ=2

ℓ+2
∑

v=3

(λ(D + 1)2)2ℓ (nτ2(D + 1)2)v−2.

Recall that M = max{nτ2(D + 1)2, 1} and λ2(D + 1)4M ≤ 1/2. We conclude that

Corr
2
≤D ≤ τ2(1 + λ2) + 2τ2(D + 1)2

D
∑

ℓ=2

(λ2(D + 1)4)ℓM ℓℓ

≤ τ2(1 + λ2) + 2τ2(D + 1)2 · 2λ2(D + 1)4MD

≤ τ2(1 + 4(D + 1)7λ2M),
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finishing the proof.

We now prove Theorem 12.

Proof [Proof of Theorem 12] It suffices to apply Proposition 29 to bound Corr
2
≤D. Consider two

cases:

• If (log n)−100 ≤ λ ≤ O(1), then nτ2 ≤ n−δ/2 by (9). We now apply the first statement of

Proposition 29. Since D = o
(

( logn
log logn)

2
)

, we have Q = max{λ(D + 1)2, 1} = Õ(1) and

nτ2(D + 1)2Q4
√
D ≤ nτ2 · no(1) ≤ 1/2. It follows that

Corr
2
≤D ≤ τ2(1 + λ2 + 4nτ2(D + 1)5Q4

√
D) ≤ τ2(1 + λ2 + nτ2 · no(1)) = O(τ2).

• Next, suppose that λ ≤ (log n)−100, nτ2λ2 ≤ n−δ, and D ≤ (log n)10, which hold by (9).

We apply the second statement of Proposition 29 in each of the following two subcases:

± If τ ≤ n−1/2, then M = max{nτ2(D+1)2, 1} ≤ (D+1)2 and λ2(D+1)4M ≤ 1/2.

Therefore, Corr2≤D ≤ τ2(1 + 4λ2(D + 1)7M) = O(τ2).

± If τ > n−1/2, then M = nτ2(D + 1)2 and λ2(D + 1)4M = nτ2λ2(D + 1)6 ≤ 1/2.

We again obtain Corr
2
≤D ≤ τ2(1 + 4λ2(D + 1)7M) = O(τ2).

Combining the above cases, we conclude that Corr≤D = O(τ) if (9) holds. This completes the

proof once we recall Definition 6 and that EP [χ] = τ .

A.4. Recovery upper bound

For brevity, write T = T (A) in the sequel. We let i0 := 1 and iℓ+1 := 2, so that a length-(ℓ + 1)
self-avoiding walk in consideration is through vertices ij for j = 0, 1, . . . , ℓ + 1. Hence we can

rewrite (16) as

T =
∑

3≤i1,...,iℓ≤n
i1 ̸=···̸=iℓ

ℓ
∏

j=0

Ãijij+1 . (40)

We assume 2τ(ℓ+ 1) ≤ 1 in the rest of this section.

Lemma 30 Let Ãij be defined by (13) and λ be defined by (8). We have

• E
[

Ãij |zi, zj
]

= λ · 1{d(zi, zj) ≤ τ/2};

• E
[

Ã2
ij |zi, zj

]

≤ p/q.

Proof The first statement is obvious in view of (13) and (8). For the second statement, note that if

d(zi, zj) > τ/2, then E
[

Ã2
ij |zi, zj

]

= 1, and if d(zi, zj) ≤ τ/2, then

E
[

Ã2
ij |zi, zj

]

=
p(1− q)2 + (1− p)q2

q(1− q)
≤ p(1− q) + q2

q
≤ p

q
.
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Proposition 31 If d(z1, z2) >
(ℓ+1)τ

2 , then E[T | z1, z2] = 0. If d(z1, z2) ≤ (ℓ+1)τ
2 , then

E[T | z1, z2] =
(

n− 2

ℓ

)

τ ℓλℓ+1

∫ ℓ
2
+

d(z1,z2)
τ

+ 1
2

ℓ
2
+

d(z1,z2)
τ

− 1
2

fℓ(t)dt, (41)

where fℓ(x) is the probability density function of the Irwin-Hall distribution with parameter ℓ, i.e.,

fℓ(x) =
1

(ℓ− 1)!

⌊x⌋
∑

k=0

(−1)k
(

ℓ

k

)

(x− k)ℓ−1 for x ∈ [0, ℓ], (42)

and fℓ(x) = 0 otherwise. Moreover, u 7→ E[T | d(z1, z2) = u] is a decreasing function on

[0, (ℓ+1)τ
2 ].

Proof Throughout this proof, we condition on z1 and z2, and use E and P to denote the conditional

expectation and conditional probability respectively. By (40) and the independence of (Aijij+1)
ℓ
j=0

conditional on (zij )
ℓ+1
j=0, we have

E[T ] =
∑

3≤i1,...,iℓ≤n
i1 ̸=···̸=iℓ

E

[

ℓ
∏

j=0

E
[

Ãijij+1 | (zis)ℓ+1
s=0

]

]

.

Applying the first statement of Lemma 30, we then obtain

E[T ] = λℓ+1
∑

3≤i1,···,iℓ≤n
i1 ̸=···̸=iℓ

P
{

d(zis , zis+1) ≤ τ/2 for all s ∈ [ℓ]
}

. (43)

If d(zis , zis+1) ≤ τ/2 for all s ∈ [ℓ], then d(z1, z2) ≤ (ℓ + 1)τ/2 by the triangle inequality.

Therefore, we see that E[T ] = 0 if d(z1, z2) > (ℓ+ 1)τ/2.

Next, suppose that d(z1, z2) ≤ (ℓ+ 1)τ/2. Fix vertices i1, . . . , iℓ and define

Es :=
{

d(zis , zis+1) ≤
τ

2

}

, E =

ℓ
⋂

s=0

Es,

where we suppress the dependency on i1, . . . , iℓ for brevity. We now compute P{E}, i.e., the prob-

ability in (43). Let us write

P{E} =
ℓ
∏

s=0

P

{

Es

∣

∣

∣

∣

s−1
⋂

j=0

Ej

}

. (44)

Since (zis)
ℓ
s=1 are i.i.d. uniform random variables in [0, 1], it is not hard to see that

P

{

Es

∣

∣

∣

∣

s−1
⋂

j=0

Ej

}

= τ for 0 ≤ s ≤ ℓ− 1. (45)

It remains to compute the conditional probability P
{

Eℓ |
⋂ℓ−1

j=0Ej

}

. For any 0 ≤ s ≤ ℓ − 1,

conditional on any realization of zi0 , zi1 , . . . , zis and the event Es, the random variable zis+1 − zis
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is uniform [−τ/2, τ/2]. Crucially, this distribution does not depend on zi0 , zi1 , . . . , zis . Applying

this argument for s = 0, 1, . . . , ℓ − 1, we see that conditional on
⋂ℓ−1

s=0Es, the random variables

zi1 − zi0 , zi2 − zi1 , . . . , ziℓ − ziℓ−1
are i.i.d. and uniform in [−τ/2, τ/2]. We can write

ziℓ = zi0 + τIℓ −
ℓτ

2
, where Iℓ :=

ℓ−1
∑

s=0

(zis+1 − zis
τ

+
1

2

)

.

Since Ir is a sum of ℓ i.i.d. uniform random variables in [0, 1], it has the Irwin±Hall distribution with

parameter ℓ (see, e.g., Johnson et al. (1995)). Moreover, since i0 = 1 and iℓ+1 = 2, the event Eℓ

occurs if and only if d(z2, z1 + τIℓ − ℓτ
2 ) ≤ τ/2, i.e.,

z2 − z1
τ

+
ℓ

2
− 1

2
≤ Iℓ ≤

z2 − z1
τ

+
ℓ

2
+

1

2
.

Let fℓ(x) be the PDF of the Irwin±Hall distribution with parameter ℓ. Then

P

{

Eℓ

∣

∣

∣

∣

ℓ−1
⋂

j=0

Ej

}

=

∫ ℓ
2
+

z2−z1
τ

+ 1
2

ℓ
2
+

z2−z1
τ

− 1
2

fℓ(t)dt. (46)

Plugging (45) and (46) into (44) and then combining the result with (43), we obtain

E[T ] = λℓ+1

(

n− 2

ℓ

)

τ ℓ
∫ ℓ

2
+

z2−z1
τ

+ 1
2

ℓ
2
+

z2−z1
τ

− 1
2

fℓ(t)dt,

which is almost (41). It remains to show that the above quantity is an even function in u := z2 − z1
and decreasing for u ∈ [0, (ℓ+1)τ

2 ]. Its derivative as a function of u is proportional to

fℓ

( ℓ

2
+

u

τ
+

1

2

)

− fℓ

( ℓ

2
+

u

τ
− 1

2

)

. (47)

The PDF fℓ(t) is symmetric around ℓ/2, increasing on [0, ℓ/2], decreasing on [ℓ/2, ℓ], and zero

outside [0, ℓ] (and the monotonicity of fℓ(t) on [0, ℓ/2] and [ℓ/2, ℓ] is strict if ℓ > 1). Hence,

the difference in (47) is an odd function in u; it is positive if u ∈ [− (ℓ+1)τ
2 , 0] and negative if

u ∈ [0, (ℓ+1)τ
2 ]. Consequently, E[T ] is an even function in u = z2 − z1, and it is increasing on

[− (ℓ+1)τ
2 , 0] and decreasing on [0, (ℓ+1)τ

2 ], proving the last statement.

Lemma 32 Let ϵ ∈ (0, τ/2). There is a constant cℓ > 0 depending only on ℓ such that

∆(ϵ) := E
[

T | d(z1, z2) =
τ

2

]

− E
[

T | d(z1, z2) =
τ

2
+ ϵ
]

≥ cℓ n
ℓϵ τ ℓ−1λℓ+1. (48)

Proof It follows from Proposition 31 that

∆(ϵ) =

(

∫ ℓ
2
+1

ℓ
2

fℓ(t)dt−
∫ ℓ

2
+1+ ϵ

τ

ℓ
2
+ ϵ

τ

fℓ(t)dt

)

(

n− 2

ℓ

)

τ ℓλℓ+1

=

(

∫ ℓ
2
+ ϵ

τ

ℓ
2

fℓ(t)dt−
∫ ℓ

2
+1+ ϵ

τ

ℓ
2
+1

fℓ(t)dt

)

(

n− 2

ℓ

)

τ ℓλℓ+1.
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By the mean value theorem, there exists ξ1 ∈
(

ℓ
2 ,

ℓ
2 + ϵ

τ

)

and ξ2 ∈
(

ℓ
2 + 1, ℓ

2 + 1 + ϵ
τ

)

such that

∆(ϵ) =
ϵ

τ
(fℓ(ξ1)− fℓ(ξ2))

(

n− 2

ℓ

)

τ ℓλℓ+1. (49)

If ℓ = 1, then fℓ(ξ1) − fℓ(ξ2) = 1 as ϵ/τ ∈ (0, 1/2); if ℓ > 1, then fℓ(x) is strictly decreasing for

x ∈ [ℓ/2, ℓ], so fℓ(ξ1)− fℓ(ξ2) ≥ c′ℓ for a constant c′ℓ > 0. The conclusion follows from (49).

Recall that we identify an edge set α ⊆
(

[n]
2

)

with the graph induced by α, and V (α) ⊆ [n]
denotes the vertex set of α. Recall (15). For α, β ∈ SAWℓ, we consider the graph α△β and

introduce the following notation which will be used in the rest of this section:

e := |α△β|, (50a)

v := |V (α△β)|, (50b)

c := number of connected components of α△β. (50c)

Lemma 33 For α, β ∈ SAWℓ, let e, v, and c be defined in (50). Recall (14). We have

E
[

Ã2
α∩βÃα△β | z1, z2

]

≤
{

(p/q)ℓ+1 if α△β = ∅,

(p/q)ℓ+1−e/2 λe(ℓτ)v−c−1 if α△β ̸= ∅.

Proof For brevity, write z = {zi : i ∈ V (α ∪ β)}, and let E and P be the expectation and proba-

bility conditional on z1, z2 in the proof. By the independence of (Ãij)(i,j)∈α∩β and (Ãij)(i,j)∈α△β

conditional on z, we have

E
[

Ã2
α∩βÃα△β

]

= E

[

∏

(i,j)∈α∩β
E
[

Ã2
ij | z

]

·
∏

(i,j)∈α△β

E
[

Ãij | z
]

]

.

It then follows from Lemma 30 that

E
[

Ã2
α∩βÃα△β

]

≤ (p/q)|α∩β| λe · P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α△β}. (51)

If α△β = ∅, then e = 0 and |α ∩ β|= ℓ + 1, so the first bound of the lemma follows. For the

second bound where α△β ̸= ∅, note that |α ∩ β|= 1
2(|α|+|β|−|α△β|) = 1

2(2ℓ+ 2− e). Hence,

it remains to bound the probability in (51) by (ℓτ)v−c−1.

Suppose that d(zi, zj) ≤ τ/2 for all (i, j) ∈ α△β. Choose vertices j1, . . . , jc ∈ V (α△β),
one from each of the c connected components of α△β; in particular, if 1 ∈ V (α△β), we choose

j1 = 1. For every i ∈ V (α△β) \ {1, 2}, there is a path of length at most ℓ from vertex i to vertex

jsi for some si ∈ [c] such that the path lies entirely in (the sth connected component of) α△β. It

follows that d(zi, zjsi ) ≤ ℓτ/2. Therefore,

P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α△β}

≤ P
{

d(zi, zjsi ) ≤ ℓτ/2 for all i ∈ V (α△β) \ ({j1, . . . , jc} ∪ {1, 2})
}

≤ (ℓτ)v−c−1, (52)

since the random variables {zi : i ∈ V (α△β) \ ({j1, . . . , jc} ∪ {1, 2})} are i.i.d. uniform in [0, 1]
conditional on any realization of zj1 , . . . , zjc , z1, z2. Plugging the above bound into (51) completes

the proof.

We now state a slightly improved version of the above lemma when z1 and z2 are far apart.
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Lemma 34 In the setting of the above lemma, if d(z1, z2) >
(ℓ+1)τ

2 and α△β ̸= ∅, we have

E
[

Ã2
α∩βÃα△β | z1, z2

]

≤ (p/q)ℓ+1−e/2 λe(ℓτ)v−c.

Proof The only difference from the above lemma is that we now have (ℓτ)v−c instead of (ℓτ)v−c−1.

This difference originates from (52). Recall that we suppose d(zi, zj) ≤ τ/2 for all (i, j) ∈ α△β.

However, since d(z1, z2) >
(ℓ+1)τ

2 , vertices 1 and 2 cannot be in the same connected components of

α△β. Therefore, when selecting the vertices j1, . . . , jc, we can choose j1 = 1 and j2 = 2 without

loss of generality. Then (52) becomes

P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α△β}

≤ P
{

d(zi, zjsi ) ≤ ℓτ/2 for all i ∈ V (α△β) \ {j1, . . . , jc}
}

≤ (ℓτ)v−c,

thereby improving the bound by a factor ℓτ .

Lemma 35 For α, β ∈ SAWℓ, let e, v, and c be defined in (50). We have

|V (α ∪ β)| ≤ v − 1

2
e− c+ ℓ+ 2.

Proof Note that the graph α ∪ β is the disjoint union of α△β and α ∩ β. To bound the number of

vertices of α ∪ β, we start from the graph K = α△β, which has v vertices, and then sequentially

add vertices and edges of α∩ β to K until we eventually reach K = α∪ β. Hence, |V (α∪ β)| will

be bounded by v plus the total number of vertices we add in this procedure.

To be more precise, at each step, we choose an edge (i, j) of α ∩ β that has not yet been added

to the current K, such that i ∈ V (K). Such an edge exists because the eventual graph α ∪ β
is connected. Now we add (i, j) to K, and there are two cases: j ∈ V (K) or j /∈ V (K). If

j ∈ V (K), then |V (K)| does not increase; if j /∈ V (K), then |V (K)| increases by 1. Moreover,

the number of connected components of K may decrease by 1 if j ∈ V (K) (when (i, j) connects

two components); the number of connected components of K will not decrease if j /∈ V (K). Since

the number of connected components of K decreases from c to 1 in the entire procedure, the first

case must occur at least c− 1 times, so |V (K)| does not increase in at least c− 1 steps. Since there

are |α ∩ β| steps of adding an edge in total, the number of vertices added is at most |α ∩ β|−c+ 1.

Therefore, we obtain

|V (α ∪ β)| ≤ v + |α ∩ β| − c+ 1.

To complete the proof, it suffices to recall that |α|= |β|= ℓ+ 1 so that 2|α ∩ β|+ e = 2ℓ+ 2.

Lemma 36 For α, β ∈ SAWℓ, let v be defined in (50). Suppose α ∩ β ̸= ∅. Then we have v ≤ 2ℓ.

Proof Let (i, j) ∈ α ∩ β where i < j. If i = 1, then 1 /∈ V (α△β) and |V (α ∪ β)|≤ 2ℓ + 1. We

see that v ≤ |V (α ∪ β)|−1 ≤ 2ℓ. The case j = 2 is similar. In other cases where i ̸= 1 and j ̸= 2,

we have v ≤ |V (α ∪ β)|≤ 2ℓ.
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Lemma 37 For α, β ∈ SAWℓ, let e, v, and c be defined in (50). Suppose α△β ̸= ∅. Then the

graph α△β does not contain any dangling edge, i.e., an edge (i, j) such that vertex j is connected

to only vertex i in α△β. As a result, we have c+ e− v ≥ 1.

Proof The quantity c + e − v is known as the excess of the graph α△β; it is always nonnegative

and is zero only if α△β is a forest. Since a forest obviously contains a dangling edge, it remains to

prove that α△β does not contain a dangling edge.

To see this, it is convenient to view α∪β as a multigraph, which has even degree at each vertex.

Further, to obtain α△β from α ∪ β, we delete all the double edges in α ∩ β, so α△β also has even

degree at each vertex. As a result, α△β does not contain a dangling edge.

Proposition 38 There is a constant Cℓ > 0 that depends only on ℓ such that

Var(T | z1, z2) ≤ Cℓ

[

nℓ

(

p

q

)ℓ+1

+ n2ℓ−1τ2ℓ−2λ2ℓ p

q
+ nℓ+ 1

2 τλ3

(

p

q

)ℓ− 1
2
]

.

Moreover, if d(z1, z2) >
(ℓ+1)τ

2 , then

Var(T | z1, z2) ≤ Cℓ

[

nℓ

(

p

q

)ℓ+1

+ n2ℓ−1τ2ℓ−1λ2ℓ p

q
+ nℓ+ 1

2 τ2λ3

(

p

q

)ℓ− 1
2
]

.

Proof Throughout this proof, we condition on z1 and z2, and the notations E, P, and Var are all

with respect to the conditional probability. By (16), we have

Var(T ) = E[T 2]− (ET )2 =
∑

α,β∈SAWℓ

E[ÃαÃβ ]− E[Ãα] · E[Ãβ ]. (53)

Note that ℓ+ 2 ≤ |V (α ∪ β)|≤ 2ℓ+ 2.

Let us first consider the extreme case |V (α ∪ β)|= 2ℓ + 2, where the two walks α and β
have disjoint edge sets and only common vertices 1 and 2. By the independence of (Ãij)(i,j)∈α∪β
conditional on (zi)i∈V (α∪β) and the first statement of Lemma 30, we have

E[ÃαÃβ ] = E

[

∏

(i,j)∈α∪β
E[Ãij | (zi)i∈V (α∪β)]

]

= λ2ℓ+2 P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α ∪ β}.

Similarly,

E[Ãα] ·E[Ãβ ] = λ2ℓ+2 P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ α} ·P{d(zi, zj) ≤ τ/2 for all (i, j) ∈ β}.

Recall that we already condition on z1 and z2, and the variables {zi : i ∈ V (α), i ̸= 1, 2} and

{zi : i ∈ V (β), i ̸= 1, 2} are independent. Hence, the above two displays are equal, i.e.,

E[ÃαÃβ ]− E[Ãα] · E[Ãβ ] = 0.
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In all other case where ℓ+2 ≤ |V (α∪β)|≤ 2ℓ+1, we have that α∩β ̸= ∅. The first statement

of Lemma 30 implies E[Ãα],E[Ãβ ] ≥ 0. Therefore, we conclude from (53) that

Var(T ) ≤
2ℓ+1
∑

v=ℓ+2

∑

α,β∈SAWℓ,
|V (α∪β)|=v

E[ÃαÃβ ].

If |V (α ∪ β)|= v, there are
(

n−2
v−2

)

≤ nv−2 choices of the vertices in V (α ∪ β) \ {1, 2}. With the

vertices of α∪β fixed, the number of possible graphs α∪β is bounded by a constant C1 = C1(ℓ) >
0. Moreover, we can write ÃαÃβ = Ã2

α∩βÃα△β . It follows that

Var(T ) ≤ C1

2ℓ+1
∑

v=ℓ+2

nv−2 max
α,β∈SAWℓ,
|V (α∪β)|=v

E[Ã2
α∩βÃα△β ].

Let e, v, and c be defined in (50). If α△β = ∅, then |V (α ∪ β)|= ℓ + 2; if α△β ̸= ∅, then

|V (α ∪ β)|≥ ℓ + 3. Applying Lemmas 33 and 35 together with the above bound on Var(T ), we

obtain

Var(T ) ≤ C1

[

nℓ(p/q)ℓ+1 +

2ℓ+1
∑

v=ℓ+3

max
α,β∈SAWℓ,
|V (α∪β)|=v

nv−e/2−c+ℓ(p/q)ℓ+1−e/2 λe(ℓτ)v−c−1

]

≤ C1

[

nℓ(p/q)ℓ+1 + ℓ max
α,β∈SAWℓ,

ℓ+3≤|V (α∪β)|≤2ℓ+1

nv−e/2−c+ℓ(p/q)ℓ+1−e/2 λe(ℓτ)v−c−1

]

.

It follows that, for a sufficiently large constant C2 = C2(ℓ) > 0,

Var(T ) ≤ C2 n
ℓ

(

p

q

)ℓ+1
[

1 +
1

τ
max

α,β∈SAWℓ,
ℓ+3≤|V (α∪β)|≤2ℓ+1

(

nτ2λ2q

p

)

1
2
(v−c)(

λ2q

np

)

1
2
(c+e−v)

]

. (54)

To further control the above maximum, we consider the two factors:

• Since λ = p−q√
q(1−q)

, we have λ2q
np = (p−q)2

np(1−q) ≤ 1. In addition, c + e − v ≥ 1 by Lemma 37.

Hence, it holds that
(

λ2q
np

)
1
2
(c+e−v)

≤
(

λ2q
np

)
1
2
.

• By Lemma 36 and c ≥ 1, we have v − c ≤ 2ℓ − 1. By Lemma 37, α△β does not contain

any dangling edge, so every connected component of it has at least three vertices, and thus

v − c ≥ 2. It follows that
(

nτ2λ2q
p

)
1
2
(v−c)

≤
(

nτ2λ2q
p

)ℓ− 1
2 ∨

(

nτ2λ2q
p

)

.

Combining these facts with the above bound on Var(T ), we see that

Var(T ) ≤ C4 n
ℓ

(

p

q

)ℓ+1 [

1 +
1

τ

(

nτ2λ2q

p

)ℓ− 1
2
(

λ2q

np

)

1
2

+
1

τ

(

nτ2λ2q

p

)(

λ2q

np

)

1
2
]

≤ C4

[

nℓ

(

p

q

)ℓ+1

+ n2ℓ−1τ2ℓ−2λ2ℓ p

q
+ nℓ+ 1

2 τλ3

(

p

q

)ℓ− 1
2
]
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for a constant C4 = C4(ℓ) > 0.

Finally, if d(z1, z2) >
(ℓ+1)τ

2 , then the application of Lemma 33 can be replaced by Lemma 34

in the above proof, so that we gain a factor τ in the case α△β ̸= ∅. As a result, we do not have the

factor 1/τ before the max in (54). Consequently, we gain a factor τ in the second and the third term

of the eventual bound.

We now prove Theorems 13 and 14.

Proof [Proof of Theorem 13] For brevity, write T = T (A). We need to show that
E[T ·χ]√
E[T 2]

=

ω(τ). Without loss of generality, we may condition on z1 = 0 throughout the proof, because the

distribution of A does not change if we condition on any realization of z1. Let E and P be the

expectation and the probability with respect to the conditional distribution respectively.

Using χ = 1{d(0, z2) ≤ τ/2} and Proposition 31, we obtain

E[Tχ] =

∫ τ/2

−τ/2
E[T | z2] dz2 ≥ τ E[T | z2 = τ/2] = τ

(

n− 2

ℓ

)

τ ℓλℓ+1C1 ≥ c2 n
ℓτ ℓ+1λℓ+1,

where C1 = C1(ℓ) =
∫

ℓ
2
+1

ℓ
2

fℓ(t)dt with fℓ defined in (42), and c2 = c2(ℓ) > 0.

Next, we have

E[T 2] = E
[

E[T 2 | z2]
]

= E[Var(T | z2)] + E
[

(E[T | z2])2
]

.

By Proposition 31 again,

E
[

(E[T | z2])2
]

=

∫
(ℓ+1)τ

2

− (ℓ+1)τ
2

(E[T | z2])2 dz2

≤ (ℓ+ 1)τ (E[T | z2 = 0])2

= (ℓ+ 1)τ

[(

n− 2

ℓ

)

τ ℓλℓ+1C3

]2

≤ C4 n
2ℓτ2ℓ+1λ2ℓ+2,

where C3 = C3(ℓ) =
∫

ℓ
2
+ 1

2
ℓ
2
− 1

2

fℓ(t)dt, and C4 = C4(ℓ) > 0. Moreover, recall that p and q are of the

same order by assumption, so for any realization of z2, Proposition 38 gives

Var(T | z2) ≤ C5

(

nℓ + n2ℓ−1τ2ℓ−2λ2ℓ + nℓ+1/2τλ3
)

for a constant C5 = C5(ℓ) > 0. Therefore, for a constant C6 = C6(ℓ) > 0,

√

E[T 2] ≤ C6

(

nℓτ ℓ+1/2λℓ+1 + nℓ/2 + nℓ−1/2τ ℓ−1λℓ + nℓ/2+1/4τ1/2λ3/2
)

.

Combining the above bounds on E[Tχ] and
√

E[T 2], we conclude that

E[T · χ]
√

E[T 2]
≥ c2

C6
· nℓτ ℓ+1λℓ+1

nℓτ ℓ+1/2λℓ+1 + nℓ/2 + nℓ−1/2τ ℓ−1λℓ + nℓ/2+1/4τ1/2λ3/2

≥ c7 min
{

τ1/2, nℓ/2τ ℓ+1λℓ+1, n1/2τ2λ, nℓ/2−1/4τ ℓ+1/2λℓ−1/2
}

.

40



DETECTION-RECOVERY GAP FOR PLANTED DENSE CYCLES

For this bound to be of order ω(τ), it suffices to have

τ = o(1), nτ2λ2+2/ℓ = ω(1), nτ2λ2 = ω(1).

Since Cq ≤ p ≤ C ′q for C ′ > C > 1, we have λ = p−q√
q(1−q)

= Θ(p1/2). Therefore, the above

conditions all hold by the assumptions ℓ > 1/δ and (17).

Proof [Proof of Theorem 14] Similar to the proof of Theorem 13, we write T = T (A) and condition

on z1 = 0 throughout the proof. We start by rewriting the expectation as the sum of type I and type

II errors:

E
[

(χ̂− χ)2
]

= P{χ̂ ̸= χ} = P{χ = 1, χ̂ = 0}+ P{χ = 0, χ̂ = 1}.

Since χ = 1{−τ/2 ≤ z2 ≤ τ/2} and χ̂ = 1{T < κ}, we have

P{χ = 1, χ̂ = 0} =

∫ τ
2

− τ
2

P{T < κ | z2} dz2,

P{χ = 0, χ̂ = 1} =

∫

τ
2
≤|z2|≤1

P{T ≥ κ | z2} dz2

≤ 2ϵ+

∫

τ
2
+ϵ≤|z2|≤ (ℓ+1)τ

2

P{T ≥ κ | z2} dz2 +
∫

(ℓ+1)τ
2

<|z2|≤1
P{T ≥ κ | z2} dz2.

It remains to bound the above three integrals:

• Consider z2 ∈ [−τ/2, τ/2]. Let ∆(ϵ) be defined in (48) and κ be defined in (18). By

Proposition 31 and Chebyshev’s inequality,

P{T < κ | z2} ≤ P

{

|T − E[T | z2]| >
∆(ϵ)

2

∣

∣

∣
z2

}

≤ 4Var(T | z2)
∆(ϵ)2

.

Lemma 32 and Proposition 38 together imply that

Var(T | z2)
∆(ϵ)2

≤ C1
nℓ + n2ℓ−1τ2ℓ−2λ2ℓ + nℓ+ 1

2 τλ3

n2ℓϵ2τ2ℓ−2λ2ℓ+2

≤ C1

(

1

nℓϵ2τ2ℓ−2λ2ℓ+2
+

1

nϵ2λ2
+

1

nℓ−1/2ϵ2τ2ℓ−3λ2ℓ−1

)

for a constant C1 = C1(ℓ) > 0. Using the assumptions nτ2λ2 = Θ(nτ2p) ≥ nδ, ℓ > 3/δ,

and ϵ = τn−δ/4, we can check

Var(T | z2)
∆(ϵ)2

≤ 3C1 n
−δ/2. (55)

Therefore,
∫ τ

2

− τ
2

P{T < κ | z2} dz2 ≤ 12C1τn
−δ/2.

41



MAO WEIN ZHANG

• For τ
2 + ϵ ≤ |z2|≤ (ℓ+1)τ

2 , again, by Proposition 31, Chebyshev’s inequality, and (55),

P{T ≥ κ | z2} ≤ P

{

|T − E[T | z2]| >
∆(ϵ)

2
| z2
}

≤ 4Var(T | z2)
∆(ϵ)2

≤ 12C1n
−δ/2.

Therefore,
∫

τ
2
+ϵ≤|z2|≤ (ℓ+1)τ

2

P{T ≥ κ | z2} dz2 ≤ 12(ℓ+ 1)C1τn
−δ/2.

• For
(ℓ+1)τ

2 < |z2|≤ 1, we have E[T | z2] = 0 by Proposition 31. Combining Chebyshev’s

inequality, the second bound in Proposition 38, (18), and Proposition 31, we obtain

P{T ≥ κ | z2} ≤ Var(T | z2)
κ2

≤ C2
nℓ + n2ℓ−1τ2ℓ−1λ2ℓ + nℓ+ 1

2 τ2λ3

n2ℓτ2ℓλ2ℓ+2

≤ C2

(

1

nℓτ2ℓλ2ℓ+2
+

1

nτλ2
+

1

nℓ−1/2τ2ℓλ2ℓ−1

)

for C2 = C2(ℓ) > 0. Using the assumptions nτ2λ2 = Θ(nτ2p) ≥ nδ and ℓ > 3/δ, we can

check

P{T ≥ κ | z2} ≤ 3C2 τn
−δ/2.

Therefore,
∫

(ℓ+1)τ
2

<|z2|≤1
P{T ≥ κ | z2} dz2 ≤ 3C2 τn

−δ/2.

In summary, we have obtained E
[

(χ̂− χ)2
]

= P{χ̂ ̸= χ} ≤ C3τn
−δ/2 for C3 = C3(ℓ) > 0.
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