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Abstract—To achieve low execution latency, time-sensitive ap-
plications, including AR/VR and autonomous driving, cache data
at the edge of the network, close to end users. However, existing
edge caches often fail to deliver low latency due to the inefficiency
of DNS requests and the physical remoteness of their users.
The solution described herein addresses these inefficiencies by
presenting a millisecond-level, lightweight caching architecture
that operates directly on widely deployed WiFi access points
(APs). Specifically, our architecture interposes another level of
caching closer to the client and is fine-tuned for APs’s limited
cache memory. Our solution (1) features a novel algorithm for
managing cache at the AP level; (2) allows the cache query
workflow to proceed at full speed; and (3) requires no changes
to the application logic. Our evaluation demonstrates that our
reference implementation can decrease application-level latency
by as much as 76% compared to the existing solutions, without
impacting AP core functions. Our caching architecture effectively
improves application responsiveness by tapping into existing
networking infrastructure, thus offering a powerful and cost-
efficient system component for building emerging time-sensitive
applications at the edge.

Index Terms—Edge Caching, WiFi AP, Latency, DNS

I. INTRODUCTION

To ensure the required QoS in delivering critical data and
functionalities, mobile apps have traditionally relied on the
cloud, whether they run on smartphones, IoT devices, or smart
vehicles. Certain applications must fulfill stringent require-
ments of responding to the user’s inputs in less than 20∼50
ms [1]–[3], a metric that we refer to as application-level
latency. Examples include virtual reality (VR) gaming [4],
remote surgical guidance [5], and autonomous driving [6].
Because traditional cloud setups are often incapable of meet-
ing such stringent latency requirements, various edge-based
caching solutions have been introduced. To reduce application-
level latency, these solutions cache data at the edge of the
network, close to end users.

However, recent studies reveal that existing edge caching
solutions often fall short of meeting the latency requirements
of many time-sensitive applications [7], [8]. These solutions
typically follow a two-step workflow: (1) locate the nearest
cache server via DNS resolution; (2) retrieve the cached
data from it. As our investigation identifies, this workflow
suffers from inherent inefficiencies. First, DNS resolution is
notoriously slow and can take as much as 20 ms to fully

complete. Also, with cache servers located as far away as 14
hop from the end user, the average RTT can exceed 30 ms.

Motivated by these observations, we introduce a novel
system caching architecture that utilizes widely deployed WiFi
Access Points (AP). WiFi APs are a fundamental component
of the modern Internet infrastructure, ubiquitously deployed
one hop away from the users. Our architecture takes advantage
of the low RTT between APs and their connected users to
provide millisecond-level caching.

However, adding custom caching to WiFi APs, without
degrading their core functions, requires special care due to
APs’ limited physical cache memory. To that end, our archi-
tecture is multilayered: we interpose an AP-based cache as
an intermediate layer between the user and the edge-based
cache. This way, the user first queries the AP-based cache,
and only upon a cache miss, queries the edge-based cache.
This setup makes it possible to efficiently utilize the limited
AP cache memory for data with the highest latency impact,
thus providing a lightweight caching solution. We dubbed the
reference implementation of our caching architecture as APE-
CACHE (AP and Edge Cache).

Among the novel features of APE-CACHE are: 1) An
algorithm for managing cache that strategically prioritizes
cacheable objects based on how they impact the application-
level latency, optimizing the utilization of limited AP cache
memory; 2) A middleware system that efficiently integrates
AP-based cache lookup into the DNS query process of edge-
based caching, thereby minimizing the overhead of cache
misses; and 3) An intuitive programming model for specifying
the data to cache, without modifying application logic.

By describing the design, implementation, and evaluation of
APE-CACHE, this paper makes the following contributions:

• We highlight the problem of high latency in existing edge
caching systems, motivating the need for more efficient
solutions for caching at the edge.

• We introduce the design and implementation of APE-
CACHE, a millisecond-level and lightweight caching so-
lution that leverages WiFi APs. Its superior performance
is due to its low object retrieval latency and high cache
hit ratio for objects crucial to application-level latency.
APE-CACHE offers an intuitive programming model and
is amenable to integration with off-the-shelf APs.
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• Our evaluation reveals that APE-CACHE significantly
reduces the application-level latency of realistic mobile
apps by as much as 76%, compared with existing edge-
based caching.

The rest of this paper is organized as follows: Section
II provides the background and motivation of this research;
Section III highlights the technical challenges of AP caching;
Sections IV and V explain the design and evaluation of APE-
CACHE, respectively; Section VI discusses related work, and
Section VII presents concluding remarks.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce background on edge-
based caching, followed by an empirical study that reveals
the performance issues with state-of-the-practice edge caches.
We then study the feasibility of caching on APs.

A. Edge-based Caching Workflow

Edge caching systems are crucial for enhancing the effi-
ciency of data delivery, and can be broadly categorized into
Content Delivery Networks (CDN) and Cache-equipped Base-
Stations (CBS). Both categories share a similar workflow
that is transparent to software developers [9], [10]: 1) when
programming an app, developers specify the URLs of remote
data objects; 2) at runtime, the DNS system parses the domain
names of cacheable objects to the IP addresses of the nearest
cache servers; 3) the app sends HTTP requests to the nearest
cache servers to retrieve the cacheable objects.

To demonstrate the workflow, we use Akamai 1, the most
widely deployed CDN-based caching system. When an app
requests “www.apple.com/image.jpg”, deployed on the
Akamai caching system, it first looks up the cache server by
sending DNS requests and then retrieves the cached image.
This process ensures that users receive requested data swiftly
and efficiently, bypassing the need to connect to distant origin
servers, as shown in Fig. 1.
Cache Lookup: 1) The user’s runtime initiates the process by
sending a DNS request to the local DNS (LDNS) to resolve
the domain name www.apple.com; 2) The LDNS checks
its cache for the IP address of www.apple.com. If hit, the
LDNS returns the cached IP to the user. Otherwise, it sends a
resolution request to Apple’s authoritative DNS; 3) The author-
itative DNS (ADNS) resolves the domain name, which points
to an Akamai server: www.apple.com.edgekey.net (a
CNAME record of the domain name). The ADNS subse-
quently returns this CNAME record to the LDNS; 4) The
LDNS forwards the CNAME request to the Akamai’s DNS
service, which further identifies and provides the IP address
of the nearest caching server to the LDNS; 6) The LDNS then
relays this IP address back to the user.
Cache Retrieval: 7) Using this IP address, the user issues an
access request to the caching server; 8) The caching server
responds with the requested data: a) If the data is already
cached, it directly sends it to the user; b) If the data is

1https://www.akamai.com/
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Fig. 1: The Workflow of Fetching Data from Edge Caching

uncached, the server retrieves it from the origin server before
sending it to the user.

B. Performance Issues with Edge Caching Systems

For edge-based caching, latency is crucial for user expe-
rience. To understand the performance of the state-of-the-
practice edge caching systems and their bottleneck, we con-
ducted an empirical study that requested cached data from
Akamai’s caching system from various locations. Following
the two-stage workflow, we first directly measured the latency
for DNS resolution of cache lookup. Then we indirectly
measured the latency for cache retrieval as the Round-trip time
(RTT) and hops count between the client and the redirected
caching server.

We chose the three most widely visited websites using
Akamai, including www.apple.com, www.microsoft.com, and
www.yahoo.com, and sent requests from three locations dis-
tributed globally, including Michigan (USA), Tokyo (Japan),
and São Paulo (Brazil). For this purpose, we developed a
Python tool that leverages the socket.gethostbyname
library for DNS processing, converting hostnames to the IP
addresses of caching servers. We also employed the Linux
Ping command to measure the RTT between the client and
the resolved IP address, and traceroute to determine the
network hops from the client to the IP address. To ensure
precise measurements of DNS resolution latency and RTT,
we executed the tool 100 times, and Table I summarizes the
average latency of DNS resolution, RTT, and network hops
between the client and the resolved IP addresses.

We observe that: 1) The average latency involved in DNS
resolution for pinpointing the caching server is 22ms; 2) The
average Round-Trip Time (RTT) between the client and the
caching server stands at 38ms, encompassing 14 network hops
in one direction; 3) The distribution of caching servers is
not universal, as evidenced by the absence of an available
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Location Metric Apple Microsoft Yahoo

Michigan, US
DNS Resolution (ms) 18 19 21

RTT (ms) 34 33 53
Number of Hops 13 13 16

Tokyo, Japan
DNS Resolution (ms) 18 26 27

RTT (ms) 22 27 93
Number of Hops 7 10 13

São Paulo, Brazil
DNS Resolution (ms) 20 26 226

RTT (ms) 19 19 156
Number of Hops 12 10 15

TABLE I: Performance Measurement of Akamai Caching

Akamai cache server for Yahoo users in São Paulo, Brazil.
Consequently, users in this region must retrieve data from the
origin server, leading to significantly higher latency.

C. CPU/Memory of WiFi APs Available for Caching

The core concept of edge caching is reducing caching
retrieval latency by deploying cache servers close to end
users. To this end, WiFi APs are one hop away from the
end users and could potentially further reduce latency. Hence,
we explored whether the APs have enough CPU and memory
resources for caching. We replayed pre-captured WiFi network
traffic to an off-the-shelf WiFi router (i.e., GL-MT1300 pow-
ered by MT7621A CPU @ 880MHz with 256MB Memory).
The traffic datasets consisted of two network flows that were
captured in different network traffic rates, as showed in Ta-
ble II. We used Tcpreplay to replay the two network flows
and recorded the CPU and memory utilization of the router
while replaying.

Low Traffic Rate High Traffic Rate
Size 9.4 MB 368 MB

Packets 14261 791615
Flows 1209 40686

Average packet size 646 bytes 449 bytes
Duration 5 minutes 5 minutes

Number of apps 28 132

TABLE II: Statistics of Public WiFi Traffic Datasets [11]

From Fig. 2 we observe that: 1) higher traffic rates signif-
icantly increase the load on the router, particularly impacting
memory usage, which consistently hovers around 120MB; 2)
even under high traffic conditions, there are still available CPU
and memory resources on the router. The CPU usage remains
well below 50%, and memory usage does not exceed half of
the total capacity (i.e., 256MB).

(a) CPU usage (b) Memory usage

Fig. 2: CPU/Memory Usage of WiFi Router

To determine if these findings are indicative of a wider
trend, we searched on Amazon using the keyword “WiFi
router,” and manually inspected the specifications (CPU fre-
quency, RAM) of 22 products from the first page of results.
We found all 15 routers over the price of $60 are equipped
with similar or better CPU and RAM specifications than the
one we tested.

To summarize, caching on APs is feasible thanks to the
under-utilization of computational and storage resources on
these devices. However, considering the modest hardware
capabilities of WiFi APs and the necessity to allocate sufficient
memory for critical functions such as routing and DNS reso-
lution, the space available for caching on APs is significantly
smaller compared to that in edge-based caching systems.

III. APE-CACHE: KEY IDEAS AND CONSIDERATIONS

This section introduces the key ideas and considerations
behind APE-CACHE. To accommodate the unique constraints
of caching at AP, the key system design idea behind APE-
CACHE is to interpose AP-based cache as an intermediate
layer between the user and the existing edge-based cache, so
high-priority data objects can be cached on APs while the rest
of them at the edges. By priority of data objects, we mean
their impacts on the app-level latency and explain it using the
following example.

A. Motivating Example

typeMovieName getMovieID

getRating

getPlot

getCast

getThumbnail

composeUI

MovieTrailer

Fig. 3: The Logic of MovieTrailer app

Consider MovieTrailer, a real-world app that is open-
sourced on Github [12] and released on Google Play. The
main functionality of this app is to provide detailed movie
information given the movie’s name. To execute this function-
ality, the app first issues a request to convert the movie’s name
to a unique movieID. Then, the app issues four concurrent
requests to retrieve the detailed information about the rating,
plot, cast, and thumbnail of the movie identified by the given
movieID. Finally, based on the four fetched data objects, the
app composes and renders the UI, presenting the requested
movie information to the user.

Notice that these data objects (i.e., movie ID, rating, plot,
cast, and thumbnail) can be cached to shorten data fetching
time, thereby reducing app-level latency. However, there is a
high variance in how the fetching of each object contributes to
app-level latency, with objects on the critical path of the app,
i.e., the longest path (in duration) from start to finish, making
a larger impact. In our example, the critical path is getMovieID
→ getThumbnail, as the thumbnail object generally requires
more time to fetch due to its larger size compared to the other
three peers (i.e., rating, plot, cast). Therefore, movieID and
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thumbnail are considered to be of high priority. To minimize
app-level latency within the physical limitations of cache
memory space on AP, APE-CACHE should cache movieID
and thumbnail on AP, while the remaining data objects on
traditional edge caches.

B. Technical Issues and Solutions

The differences between caching on APs and edge servers,
along with the need to combine their usage, pose the following
main technical issues.

1) How to Optimize Priority-aware Caching on APs: Un-
like traditional edge caches, which manage cache on
the server based on data access frequency, priority-based
caching on APs must be aware of app logic, data size,
and real-time retrieval latencies, necessitating a more
context-aware and sophisticated approach.
Solution: APE-CACHE empowers developers to spec-
ify data priority in the source code. It also features a
priority-aware cache management algorithm (PACM),
detailed in Section IV-C.

2) How to Reduce Cache Lookup Overhead: Because it is
unknown whether a data object is cached on AP or not,
to retrieve a cacheable data object, an app follows a two-
step lookup: (1) look up its connected AP, and, if missed,
(2) switch to the edge-based cache system. The limited
AP’s memory cache space may cause a high cache miss
rate, thus requiring APE-CACHE’s lookup to be latency
efficient to minimize the overall data retrieval latency.
Solution: To locate the nearest edge server for a
data object, clients first send DNS requests to their
connected APs. APE-CACHE leverages this process to
simultaneously initiate AP-based cache lookups, effec-
tively minimizing overhead and potentially accelerating
retrieval. Section IV-B describes the details.

3) How to Reduce Programming Effort: Existing edge
caching systems are transparent to app developers. De-
velopers only need to specify the URLs of cacheable
objects, and can dynamically access the objects cached
on the nearest edges by DNS queries. The same pro-
gramming model cannot support caching on APs that
only have IP addresses but not domain names.
Solution: APE-CACHE provides an intuitive program-
ming model for app developers. Developers can use Java
annotations to configure APE-CACHE’s runtime which
objects should be further cached on APs. Section IV-A
introduces our programming model in detail.

C. APE-CACHE Workflow

To understand APE-CACHE’s workflow, consider Fig. 4,
which also makes use of our earlier example app. As shown
in the left side, the developer annotates cacheable objects and
specifies their URLs, priority, and TTL (i.e., time-to-live).
We define priority as positive integers, with higher values
corresponding to greater priority. When the client requests a
cacheable object (for example, fetching movieID by calling

APProgramming Interface

Client

RuntimeCompile Time

Edge

1. DNS request with cache lookup

2. DNS response with cache status

3. Retrieve data from the local AP

3’. Retrieve data from the edge server

4. C
ache replacem

ent 

                                                                            

app

Fig. 4: APE-CACHE System Workflow

FetchID(name)), it sends a modified DNS request to its asso-
ciated AP (step 1). The AP sends back the IP address of the
edge server, as well as whether it can retrieve the movieID
for a given movie name from the AP (step 2). The client will
either retrieve data from the AP (step 3), or retrieve the data
from the edge server using the IP address it receives (step
3’). For step 3, the AP will either return the cached data if
available, or delegate the client’s request to the server and
return the obtained results. It also runs a priority-aware cache
replacement algorithm to replace outdated data with newly
received data (step 4).

IV. APE-CACHE SYSTEM DESIGN AND IMPLEMENTATION

APE-CACHE comprises two subsystems, running on mobile
clients and APs. On mobile clients, APE-CACHE enhances
existing HTTP client libraries, such as OkHttp, Apache Http
Client, and Retrofit. Their enhanced versions are then incor-
porated into mobile apps. The enhancements fall into two
primary modules: programming support (detailed in Section
IV-A) and cache lookup/fetching (Section IV-B). At runtime,
the mobile client’s cache lookup/fetching module collaborates
with its AP counterpart. Collaboratively they first determine if
a cacheable object is located on AP, and subsequently retrieve
it. A dedicated cache management module on AP executes the
cache replacement algorithm described in Section IV-C.

A. Programming Model

APE-CACHE offers a declarative programming model, in
which cacheable objects can be marked by the Cacheable
Java annotation, depicted in Fig. 6. In this model, developers
annotate Java class fields as Cacheable, assigning their
URL, priority, and Time-To-Live (TTL) attributes. For a
concrete example see Fig. 4.

The id field uniquely identifies cacheable objects by repre-
senting their basic URLs without parameters. The priority
field accepts values of 1 or 2, which stand for low and high
priority, respectively. The TTL field indicates the duration in
minutes for which the cacheable objects remain valid.

We process all Cacheable annotations to retrieve the
cacheable objects. Subsequently, this client library intercepts
each outgoing HTTP request to verify if its basic URL matches
any of the cacheable objects. The matched requests are then
directed to the cache-lookup and fetching module, bypassing
the HTTP client library’s standard processing.
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1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.FIELD)
3 public @interface Cacheable {
4 String id();
5 int Priority();
6 int TTL();
7 }

Fig. 6: Cacheable Annotation

B. Cache Lookup and Fetching

Fig.7 illustrates the cache lookup and fetching workflows
followed by APE-CACHE’s distributed runtime. After intro-
ducing these two steps, we discuss our design considerations.

Client

DNS query with cache lookup by hashed URL

Search DNS cache: 
   If IP is in the cache, IP = real IP
   Else IP = dummy IP

Send DNS response with IP and flag

Search data cache:
    If hashed URL is in cache table, flag = Cache-Hit
    Else If hashed URL is in block-list, flag =  Cache-Miss
    Else flag = Delegation
    

Cache Replacment

C
ache Lookup

C
ache R

etrieval

                                                                            

If flag = Cache-Hit: Fetch data from the AP cache

Else If flag = Cache-Miss: Fetch data from the edge

Else If flag = Delegation:
Send data request to the AP

Fetch data from the edge

Send data to the client

AP Edge

Fig. 7: Cache Lookup and Fetching Workflow

1) Cache Lookup by Piggybacking into DNS queries: As
mentioned earlier, a client relies on DNS queries to identify
the closest edge cache server. Our AP-based cache lookup
method integrates with these DNS requests, to minimize extra

overhead in scenarios in which the AP-based cache misses,
and the client needs to revert to the edge-based cache. Overall,
we rely on DNS infrastructure and its built-in extensibility
support to customize queries, thus enabling APE-CACHE’s
cache lookup.
DNS-Cache Message Format: RFC1035 [13] defines a DNS
message as consisting of multiple sections (i.e., Header, Ques-
tion, Answer, Authority, and Additional) and one more mul-
tiple “Resource Record” (RR) items. The Additional section
provides additional information related to DNS queries. For
example, EDNS [14] creates a new RR type called OPT and
uses Additional to transfer its corresponding information. We
also utilize the “Additional” field in the DNS message, to
transfer cache lookup requests and responses, and refer to the
modified message as DNS-Cache queries.

Fig. 8: RR Format Definition for DNS-Cache Queries

We define a new RR type, as shown in Fig. 8. The field
<NAME> stores the hostname. For the field <TYPE>, we
assign an unsigned integer of 300 to indicate a “DNS-Cache”
query. The field <CLASS> can be either “REQUEST” or
“RESPONSE”. The field RDATA stores a list of two-tuples
⟨HASH(URL), FLAG⟩, which will be introduced next. The
field RDLENGTH is the bytes size of RDATA, used to parse
RDATA on the client side.
DNS-Cache Request: In APE-CACHE, the client first sends
a modified DNS request (DNS-Cache request) to the APE-
CACHE AP. The DNS request sets CLASS as REQUEST in
the “Additional” field of the DNS message, sets NAME as
the domain name of the request, and puts the hashed URL of
the request in the RDATA field. We hash the URL to maintain
confidentiality, as DNS messages are unencrypted.
DNS-Cache Response: Upon receiving a DNS-Cache request,
the AP searches for all URLs with the same domain name in
the request. For each URL, the AP returns a flag to reflect
its cache status, which can be divided into three categories:
1) flag = Cache-Hit: the data is stored in the cache
and available for direct fetching; 2) flag = Delegation:
the data is not stored in cache but the AP can delegate the
client’s request. It happens when the data has expired, or the
hashed URL hasn’t been seen by the AP before; 3) flag
= Cache-Miss: the data is not available from the AP. It
happens when the AP has delegated the request before but
decided not to cache it anymore by adding it to a block
list. If the data size exceeds a threshold (set at 500kb in our
implementation), it will be added to the block list.

2) Fetching: After the cache lookup, the client retrieves the
required data either from the WiFi AP or a remote server based
on the DNS-Cache Response. It first hashes the URL of the
required object and finds its flag from the received RDATA
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field. If flag = Cache-Hit, the client sends a follow-up
HTTP or HTTPS request to fetch the cached data from the
AP; if flag = Cache-Miss, the client will continue with
the original HTTP request to fetch the data the remote server
using the IP address it receives from the DNS-Cache response;
if flag = Delegation, the client sends the raw URL of
the request, along with its TTL and priority level, to the AP.
The AP then requests the data from the remote server, caches
it, and sends it back to the client.

3) Design Considerations: Modifying the DNS module on
APs may impact the original DNS query workflow. To resolve
potential issues, we made certain accommodations.

• Batching Multiple Cache Requests for the Same Domain:
apps often send several subsequent requests with identical
domain names but different URLs. The client typically
issues a single DNS request, as the DNS result is cached
until expiration. In such a scenario, the subsequent cache
requests cannot be issued in the absence of corresponding
DNS requests. To handle this problem, we modified the
AP runtime to respond with the cache status for all URLs
under the same domain name.

• Handling DNS resolution latency: The inherent latency
of DNS lookups can slow down the piggybacked cache
lookup. Particularly, if the AP does not recognize the
domain name, resolving its IP address from the upstream
DNS server could introduce significant delays. To mini-
mize this latency, if all URLs associated with a domain
name are available on the AP, the AP circumvents waiting
for DNS resolution by returning a dummy IP address in
the DNS response and setting its TTL to 0.

• Avoiding Sending Additional Requests: To further reduce
latency, many cache systems periodically refresh their
cached data. However, in our scenario, the sheer vol-
ume of APs significantly outnumbers edge-based cache
servers. Consequently, regularly updating the cache in
such a manner would excessively strain the remote server.
Therefore, APE-CACHE only sends a request to the re-
mote server when triggered by the client, which prevents
the escalation of the server workload.

C. Priority-Aware Cache Management

To delegate a user request, our AP runtime fetches the
object from an edge or cloud server and subsequently caches
it. In instances where the AP’s cache is full and a new
object arrives, our Priority-Aware Cache Management (PACM)
algorithm dynamically determines which cached objects to
evict, thereby creating sufficient space for the new object.
Two principal design objectives guide PACM: 1) ensure that
the retained objects in the cache deliver maximum benefits
to nearby clients, and 2) achieve equitable distribution of the
limited cache space across all apps.
System Modelling: Let C denote the cache capacity on an
AP, and S denote the size of the new object. We assume A =
{a = 1, 2, ...A} apps. We use D = {d = 1, 2, ...D} to denote
all the objects currently cached on the AP. For each object
d, Ad denotes the app it belongs to, pd denotes its priority

level, ed denotes its remaining valid time, and ld denotes the
time a client saves by retrieving the object from AP, instead of
from a remote server. All these parameters are either directly
given by the developers or can be calculated by the AP: pd
is a positive integer provided by developers, ed is calculated
by the difference between the current time and the expiration
time of d, and ld is approximated by the latency of retrieving
the object from the edge or cloud server.

We use ra(t2 − t1) to denote the number of requests for
app a received by the AP from all clients between time t2
and t1. We calculate the request frequency R(a) for app a
as: R(a) = (1 − α) × R′(a) + α × ra(∆t), where R′(a) is
the R(a) value in the previously round of calculation, ∆t is
the time since the previous calculation, and α (settled as 0.7
in our implementation) is a parameter that controls how the
most recent measurements and past measurements contribute
to the request frequency.
Problem Formulation: We define the utility of a data object
d as Ud = R(Ad)×ed× ld×pd, where R(Ad)×ed calculates
the amount of future requests before the data expires, ld × ed
calculates the impact of latency reduction for each request. We
define the storage efficiency of an app a as Ca =

∑
∀Ad=a sd

R(a) ,
which means the storage space the app uses divided by its
request frequency. To provide sufficient storage space for each
app, we use Gini coefficient [15], a widely adopted approach
for measuring fairness. We calculate the fairness of storage
efficiency as:

F (A) =

∑A
x=1

∑A
y=1 |Cx − Cy|

2A×
∑A

x=1 Cx

(1)

The output of PACM is O = {Od ∈ {0, 1},∀d ∈ D}, where
0 means d will be evicted and 1 means otherwise. Considering
both to deliver maximum benefits to nearby clients and to
achieve equitable distribution of the limited cache space across
all apps, we model the object selection problem as a two-
dimensional Knapsack problem as given below:

O = argmax
D∑

d=1

Od × Ud

s.t. :
D∑

d=1

Od × sd ≤ (C − S)

s.t. : F (A) ≤ θ

(2)

, where
∑D

d=1 Od × sd ≤ (C − S) means the size of all
objects to be kept in the cache should not exceed the total
cache capacity minus the size of the new object, and θ (settled
as 0.4 in our implementation) is the threshold for the fairness
index. Utilizing dynamic programming, PACM identifies the
optimal set O that offers the best utility within the given
constraints and accordingly evicts data objects from the cache.

D. Reference Implementation

For the clients, we extended OkHttp (version
3.14.9) [16], an open-source Android HTTP client. To
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interface with DNS, we modified c-ares (version
1.18.0) [17] and integrated it into the OkHttp. For the AP,
we extended Dnsmasq (version 2.85) [18], the built-in
DNS library of OpneWRT [19], an open-source, Linux-based
operating system widely used by off-the-shelf WiFi APs. Our
reference implementation contains about ∼ 500 lines of C code
and ∼ 400 lines of Java code for cache modules on Android,
and ∼ 1200 lines of C code for modifying the DNS on AP.

V. EVALUATION

Our evaluation questions alongside our summarized findings
are as follows:
EQ1: What is APE-CACHE’s latency impact on retrieving a
single cacheable object?
Finding: APE-CACHE reduces the latency of retrieving a
single cacheable object between 52% and 75%, as compared
with two baseline approaches (Sec. V-B).
EQ2: What is APE-CACHE’s impact on app-level latency?
Finding: APE-CACHE reduces app-level latency for real apps
between 44% and 76%, as compared with two baseline ap-
proaches. (Sec. V-D).
EQ3: What are APE-CACHE’s usage overhead, in terms of its
resource consumption on WiFi APs and programming effort?
Finding: APE-CACHE only incurs at most an additional 6%
of CPU utilization and uses only 13MB of memory on WiFi
APs. APE-CACHE requires no modification to the app logic.

A. Experimental Setup

We evaluated APE-CACHE in realistic settings. To assess
the performance impact of APE-CACHE as compared to base-
line approaches, we generated a suite of 30 mobile apps. This
suite includes two apps modified from existing real-world apps
and twenty-eight built from scratch, different in characteristics
such as logic complexity, object size, and request latency. We
then executed these subject apps on phones and simulators.
Baseline Methods: We compared APE-CACHE with the
following baseline solutions:

• Edge Cache: Caching data on edge servers in the vicinity
of clients. The cached data objects are accessed by the
edge server’s domain name.

• Wi-Cache: Wi-Cache [20], an approach closely aligned
with ours, was initially developed for caching large files,
such as video chunks, across APs in a distributed manner.
In this system, cache requests are initially routed to a
centralized cache controller that identifies the nearest
AP containing the required data to redirect the request
accordingly. In our implementation, we retained and
adapted the workflow of Wi-Cache for retrieving smaller
cacheable objects instead of distributing large files. Be-
sides, we kept its cache management algorithm, evicting
the least-recently-used (LRU) data objects in the cache.

• APE-CACHE-LRU: This approach follows the same
workflow as APE-CACHE but differs from its cache
management algorithm, utilizing the LRU. We used this
approach to evaluate the performance improvements of-
fered by PACM.

APE-CACHE, APE-CACHE-LRU, and Wi-Cache are all
specifically designed for deployment on APs. In our evalu-
ation, if the required object is not present on the AP, all three
systems were configured to redirect the request to an edge
server for retrieval. We operated under the assumption that
the edge server’s cache capacity was ample enough to store
all cacheable objects, thereby eliminating the need for cache
replacement.

Router: AP

Desktop 1: Edge ServerAmazon EC2: Wi-Cache Controller

Internet

Desktop 2: Client Simulator Phone 1 Phone 2

WiFiEthernet

12 Hops 7 Hops

Fig. 9: Testbed Used for Evaluation

Deployment: We established a testbed as depicted in Fig.
9. Our setup included a commercially available router (GL-
MT1300, equipped with an MT7621A CPU at 880MHz and
256MB Memory) functioning as the WiFi AP running APE-
CACHE. Two Android mobile phones (Samsung Galaxy A53,
with Octa-core CPUs and 6GB RAM) and a desktop were
directly connected to the AP. Each Android phone ran a real-
world app, while the desktop operated an Android emulator
to run the remaining twenty-eight apps. We deployed another
desktop (Intel i7-4790, 16GB Memory) 7 hops away from
the AP as the edge cache server. Furthermore, we rented an
Amazon EC2 instance in Ohio as the Wi-Cache controller,
which was 12 hops away from our AP.

Fig. 10: Functionality and Critical Path of Real-world apps

Apps and Execution: We chose two latency-sensitive real-
world apps in our evaluation, i.e., MovieTrailer [12] from
our motivating example and VirtualHome [21]. Both apps
are open-sourced on GitHub and available on Google Play.
Fig.10 describes their main functionalities and critical paths.
When executing MovieTrailer, we randomly chose one
movie name from the top 10 movie names on IMDB website
[22] as the user input, to trigger the follow-up workflow.
Similarly, we randomly chose a product category to trigger
the follow-up workflow for VirtualHome. Table III lists
the cacheable objects and their priorities for these apps.

To expand our evaluation, we developed a dummy app
generator and synthesized 28 apps with specific characteristics
based on given input parameters. For each app, we generated
cacheable objects with randomly assigned attributes, including
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(a) Cache Lookup Latency (b) Lookup Latency Overhead (c) Cache Retrieval Latency

Fig. 11: Object-level Caching Latency

High Priority Low Priority
MovieTrailer movieID, thumbnail rating, plot, cast
VirtualHome ARObjects ARObjectsID

TABLE III: Priority Values in Real-world apps

size, TTL, and retrieval latency. These objects were hosted on
our edge server, with an added delay (retrieval latency) to
simulate the latency experienced when retrieving them from
various servers. The retrieval latency was set to range between
20ms and 50ms, TTL varied from 10 minutes to 60 minutes,
and object sizes spanned from 1kb to 100kb. The priority for
each object was assigned as 1 or 2 based on the critical path of
the app. We adopted the Zipf distribution [23] to calculate the
time interval between executing an app. As a result, different
apps exhibited dissimilar usage frequencies, and the average
frequency for all apps was set to 3 times per minute.

B. Object-Level Caching Latency

Object-level caching latency refers to the end-to-end time
for a client to retrieve a cacheable object from the cache
at an edge server or WiFi AP. Since APE-CACHE and the
other two baselines follow the same two-stage object delivery
workflow (i.e., cache lookup and cache retrieval), we measured
the latency of each stage separately and added them up as the
overall latency of retrieving a cacheable object.

• Cache Lookup Latency: Cache lookup latency refers to
the duration required for clients to determine the cache
status. More precisely, it encompasses the time taken to
resolve the IP address of the edge caching server, for Wi-
Cache to identify the appropriate AP to serve the client,
and for APE-CACHE to complete a DNS-Cache query.

• Cache Retrieval Latency: Cache retrieval latency is the
period from when a request for an object is sent to the
cache during a hit (e.g., flag=Cache-Hit for APE-
CACHE) to when the object’s response is received by the
client. The duration is measured from initiating a TCP
session between the client and the cache to the point that
the client’s socket starts to read the object’s content.

Due to AP’s limited processing power, we varied the usage
frequency for all apps to assess how request workload impacts

the object-level caching latency. For each usage frequency, we
executed the apps for an hour and recorded the object retrieval
latency for different caching solutions, with the AP cache size
set to 5MB.

Cache Lookup Latency: We first compared APE-CACHE’s
cache lookup latency with that of the baseline methods. As
Fig. 11a shows: 1) for all three caching methods, the latency
rises in response to increased request frequency, with the rise
being rather insignificant (e.g., 0.5ms in APE-CACHE); 2)
APE-CACHE exhibited significantly lower latency, averaging
around 7.5ms, while both Wi-Cache and Edge Cache exceeded
22ms. While Wi-Cache contacts a remote controller to find the
appropriate AP, Edge Cache communicates with a remote DNS
resolver to locate the nearest cache server.

The millisecond-level cache lookup latency is enabled not
only by directly communicating with AP, but also by APE-
CACHE’s unique DNS-Cache design, whose performance char-
acteristics appear in Fig. 11b. Comparing the latencies of
DNS-Cache queries with regular DNS queries (hit), where the
requested domain name is cached on the AP, revealed that the
DNS-Cache query introduced a mere additional 0.02 ms of
latency. A regular DNS query’s latency increases steeply due
to recursive DNS queries to locate the missing DNS record
at AP. In contrast, our DNS-Cache query circumvents this
inefficiency by bypassing DNS resolution when the requested
objects are cached on the AP. Further, we compared the
latency of piggybacking DNS-Cache queries with sending two
standalone queries, i.e., a cache query after a regular DNS
query. We observed that separating two queries incurred an
additional latency overhead of 7.02 ms, as compared with the
integrated design of our DNS-Cache querying. Therefore, the
innovative DNS-piggybacking and the short-circuited return
of cache status contribute to APE-CACHE’s millisecond-level
cache lookup latency.

Cache Retrieval Latency: As shown by Fig. 11c, APE-
CACHE and Wi-Cache had a similar latency of 7 ms, much
lower than Edge Cache’s 30 ms latency. The advantage
of APE-CACHE and Wi-Cache lies in their proximity to
app users, as they cache objects directly on the AP. This
proximity reduces latency for establishing TCP connections
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and transmitting data objects, compared to retrieving data
from a more distant edge server. In contrast, the increase in
request frequency impacted the retrieval latency more than the
lookup latency, as handling TCP-based retrieval requests is
generally more resource-intensive than handling UDP-based
lookup requests.
Summary: By summing the latencies of cache lookup and
retrieval, the overall latencies for retrieving a single object
from APE-CACHE, Wi-Cache, and Edge Cache were 14.24
ms, 29.50 ms, and 55.93 ms, respectively. APE-CACHE re-
duced the latency by 51.72% and 74.54% compared with the
two baseline solutions. Request frequency seems to have an
unnoticeable impact on APE-CACHE’s performance.

C. Performance of PACM

We compared the performance of two cache management
algorithms, PACM used by APE-CACHE and LRU used by
Wi-Cache and APE-CACHE-LRU. We varied factors such as
object size, app usage frequency, and the number of apps, to
simulate the impact of 1) larger data objects, 2) fewer users
connected to the AP, and 3) a more diverse range of apps.
We used the cache hit ratio as the performance indicator and
measured such ratio separately for requests retrieving high-
priority objects and all data objects. As object-level latency for
retrieving data from AP is significantly lower, more cache hits
indicate a higher latency reduction, especially for high-priority
objects. In this experiment, we set the default parameters as:
1 ∼ 100kb for object size, 3 for app usage frequency, and 30
for the number of apps.

Data Object Size PACM-Avg PACM-High Priority LRU
1∼ 100 kb 0.632 0.832 0.631
1∼ 200 kb 0.514 0.754 0.528
1∼ 300 kb 0.426 0.616 0.430
1∼ 400 kb 0.320 0.457 0.316
1∼ 500 kb 0.226 0.304 0.220

TABLE IV: Cache Hit Ratio vs. Data Object Size

Impact of Object Size: Table IV shows the correlation
between the cache hit ratio and data object size for these two
methods. We observed that as the object size expands, the hit
ratio of both approaches decreases. For high-priority objects,
PACM consistently maintained a higher hit ratio. As the object
size increases, the limited cache size can fit fewer objects, so
PACM needs to evict low-priority objects.

Avg. Frequency PACM-Avg PACM-High Priority LRU
1 0.507 0.743 0.512

1.5 0.563 0.766 0.566
2 0.626 0.774 0.625

2.5 0.627 0.810 0.628
3 0.632 0.832 0.631

TABLE V: Cache Hit Ratio vs. Avg. app Usage Frequency

Impact of App Usage Frequency: When fewer users of the
same app connect to the AP, app usage frequency decreases.
This decrease can cause cached objects to expire before they
are requested again, resulting in cache misses. As indicated in
Table V, lowering the frequency decreased the cache hit ratio,

albeit insignificantly. Even so, PACM still ensured a higher hit
ratio for high-priority objects compared to LRU.

App Quantity PACM-Avg PACM-High Priority LRU
5 0.965 0.965 0.965
10 0.966 0.966 0.966
15 0.967 0.945 0.967
20 0.763 0.889 0.765
25 0.691 0.841 0.668
30 0.632 0.832 0.631

TABLE VI: Cache Hit Ratio vs. App Quantity

Impact of App Quantity: As the range of used apps increases
(as indicated by the higher quantity of apps in Table VI),
more objects need caching. Due to the limited cache memory,
some objects got evicted, thus causing more cache misses.
Nevertheless, PACM consistently maintained a higher hit ratio
for the high-priority objects.

D. App-level Performance Improvements

(a) MovieTrailer (b) VirtualHome

Fig. 12: Real-world apps’ Latency Performance
Reducing app-level latency is instrumental in improving

the user experience. Fig. 12 shows the average latency and
tail latency (i.e., 95th percentile latency) of the two real-
world apps. We observed that APE-CACHE outperformed
all baseline methods, especially Edge Cache, by reducing
78% of average latency and 76% of tail latency for both
apps. APE-CACHE’s reduction of app-level latency is due
to: 1) decreasing the latency of retrieving objects from AP;
2) increasing the cache hit ratio for high-priority objects; 3)
incurring negligible latency overhead even in the presence of
cache misses on AP.

As item 2) can be affected by data object size, app usage
frequency, and app quantity, we further compared the app-
level latency of APE-CACHE with the baselines methods,
varying these parameters in the same way as in Sec. V-C. Fig.
13 shows the average app-level latency of all 30 apps under
various settings, with APE-CACHE outperforming the baseline
methods across the board. At the default parameters setting,
the average app-level latency of APE-CACHE, APE-CACHE-
LRU, Wi-Cache, and Edge Cache were 30ms, 42ms, 54ms,
and 122ms, respectively. APE-CACHE reduced the latency by
29%, 44% and 76% compared with the baselines.

Besides, the results also confirmed our assumptions in Sec.
V-C: 1) A higher cache hit ratio reduces app-level latency.
Decreasing the object size or the number of apps led to a
higher cache hit ratio, thus reducing the latency; 2) A higher
cache hit ratio for high-priority objects can further reduce the
app-level latency. Indeed, APE-CACHE consistently exhibited
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(a) Latency vs. Data Object Size (b) Latency vs. App Usage Frequency (c) Latency vs. App Quantity

Fig. 13: Average App-Level Latency of All Apps Under Various Experiment Settings

lower latency than APE-CACHE-LRU, as APE-CACHE-LRU
is essentially APE-CACHE but without differentiating the
priority of objects.

E. Overheads of APE-CACHE

To enable caching on APs, APE-CACHE introduces addi-
tional components whose impact on AP resource consumption.
We evaluated this impact to ensure that AP’s core functionali-
ties (e.g., IP routing and packet forwarding) are not adversely
affected. To this end, we used 30 pairs of apps, each consisting
of a APE-CACHE-enabled version and a regular version. The
regular versions were connected to the AP without being
modified and directly retrieved objects from the edge server.
We allocated 5MB cache memory on AP for APE-CACHE. We
ran APE-CACHE-enabled apps and regular apps at a frequency
of 3 times per minute for one hour and recorded their CPU
and memory usage during this period.

(a) CPU Usage (b) Memory Usage

Fig. 14: CPU/Memory Usages on WiFi AP

As shown in Fig. 14, APE-CACHE exhibited an increase in
CPU usage (up to 6%) and memory usage (up to 13MB). Three
factors explain these increases: 1) object caching functions
effectively with only 5MB of memory; 2) processing DNS-
Cache queries and HTTP requests required additional CPU
and memory resources; 3) executing the PACM algorithm
also consumed resources. However, even with these additional
processes, APE-CACHE’s overhead remained modest, as com-
pared to the resources of modern APs, confirmed by our study
in Sec. II-C.

F. Programming Effort
To highlight the usability of our annotation-based pro-

gramming model, we developed an alternative model that

relies on API calls to access AP-based caching. In par-
ticular, the alternative uses our modified c-ares library
to issue DNS-Cache queries and defines a specific API
for asynchronously issuing HTTP requests for cacheable
objects: String invokeHttpRequestAsync(String
url, int priority, int TTL). In this model, devel-
opers have to modify the app’s logic by replacing original
HTTP requests with this API.

App Approach Impacted LoCs Extra Binary Size Re-write Logic
APE-CACHE 5 32kb NoMovieTrailer API-based 30 32kb Yes
APE-CACHE 2 32kb NoVirtualHome API-based 14 32kb Yes

TABLE VII: Programming Efforts Comparison

We compared the programming efforts of these two ap-
proaches both quantitatively and qualitatively. Quantitatively,
we assessed the impact on the number of lines of codes (LoCs)
and the additional app binary size relative to the original binary
size. Qualitatively, we examined the ease of use for developers
(e.g., re-writing code and debugging work). As indicated by
Table VII, APE-CACHE required only a few code annotations,
as opposed to the API-based approach, which necessitated
modifications to the app’s logic. Specifically, all HTTP re-
quests associated with cacheable objects needed rewriting, thus
increasing the likelihood of introducing insidious errors that
would be non-trivial to fix. Regarding the additional size, both
approaches resulted in a comparable and reasonable binary
increase of about 32kb.

Although annotations are specific to Java, our programming
model is designed to be compatible with any language that
supports declarative metadata [24]. This metadata assigns
specialized meaning to programming constructs, such as class
fields, enabling external tools to seamlessly enhance code
functionality. Enterprise software development has embraced
this programming model through metadata-driven frameworks
and libraries [25]. Some state-of-the-art approaches even ad-
vocate for techniques that facilitate the reuse of metadata
information across programming languages [26], [27].
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VI. RELATED WORK

APE-CACHE is related to edge caching systems, priority-
aware caching, and mobile app acceleration. Next we discuss
the related approaches in these domains in turn.
Edge Caching Systems Caching data at the network edge sig-
nificantly reduces latency. One commonly used edge caching
system is content delivery networks (CDN) [28] that cache
the data in cache servers geographically co-located with the
end users, thereby reducing latency. To further accelerate data
delivery, many works cache data at cellular network base sta-
tions [29], [30] and WiFi APs [31], [32], which are extremely
close to users, with few practical implementations. One such
implementation is Wi-Cache [20], which caches video chunks
on WiFi APs to accelerate the process of retrieving large video
files for mobile clients.

However, these caching systems suffer from a high latency
overhead in cache lookup. CDN and base station caching
require contacting a remote DNS server to direct requests
to the nearest cache server or base station, while Wi-Cache
needs to consult a controller to identify the appropriate AP.
APE-CACHE piggybacks the cache lookup request into DNS
queries to minimize latency. Although edge computing ap-
proaches [33], [34] have relied on WiFi AP for coordinating
and executing computing tasks, our approach marks the first to
intricately integrate supplementary functionality with the AP’s
inherent capabilities. This pioneering integration opens up a
novel direction in edge computing research.
Priority-Aware Caching Several studies customized caching
for CDN that take into account both data usage frequency
and priority [35]–[37]. However, these theoretical solutions
primarily focus on web pages, whose complex dependencies
necessitate varied cache priorities for different web objects.

As mobile apps have become part and parcel of our lives,
users tend to regularly utilize mobile apps alongside web
pages. More importantly, network-intensive apps exhibit com-
plex dependencies between their data requests [38]. APE-
CACHE’s novelty lies in its priority-aware caching that is
specifically tailored for mobile apps. It also offers a declarative
programming model to conveniently define object priority.
Finally, its cache management scheme strategically places
cacheable objects based on their priorities, thereby optimizing
the utilization of limited AP cache memory.
Mobile App Acceleration Multiple mobile systems accel-
erate their performance via prefetching. They differ in their
strategies for deciding the specifics of prefetching—–what data
to fetch, when to fetch it, and from where. For example,
APPx [38] utilizes static analysis techniques to identify de-
pendencies between requests and then sends this dependency
information to an edge proxy for prefetching the dependent
data. Similarly, PALOMA [39] and Marauder [40] prefetch the
data objects, but do so on the client side and store them on the
device for future access. APE-CACHE is orthogonal to these
efforts and can be combined to further reduce app latency:
by enabling apps with client-side prefetching to source data
from a APE-CACHE-enabled AP, or by sending the request

dependency information to the APE-CACHE-enabled AP to
prefetch data, thereby reducing cache misses.

VII. CONCLUSION

This paper presented APE-CACHE, an edge caching system
that taps into pervasive networking infrastructure to cache
data for mobile apps. To the best of our knowledge, APE-
CACHE is the first AP-based caching system that complements
existing edge caching solutions, thus making it practical for
deployment on off-the-shelf APs. Our evaluation demonstrated
that APE-CACHE effectively reduces app-level latency for real
apps by as much as 76%, as compared to CDN, while imposing
minimal resource and programming effort overheads. As new
and exciting time-sensitive applications are starting to emerge,
APE-CACHE has the potential to become a powerful and cost-
efficient system component for their construction.
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