
Journal of Machine Learning Research 25 (2024) 1-56 Submitted 6/22; Revised 2/23; Published 1/24

Nonparametric Regression for 3D Point Cloud Learning

Xinyi Li lixinyi@clemson.edu
School of Mathematical and Statistical Sciences, Clemson University
Clemson, SC 29634, USA

Shan Yu sy5jx@virginia.edu
Department of Statistics, University of Virginia
Charlottesville, VA 22904, USA

Yueying Wang1 yueyingw@amazon.com
Amazon.com, Inc.
Seattle, WA 98121, USA

Guannan Wang gwang01@wm.edu
Department of Mathematics, College of William & Mary
Williamsburg, VA 23185, USA

Li Wang lwang41@gmu.edu
Department of Statistics, George Mason University
Fairfax, VA 22030, USA

Ming-Jun Lai mjlai@uga.edu
Department of Mathematics, University of Georgia
Athens, GA 30602, USA

for the Alzheimer’s Disease Neuroimaging Initiative2

Editor: Xiaotong Shen

Abstract

In recent years, there has been an exponentially increased amount of point clouds collected
with irregular shapes in various areas. Motivated by the importance of solid modeling for
point clouds, we develop a novel and efficient smoothing tool based on multivariate splines
over the triangulation to extract the underlying signal and build up a 3D solid model from
the point cloud. The proposed method can denoise or deblur the point cloud effectively,
provide a multi-resolution reconstruction of the actual signal, and handle sparse and ir-
regularly distributed point clouds to recover the underlying trajectory. In addition, our
method provides a natural way of numerosity data reduction. We establish the theoretical
guarantees of the proposed method, including the convergence rate and asymptotic normal-
ity of the estimator, and show that the convergence rate achieves optimal nonparametric
convergence. We also introduce a bootstrap method to quantify the uncertainty of the es-
timators. Through extensive simulation studies and a real data example, we demonstrate

1. Yueying Wang’s work in this paper was completed prior to joining Amazon.
2. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

©2024 Xinyi Li, Shan Yu, Yueying Wang, Guannan Wang, Li Wang and Ming-Jun Lai.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/22-0735.html.

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-0735.html

Li, Yu, Wang, Wang, Wang and Lai

the superiority of the proposed method over traditional smoothing methods in terms of
estimation accuracy and efficiency of data reduction.

Keywords: 3D pattern recognition, complex domain, penalized splines, triangulation,
trivariate splines

1 Introduction

Recent advances in computer and information technology have dramatically boosted the
availability of three-dimensional (3D) point clouds in many fields, such as geography, envi-
ronmental science, computer graphics, engineering, economics, and medical imaging. These
point clouds are usually collections of enormous measurements in space defined by a given
coordinates system. Sometimes, these point clouds are rendered and inspected directly;
examples can be found in Rusinkiewicz and Levoy (2000). More often, the point clouds
are converted to polygon mesh or triangle mesh models; for example, 3D reconstruction
is widely used for automated driving vehicles (Lee et al., 2016; Shao, 2021). Many ef-
forts have been devoted to investigating the converting technique, and a survey of surface
reconstruction from point clouds can be found in Berger et al. (2017).

These 3D data typically contain more information than the shape of an object, as they
represent some meaningful values in real life. For example, healthcare professionals can
use brain activity levels contained in 3D neuroimages to access new angles, resolutions,
and details to better understand tissue. Another example is using cloud-based 3D scans to
explore the location and access the grade and type of ore in the mining industry. Regardless
of the potential of these applications, limited research has been developed on identifying
underlying signals from 3D solid objects, as there are many challenges in achieving this
goal.

First of all, as shown in the point cloud inputs in Figure 1, the shape of the point clouds
is usually irregular. To extract the underlying signal over the irregular-shaped 3D solid
object, many conventional methods, such as kernel smoothing (Zhu et al., 2014), tensor
product smoothing (Reiss and Ogden, 2010), thin plate spline smoothing (Duchon, 1976;
Yue and Speckman, 2010), and wavelet smoothing (Morris and Carroll, 2006), suffer from
the problem of “leakage”, which is referred as the inaccurate signal reconstruction across
the complex domains; see the discussions in Ramsay (2002), Wang and Ranalli (2007),
and Kim and Wang (2021) for more details. For example, as shown in the pillar of the
horseshoe domain in Figure 2, although the Euclidean distance between points A and B
is very short, erroneously borrowing information from point B when estimating point A
will lead to unsatisfactory results. Several techniques have been developed in the last two
decades to tackle the “leakage” problem for two-dimensional (2D) smoothing, such as spline
smoothing (Awanou et al., 2006; Wang and Ranalli, 2007; Lai and Wang, 2013; Wilhelm
et al., 2016), finite element analysis (Lindgren et al., 2011; Arnone et al., 2022), and kernel
smoothing (Guo et al., 2010). For 3D images, Chung et al. (2018) applied the discrete heat
kernel smoothing, and for irregular-shaped 3D objects, Huo et al. (2020) considered the
finite element method.

Second, the information comprised in the 3D point clouds usually contains unwanted
noise that can obscure the features of the underlying signal of interest. Consequently,
denoising is a crucial step in the modeling process. Various smoothing methods have been

2

3D Point Cloud Learning

Point Cloud Surface
Reconstruction

Triangulation Trivariate Spline
Smoothing

Figure 1: A flowchart demonstrating the overall procedure of TPST method analyzing a
3D point cloud.

adopted for denoising in many 2D studies (Goldsmith et al., 2014; Kang, 2020). However,
the unique characteristics of 3D point clouds present significant challenges in denoising
along with analysis (Wong et al., 2016).

Third, due to the nature of the devices for generating point cloud data, raw point cloud
data is often sparse, uneven, or even partially missing. Therefore, accurately extracting the
underlying signal from these point clouds becomes incredibly challenging. Consequently,
it is necessary to preprocess the raw data to generate complete, dense, and uniform point
cloud data.

Last but not least, as aforementioned, the size of the point clouds is usually enormous,
and thus, makes it challenging in both storage and the corresponding data analysis. For
example, a 3D image produced from a standard positron emission tomography (PET) brain
scan contains over half a million voxels, which leaves data processing and analysis computing
intensive tasks.

Figure 2: A illustration of “leakage” problem.

3

Li, Yu, Wang, Wang, Wang and Lai

To address the prevalent challenges in converting a 3D irregular-shaped point cloud to
a solid model and accurately estimating the underlying function, we propose a novel and
efficient smoothing method based on trivariate penalized spline over triangulations (TPST)
with a directional derivative-based penalty function. Figure 1 demonstrates the flowchart
of the overall procedure of the TPST method for analyzing a 3D point cloud. The proposed
TPST smoothing method has several appealing properties for handling data collected from
a point cloud.

One of the main advantages is its ability to effectively solve the problem of “leakage”
across complex domains. By borrowing the information from neighboring tetrahedra, the
TPST method is able to accurately denoise or deblur the collected data while preserving
inherent geometric features or spatial structures. This makes it particularly useful for ana-
lyzing irregularly shaped 3D point clouds. Similar to P-splines of Eilers and Marx (1996),
TPST uses compactly supported basis functions and a sparse penalty, which is computation-
ally efficient for smoothing unevenly distributed data, such as sparse and irregular 3D point
cloud data. By using an appropriate partition, the method can reconstruct or recover the
underlying function from both global and local missing data, and provide a multi-resolution
reconstruction of the actual signal.

In addition, the proposed TPST has the potential to be used as a numerosity reduction
method (Han et al., 2011). With a smooth underlying signal, the smaller set of spline
coefficients could well represent and thus significantly reduce the amount of original data.
Once the spline basis functions are determined, we can use the coefficients to recover the
underlying signal of the point clouds. For example, as demonstrated in Section 6, a point
cloud of size 50,000 can be represented by a vector of 323 spline coefficients. Let’s take the
biomedical image for another example, where the proposed method can reduce an image
point cloud of 510,340 voxels to a vector of 4,856 coefficients, with a peak signal-to-noise
ratio reaching 30.76. See Table 2 in a later section for details. This can greatly alleviate
the storage and computational challenges associated with large point clouds.

Furthermore, the proposed TPST is computationally efficient in dealing with point
clouds of large size. As shown in Section 3, it is very easy to set up the spline basis functions
and penalties of TPST. Similar to many other types of spline smoothing (Wang and Yang,
2009; Ma, 2012; Wang et al., 2020a,b; Liu and Zhao, 2021), TPST is a global estimation
method with an explicit model expression, and consequently, it only requires solving a
single linear system to obtain the estimate. Thus, TPST could reduce the computational
complexity and make it suitable for handling large point clouds.

In this article, we also investigate the theoretical properties of the proposed smoothing
method. To be more specific, we establish the convergence rate of the proposed TPST
estimator, which is determined by the fineness of the triangulation, the trivariate spline
degree and smoothness, penalty parameter, and smoothness of the unknown function. When
the penalty parameter is zero, the rate achieves the optimal nonparametric convergence rate.
We further derive the asymptotic normality for the TPST estimator.

When working with point clouds, uncertainty quantification is essential after the esti-
mate, as it provides an assessment of the reliability and robustness of the estimators, based
on which results one could make more accurate conclusions. The aforementioned asymp-
totic normality of the proposed TPST estimator could thus be used to establish pointwise
confidence intervals in theory. In practice, however, it can be difficult to derive the exact

4

3D Point Cloud Learning

form of the standard error due to the characteristics of the trivariate spline basis functions.
As an alternative, we propose using a wild bootstrap method to estimate the standard error.
This method is particularly useful for 3D point clouds that may have varying levels of noise
or uncertainty as it can handle the heterogeneity effectively in data. Our simulation results
show that the bootstrap standard error is very close to the true standard errors, providing
a reliable method for quantifying the uncertainty of the estimators.

The rest of the paper is structured as follows. In Section 2, we give an overview of the
triangulations and the methods for constructing the triangulations from a 3D point cloud.
Once a triangulation is obtained, we can construct the spline space over this triangulation.
We introduce the penalized spline estimators in Section 3. In Section 4, we present the
theoretical results. In Section 5, we discuss implementation details for the proposed TPST
method, including the creation of the penalty matrix, selection of the penalty parameter,
choice of triangulation, and evaluations of uncertainties. We then demonstrate the perfor-
mance of the proposed smoothers on several simulation examples and a real data example in
Section 6. Finally, this paper is concluded, and future work is outlined in Section 7. We put
all the theoretical details and more detailed introductions in the supplementary material.

2 Trivariate Splines over Triangulations and Basic Properties

In this section, we provide a basic framework for triangulations and trivariate splines on
those triangulations. Please refer to Appendix A for more detailed introductions.

2.1 Triangulations

We assume there exists a tight polyhedral domain, Ω, that contains all the data locations
of a point cloud. In the theoretical development below, we consider the Ω to be fixed
and given. Additionally, we take into account that the domain may have one or multiple
holes that do not contain any observations, as seen in the 3D domain of Figure 3 (b).
Triangulations are very popular in approximating the domain Ω. In the following, we use
T to denote a tetrahedron, that is, a convex hull of four noncoplanar points in R3. Then,
a collection △ = {T1, . . . , TN} of N tetrahedra is called a triangulation of Ω = ∪N

h=1Th,
provided that any pair of tetrahedra in △ intersect at most at a common vertex, along
a common edge, or along a common triangular face. An example of triangulation △ =
{T1 = ⟨v5,v1,v4,v3⟩, T2 = ⟨v2,v1,v3,v4⟩} of the domain Ω = ⟨v2,v5,v3,v4⟩ is illustrated
in Figure 4 (a), where vı, ı = 1, . . . , 5, are the vertices of the tetrahedra. In contrast, as
illustrated in Figure 4 (b) for tetrahedra T1, T3 = ⟨v2,v1,v3,v6⟩ and T4 = ⟨v2,v1,v6,v4⟩,

(a) (b) (c) (d) (e)

Figure 3: Examples of 3D point clouds and corresponding triangulation.

5

Li, Yu, Wang, Wang, Wang and Lai

(a) A triangulation (b) A non-triangulation

Figure 4: (a) and (b) provide an example and a counterexample of triangulation.

{T1, T3, T4} does not form a triangulation of Ω, because of the intersections between the
pairs of tetrahedra (T1, T3) and (T1, T4).

Furthermore, let |T | be the length of the longest edge of T , and ϱT be the radius of the
largest ball that can be inscribed in T , then the ratio βT := |T |/ϱT is the shape parameter of
T ; see an illustration example in Figure 5 (a). In general, the shape parameter βT describes
the shape of T , and the larger βT is, the flatter the tetrahedron T becomes. If T is a regular
tetrahedron whose six edges are all of the same lengths, then βT = 2

√
6, and for any other

tetrahedron, βT > 2
√
6. Based on this shape parameter, we can define that a triangulation

△ is β-quasi-uniform if there is a positive value β such that △ satisfies

|△|/ϱT ≤ β < ∞, for all T ∈ △, (1)

where |△| := max{|T |, T ∈ △} is referred as the size of △, that is, the length of the longest
edge of △. Let N be the number of the tetrahedra in the polygonal domain Ω. From
Equation 1, we have for a β-quasi-uniform partition, N ≤ (4π|△|3)−13VΩβ

3, where VΩ

denotes the volume of Ω.

(a) Shape parameters (b) Non-β-quasi-uniform triangulation

Figure 5: (a) shows an illustration of the shape parameters of a tetrahedron; (b) shows an
example of a non-β-quasi-uniform triangulation.

6

3D Point Cloud Learning

To illustrate the definition of quasi-uniform partition, we show an example of non-β-
quasi-uniform triangulation in Figure 5 (b),

△ = {T1 = ⟨v2,v1, c1,v4⟩, T2 = ⟨v1, c2, c1,v4⟩, T3 = ⟨c1,v1, c3, c2⟩,
T4 = ⟨c3,v1, c4, c2⟩, T5 = ⟨c3,v1,v3, c4⟩, . . .},

where the edges ⟨v4, c1⟩ and ⟨c2, c3⟩ are perpendicular to the edge ⟨v2,v3⟩, and ⟨c1, c2⟩ and
⟨c3, c4⟩ are perpendicular to ⟨v3,v4⟩.

2.2 Point Clouds to Triangulations

We now describe how to construct a triangulation from a 3D point cloud. The first step is
to determine the domain of the point cloud, which is often given as a polygonal domain Ω,
a geometric region defined by a set of polygons. This can be used to represent a wide range
of objects, such as buildings, terrain, and objects in medical imaging. If the domain of the
point cloud is not known, we can use surface reconstruction techniques, such as triangular
meshes, to find a tight polygonal domain that encases the point cloud. As Ω has piecewise
linear boundary faces, we have a normal direction perpendicular to each planar face of Ω,
which can be used to determine whether a point is inside or outside of Ω. Then, we use
this normal direction information of all boundary faces and the observed data locations
to partition Ω into a collection of tetrahedra. Many mesh generation algorithms for 3D
domains available in various software packages and toolboxes, such as the MATLAB func-
tions “delaunay” and “distmesh/distmeshnd” (Persson and Strang, 2004), the C++ library
“CGAL” (Jamin et al., 2015; Project, 2020), the “TetGen” (Si, 2015), and “iso2mesh”
(Fang and Boas, 2009) built on “CGAL”. In this article, we consider a triangulation, △,
with vertices containing the partial or whole set of observed data locations to achieve inter-
polation at the given data locations. This type of triangulation can be constructed using
the constrained Delaunay triangulation method, as described in Shewchuk (1998). Based on
a similar method proposed in Xu (2019), we obtain all the triangulations using MATLAB.

Input:
Point Cloud

Surface
Reconstruction
(Tight Domain of
the Point Cloud)

Domain
Given

Output:
(Constrained)
Delaunay

Triangulation

N

Y

Figure 6: Flowchart demonstrating the process of constructing a triangulation from a 3D
point cloud.

7

Li, Yu, Wang, Wang, Wang and Lai

Figure 6 illustrates our flowchart for obtaining a triangulation. This generation procedure
can be applied to many other 3D point clouds collected in various fields, as shown in the
triangulation examples in Figure 3.

2.3 Trivariate Splines on a Triangulation

Suppose we have obtained a triangulation △ for a tight domain Ω of a given point cloud.
For any tetrahedron T = ⟨v1,v2,v3,v4⟩ ∈ △, any point p = (x, y, z) ∈ R3 has a unique
representation in terms of ⟨v1,v2,v3,v4⟩,

p = b1v1 + b2v2 + b3v3 + b4v4, with b1 + b2 + b3 + b4 = 1,

where (b1, b2, b3, b4) are called the barycentric coordinates of p relative to the tetrahedron
T , and they are nonnegative if p is inside or on the faces of T . Accordingly, for some
nonnegative integers i, j, k, l with i + j + k + l = d, define trivariate Bernstein basis
polynomial of degree d relative to T as

Bd,T
ijkl(p) :=

d!

i!j!k!l!
bi1b

j
2b

k
3b

l
4, with i+ j + k + l = d. (2)

For any positive integer d, let Pd be the space of all trivariate polynomials with total degrees
less than or equal to d. Note that the dimension of Pd is

(
d+3
3

)
. According to Theorem

15.8 in Lai and Schumaker (2007) and Lemma A.6 in the Appendix A, the set of Bernstein
basis polynomials in Equation 2 forms a basis for the space of polynomials Pd. Thus, any
polynomial ϕ(p) ∈ Pd on with domain T can be written uniquely as the B-form,

ϕ(p) =
∑

i+j+k+l=d

γT ;ijklB
d,T
ijkl(p) = Bd

T (p)
⊤γT , (3)

where the coefficients γT = {γT ;ijkl}i+j+k+l=d are called B-coefficients of ϕ(·).
For any nonnegative integer r, we use Cr(Ω) to denote the collection of all r-th contin-

uously differentiable functions over Ω. For triangulation △ = {T1, . . . , TN}, let Sr
d(△) =

{s ∈ Cr(Ω) : s|T ∈ Pd(T), T ∈ △} be a spline space of degree d and smoothness r over
△, where s|T is the polynomial piece of spline s restricted on tetrahedron T . According to
Equation 3, for any s ∈ Sr

d(△), there exists a coefficient vector γ = (γ⊤
T1
, . . . ,γ⊤

TN
)⊤ with

γTJ
= {γTJ ;ijkl}i+j+k+l=d such that

s|TJ
(p) =

∑
i+j+k+l=d

γTJ ;ijklB
d,TJ

ijkl (p) = Bd
TJ
(p)⊤γTJ

, J = 1, . . . , N. (4)

That is, s(p) = Bd(p)
⊤γ, where Bd = {(Bd

T1
)⊤, . . . , (Bd

TN
)⊤}⊤.

For noise-free data, the approximation order of trivariate spline spaces was studied in
Lai and Schumaker (2007) when d ≥ 8r + 1 and Lai (1989) when d ≥ 6r + 3. Particularly,
Lai (1989) proved that when d ≥ 6r + 3, the space Sr

d(△) can attain the optimal converge
rate; see Lemma 1 below. For any index α = (α1, α2, α3) of order |α| = α1 + α2 + α3,
we denote the derivatives Dαs = ∂|α|s/∂α1

x ∂α2
y ∂α3

z . For any function f over the closure
of domain Ω, denote the Lq(Ω) norm (1 ≤ q < ∞) and supremum norm as ∥f∥Lq(Ω) =

{
∫
Ω |f(v)|qdv}1/q and ∥f∥∞,Ω = supv∈Ω |f(v)|, respectively. Next, for any k ≥ 0, denote

|f |k,∞,Ω = max|α|=k ∥Dαf∥∞,Ω, and |f |k,q,Ω =
∑

|α|≤k ∥Dαf∥Lq(Ω). Further, we define the

Sobolev space Wℓ,q(Ω) = {f : |f |k,q,Ω < ∞, 0 ≤ k ≤ ℓ} for 1 ≤ q ≤ ∞, ℓ ≥ 1.

8

3D Point Cloud Learning

Lemma 1 (Theorem 3.5.2 in Lai, 1989) For all f ∈ Wd+1,q(Ω) with 1 ≤ q ≤ ∞, r ≥ 0,
and d ≥ 6r + 3, there exists a spline sf ∈ Sr

d(△) such that

∥Dα (f − sf) ∥Lq(Ω) ≤ K|△|d+1−|α||f |d+1,q,Ω,

for all 0 ≤ |α| ≤ m, where K > 0 is a constant independent of f and |△| but is dependent
on the geometry of △.

Remark 2 Both d and r are parameters for the spline space Sr
d(△), which determines the

smoothness of the TPST estimator and are usually predetermined by the user. Practically,
as long as d ≥ r, we can construct the spline bases. If d ≥ 6r + 3, we can achieve the full
approximation (approximation with optimal convergence rate) order, as shown in Lemma
1. A higher value of d indicates a higher degree polynomial, which can result in a higher
computation burden; see our analysis in Section 6. In practice, the choice of d and r is
closely tied to the intended interpretation of the estimated function. If the goal is to enhance
the signal-to-noise ratio for visualization or to suggest a simple parametric model, then a
slightly oversmoothed function with a subjectively chosen parameter may be appropriate.
However, if the focus is on accurately estimating the regression function and preserving
local structures, then a slightly undersmoothed function may be more suitable.

3 Penalized Spline Estimators

With all the preparations in the previous introduction, we apply the trivariate spline over
the triangulation to recognize the underlying signal from 3D point clouds in this section.

In the following, for any i = 1, . . . , n, let point pi = (xi, yi, zi) ∈ R3 be the location
or design point of the ith observation in a point cloud of sample size n. Let Wi be the
response variable observed on the ith location pi. Then, we regard any point cloud as a
set of n observations {(pi,Wi)}ni=1 in general. To extract the underlying signal, we consider
the following nonparametric regression model

Wi = m(pi) + σ(pi)εi, (5)

where m(·) is some smooth but unknown 3D function, σ(·) is the unknown conditional
standard deviation function, and εi is the random error term with mean zero and variance
one. Assume (Wi, εi) are general iid copies of (W, ε).

In nonparametric smoothing, the roughness penalty approach is widely used when
smoothing noisy data (Green and Silverman, 1994; Wood, 2003; Lai and Wang, 2013). In-
cluding a roughness penalty and choosing a proper tuning parameter can avoid overfitting
problems and balance the bias and variance of the estimator of the function. To estimate
the underlying function m in Equation 5, we formulate the roughness penalty approach as
the following penalized least squares problem:

min
s∈Sr

d(△)

n∑
i=1

{Wi − s(pi)}2 + ρnE(s), (6)

where the roughness penalty

E(s) =
∑
|α|=2

(
2

α1

)(
2− α1

α2

)∫
Ω
{Dαs(p)}2dp, (7)

9

Li, Yu, Wang, Wang, Wang and Lai

and ρn is the roughness penalty parameter. We aim to find the minimizer of Equation
6 in Sr

d(△), denoted as m̂ρn , which is the Trivariate Penalized Spline over triangulation
(TPST) estimator of m. The tuning parameter ρn controls the smoothness of the fitted
spline function. A larger ρn leads to a less fluctuating function. If ρn goes to infinity, our
estimator shrinks to linear functions where the roughness penalty E(s) = 0. On the other
hand, when ρn = 0, the estimator becomes the standard unpenalized least squares spline
estimator. A proper penalty parameter ρn balances the goodness of fit for the data and the
volatility of estimated functions.

The penalty E(s) in Equation 7 is a commonly used penalty; see Green and Silverman
(1994) for the 2D case. For a spline function s ∈ Sr

d(△), combining Equation 4, the
roughness penalty in Equation 7 can be written as follows:

E(s) =
∑
T∈△

E(s|T) =
∑
T∈△

∑
|α|=2

(
2

α1

)(
2− α1

α2

)∫
T
{Dαs|T (p)}2dp =

∑
T∈△

γ⊤
TPTγT , (8)

where PT is the corresponding penalty matrix. It is easy to show that E(B⊤
d γ) = γ⊤Pγ,

where P is the block diagonal penalty matrix. See Section A.6 for more details in derivations
and calculations of penalty matrices.

Since s ∈ Cr(△), the coefficients of s satisfy some smoothness conditions across each
interior faces of △. One can obtain a smoothness constraint matrix H such that Hγ = 0
by repeatedly applying Equation A.7 in the Appendix A over all shared triangular faces,
and more details are available in Section A.2 in the supplementary material. A MATLAB
implementation is discussed in Awanou et al. (2006). Thus, the objective function can be
written as

min
γ

n∑
i=1

{
Wi −Bd(pi)

⊤γ
}2

+ ρnγ
⊤Pγ, subject to Hγ = 0, (9)

where H is the matrix for all smoothness conditions across shared edges or faces of tetrahe-
dra, which depends on the smoothness parameter r and the structure of the triangulation.
One can use QR decomposition to get rid of the constraint in Equation 9. Specifically,
H⊤ = QR = (Q1 Q2)

(
R1

R2

)
, where Q is an orthogonal matrix, R is an upper triangular

matrix, R1 is a full rank matrix with the same rank as H, and R2 is a matrix of zeros. Note
that for any vector γ satisfying Hγ = 0, there exists some θ such that γ = Q2θ. Also, for
any θ, H(Q2θ) = 0 holds. Thus, Equation 9 is equivalent to a penalized regression problem
without constraint:

n∑
i=1

{
Wi −Bd(pi)

⊤Q2θ
}2

+ ρnθ
⊤Q⊤

2 PQ2θ, (10)

which leads to a closed form of the solution. To be specific, let W = (W1, . . . ,Wn)
⊤, then

the minimizer of Equation 10 is given by θ̂ρn = (Q⊤
2 B

⊤
d BdQ2 + ρnQ

⊤
2 PQ2)

−1Q⊤
2 B

⊤
d W.

Consequently, the spline coefficient in Equation 9 can be estimated by γ̂ρn = Q2θ̂ρn , which

yields the TPST estimator m̂ρn(p) = Bd(p)
⊤γ̂ρn . Several methods can be used for choosing

the penalty parameter ρn, such as the block cross-validation (block CV) and generalized
cross-validation (GCV). Detailed discussion is given in Section 5.2.

10

3D Point Cloud Learning

4 Theoretical Results

In the previous section, we discuss how to construct TPST and capture the underlying
signal using TPST from the point clouds. In the following, we investigate the theoretical
support of TPST.

For random variables Xn, Xn = OP (bn) if limc→∞ lim supn P (|Xn| ≥ cbn) = 0, n ≥ 1.
Similarly, for any constant c > 0, Xn = oP (bn) if limn→∞ P (|Xn| ≥ cbn) = 0. And an ≍ bn
if there exist two positive constants c1, c2 such that c1|an| ≤ |bn| ≤ c2|an|, for all n ≥ 1.

4.1 Convergence Rate

Before we state our main results, we make the following assumptions, which are standard
in nonparametric literature (Huang, 2003; Lai and Wang, 2013; Yu et al., 2020). Let ϵi =
σ(pi)εi, and denote the generic variable of ϵi as ϵ.

(A1) The trivariate function m ∈ Wℓ+1,∞(Ω) for an integer ℓ ≥ 1.

(A2) The noise ϵ satisfies that limη→∞ E[ϵ2I(|ϵ| > η)] = 0 and E|ϵ2+η| ≤ υη for some η > 0.
The standard deviation function σ(p) is continuous on Ω and 0 < cσ ≤ infp∈Ω σ(p) ≤
supp∈Ω σ(p) ≤ Cσ < ∞.

(A3) The density function of the observations is bounded below and above.

(A4) The number of the tetrahedra N and the sample size n satisfy that N = Cnγ for some
constant C > 0 and γ < η/(2 + η), where η is given in the Assumption (A2).

To obtain the asymptotic analysis of spline estimators, we rely on an important property
that the data-driven norm uniformly approaches its expectation uniformly over the entire
spline space. To see this, for any function f over the closure of domain Ω, let En(f) =
n−1

∑n
i=1 f(pi) and E(f) = E[f(p)]. Define the empirical inner product and norm as

⟨f1, f2⟩n,Ω = En(f1f2) and ∥f1∥2n,Ω = ⟨f1, f1⟩n,Ω, respectively, for measurable functions

f1 and f2 on Ω. The theoretical L2 inner product and the induced norm are given by
⟨f1, f2⟩L2(Ω) = E(f1f2) and ∥f1∥2L2(Ω) = ⟨f1, f1⟩L2(Ω). We illustrate the uniform convergence
rate of the empirical inner product to the theoretical one in the following Lemma 3.

Lemma 3 Denote the basis for Sr
d(△) constructed in Lai and Schumaker (2007) by {Bξ}ξ∈M,

where M stands for the index set of spline bases. Let g1 =
∑

ξ∈M cξBξ, g2 =
∑

ζ∈M c̃ζBζ

be any spline functions in Sr
d(△). Under Assumptions (A3) and (A4), we have

Rn = sup
g1,g2∈Sr

d(△)

∣∣∣∣⟨g1, g2⟩n,Ω − ⟨g1, g2⟩Ω
∥g1∥Ω ∥g2∥Ω

∣∣∣∣ = OP

{
(N log n)1/2n−1/2

}
.

For the purpose of illustrating theoretical development, we rewrite the penalty in Equa-
tion 7 in terms of linear operation. Let B := B(Ω) be the space of all bounded real-valued
functions over Ω = ∪T∈△T equipped with the inner product n⟨f1, f2⟩n,Ω+ρn⟨f1, f2⟩E , where

⟨f1, f2⟩E =
∑
|α|=2

(
2

α1

)(
2− α1

α2

) ∑
T∈△

∫
T
{Dαf1(p)}{Dαf2(p)}dp

11

Li, Yu, Wang, Wang, Wang and Lai

for f1, f2 ∈ B.
Next, we introduce a measure of the complexity of the spline space Sr

d(△), and another
measure which bounds the size of the derivatives:

Vn = sup
g∈Sr

d(△)

{
∥g∥∞,Ω

∥g∥n,Ω
, ∥g∥n,Ω ̸= 0

}
, V n = sup

g∈Sr
d(△)

{
∥g∥E
∥g∥n,Ω

, ∥g∥n,Ω ̸= 0

}
. (11)

These two measures will play an important role in developing the asymptotic results. We
use the following Lemma 4 to demonstrate the upper bounds of Vn and V n.

Lemma 4 Under Assumptions (A3) and (A4), we have Vn=OP (|△|−3/2),V n=OP (|△|−2).

We then define a linear operator Pρn : B 7→ Sr
d(△) such that PρnW = m̂ρn . Note that in

general, Pρn is not a linear projection. Thus, we have PρnW = Pρnm + Pρnϵ, where Pρnm
and Pρnϵ are the penalized spline estimators based on {m(pi)}ni=1 and {ϵi}ni=1, respectively.
Under some conditions (Huang, 2003), P0 is a bounded operator on Sr

d(△) in the maximum
norm. Denote sρn,m = Pρnm and sρn,ϵ = Pρnϵ. Consequently, for the penalized spline
estimator m̂ρn in Equation 6,

m̂ρn(p)−m(v) = {sρn,m(p)−m(p)}+ sρn,ϵ(p), (12)

where sρn,m(p)−m(p) and sρn,ϵ(p) are referred to as the bias and noise terms, respectively.
According to the error decomposition in Equation 12, to derive the convergence rate of

m̂ρn to m, it is sufficient to evaluate the size of the bias and noise terms. The following
propositions provide the upper bound of the bias size and noise size.

Proposition 5 Under Assumptions (A1), (A3) and (A4), if d ≥ 6r + 3 and △ is a β-
quasi-uniform triangulation, then we have

∥sρn,m −m∥∞,Ω = OP

{
ρn

n |△|7/2
|m|2,∞,Ω +

(
1 +

ρn

n |△|11/2

)
|△|ℓ+1 |m|ℓ+1,∞,Ω

}
.

Proposition 6 Under Assumptions (A2) and (A4), ∥sρn,ϵ∥L2(Ω) = OP

(
1√

n|△|3/2

)
.

Proposition 7 Under Assumptions (A2) and (A4), ∥sρn,ϵ∥∞,Ω = OP

{
(logn)1/2√
n|△|3/2 + ρn

n3/2|△|7

}
.

Based on Propositions 5—7, we illustrate the convergence rates of the TPST estimator
in the following Theorem 8, in terms of both the L2(Ω) and supremum norms.

Theorem 8 Under Assumptions (A1)—(A4), if d ≥ 6r + 3 and △ is a β-quasi-uniform
triangulation, we have

∥m̂ρn −m∥L2(Ω) =OP

{
ρn

n|△|7/2
|m|2,∞,Ω +

(
1 +

ρn

n|△|11/2

)
|△|ℓ+1|m|ℓ+1,∞,Ω +

1
√
n|△|3/2

}
,

∥m̂ρn −m∥∞,Ω =OP

{
ρn

n|△|7/2
|m|2,∞,Ω +

(
1 +

ρn

n|△|11/2

)
|△|ℓ+1|m|ℓ+1,∞,Ω

+
(log n)1/2
√
n|△|3/2

+
ρn

n3/2|△|7

}
.

12

3D Point Cloud Learning

Remark 9 For the unpenalized spline estimator, that is, ρn = 0, if one takes N ≍ n3/(2ℓ+5),
then ∥m̂0 −m∥L2(Ω) = OP (n

−(ℓ+1)/(2ℓ+5)), which achieves the optimal convergence rate as
shown in Stone (1982). Similarly, for the supremum norm, one can obtain that ∥m̂0 −
m∥∞,Ω = OP {(n−1 log n)(ℓ+1)/(2ℓ+5)} when N ≍ (n/ log n)3/(2ℓ+5), which is also the optimal
rate of convergence. When ρn > 0, one can obtain optimal convergence rates for both L2

and supremum norms with ρn = o(n(ℓ+1/2)/(2ℓ+5)) and same orders of N .

Remark 10 Assumption (A3) is standard in nonparametric literature. Even though this
assumption may not be satisfied with missing data, we usually can find a proper choice of
triangulation by adjusting the size of some of the tetrahedra to obtain a decent penalized
spline fitting.

4.2 Asymptotic Normality

To derive the asymptotic normality of the TPST estimator, we further assume the following
conditions.

(A4’) The number of the tetrahedra N and the sample size n satisfy that N = Cnγ for
some constant C > 0 and 1/(ℓ + 2) < γ < η/(2 + η), where ℓ and η are given in the
Assumptions (A1) and (A2), respectively.

(A5) The penalized parameter ρn satisfies ρn = o(n1/2N−2/3 ∧ nN−4/3).

Remark 11 A sufficient condition for a negligible bias term is provided by Assumptions
(A4’) and (A5). Compared with Assumption (A4) in Section 4.1, (A4’) further assumes
that the number of tetrahedra needs to be greater than a lower bound which depends on the
degree of the function. A similar assumption for the univariate case has been discussed in
Li and Ruppert (2008). Meanwhile, assumption (A5) requires smaller ρn, which reduces the
bias through under smoothing.

Theorem 12 Under Assumptions (A1)—(A3), (A4’) and (A5), as n → ∞, for each p ∈ Ω,

m̂ρn(p)−m(p)√
Var{m̂ρn(p)|P}

D−→ N(0, 1),

where P is the collection of all pi, i = 1, . . . , n.

Remark 13 The above asymptotic distribution result can be used to construct asymp-
totic confidence intervals in theory. For example, if we estimate m(p) using piecewise
constant splines, Lemma B.6 in the Appendix B gives the size of the pointwise variance
Var{m̂ρn(p)} = σ2(p){nf(p)VT }−1{1+o(1)}, p ∈ Ω, where VT is the volume of tetrahedron
T . Therefore, an asymptotic 100(1− α)% pointwise confidence envelop for m(p) over Ω is
m̂ρn(p) ± zα/2σ(p){nf(p)VT }−1/2, where f(·) stands for the density function of pi. How-
ever, it is very difficult to obtain the exact form of the standard error for general TPST
estimators due to the characteristic of the trivariate spline basis functions. To overcome
this, Section 5.4 proposes using a wild bootstrap method to estimate the standard errors and
quantify the uncertainty of the estimators.

13

Li, Yu, Wang, Wang, Wang and Lai

5 Implementation Details

This section provides some implementation details on how to construct the penalty matrix P
and select the penalty parameter ρn in Equation 9. To facilitate discussion, we first introduce
the directional derivatives for basis functions, followed by the construction details of the
penalty matrix, the selection criteria of the penalty parameter, and triangulation selection.

5.1 Construction of Penalty Matrix

We list here the key steps in the construction of the penalty matrix P in Equation 8. One
can refer to Section A.6 in Appendix A for more details.

For a general multivariate smooth function ϕ, the directional derivative at point p with
respect to direction u is defined as

Duϕ(p) :=
∂

∂t
ϕ(p+ tu)

∣∣∣
t=0

= lim
t→0

ϕ(p+ tu)− ϕ(p)

t
.

Accordingly, for vector u := (ux, uy, uz) ∈ R3 and trivariate function ϕ, the directional
derivative at p = (x, y, z) is

Duϕ(x, y, z) :=
∂

∂t
ϕ(x+ tux, y + tuy, z + tuz)

∣∣∣
t=0

.

Then for the introduced Bernstein basis function with degree d, based on Lemma A.3 in
Appendix A, we have

DuB
d
ijkl(p) = d

{
a1B

d−1
i−1,j,k,l(p) + a2B

d−1
i,j−1,k,l(p) + a3B

d−1
i,j,k−1,l(p) + a4B

d−1
i,j,k,l−1(p)

}
,

where (a1, a2, a3, a4) is the barycentric coordinate of direction u. Based on this conclusion,
for a tetrahedron sT , the corresponding penalty term can be written as

E(sT) =
∑
|α|=2

(
2

α1

)(
2− α1

α2

)∫
T

{ ∑
i+j+k+l=d

γT ;ijklD
αBd,T

ijkl(p)

}2

dp

=
∑
|α|=2

γ⊤
TP

α
T γT = γ⊤

TPTγT ,

where each Pα
T is a

(
d+3
3

)
×
(
d+3
3

)
matrix with entries

∫
T {D

αBd,T
ijkl(p)} {DαBd,T

i′j′k′l′(p)}dp
for α satisfying |α| = 2. As for the penalty term defined in the whole domain, recall
that E(s) =

∑
T∈△ E(sT) and E(sT) = γ⊤

TPTγT . Therefore, E(s) = γ⊤Pγ, where γ =

(γ⊤
1 , . . . ,γ

⊤
N)⊤, and P = diag(PT , T ∈ △) is a block diagonal matrix.

5.2 Penalty Parameter Selection

To balance the bias and variance of the proposed estimator and achieve a good estimation
and prediction performance, it is crucial to choose a suitable value of the penalty parameter
ρn. Since the in-sample fitting errors can not gauge the prediction accuracy of the fitted
function, we select a criterion function that attempts to measure the out-of-sample per-
formance of the fitted model. Minimizing the generalized cross-validation (GCV) criterion

14

3D Point Cloud Learning

Figure 7: An illustration of block CV using a triangulation. Tetrahedra with the same color
belong to the same fold.

is one computationally efficient approach to selecting smoothing parameters that also has
good theoretical properties.

Note that 3D object data are often generated with spatial dependence. When per-
forming cross-validation (CV), these dependence structures are usually ignored, leading to
underestimating the predictive error (Roberts et al., 2017). To tackle this problem, one can
adopt the block CV strategy (Roberts et al., 2017; Valavi et al., 2019). To be specific, all
the sample points are first divided into 3D blocks with similar volumes. Then, these blocks
are randomly allocated to the CV folds. In this paper, we adopt the triangulation to divide
the 3D domain into small 3D blocks. Each tetrahedron is considered as one single 3D block.
Figure 7 shows an example of block CV using a triangulation. In Figure 7, we divide the
domain into 504 tetrahedra and randomly assign these tetrahedra into five folds with colors
indicating different folds.

5.3 Triangulation Selection

As illustrated in Figure 6, to form a proper triangulation, we start with surface reconstruc-
tion. A wide range of techniques has been developed to reconstruct the surface from point
clouds. Our paper focuses on the methods that generalize a well-sampled point cloud to
arbitrary shapes and produce a watertight surface mesh, such as a triangular mesh. Since
we are interested in recovering the actual signal within the 3D point clouds, we skip the
details of the surface reconstruction here. The triangulation surface representations can
be coarse or fine and affect the construction of the triangulation. A very coarse triangula-
tion could give a poor approximation to the object, while a very fine triangulation could
introduce a more serious computation burden. Note that Assumption (A4’) requires that
the number of the tetrahedra, N , is larger than some minimum depending upon the degree
of the spline, so theoretically, we can determine the fineness of a triangulation by setting
N ≈ ⌊c1nγ log(n)⌋ + c2, in which ⌊·⌋ denotes the integer part, c1, c2 are tuning constants,
and 1/(ℓ+ 2) < γ < 1. In practice, we can implement the proposed method in a coarse-to-
fine resolution manner with similar criteria discussed in Section 5.2. Our extensive Monte
Carlo simulation studies suggest that once a triangulation is fine enough, further refinement
usually has little effect on the fitting accuracy. To avoid model over-fitting, we can stop the
partition refinement when the model performance on the test set sits flat or even worsens.

15

Li, Yu, Wang, Wang, Wang and Lai

5.4 Uncertainty Studies

In this section, we adopt a bootstrap method to quantitatively estimate the uncertainty of
the TPST estimator. A great advantage of the bootstrap method is its simplicity, which can
be a straightforward way to derive estimates of standard deviations and confidence intervals
for estimators of functions over complex domains. As shown in the model in Equation 5,
the assumption of homoscedasticity is often invalid when a regression model is used to
estimate the point clouds. The wild bootstrap (Mammen, 1993; Hall and Horowitz, 2013)
is specifically designed to work when the model is heteroscedastic. We conduct the following
wild bootstrap procedure for estimating the standard errors.

Step 1. Based on the data {(pi,Wi)}ni=1, obtain the the TPST estimator m̂(pi) described in
Section 3 and the following residuals ϵ̂i = Wi − m̂(pi), i = 1, . . . , n.

Step 2. Generate the bootstrap residuals {ϵ∗i }ni=1 by ϵ∗i = δiϵ̂i, where δi =
1±

√
5

2 with proba-

bility 5±
√
5

10 , respectively. Define W ∗
i = Ŵi + ϵ∗i .

Step 3. Apply the TPST estimator to the sample {(pi,W
∗
i)}ni=1, and obtain the estimated

function m̂∗(·) over the entire domain.

Step 4. Repeat Steps 2 and 3 B times and obtain a bootstrap sample of the TPST estimator
as {m̂∗

b(·)}Bb=1. Then the standard deviation of m̂(p), p ∈ Ω, is estimated by

[
1

B

B∑
b=1

{
m̂∗

b(p)− m̂
∗
(p)
}2
]1/2

,

where m̂
∗
(·) = B−1

∑B
b=1 m̂

∗
b(·).

6 Numerical Studies

In this section, we conduct various simulation studies to assess the performance of the
proposed TPST method. We use studies in Sections 6.1 and 6.2 to illustrate the capabilities
of TPST in handling a variety of complex data structures, Section 6.3 to evaluate the
uncertainties of the TPST estimator, and Section 6.4 to show the superiority of TPST
in data reduction as well as signal enhancement, compared to other smoothing methods.
More specifically, depending on the nature of the point clouds, we conduct experiments
with unstructured (random design) and structured (fixed design) point clouds. The case
of random design in Section 6.1 mimics the scenario that the point clouds are collections
of 3D points distributed randomly in space. In contrast, the case of structured design is
studied in Section 6.2. In this structured design setting, the point cloud is reconstructed
from grid data; in other words, the locations of the points are deterministic. The evaluation
of standard error for the proposed TPST estimator is illustrated in Section 6.3. In Section
6.4, we explore the practical performance of TPST on a structured point cloud by using
PET scan data as a reference.

16

3D Point Cloud Learning

6.1 Unstructured Complete Point Clouds

In this example, we consider an unstructured (random design) point cloud in which the
observations are randomly generated over the entire domain. We set the number of ob-
servations in each point cloud as n = 20, 000 and 50, 000. To mimic some complicated
scenarios in practice, we generate the point clouds from the following two domains: (i) a
cuboid with a hole inside (Ω1); (ii) a 3D horseshoe (Ω2). These domains are illustrated
in Figure 8. To extract the underlying signal from point clouds, we consider the model in
Equation 5, where the random noises, ϵi’s, are assumed to be independent and identically
distributed and follow a normal distribution N(0, σ2). For each domain, we consider two
types of underlying functions with different degrees of variation: m1 and m2 for Ω1 (Figure
8 (c) and (e)), and m3 and m4 for Ω2 (Figure 8 (i) and (k)). The noises level, σ, is chosen
according to the peak signal-to-noise ratios (PSNR) defined as

PSNR = 20 log10

{
max

i
m(pi)/σ

}
.

In this study, we set PSNR = 5 and 10, representing scenarios of high and moderate
noise levels, respectively. We use this study to investigate the effect of the size of the
point cloud, degree of spline polynomial, and triangulation. We also compare the proposed

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8: Triangulations, true functions and observed point clouds. Plots (a)—(f), are
based on domain Ω1; Plots (g)—(l), are based on domain Ω2: (a) △11 for Ω1;
(b) △12 for Ω1; (c) true function m1; (d) observed point clouds with underlying
function m1; (e) true function m2; (f) observed point clouds with underlying
function m2; (g) △21 for Ω2; (h) △22 for Ω2; (i) true function m3; (j) observed
point clouds with underlying function m3; (k) true function m4; (l) observed point
clouds with underlying function m4.

17

Li, Yu, Wang, Wang, Wang and Lai

Figure 9: Average MISE plots for different methods on unstructured point clouds.

method with the traditional tensor product spline method (Stone, 1994) and thin plate
spline smoothing (Wood, 2003). We implement the tensor product spline and the thin plate
spline smoothing using the function “gam” in R package “mgcv”. For a fair comparison, we
set the dimension of the basis used to represent the underlying function for the thin plate
spline and tensor product spline to be very similar to the dimension we used for the TPST
method. As a result, the dimension after the numerosity reduction is comparable among
different methods.

To evaluate the estimation and prediction performance of each method, we calculate
the out-of-sample mean integrated squared error (MISE). Figure 9 presents the average of
the MISEs over 200 replications for all different scenarios. Based on Figure 9, one can
observe that as the size of the point cloud or the PSNR increases, the estimation and
prediction accuracy improves for all the methods. Regardless of the scenarios, the proposed
TPST method outperforms the other two traditional techniques with a similar dimension
of numerosity reduction. These results indicate that the proposed TPST can better handle
the “leakage” problem over the irregular domain than conventional smoothing methods.

To evaluate the effect of triangulations on the TPST, we consider a relatively coarse mesh
△11 for Ω1 and △21 for Ω2, and a fine mesh △12 for Ω1 and △22 for Ω2. An illustration of
these partitions is given in the Figure 8 (a), (b), (g), and (h), and the number of vertices and
the number of tetrahedra are summarized in Table 1. From Figure 9, we can see that for
each domain, the TPST estimator has a similar performance based on the two partitions. As
discussed in Section 5.3, for TPST, when the number of the tetrahedra is sufficiently large
to capture the pattern and features of the underlying function, more delicate triangulations
will not benefit the estimation or the data reduction. For example, for domain Ω2, when
we keep d = 3, the remaining dimensions after the numerosity reduction are 323 and 340
for the two different triangulations, respectively.

Furthermore, based on Figure 9, one can see that the differences between estimates
with d = 3 and d = 4 are relatively small. When we use a larger d, the estimators are

Ω1 : △11 Ω1 : △12 Ω2 : △21 Ω2 : △22

240 (120) 456 (180) 504 (207) 756 (276)

Table 1: The number of tetrahedra (vertices) in each triangulation.

18

3D Point Cloud Learning

usually less biased but with larger variance and more computationally intensive. In this
example, d = 3 is preferred as they are more efficient in data reduction. In general, the
choice of d depends on the smoothness of the underlying function, the strength of signals,
and computing resources.

As discussed previously, the spline methods are computationally efficient since they
provide a global estimator. In this simulation example, the TPST method takes less than
twenty seconds to fit the model for most of the simulation samples on a single Intel E5-2640
v3 core. The speed is comparable to tensor product and thin plate spline estimators.

6.2 Structured Point Clouds with Missing Data

One of the critical aspects of analyzing point cloud data is handling the unevenly distributed
point clouds and/or missing values. We use this example to investigate further the proposed
method on a structured point cloud at different resolutions with different missing schemes.
To be more specific, we mimic three types of missing schemes, including (i) complete data
with no missing, (ii) missing at random, and (iii) missing in a contiguous block as well as
at random. Figures in Figure 10 illustrates different types of missing data we deal with
in this example. Furthermore, we explore various missing rates under different missing
mechanisms. For missing at random, we consider the missing rates ranging uniformly from
0 to 0.5, where 0 represents no missing voxels, and 0.5 means half of the voxels are missing.
The contiguous block shown in Figure 10 contains 12% of the data.

Based on the first simulation example in Section 6.1, we can see that the performance
for various methods is relatively consistent. Thus, we only consider the first domain, Ω1,
and try the same triangulations in this example. We consider two fixed resolutions here:
the lower resolution/scale is 60× 20× 20 with 22,160 voxels falling within the domain, and
the higher resolution/scale is 75 × 25× 25 with 42,600 voxels inside.

Similar to Section 6.1, we calculate the average MISEs over 200 replications with different
missing types and missing rates and illustrated in Figure 11. Based on this Figure, one can
see that the prediction accuracy improves for all of the methods as the missing rate decreases.
The proposed methods outperform the two traditional methods regardless of the type of
missing scheme and the missing rate. Furthermore, the missing type does not affect the

(a) Missing at random (b) Missing in a block (c) Missing both

Figure 10: An illustration of three different missing patterns in point clouds. In (a) and
(c), missing rate = 30% and in (b), missing rate = 12%.

19

Li, Yu, Wang, Wang, Wang and Lai

Random Missing

Tube+Random Missing

Figure 11: Average MISEs plots for different methods on structured point clouds
with/without missing.

proposed method very much. In contrast, the thin plate spline smoothing usually performs
better for missing at random, while the tensor product spline is better when missing a
contiguous block and at random.

6.3 Standard Error Evaluation

To evaluate the standard error (SE) for the proposed TPST estimator, we conduct another
computational experiment using structured points clouds generated from the 3D horseshoe
domain (Ω2). We consider the model in Equation 5, where the underlying signal is illustrated

20

3D Point Cloud Learning

(a) SEmean (b) SEmedian (c) SEmc

Figure 12: Standard error plot of the proposed TPST estimators: (a) and (b) are the mean
(SEmean) and median (SEmedian) of these bootstrap SEs across 200 replications,
respectively; and (c) shows the standard deviation of the TPST estimator based
on the 200 Monte Carlo samples (SEmc).

in Figure 8 (i), and the random noises, ϵi = σ(pi)εi’s, are generated with σ(pi) = 6−{(xi−
1.25)2 + y2i + z2i } and εi ∼ N(0, 1) iid. We consider a fixed solution/scale of 101 × 65× 17
with 93, 449 voxels falling within the domain.

To quantify the uncertainty of the estimator, we generate 200 replications as in Sections
6.1 and 6.2. For each replication, we calculate the bootstrap SEs over 100 bootstrap samples
using the wide bootstrap method introduced in Section 5.4. We then compute the the mean
(SEmean) and median (SEmedian) of these bootstrap SEs across 200 replications. Addition-
ally, we calculate the standard deviation of the TPST estimator based on the Monte Carlo
samples (SEmc), which serves as the true value for SE. The results are displayed in Figure
12 (a) and (b) for SEmean and SEmedian, respectively, and in Figure 12 (c) for SEmc. From
these plots, one sees that the SEmean and SEmedian is very close to SEmc, which verifies the
accuracy of the proposed bootstrap SE estimation method.

6.4 Biomedical Imaging Analysis

In our increasingly aging societies, Alzheimer’s disease (AD) has become the most frequent
cause of dementia. Much progress has been made in assisting the early diagnosis of AD
with neuroimaging techniques. One widely used neuroimaging technique is PET imaging,
which can also be considered as an example of structured point clouds. However, the
traditional PET scanning technique limits the overall resolution of the brain image, and
there is a lack of effective and efficient image reconstruction methods. In this example,
we apply the proposed TPST method to denoise and enhance the resolution of an actual
PET image while improving the storage efficiency. A visual representation of transverse,
coronal, and sagittal planes is shown in Figure 13 (a). Based on this figure, we can observe
that brain images are collected on a rectangular parallelepiped grid with a dimension of
79 × 95 × 66. However, accurate signals are only present within the voxels of the human
brain. As traditional methods, such as tensor product spline and thin plate spline, cannot
handle complex domains, the model is trained using all the voxels within the entire image. In

21

Li, Yu, Wang, Wang, Wang and Lai

contrast, our proposed TPST method can manage complex domains efficiently. Therefore,
we use a brain mask to determine the domain of the human brain, resulting in 280,000 voxels
within the human brain domain. These masks can be obtained by many methods, such as
building a PET template by averaging normalized PET images or testing the quantile value
of each voxel to exceed a given threshold.

The results from Section 6.1 suggest that the choice of triangulation has a minimal effect
on the performance of the TPST estimator as long as the number of tetrahedra is sufficient
to capture the underlying pattern. In our implementation of the TPST method for brain
imaging analysis, we use the triangulation depicted in Figure 13 (b) that consists of 317
tetrahedra and 117 vertices. To effectively capture high-frequency oscillations present in
human brain scans, we set the polynomial degree d to at least 4. Additionally, we investigate
the impact of different levels of global smoothness by considering r = 0 and r = 1. Figure
13 (c) shows an estimated PET image based on the settings d = 5 and r = 1, demonstrating
the ability of the proposed TPST estimator to denoise the image while preserving the overall
brain structure. To quantify the uncertainty of our estimations, we compute the bootstrap
standard error as detailed in Section 5.4, and the logarithmic (base 10) transformation of
the standard error map is presented in Figure 13 (d).

To compare the estimation accuracy, we consider four different measures: (i) root mean

squared error, RMSE = n−1/2{
∑n

i=1(Ŵi − Wi)
2}1/2, (ii) mean absolute error, MAE =

n−1
∑n

i=1 |Ŵi − Wi|, (iii) peak signal-to-noise ratio, PSNR = 20 log10 {max(Wi)/RMSE},
and (iv) mean relative absolute error, MRAE = n−1

∑n
i=1 |Ŵi − Wi|/Wi. The results of

the TPST method are compared to those of other smoothing techniques, such as thin plate
smoothing and tensor product spline. Similar to simulation studies in previous sections, we
implement the tensor product spline and the thin plate spline smoothing using the function
“gam” in R package “mgcv”. Since the thin plate and tensor product methods could be
affected by the noises outside the actual brain, we calculate all the measurements based
on the voxels within the brain domain to ensure a fair comparison. The estimation and
numerosity reduction results of different methods are shown in Table 2.

If a lower target for data reduction is acceptable, smoothing methods can achieve higher
levels of accuracy. However, this comes at the cost of a larger basis expansion size. Conven-
tional thin plate and tensor product splines, due to their specific functional form, may result
in a high-dimensional representation of the data, particularly in the presence of significant
noise or random fluctuations. This can increase the risk of overfitting, as the model may be-
come overly complex and struggle to accurately capture the underlying patterns in the data.
Additionally, the high dimensionality can result in memory constraints and make it difficult
to process larger data sets. The TPST approach, however, addresses these limitations by
providing better control over local variations in the data, resulting in a more compact rep-
resentation compared to thin plate and tensor product splines. In this example, we cannot
implement the thin plate and tensor product splines methods when the dimension of the
spline basis exceeds 2500 on a regular PC. As demonstrated in Table 2, the TPST method,
in contrast, is better equipped to deal with data with complex shapes or patterns due to
its unique combination of sparsity, local control, adaptivity, and computational efficiency.

22

3D Point Cloud Learning

(a) Observed PET image (b) Triangulation

(c) Estimated PET image (d) Bootstrap standard error map
(logarithm with base 10)

Figure 13: An illustration of an observed PET image, triangulations of the brain domain,
estimated PET image, and corresponding bootstrap standard error map.

7 Conclusions and Discussion

Challenges in handling and analyzing the irregularly-shaped 3D point cloud data motivated
the advanced statistical methods to uncover the underlying trajectory over the point clouds.
Unlike conventional smoothing methods, the proposed TPST methods are proven to per-
form well for complex objects. Moreover, the proposed approaches are able to handle the
irregularly and regularly missing data problem, effectively denoise or deblur the data while

23

Li, Yu, Wang, Wang, Wang and Lai

Method RMSE MAE PSNR MRAE Dimension

Thin Plate 0.0906 0.0706 26.2514 0.0917 2000
Tensor Product 0.0945 0.0740 25.8799 0.0957 2197

TPST (d = 5, r = 1) 0.0860 0.0656 26.7026 0.0877 2212
TPST (d = 4, r = 0) 0.0647 0.0490 29.1734 0.0652 4247
TPST (d = 6, r = 1) 0.0539 0.0405 30.7608 0.0522 4859
TPST (d = 5, r = 0) 0.0461 0.0339 32.1176 0.0444 7941

Table 2: Estimation and numerosity reduction results.

preserving inherent geometric features or spatial structures, and providing multi-resolution
reconstruction. The experimental results demonstrate the effectiveness of the proposed
approaches compared to existing smoothing techniques.

Modern geoinformation technologies have provided a variety of feasible means for gen-
erating point clouds with billions of points. The enormous size of point cloud data always
leads to serious time and memory consumption problems in data processing, storage, visu-
alization, and transmission. Two approaches are currently considered the most promising
ones: parallel computing and data reduction. As a numerosity reduction method, the pro-
posed method is an efficient data reduction technique that replaces the original big cloud
point with a much smaller form of data representation. On the other hand, parallel com-
puting is very appealing to address such “big” data issues. Unlike tensor product spline or
thin plate spline, one unique feature of the proposed TPST is its great scalability in com-
puting. Specifically, the spline basis function is generated restricted to each tetrahedron
without any overlap, and the smoothness is achieved only by the constraints on the spline
coefficients. Based on this feature, we plan to develop a parallel computing algorithm based
on domain decomposition in future work. We will extend the ideas in Lai and Schumaker
(2009) for the 2D setting to the 3D setting.

Acknowledgments and Disclosure of Funding

We express our sincere gratitude to the reviewers, the associate editor, and the action
editor for their insightful comments and suggestions that greatly improved the quality of
our paper. Research reported in this publication was partially supported by the National
Institute of General Medical Sciences of the National Institutes of Health (NIH) under
Award Number P20GM139769 (Xinyi Li), NIH grant Award Number R01 AG085616 (Li
Wang and Guannan Wang), National Science Foundation awards DMS-2210658 (Xinyi Li)
and DMS-2135493 (Li Wang), and Simons Foundation Mathematics and Physical Sciences-
Collaboration Grant for Mathematicians #963447 (Guannan Wang) and #864439 (Ming-
Jun Lai). The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

24

3D Point Cloud Learning

Appendix A. Detailed Introduction of Trivariate Splines on Triangulation

In this section, we give a detailed discussion of the trivariate splines on tetrahedra, along
with an introduction to some theoretical properties. In Section A.1, we first introduce the
barycentric coordinates associated with a tetrahedron and show that a trivariate polyno-
mial can be written in a convenient form using the barycentric coordinates. In Section
A.2, we describe the directional derivatives of a polynomial, and smoothness conditions
for polynomials on adjoining triangular faces. The introduction of trivariate splines on a
triangulation is given in Section 2.3 in the main part. Section A.3 illustrates an example
of the constraint matrix. The technical details of the conclusions in Section A.2 were given
in Section A.4. Sections A.5 and A.6 give a detailed introduction and induction for the
directional derivatives for basis functions and penalty matrix, respectively.

A.1 Barycentric Coordinates and Bernstein Basis Polynomials

Given a tetrahedron T = ⟨v1,v2,v3,v4⟩, any fixed point p := (x, y, z) ∈ R3 has a unique
representation in terms of ⟨v1,v2,v3,v4⟩,

p = b1v1 + b2v2 + b3v3 + b4v4, with b1 + b2 + b3 + b4 = 1,

where (b1, b2, b3, b4) are called the barycentric coordinates of p relative to the tetrahedron
T . When the point p is inside or on the faces of T , all b1, b2, b3 and b4 are nonnegative.
By Cramer’s rule, the barycentric coordinate corresponding to vertex vı, satisfies bı =
det(Mı)/det(M), ı = 1, . . . , 4, where

M :=


1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4


and Mı replaces M’s ı-th column with (1 x y z)⊤.

The barycentric coordinates (b1, b2, b3, b4) also have an interesting geometric interpre-
tation. As shown in Figure A.1, for any p ∈ T , it divides the tetrahedron T to four
sub-tetrahedra, T1, T2, T3 and T4. Notice that det(M) = 6VT , then bı = VTı/VT , where Tı

replace the vertex vı in VT with p, ı = 1, . . . , 4.
For a nondegenerate tetrahedron T and a point p ∈ T with barycentric coordinates

(b1, b2, b3, b4), for nonnegative integers i, j, k, l with i + j + k + l = d, define trivariate
Bernstein basis polynomial of degree d relative to T as

Bd,T
ijkl(p) :=

d!

i!j!k!l!
bi1b

j
2b

k
3b

l
4, with i+ j + k + l = d.

For any positive integer d and tetrahedron T , let Pd(T) be the space of all trivariate polyno-
mials defined on T with degrees less than or equal to d. Note that the dimension of Pd(T)
is
(
d+3
3

)
.

According to Theorem 15.8 in Lai and Schumaker (2007) and Lemma A.6 in Appendix
Section A.4.1, the set of Bernstein basis polynomials

Bd
T (p) := {Bd,T

ijkl(p) : i, j, k, l ≥ 0, i+ j + k + l = d}

25

Li, Yu, Wang, Wang, Wang and Lai

Figure A.1: An illustration of barycentric coordinates of a point p in a tetrahedron T .

forms a basis for the space of polynomials Pd(T). In addition, Bernstein basis functions

{Bd,T
ijkl(p)}i+j+k+l=d have the following properties:

1. {Bd,T
ijkl} form a partition of unity, that is, for all p ∈ T ,

∑
i+j+k+l=dB

d,T
ijkl(p) = 1;

2. for all p ∈ T , 0 ≤ Bd,T
ijkl(p) ≤ 1;

3. Bd,T
ijkl has a unique maximum at the point d−1(iv1 + jv2 + kv3 + lv4).

Remark A.1 Barycentric coordinates are invariant to linear transformations of Cartesian
coordinates, that is, they do not depend on the orientation or location of the tetrahedra.
Consequently, the trivariate splines based on Bernstein basis polynomials, which are con-
structed with barycentric coordinates, are also invariant to linear transformations.

In order to further illustrate the Bernstein basis functions, we present an example of
{Bd,T

ijkl(p)}i+j+k+l=d for d = 4 in Figure A.2. In this example, there are
(
7
3

)
= 35 basis

functions in total. Note that all the function values vary between 0 and 1, and the colors
scale to the quantiles of function values.

Thus, given Bernstein basis functions {Bd,T
ijkl(p)}i+j+k+l=d, any polynomial ϕ(p) ∈ Pd(T)

can be written uniquely as B-form,

ϕ(p)|T =
∑

i+j+k+l=d

γT ;ijklB
d,T
ijkl(p) = Bd

T (p)
⊤γT , (A.1)

where the coefficients γT = {γT ;ijkl}i+j+k+l=d are called B-coefficients of ϕ. For the purpose
of computer implementation, in this paper, we employ the lexicographical order for ordering
of the coefficients γT . To be specific, γT ;ijkl orders ahead of γT ;i′j′k′l′ either (i) i > i′, or (ii)
i = i′ and j > j′, or (iii) i = i′, j = j′ and k > k′, or (iv) i = i′, j = j′, k = k′ and l > l′.
Consequently, we can express

Bd
T (p) =

(
Bd,T

d,0,0,0(p), B
d,T
d−1,1,0,0(p), B

d,T
d−1,0,1,0(p), . . . , B

d,T
0,0,1,d−1(p), B

d,T
0,0,0,d(p)

)⊤
26

3D Point Cloud Learning

B4,T
4000 = b41 B4,T

0400 = b42 B4,T
0040 = b43 B4,T

0004 = b44 B4,T
1111 = 24b1b2b3b4 Color bar

B4,T
3100 = 4b31b2 B4,T

3010 = 4b31b3 B4,T
3001 = 4b31b4 B4,T

1300 = 4b1b
3
2 B4,T

1030 = 4b1b
3
3 B4,T

1003 = 4b1b
3
4

B4,T
0310 = 4b32b3 B4,T

0301 = 4b32b4 B4,T
0130 = 4b2b

3
3 B4,T

0103 = 4b2b
3
4 B4,T

0031 = 4b33b4 B4,T
0013 = 4b3b

3
4

B4,T
2200 = 6b21b

2
2 B4,T

2020 = 6b21b
2
3 B4,T

2002 = 6b21b
2
4 B4,T

0220 = 6b22b
2
3 B4,T

0202 = 6b22b
2
4 B4,T

0022 = 6b23b
2
4

B4,T
2110 = 12b21b2b3 B4,T

2101 = 12b21b2b4 B4,T
2011 = 12b21b3b4 B4,T

1210 = 12b1b
2
2b3 B4,T

1201 = 12b1b
2
2b4 B4,T

1120 = 12b1b2b
2
3

B4,T
1102 = 12b1b2b

2
4 B4,T

1021 = 12b1b
2
3b4 B4,T

1012 = 12b1b3b
2
4 B4,T

0211 = 12b22b3b4 B4,T
0121 = 12b2b

2
3b4 B4,T

0112 = 12b2b3b
2
4

Figure A.2: An illustration of Bernstein basis functions {B4,T
ijkl(p)}.

and
γT = (γT ;d,0,0,0, γT ;d−1,1,0,0, γT ;d−1,0,1,0, . . . , γT ;0,0,1,d−1, γT ;0,0,0,d)

⊤ . (A.2)

Accordingly, in Equation A.2, the index of the element γT ;ijkl in the vector γT is:

d−i∑
m=0

(m+ 1)m

2
+

d−i−j∑
n=0

(n+ 1)− k.

Note that using a different ordering method will not affect the evaluation results for the
trivariate polynomial functions.

27

Li, Yu, Wang, Wang, Wang and Lai

It is convenient to derive conditions of continuous connection for polynomials defined
on adjacent tetrahedra in using barycentric coordinates and Bernstein basis polynomials.
We use the following Example A.1 for illustration.

Example A.1 Two adjacent tetrahedra T = ⟨v2,v1,v3,v4⟩ and T̃ = ⟨v5,v1,v4,v3⟩ share
a common triangular face F = ⟨v1,v3,v4⟩, as illustrated in Figure A.3, where the Cartesian
coordinates of the five vertices are v1 = (0, 0, 0), v2 = (1, 0, 0), v3 = (0, 1, 0), v4 = (0, 0, 1),
v5 = (−1, 0, 0), respectively.

Denote two sets of Bernstein polynomial basis defined on T and T̃ using the barycentric

coordinates as {Bd,T
ijkl(p)}i+j+k+l=d and {B̃d,T̃

ijkl(p̃)}i+j+k+l=d, respectively. Consider two

degree-d polynomials ϕ(p) and ϕ̃(p̃) defined on T and T̃ , respectively, with B-forms

ϕ(p) =
∑

i+j+k+l=d

γijklB
d,T
ijkl(p), ϕ̃(p̃) =

∑
i+j+k+l=d

γ̃ijklB̃
d,T̃
ijkl(p̃).

For point pF ∈ F , the barycentric coordinates with respect to T and T̃ are (0, b1, b3, 1 −
b1 − b3) and (0, b1, 1− b1 − b3, b3), respectively. Accordingly, we have

ϕ(pF) =
∑

j+k+l=d

γ0jkl
d!

j!k!l!
bj1b

k
3(1− b1 − b3)

l,

ϕ̃(pF) =
∑

j+k+l=d

γ̃0jkl
d!

j!k!l!
bj1(1− b1 − b3)

kbl3. (A.3)

Therefore, ϕ and ϕ̃ are continuous on F if and only if

γ0jkl = γ̃0jlk (A.4)

for j, k, l ≥ 0 and j + k + l = d.

Figure A.3: An example of two tetrahedra sharing a common face.

28

3D Point Cloud Learning

A.2 Directional Derivatives and Smoothness

To generalize the smoothness restriction over the joint triangular face for two adjacent
tetrahedra, we need to introduce the definitions of directional derivative first. Recall that
for a general multivariate smooth function ϕ, the directional derivative at point p with
respect to direction u is defined as

Duϕ(p) :=
∂

∂t
ϕ(p+ tu)

∣∣∣
t=0

= lim
t→0

ϕ(p+ tu)− ϕ(p)

t
.

Accordingly, for vector u := (ux, uy, uz) ∈ R3 and trivariate function ϕ, the directional
derivative at p = (x, y, z) is

Duϕ(x, y, z) :=
∂

∂t
ϕ(x+ tux, y + tuy, z + tuz)

∣∣∣
t=0

.

Remark A.2 If ϕ is a polynomial of degree d, by calculus, Duϕ(x, y, z) = uxDxϕ(x, y, z)+
uyDyϕ(x, y, z) + uzDzϕ(x, y, z), so Duϕ is a polynomial of degree d− 1.

Consider direction u = p1 − p2, where for ȷ = 1, 2, pȷ ∈ R3 have barycentric coor-
dinates (bȷ1, bȷ2, bȷ3, bȷ4) with respect to T . Then u is uniquely described by the direc-
tional coordinates a = (a1, a2, a3, a4) = (b11 − b21, b12 − b22, b13 − b23, b14 − b24). Obviously,
a1 + a2 + a3 + a4 = 0. Direct calculation gives the directional derivative of the Bernstein
basis polynomial Bd

ijkl.

Lemma A.3 (Lemma 15.12 in Lai and Schumaker, 2007) Consider direction u with direc-
tional coordinates a = (a1, a2, a3, a4). Then

DuB
d
ijkl(p) =d

{
a1B

d−1
i−1,j,k,l(p) + a2B

d−1
i,j−1,k,l(p) + a3B

d−1
i,j,k−1,l(p) + a4B

d−1
i,j,k,l−1(p)

}
,

for any p ∈ T and i+ j + k + l = d.

Consequently, one can obtain the directional derivative for any trivariate polynomial ϕ.

Theorem A.4 (Theorems 15.13 and 15.14 in Lai and Schumaker, 2007) Consider direction
u with directional coordinates a = (a1, a2, a3, a4). Then for any trivariate polynomial ϕ with
B-form in Equation A.1, the directional derivative is

Duϕ(p) = d
∑

i+j+k+l=d−1

γ
(1)
ijkl(a)B

d−1
ijkl (p), (A.5)

where γ
(1)
ijkl(a) = a1γi+1,j,k,l + a2γi,j+1,k,l + a3γi,j,k+1,l + a4γi,j,k,l+1.

In general, given u1, . . . ,um with associated directional coordinates a(ı) = (a
(ı)
1 , a

(ı)
2 , a

(ı)
3 , a

(ı)
4),

ı = 1, . . . ,m,

Dum · · ·Du1ϕ(p) =
d!

(d−m)!

∑
i+j+k+l=d−m

γ
(m)
ijkl (a

(1), . . . ,a(m))Bd−m
ijkl (p), (A.6)

29

Li, Yu, Wang, Wang, Wang and Lai

where the coefficients are defined recursively as follows:

γ
(m)
ijkl (a

(1), . . . ,a(m)) =a
(m)
1 γ

(m−1)
i+1,j,k,l(a

(1), . . . ,a(m−1)) + a
(m)
2 γ

(m−1)
i,j+1,k,l(a

(1), . . . ,a(m−1))

+ a
(m)
3 γ

(m−1)
i,j,k+1,l(a

(1), . . . ,a(m−1)) + a
(m)
4 γ

(m−1)
i,j,k,l+1(a

(1), . . . ,a(m−1)),

for m = 1, . . . , d, with γ
(0)
ijkl(a) = γijkl.

In preparation for the discussion of trivariate spline and spline spaces, we need the
following conditions for a smooth join between two polynomial on adjoining tetrahedra, like
Example A.1 illustrated in Figure A.3.

Theorem A.5 Suppose {γijkl} and {γ̃ijkl} are B-coefficients of ϕ and ϕ̃ relative to two

tetrahedra T = ⟨v2,v1,v3,v4⟩ and T̃ = ⟨v5,v1,v4,v3⟩, respectively, where T and T̃ share
a common face F = ⟨v1,v3,v4⟩. Then the following statements are equivalent:

1. ϕ and ϕ̃ join together with Cr continuity across the face F ;

2. For all pF ∈ F , m = 0, . . . , r and for all directions u,

Dm
u ϕ(pF) = Dm

u ϕ̃(pF);

3. For ϕ and ϕ̃ with B-forms in Equation A.3, for i+ j + k = d−m, m = 0, . . . , r,

γ̃mijk =
∑

ν+µ+κ+δ=m

γν,i+µ,k+κ,j+δB
m
νµκδ(v5). (A.7)

Consider the case of d = 2 piecewise polynomial. There are in total 10 Bernstein basis
polynomials with coefficients

{γijkl} = (γ2000, γ1100, γ1010, γ1001, γ0200, γ0110, γ0101, γ0020, γ0011, γ0002)
⊤,

{γ̃ijkl} = (γ̃2000, γ̃1100, γ̃1010, γ̃1001, γ̃0200, γ̃0110, γ̃0101, γ̃0020, γ̃0011, γ̃0002)
⊤. (A.8)

Note that the barycentric coordinate of v5 with respect to T is (2,−1, 0, 0).

If the trivariate polynomial is continuous over the whole region, then applying Equation
A.7 for m = r = 0 generates

γ̃0ijk = γ0ikjB
0
0000(v5) = γ0ikj , i+ j + k = d, (A.9)

which matches the conclusion in Equation A.4.

Based on the de Casteljau Algorithm (Theorem A.7 in Appendix Section A.4.2), we
propose the following computationally efficient algorithm in Algorithm A.1 to calculate the
derivatives of ϕ(p).

30

3D Point Cloud Learning

Algorithm A.1 Algorithm for the derivatives of ϕ(p)

Input: Polynomial with B-form ϕ(p) =
∑

i+j+k+l=d γijklB
d
ijkl(p), directions u1, . . . ,um

with associated directional coordinates a(ı) = (a
(ı)
1 , a

(ı)
2 , a

(ı)
3 , a

(ı)
4), ı = 1, . . . ,m.

Initialization: ı := 0, γ
(0)
ijkl := γijkl.

for ı = 1, . . . ,m do
for i+ j + k + l = d− ı do

Compute

γ
(ı)
ijkl(a

(1), . . . ,a(m)) =a
(ı)
1 γ

(ı−1)
i+1,j,k,l(a

(1), . . . ,a(ı−1)) + a
(ı)
2 γ

(ı−1)
i,j+1,k,l(a

(1), . . . ,a(ı−1))

+ a
(ı)
3 γ

(ı−1)
i,j,k+1,l(a

(1), . . . ,a(ı−1)) + a
(ı)
4 γ

(ı−1)
i,j,k,l+1(a

(1), . . . ,a(ı−1)).

end for
end for
Output: Dum · · ·Du1ϕ(p) =

d!
(d−m)!

∑
i+j+k+l=d−m γ

(m)
ijkl (a

(1), . . . ,a(m))Bd−m
ijkl (p).

A.3 Example of the Constraint Matrix

We illustrate the construction of the constraint matrix H using the Example A.1 presented
with Figure A.3.

Continue our discussions in Section A.2 and consider the case of d = 2 piecewise polyno-
mial. Recall that there are in total 10 Bernstein basis polynomials, with coefficients {γijkl}
and {γ̃ijkl} in Equation A.8, and the barycentric coordinate of v5 with respect to T is
(2,−1, 0, 0).

As shown in Equation A.9, if the trivariate polynomial is continuous over the whole
region, then γ̃0ijk = γ0ikj for i+ j + k = d. In this case, we can write the constraint matrix
H as

H =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0

 . (A.10)

Furthermore, if the trivariate polynomial has continuous first derivatives over the whole
region, then Equation A.7 holds for both m = r = 0 and m = 1. Thus, in addition, we also
need for any non-negative integers i, j, k such that i+ j + k = 1,

γ̃1ijk =γ1ikjB
1
1000(v5) + γ0,i+1,jB

1
0100(v5) + γ0,i,k+1,jB

1
0010(v5) + γ0,i,k,j+1B

1
0001(v5)

=2γ1ikj − γ0,i+1,k,j . (A.11)

31

Li, Yu, Wang, Wang, Wang and Lai

Therefore, for r = 1 where the trivariate spline has continuous first derivatives over the
whole region, we will obtain the following H

H =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 2 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 2 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 2 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0


.

Here, the first six rows match the form in Equation A.10, and the last three rows correspond
to Equation A.11.

A.4 Proof of Theorems in Section A.2

In this section, we provide detailed proofs for the theorems in Section A.2.

A.4.1 Theoretical properties of Bernstein bases

Lemma A.6 For the Bernstein basis functions {Bd,T
ijkl(p)}i+j+k+l=d, each Bd,T

ijkl has a unique

maximum at the point d−1(iv1 + jv2 + kv3 + lv4).

To show Lemma A.6, we first need to show Lemma A.3.
Proof of Lemma A.3. Suppose b = (b1, b2, b3, b4) are the barycentric coordinates of p.
Then the barycentric coordinates of p+ tu are (b1 + ta1, b2 + ta2, b3 + ta3, b4 + ta4). Thus,
for i+ j + k + l = d,

Bd
ijkl(p+ tu) =

d!

i!j!k!l!
(b1 + ta1)

i(b2 + ta2)
j(b3 + ta3)

k(b4 + ta4)
l.

Hence,

DuB
d
ijkl(p) =

∂

∂t
ϕ(p+ tu)

∣∣∣
t=0

=
d!

i!j!k!l!

(
ia1b

i−1
1 bj2b

k
3b

l
4 + ja2b

i
1b

j−1
2 bk3b

l
4 + ka3b

i
1b

j
2b

k−1
3 bl4 + la4b

i
1b

j
2b

k
3b

l−1
4

)
=d
{
a1B

d−1
i−1,j,k,l(p) + a2B

d−1
i,j−1,k,l(p) + a3B

d−1
i,j,k−1,l(p) + a4B

d−1
i,j,k,l−1(p)

}
.

Proof of Lemma A.6 For T = ⟨v1,v2,v3,v4⟩, the barycentric coordinates for v1, v2, v3

and v4 are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. Accordingly, the
directional coordinates of u1 = v1 − v2, u2 = v1 − v3 and u3 = v1 − v4 are (1,−1, 0, 0),
(1, 0,−1, 0) and (1, 0, 0,−1), respectively. For p ∈ T with barycentric coordinates b =
(b1, b2, b3, b4), consider derivatives of B

d
ijkl(p) with respect to directions u1, u2 and u3, then

Du1B
d
ijkl(p) = Bd

ijkl(p)(ib
−1
1 − jb−1

2), Du2B
d
ijkl(p) = Bd

ijkl(p)(ib
−1
1 − kb−1

3),

Du3B
d
ijkl(p) = Bd

ijkl(p)(ib
−1
1 − lb−1

4).

32

3D Point Cloud Learning

Setting these equations to zero and combining with b1+b2+b3+b4 = 1 gives (b1, b2, b3, b4) =
d−1(i, j, k, l).

A.4.2 Proof of Theorems A.4 and A.5

Proof of Theorem A.4 For ϕ(p) =
∑

i+j+k+l=d γijklB
d
ijkl(p), by Lemma A.3,

Duϕ(p) =
∑

i+j+k+l=d

γijklDuB
d
ijkl(p)

=
∑

i+j+k+l=d

γijkld
{
a1B

d−1
i−1,j,k,l(p) + a2B

d−1
i,j−1,k,l(p) + a3B

d−1
i,j,k−1,l(p) + a4B

d−1
i,j,k,l−1(p)

}
=d

∑
i+j+k+l=d−1

(a1γi+1,j,k,l + a2γi,j+1,k,l + a3γi,j,k+1,l + a4γi,j,k,l+1)B
d−1
ijkl (p).

Thus, Equation A.5 follows. Consequently, one can obtain Equation A.6 by repeatedly
applying Equation A.5 for directions u1, . . . ,um.

To show Theorem A.5, we need the following results.

Theorem A.7 (Theorems 15.10 in Lai and Schumaker, 2007) Suppose ϕ(p) is a trivariate

polynomial with B-form ϕ(p) =
∑

i+j+k+l=d γijklB
d
ijkl(p). Define γ

(0)
ijkl := γijkl, i+j+k+l =

d. Suppose p has barycentric coordinates b = (b1, b2, b3, b4). Then

ϕ(p) =
∑

i+j+k+l=d−m

γ
(m)
ijklB

d−m
ijkl (p),

where for m = 1, . . . , d, γ
(m)
ijkl are computed by the recursion

γ
(m)
ijkl = b1γ

(m−1)
i+1,j,k,l + b2γ

(m−1)
i,j+1,k,l + b3γ

(m−1)
i,j,k+1,l + b4γ

(m−1)
i,j,k,l+1, (A.12)

for i+ j + k + l = d−m.

Remark A.8 The recursive formula in Equation A.12 is also referred as deCasteljau al-
gorithm. See Section 15.6 in Lai and Schumaker (2007) for more details.

Lemma A.9 The coefficients in the recursive formula of deCasteljau algorithm in Equation
A.12 are given by

γ
(m)
ijkl =

∑
i′+j′+k′+l′=m

γi+i′,j+j′,k+k′,l+l′B
m
i′j′k′l′(p), (A.13)

where i+ j + k + l = d−m.

Proof Define operators E1γijkl = γi+1,j,k,l, E2γijkl = γi,j+1,k,l, E3γijkl = γi,j,k+1,l and
E4γijkl = γi,j,k,l+1. Thus, by Equation A.12, for i+ j + k + l = d−m,

γ
(m)
ijkl =(b1E1 + b2E2 + b3E3 + b4E4) γ

(m−1)
ijkl = (b1E1 + b2E2 + b3E3 + b4E4)

m γijkl

=
∑

i′+j′+k′+l′=m

Bm
i′j′k′l′(p)E

i′
1 E

j′

2 E
k′
3 El′

4 γijkl =
∑

i′+j′+k′+l′=m

γi+i′,j+j′,k+k′,l+l′B
m
i′j′k′l′(p).

33

Li, Yu, Wang, Wang, Wang and Lai

Lemma A.10 Consdier a trivariate polynomial ϕ(p) with ϕ(p) =
∑

i+j+k+l=d γijklB
d
ijkl(p)

as its B-form. Then for any 1 ≤ n ≤ d, the n-th order directional derivative of ϕ with
respect to the direction u = v4 − v2 is given by

Dn
uϕ(p) =

d!

(d− n)!

∑
i+j+k+l=d−n

γ
(n)
ijklB

d−n
ijkl (p,

with

γ
(n)
ijkl =

n∑
m=0

(
n

m

)
(−1)mγi+m,j,k,l+n−m, i+ j + k + l = d− n.

Proof The directional coordinates of u = v4 − v2 is a = (−1, 0, 0, 1). By Equation A.13,

γ
(n)
ijkl =

∑
i′+j′+k′+l′=n

γi+i′,j+j′,k+k′,l+l′B
n
i′j′k′l′(p) =

∑
i′+l′=n

γi+i′,j,k,l+l′
n!

i′!l′!
(−1)i

′

=
n∑

m=0

(
n

m

)
(−1)mγi+m,j,k,l+n−m, i+ j + k + l = d− n.

Proof of Theorem A.5 The equivalence between Statements 1 and 2 is obvious by defi-
nition. Thus, we just show the equivalence between Statements 2 and 3.

i) We start to consider when r = 0. It is equivalent to consider directions ũ along F ,
where the directional coordinates are (0, 1 − b̃3 − b̃4, b̃3, b̃4) and (0, 1 − b̃3 − b̃4, b̃4, b̃3) with
respect to the tetrahedron T and T̃ , respectively. Thus, ϕ and ϕ̃ join continuously along F
if and only if∑

j+k+l=d

γ0jkl
d!

j!k!l!
(1− b̃3 − b̃4)

j (̃b3)
k (̃b4)

l=
∑

j+k+l=d̃

γ0jkl
d!

j!k!l!
(1− b̃3 − b̃4)

j (̃b4)
k (̃b3)

l.

That is, γ0jkl = γ̃0jlk, with j + k + l = d, which matches our conclusion in Equation A.7.
ii) Then we consider for r > 0. First note that

Dn
uϕ(pF) = Dn

uϕ̃(pF) (A.14)

holds for any pF ∈ F , n = 0, . . . , r, if and only if Equation A.14 holds for the direction u =
v5 − v3. It is a fact because by the argument in i), all derivatives of ϕ and ϕ̃ corresponding
to the directions v3 − v1 and v4 − v1, agree at every point on F . And derivatives in all
other directions can be written as linear combinations of Du, Dv3−v1 and Dv4−v1 .

Let b = (b1, b2, b3, b4) be the barycentric coordinates of v5 relative to the tetrahedron
T . Correspondingly, the directional coordinates of u are a = (b1, b2, b3 − 1, b4) and ã =
(1, 0, 0,−1) with respect to T and T̃ , respectively.

By Theorem A.4, for each 0 ≤ n ≤ r,

Dn
uϕ(pF)|F =

d!

(d− n)!

∑
j+k+l=d−n

γ
(n)
0jkl(a)B

d−n
0jkl (pF),

Dn
uϕ̃(pF)|F =

d!

(d− n)!

∑
j+k+l=d−n

γ
(n)
0jkl(ã)B

d−n
0jkl (pF).

34

3D Point Cloud Learning

Since for points pF ∈ F , B̃d−n
0jkl (pF) = Bd−n

0jlk (pF), it follows that Equation A.14 holds if and
only if for j + k + l = d− n, n = 0, . . . , r,

γ̃
(n)
0jkl(ã) = γ

(n)
0jlk(a). (A.15)

By Lemma A.10, for j + k + l = d− n,

γ̃
(n)
0jkl(ã) =

n∑
m=0

(−1)n−m

(
n

m

)
γ̃m,j,k,d−m−j−k. (A.16)

In another direction, following the proof of Lemma A.9, for j + l + k = d− n,

γ
(n)
0jlk(a) = {b1E1 + b2E2 + (b3 − 1)E3 + b4E4}n γ0jlk

=(b1E1 + b2E2 + b3E3 + b4E4 − E3)
n γ0jlk

=

n∑
m=0

(−1)n−m

(
n

m

)
(b1E1 + b2E2 + b3E3 + b4E4)

n γ0,j,l+n−m,k

=
n∑

m=0

(−1)n−m

(
n

m

)
γ
(m)
0,j,d−j−k−m,k(b). (A.17)

Combining Equations A.16 and A.17, Equation A.15 holds if and only if for j+k+ l = d−n

and n = 0, . . . , r, γ̃njkl = γ
(n)
0jlk(b). By Lemma A.9,

γ
(n)
0jlk(b) =

∑
i′+j′+k′+l′=n

γi′,j+j′,k+k′,l+l′B
n
i′j′k′l′(v5).

Thus, Equation A.14 holds if and only if

γ̃njkl =
∑

i′+j′+k′+l′=n

γi′,j+j′,k+k′,l+l′B
n
i′j′k′l′(v5),

that is, Equation A.7 follows.

A.5 Directional Derivatives for Basis Functions

Based on the conclusion in Equation A.6 in Appendix A, the mth order directional deriva-
tives for all the Bernstein basis functions with degree d can be written as some linear
combination of Bernstein basis functions with degree d − m. Specifically, for directions

u1, . . . ,um, there exists a
(
d+3
3

)
×
(
d+3−m

3

)
matrix C

(m)
d (u1, . . . ,um) such that

Dum · · ·Du1Bd(p) = C
(m)
d (u1, . . . ,um)Bd−m(p).

Consequently, with Dum−1 · · ·Du1Bd(p) = C
(m−1)
d (u1, . . . ,um−1)Bd−m+1(p), we have

DumDum−1 · · ·Du1Bd(p) = C
(m−1)
d (u1, . . . ,um−1)DumBd−m+1(p)

= C
(m−1)
d (u1, . . . ,um−1)C

(1)
d−m+1(um)Bd−m(p),

35

Li, Yu, Wang, Wang, Wang and Lai

which implies C
(m)
d (u1, . . . ,um) = C

(m−1)
d (u1, . . . ,um−1)C

(1)
d−m+1(um). Keep decomposing

matrix C
(m−1)
d (u1, . . . ,um−1), we have C

(m)
d (u1, . . . ,um) = C

(1)
d (u1) · · ·C(1)

d−m+1(um).

Therefore, we can obtain the explicit form of the mth order directional derivatives for

the Bernstein basis functions with degree d, given the explicit form of matrix C
(1)
d (u). Based

on Lemma A.3,

DuB
d
ijkl(p) = d

{
a1B

d−1
i−1,j,k,l(p) + a2B

d−1
i,j−1,k,l(p) + a3B

d−1
i,j,k−1,l(p) + a4B

d−1
i,j,k,l−1(p)

}
,

where (a1, a2, a3, a4) is the barycentric coordinate of direction u. Then, the {
∑d−i

m=0(m +

1)m/2 +
∑d−i−j

n=0 (n+ 1)− k}th row of matrix C
(1)
d (u) is d(a1eI1 + a2eI2 + a3eI3 + a4eI4),

where eI is unit vector with Ith element being one, I1, I2, I3 and I4 are indexes of basis
functions Bd−1

i−1,j,k,l(p), B
d−1
i,j−1,k,l(p), B

d−1
i,j,k−1,l(p), and Bd−1

i,j,k,l−1(p).

In the following, we provide a simple example to illustrate how to calculate the first and
second-order derivatives and therefore to construct the penalty matrix PT in Equation A.18
in Section A.6. Since the penalty function is calculated through the second-order derivatives
in terms of the three-dimensional Cartesian coordinate system x = (1, 0, 0), y = (0, 1, 0) and
z = (0, 0, 1), in the following example, we only consider directional derivatives for x, y, z.

Consider the basis functions on the tetrahedron T in the Figure A.1 with d = 3. The
horizontal axis x = (1, 0, 0) can be written as x = v1 − v2, therefore, the barycentric
coordinates of x is (1,−1, 0, 0). Then, the first and second order derivatives of all the

Bernstein basis functions B3(p) are D(1,0,0)B3(p) = C
(1)
3 (1, 0, 0)B2(p) and D(2,0,0)B3(p) =

C
(2)
3 (x, x)B1(p) = C

(1)
3 (x)C

(1)
2 (x)B1(p), where matrices C

(1)
2 (x) and C

(1)
3 (x) are

C
(1)
2 (x) =



2 0 0 0
−2 2 0 0
0 0 2 0
0 0 0 2
0 −2 0 0
0 0 −2 0
0 0 0 −2
0 0 0 0
0 0 0 0
0 0 0 0


, C

(1)
3 (x) =



3 0 0 0 0 0 0 0 0 0
−3 3 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0
0 −3 0 0 3 0 0 0 0 0
0 0 −3 0 0 3 0 0 0 0
0 0 0 −3 0 0 3 0 0 0
0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 3
0 0 0 0 −3 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0
0 0 0 0 0 0 −3 0 0 0
0 0 0 0 0 0 0 −3 0 0
0 0 0 0 0 0 0 0 −3 0
0 0 0 0 0 0 0 0 0 −3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



.

36

3D Point Cloud Learning

A.6 Details of Constructing Penalty Matrix

Next, we introduce the details of constructing penalty P matrix. Following the definition
of penalty matrix PT in the Section 3, we can further implement as

E(sT) =
∑
|α|=2

(
2

α1

)(
2− α1

α2

)∫
T

{ ∑
i+j+k+l=d

γT ;ijklD
αBd,T

ijkl(p)

}2

dp

=
∑
|α|=2

(
2

α1

)(
2− α1

α2

) ∑
i+j+k+l=d

∑
i′+j′+k′+l′=d

γT ;ijklγT ;i′j′k′l′×∫
T

{
DαBd,T

ijkl(p)
}{

DαBd,T
i′j′k′l′(p)

}
dp

=
∑
|α|=2

γ⊤
TP

α
T γT = γ⊤

TPTγT , (A.18)

where each Pα
T is a

(
d+3
3

)
×
(
d+3
3

)
matrix with entries

∫
T {D

αBd,T
ijkl(p)} {DαBd,T

i′j′k′l′(p)}dp
for α satisfying |α| = 2. Applying the results of directional derivatives in Section A.5, the
second order derivative of Bd(p) at directions u1 and u2 are

Du2Du1Bd(p) = C
(2)
d (u1,u2)Bd−2(p).

For notation simplicity, we denote Cα
d the derivative coefficient matrix for DαBd(p) with

respect to direction(s) of Cartesian coordinate system, that is, DαBd(p) = Cα
d Bd−|α|(p).

Therefore, for α with |α| = 2, we have∫
T
{DαBd(p)} {DαBd(p)}⊤ dp = Cα

d

{∫
T
Bd−2(p)Bd−2(p)

⊤dp

}
(Cα

d)
⊤.

By the Lemma 15.29 in Lai and Schumaker (2007), we have

∫
T
Bd−2,T

νµκδ (p)Bd−2,T
ν′µ′κ′δ′(p)dp =

(
ν+ν′

ν

)(
µ+µ′

µ

)(
κ+κ′

κ

)(
δ+δ′

δ

)(
2d−4
d−2

) ∫
T
B2d−4,T

ν+ν′,µ+µ′,κ+κ′,δ+δ′(p)dp

=

(
ν+ν′

ν

)(
µ+µ′

µ

)(
κ+κ′

κ

)(
δ+δ′

δ

)(
2d−4
d−2

)(
2d−1
3

) VT ,

recall that VT is the volume of tetrahedron T . Let Ld−2
T =

∫
T Bd−2(p)Bd−2(p)

⊤dp be

the
(
d+1
3

)
×
(
d+1
3

)
matrix with entries

∫
T Bd−2,T

νµκδ (p)Bd−2,T
ν′µ′κ′δ′(p)dp. We finally obtain Pα

T =

Cα
d L

d−2
T (Cα

d)
⊤ and PT =

∑
|α|=2P

α
T . Consequently, E(s) = γ⊤Pγ.

Following the same example in Section A.5, similarly, the barycentric coordinates of
y = v3 − v2 and z = v4 − v2 are (0,−1, 1, 0) and (0,−1, 0, 1), respectively. Following
similar inductions, the second directional derivative of the Bernstein basis polynomials are
the linear combination of {B1,T

1000(p), B
1,T
0100(p), B

1,T
0010(p), B

1,T
0001(p)}. For example, given the

formulae of C
(1)
2 and C

(1)
3 shown above, we have D(1,0,0)B3,T

2100(p) = 3B2,T
1100(p)− 3B2,T

2000(p),

and D(2,0,0)B3,T
2100(p) = −12B1,T

1000(p) + 6B1,T
0100(p). According to the results in Sections A.5

37

Li, Yu, Wang, Wang, Wang and Lai

and A.6, the coefficient matrices for second order derivatives are C3(2, 0, 0), C3(0, 2, 0),
C3(0, 0, 2), C3(1, 1, 0), C3(1, 0, 1), and C3(0, 1, 1):

C3(2, 0, 0)

6 0 0 0
−12 6 0 0
0 0 6 0
0 0 0 6
6 −12 0 0
0 0 −12 0
0 0 0 −12
0 0 0 0
0 0 0 0
0 0 0 0
0 6 0 0
0 0 6 0
0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



,

C3(0, 2, 0)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
6 0 0 0

−12 0 0 0
0 0 0 0
6 0 0 0
0 0 0 0
0 0 0 0
0 6 0 0
0 −12 6 0
0 0 0 6
0 6 −12 0
0 0 0 −12
0 0 0 0
0 0 6 0
0 0 0 6
0 0 0 0
0 0 0 0



,

C3(0, 0, 2)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
6 0 0 0
0 0 0 0

−12 0 0 −12
0 0 0 0
0 0 0 0
6 0 0 0
0 6 0 0
0 0 6 0
0 −12 0 6
0 0 0 0
0 0 −12 0
0 6 0 −12
0 0 0 0
0 0 6 0
0 0 0 6
0 0 0 0



,

C3(1, 1, 0)

0 0 0 0
−6 0 0 0
6 0 0 0
0 0 0 0
6 −6 0 0
−6 6 −6 0
0 0 0 −6
0 0 6 0
0 0 0 6
0 0 0 0
0 6 0 0
0 −6 6 0
0 0 0 6
0 0 −6 0
0 0 0 −6
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



,

C3(1, 0, 1)

0 0 0 0
−6 0 0 0
0 0 0 0
6 0 0 0
6 −6 0 0
0 0 −6 0
−6 6 0 −6
0 0 0 0
0 0 6 0
0 0 0 6
0 6 0 0
0 0 6 0
0 −6 0 6
0 0 0 0
0 0 −6 0
0 0 0 −6
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



,

C3(0, 1, 1)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
6 0 0 0
−6 0 0 0
−6 0 0 0
0 0 0 0
6 0 0 0
0 0 0 0
0 6 0 0
0 −6 6 0
0 −6 0 6
0 0 −6 0
0 6 −6 −6
0 0 0 −6
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



.

38

3D Point Cloud Learning

Therefore, we have

L1
T =

∫
T
B1(p)B1(p)

⊤dp =
1

12


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 , and PT =
∑
|α|=2

C3(α)L1
T {C3(α)}⊤.

Appendix B. Proof of Theoretical Results

B.1 Preliminaries

In this section, we start with the stability condition for trivariate spline bases over triangu-
lations, and establish the uniform rate of the approximation of empirical inner product to
the theoretical inner product based on the stability property.

Lemma B.1 Let {Bξ}ξ∈M be the basis for Sr
d(△) constructed in Lai and Schumaker (2007),

where M stands for the index set of spline bases. Then there exist positive constants C1,
C2 depending on degree d and partition quasi-uniform parameter β such that

C1|△|3
∑
ξ∈M

|cξ|2 ≤

∥∥∥∥∥∥
∑
ξ∈M

cξBξ

∥∥∥∥∥∥
2

L2(Ω)

≤ C2|△|3
∑
ξ∈M

|cξ|2,

for all cξ, ξ ∈ M.

Proof The proof of Lemma B.1 follows directly from the Theorem 17.18 in Lai and
Schumaker (2007).

We illustrate the connection between the theoretical norm and L2 norm in Lemma B.2.

Lemma B.2 Let {Bξ}ξ∈M be the basis for Sr
d(△) as in Lemma B.1. Under Assumption

(A3), if d ≥ 6r+3 and △ is a β-quasi-uniform triangulation, there exist positive constants
C1, C2 such that

C1

∥∥∥∥∥∥
∑
ξ∈M

cξBξ

∥∥∥∥∥∥
2

L2(Ω)

≤

∥∥∥∥∥∥
∑
ξ∈M

cξBξ

∥∥∥∥∥∥
2

Ω

≤ C2

∥∥∥∥∥∥
∑
ξ∈M

cξBξ

∥∥∥∥∥∥
2

L2(Ω)

,

for all cξ, ξ ∈ M.

Proof It is straightforward to obtain upper and lower bounds of ∥
∑

ξ∈M cξBξ∥2Ω by As-
sumption (A3).

Proof of Lemma 3. According to the definition of empirical inner product and induced
norm of the theoretical L2 inner product in Section 3,

⟨g1, g2⟩n,Ω =
1

n

n∑
i=1

∑
ξ∈M

cξBξ (pi)


∑

ζ∈M
c̃ζBζ (pi)

 =
∑

ξ,ζ∈M
cξ c̃ζ ⟨Bξ, Bζ⟩n,Ω ,

39

Li, Yu, Wang, Wang, Wang and Lai

∥g1∥2Ω =
∑

ξ,ξ′∈M
cξcξ′

〈
Bξ, Bξ′

〉
Ω
, and ∥g2∥2Ω =

∑
ζ,ζ′∈M

c̃ζ c̃ζ′
〈
Bζ , Bζ′

〉
Ω
.

By Lemma B.1, we have for g1 and g2, C1|△|3
∑

ξ∈M |cξ|2 ≤ ∥g1∥2L2(Ω) ≤ C2|△|3
∑

ξ∈M |cξ|2

and C1|△|3
∑

ζ∈M |c̃ζ |2 ≤ ∥g2∥2L2(Ω) ≤ C2|△|3
∑

ζ∈M |c̃ζ |2. Consequently, by Lemma B.2,

C1|△|3
∑

ξ∈M
|cξ|2

∑
ζ∈M

|c̃ζ |2


1/2

≤ ∥g1∥Ω ∥g2∥Ω ≤ C2|△|3
∑

ξ∈M
|cξ|2

∑
ζ∈M

|c̃ζ |2


1/2

.

Thus,

Rn ≤
∑

ξ,ζ∈M |cξ c̃ζ |

C1|△|3
{∑

ξ∈M |cξ|2
∑

ζ∈M |c̃ζ |2
}1/2

max
ξ,ζ∈M

∣∣∣⟨Bξ, Bζ⟩n,Ω − ⟨Bξ, Bζ⟩Ω
∣∣∣

≤ C−1
1 |△|−3 max

ξ,ζ∈M

∣∣∣⟨Bξ, Bζ⟩n,Ω − ⟨Bξ, Bζ⟩Ω
∣∣∣ . (B.1)

To obtain the conclusion, it suffices to show that with probability one,

max
ξ,ζ∈M

∣∣∣⟨Bξ, Bζ⟩n,Ω − ⟨Bξ, Bζ⟩Ω
∣∣∣ = OP

{
(log n)1/2(nN)−1/2

}
. (B.2)

Let Rξ,ζ,i = Bξ (pi)Bζ (pi) − EBξ (pi)Bζ (pi). Then we have the second moment
ER2

ξ,ζ,i = E{B2
ξ (pi)B

2
ζ (pi)}−{EBξ (pi)Bζ (pi)}

2, where we have E{B2
ξ (pi)B

2
ζ (pi)} ∼ |△|3

and {EBξ (pi)Bζ (pi)}
2 ∼ |△|6. Hence, ER2

ξ,ζ,i ∼ |△|3. Note that the k-th moment is

E|Rξ,ζ,i|k ≤ 2k−1{E|Bξ(pi)Bζ(pi)|k + |EBξ(pi)Bζ(pi)|k}, where E |Bξ (pi)Bζ (pi)|
k ∼ |△|3,

|EBξ (pi)Bζ (pi)|
k ∼ |△|3k. Then there exists a constant C > 0 such that E |Rξ,ζ,i|k ≤

C2k−1k!ER2
ξ,ζ,i. Thus, {Rξ,ζ,i}ni=1 satisfying Cramer’s condition with some constant C ∼

O(1). By Bernstein’s inequality in Bosq (1998), for δ > 0 large enough,

P

(
1

n

∣∣∣∣∣
n∑

i=1

Rξ,ζ,i

∣∣∣∣∣ ≥ δ

√
log n

nN

)
≤ 2 exp

(
−δ2 log n

4 + 2cδ
√
N log n/n

)
≤ 2n−4. (B.3)

It is easy to see that the cardinality of M is (d+1)(d+2)(d+3)N/6 as discussed in Section
2.3. Thus, for the δ > 0 in Equation B.3,

∞∑
n=1

P

(
max
ξ,ζ∈M

∣∣∣∣∣ 1n
n∑

i=1

Rξ,ζ,i

∣∣∣∣∣≥δ

√
log n

nN

)
≤ 1

6

∞∑
n=1

{(d+ 1)(d+ 2)(d+ 3)N}2

n4
≤C

∞∑
n=1

n−2 < ∞.

Borel-Cantelli Lemma entails that maxξ,ζ∈M |n−1
∑n

l=1Rξ,ζ,i| = OP {(log n)1/2(nN)−1/2}.
The desired result follows from Equations B.1 and B.2.

As a direct result of Lemma 3, we have

sup
g∈Sr

d(△)

∣∣∣∥g∥2n,Ω/ ∥g∥2Ω − 1
∣∣∣ = OP

{
(N log n)1/2n−1/2

}
. (B.4)

40

3D Point Cloud Learning

B.2 Size of the Bias and Noise Terms (Propositions 5—7)

In this section, we measure the size of the bias term and show the proofs of Proposition
5—7. We firstly proof Lemma 4.
Proof of Lemma 4. According to Lemma 15.2 of Lai and Schumaker (2007), for any
g ∈ Sr

d(△),

∥g∥∞ = ∥g∥∞,T ≤ K1V
−1/2
T ∥g∥L2(T) ≤

K

ϱ
3/2
△

∥g∥L2(T) ≤
K

ϱ
3/2
△

∥g∥L2(Ω) ≤
Kβ

|△|3/2
∥g∥L2(Ω) ,

where Kβ is a positive constant dependent on β and recall that VT is the volume of tetra-
hedron T . Consequently, by the Markov’s inequality Theorem 15.28 in Lai and Schumaker
(2007), for any g ∈ Sr

d(△), ∥g∥∞,Ω ≤ Kβ |△|−3/2∥g∥L2(Ω) and ∥g∥E ≤ Kβ |△|−2∥g∥L2(Ω).
Equation B.4 implies that

sup
g∈Sr

d(△)

{
∥g∥n,Ω

/
∥g∥L2(Ω)

}
≥
[
1−OP

{
(N log n)1/2n−1/2

}]1/2
.

Thus, we have

Vn ≤ Kβ |△|−3/2
[
1−OP

{
(N log n)1/2n−1/2

}]−1/2
= OP

(
|△|−3/2

)
,

V n ≤ Kβ |△|−2
[
1−OP

{
(N log n)1/2n−1/2

}]−1/2
= OP

(
|△|−2

)
.

Proof of Proposition 5. By triangle inequality and the definition of Vn,

∥m− sρn,m∥∞,Ω ≤ ∥m− s0,m∥∞,Ω + ∥s0,m − sρn,m∥∞,Ω

≤ ∥m− s0,m∥∞,Ω + Vn ∥s0,m − sρn,m∥n,Ω . (B.5)

By the definition of sρn,m, we have ∀u ∈ Sr
d(△), t ∈ R+,

n ∥m− sρn,m∥2n,Ω + ρn∥sρn,m∥2E ≤ n ∥m− sρn,m − tu∥2n,Ω + ρn∥sρn,m + tu∥2E

⇒ n ⟨m− sρn,m, u⟩n,Ω − ρn ⟨sρn,m, u⟩E ≤ t

2

(
∥u∥2n,Ω + ρn∥u∥2E

)
.

Similarly, take t ∈ R− and induct in a similar fashion, we thus obtain∣∣∣n ⟨m− sρn,m, u⟩n,Ω − ρn ⟨sρn,m, u⟩E
∣∣∣ ≤ t

2

(
∥u∥2n,Ω + ρn∥u∥2E

)
. (B.6)

Since Equation B.6 holds for any t ∈ R, we can conclude that the penalized spline sρn,m of
m is characterized by the orthogonality relations

n ⟨m− sρn,m, u⟩n,Ω = ρn ⟨sρn,m, u⟩E , for all u ∈ Sr
d(△). (B.7)

When ρn = 0, we have for s0,m,

⟨m− s0,m, u⟩n,Ω = 0, for all u ∈ Sr
d(△). (B.8)

41

Li, Yu, Wang, Wang, Wang and Lai

Combining Equations B.7 and B.8, we obtain n ⟨s0,m − sρn,m, u⟩n,Ω = ρn ⟨sρn,m, u⟩E , for all
u ∈ Sr

d(△). Inserting u = s0,m − sρn,m yields that

n ∥s0,m − sρn,m∥2n,Ω = ρn ⟨sρn,m, s0,m − sρn,m⟩E . (B.9)

Thus, by Cauchy-Schwarz inequality and the definition of V n,

n ∥s0,m − sρn,m∥2n,Ω ≤ ρn ∥sρn,m∥E ∥s0,m − sρn,m∥E ≤ V nρn ∥sρn,m∥E ∥s0,m − sρn,m∥n,Ω .

Similarly, using Equation B.9, we have

n ∥s0,m − sρn,m∥2n,Ω = ρn
{
⟨sρn,m, s0,m⟩E − ⟨sρn,m, sρn,m⟩E

}
≥ 0.

Thus, by Cauchy-Schwarz inequality, ∥sρn,m∥2E ≤ ⟨sρn,g, s0,m⟩E ≤ ∥sρn,m∥E∥s0,m∥E , which
implies that ∥sρn,m∥E ≤ ∥s0,m∥E . Therefore

∥s0,m − sρn,m∥n,Ω ≤ n−1V nρn ∥s0,m∥E . (B.10)

Combining Equations B.5, B.10 and Lemma 1 in Section 2.3 in main part yields that

∥s0,m − sρn,m∥∞,Ω ≤ Vn ∥s0,m − sρn,m∥n,Ω ≤ n−1VnV nρn ∥s0,m∥E

≤ n−1VnV nρnC1

|m|2,∞,Ω +
∑
|α|=2

∥Dα (m− s0,m)∥∞,Ω


≤ n−1VnV nρnC2

(
|m|2,∞,Ω + |△|ℓ−1 |m|ℓ+1,∞,Ω

)
.

Plugging the orders of Vn and V n, therefore,

∥s0,m − sρn,m∥∞,Ω = OP

{
ρn

n |△|7/2
(
|m|2,∞,Ω + |△|ℓ−1 |m|ℓ+1,∞,Ω

)}
.

Hence by Equation B.5,

∥m− sρn,m∥∞,Ω = OP

(
|△|ℓ+1 |m|ℓ+1,∞,Ω

)
+OP

{
ρn

n |△|7/2
(
|m|2,∞,Ω + |△|ℓ−1 |m|ℓ+1,∞,Ω

)}
.

Therefore, Proposition 5 is established.

Next we give the proof of Proposition 6.

Proof of Proposition 6. It is known from Lai and Schumaker (2007) that there is a
locally support basis Bξ, ξ ∈ M for Sr

d(△). We write sρn,ϵ(p) =
∑

ξ∈M cρn,ξBξ(p) for some
coefficients cρn,ξ. It is easy to obtain the orthogonal relations for the penalized spline sρn,ϵ
n⟨sρn,ϵ − ε, u⟩n,Ω + ρn⟨sρn,ϵ, u⟩E = 0, for all u ∈ Sr

d(△). Consequently

n∑
i=1

sρn,ϵ (pi)Bξ (pi) + ρn⟨sρn,ϵ, Bξ⟩E =

n∑
i=1

Bξ (pi)σ (pi) εi

42

3D Point Cloud Learning

for all ξ ∈ M. Multiply cρn,ξ to both sides and take the summation of ξ ∈ M and use
Cauchy-Schwarz’s inequality,

∥sρn,ϵ∥
2
n,Ω ≤ ∥sρn,ϵ∥

2
n,Ω +

ρn
n
E(sρn,ϵ) =

1

n

∑
ξ∈M

cρn,ξ

n∑
i=1

Bξ (pi)σ (pi) εi

≤

∑
ξ∈M

|cρn,ξ|2
1/2 ∑

ξ∈M

{
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

}2
1/2

≤ 1

K1|△|3/2
∥sρn,ϵ∥L2(Ω)

∑
ξ∈M

{
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

}2
1/2

.

It follows from Equation B.4 that

∥sρn,ϵ∥2L2(Ω) ≤ ∥sρn,ϵ∥
2
n,Ω +OP

{
n−1/2(log n)1/2N1/2∥sρn,ϵ∥2L2(Ω)

}
≤
∥sρn,ϵ∥L2(Ω)

K1|△|3/2

∑
ξ∈M

{
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

}2
1/2

+OP

{
(N log n)1/2

n1/2
∥sρn,ϵ∥2L2(Ω)

}
.

Next we note that VΩ ≤ C1|△|3N . That is, |△| ≥ (C1N)−1/3V
1/3
Ω . We thus have

∥sρn,ϵ∥L2(Ω) ≤ (C1N)1/2

V
1/2
Ω K1

∑
ξ∈M

{
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

}2
1/2

+OP

{
n−1/2(N log n)1/2∥sρn,ϵ∥L2(Ω)

}
Thus, we have[

1−OP

{
(N log n)1/2

n1/2

}]
∥sρn,ϵ∥L2(Ω)

≤ CN1/2

V
1/2
Ω

∑
ξ∈M

{
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

}2
1/2

(B.11)

for a constant C > 0. Observing that the two random variables εi and pi are independent,
we have E{n−1

∑n
i=1 εiBξ(pi)σ(pi)}2 = n−1E[B2

ξ (pi)σ
2(pi)], where according to Lemma

15.2 in Lai and Schumaker (2007), the expectation of B2
ξ (pi)σ

2 (pi) can be estimated as
follows:

E
[
B2

ξ (pi)σ
2 (pi)

]
≤ C2

σ ∥Bξ∥2L2(Ω)

≤ c(β, σ)|△|3∥Bξ∥2∞,Ω ≤ C(β, σ)N−1VΩ (B.12)

for positive constants c(β, σ) and C(β, σ) which depend only on β and σ. Thus, Assumption
(A2) and Equation B.12 imply that n−1

∑n
i=1Bξ(pi)σ(pi)εi = OP (n

−1/2N−1/2). Therefore,

43

Li, Yu, Wang, Wang, Wang and Lai

we have
∑

ξ∈M{n−1
∑n

i=1Bξ(pi)σ(pi)εi}2 = OP (n
−1). Combining Equation B.11, we ob-

tain that ∥sρn,ϵ∥L2(Ω) = OP

(
N1/2n−1/2

)
. So Proposition 6 is established.

Let Γρn be the symmetric positive definite matrix[
1

n

n∑
i=1

Bξ (pi)Bζ (pi) +
ρn
n
⟨Bξ, Bζ⟩E

]
ξ,ζ∈M

. (B.13)

We firstly show the bounds of Γρn .

Lemma B.3 Suppose Assumption (A3) holds, d ≥ 6r + 3, △ is a β-quasi-uniform trian-
gulation and n−1N log n → 0 as n → ∞. For Γρn defined in Equation B.13, we have the
following asymptotic properties:

(i) As n → ∞, for some constants 0 < cρ < Cρ < ∞, with probability approaching one,

cρ|△|3 ≤ ρmin(Γρn) ≤ ρmax(Γρn) ≤ Cρ

(
|△|3 + ρn

n|△|

)
.

(ii) There exists a constant Md > 0 such that ∥Γ−1
ρn ∥∞ ≤ Md|△|−3.

(iii) For every vector a = (a1, . . . , an)
⊤, there exists a constant Cd > 0 such that∥∥∥∥∥B⊤(p) Γ−1

ρn

1

n

n∑
i=1

B(pi)ai

∥∥∥∥∥
∞

≤ Cd∥a∥∞.

Proof (i) Let’s randomly pick θ ∈ R|M|, then for g(p) = B⊤(p)θ, we have g ∈ Sr
d(△).

Then

θ⊤Γρnθ = θ⊤ 1

n

n∑
i=1

B(pi)B
⊤(pi)θ + θ⊤ ρn

n
[⟨Bm, Bm′⟩E]m,m′∈Mθ = ∥g∥2n,Ω +

ρn
n
∥g∥2E .

By Equation B.4,
∣∣∥g∥2n,Ω/∥g∥2L2(Ω) − 1

∣∣ ≤ Rn, and combined with Lemma B.1, we have

c(1−Rn)|△|3∥θ∥2 ≤ (1−Rn)∥g∥2L2(Ω) ≤ ∥g∥2n,Ω ≤ (1 +Rn)∥g∥2L2(Ω) ≤ C(1 +Rn)|△|3∥θ∥2.

Thus, ρmin(Γρn) ≥ cρ|△|3 for some positive constant cρ.
On the other side, as shown in the proof of Proposition 5 and by Lemma B.1, ∥g∥2E ≤

C|△|−4∥g∥2L2(Ω) ≤ C|△|−1∥θ∥2. Thus,

ρmax(Γρn) ≤ C

{
(1 +Rn)|△|3 + ρn

n

1

|△|

}
≤ Cρ

(
|△|3 + ρn

n|△|

)
,

for some positive constant Cρ.
(ii) By (i), Γρn is an invertible symmetric matrix, and its condition number cd =

ρmax(Γρn)/ρmin(Γρn) satisfies 1 < cd ≤ c−1
ρ Cρ.

According to the definition of banded matrix in DeVore and Lorentz (1993), a matrix
A = (aij) is said banded with bandwidth b if aij = 0, |i − j| ≥ b, and if b is the smallest

44

3D Point Cloud Learning

integer with this property. Based on the construction of trivariate splines, Γρn is a banded

matrix with bandwidth b =
(
d+3
3

)
. By Theorem 13.4.3 in DeVore and Lorentz (1993),

∥Γ−1
ρn ∥∞ ≤ 2τ−2b∥Γ−1

ρn ∥2(1− τ)−1, where τ = (c2d − 1/c2d + 1)1/4b < 1. Therefore, there exist

some positive constant Md such that ∥Γ−1
ρn ∥∞ ≤ Md|△|−3.

(iii) Combining (i) and (ii), it is straightforward to have∥∥∥∥∥B⊤(p)Γ−1
ρn

1

n

n∑
i=1

B(pj)aj

∥∥∥∥∥
∞

≤
∥∥∥B⊤

∥∥∥
∞

∥∥Γ−1
ρn

∥∥
∞

∥∥∥∥∥ 1n
n∑

i=1

B(pi)

∥∥∥∥∥
∞

∥a∥∞ ≤ Cd∥a∥∞.

Lemma B.4 Under Assumptions (A2) and (A4), ∥s0,ϵ∥∞,Ω = OP {(log n)1/2n−1/2|△|−3/2}.

Proof Note that s0,ϵ(p) =
∑

ξ∈M ĉ0,ξBξ(p) for some coefficients ĉ0,ξ, so the order of sρn,ϵ(p)
is related to that of ĉ0,ξ. In fact

∥s0,ϵ∥∞,Ω ≤ c ∥ĉ0∥∞ =

∥∥∥∥∥∥Γ−1
0

[
n−1

n∑
i=1

Bξ (pi)σ (pi) εi

]
ξ∈M

∥∥∥∥∥∥
∞,Ω

,

where ĉ0 = (ĉ0,ξ)ξ∈M and Γ0 is the symmetric positive definite matrix[
1

n

n∑
i=1

Bξ (pi)Bζ (pi)

]
ξ,ζ∈M

defined in Equation B.13. Thus,

∥s0,ϵ∥∞,Ω ≤ CN max
ξ∈M

∣∣∣∣∣n−1
n∑

i=1

Bξ (pi)σ (pi) εi

∣∣∣∣∣ , a.s.

Next, we show that with probability one,

max
ξ∈M

∣∣∣∣∣n−1
n∑

i=1

Bξ (pi)σ (pi) εi

∣∣∣∣∣ = O
{
(log n)1/2(nN)−1/2

}
. (B.14)

To prove Equation B.14, we decompose the noise variable εi into a truncated part and a
tail part εi = εDn

i,1 + εDn
i,2 + µDn , where Dn = nα with max{1/(2 + η), (1 + γ)/2(1 + η)} <

α < (1− γ)/2, and εDn
i,1 = εiI {|εi| > Dn},

εDn
i,2 = εiI {|εi| ≤ Dn} − µDn , µDn = E [εiI {|εi| ≤ Dn}] .

It is straightforward to see εDn
i,2 has mean 0, thus is uniformly bounded by D−2

n . And it is also

straightforward to verify that µDn is uniformly bounded by D
−(1+η)
n , so the boundedness

of trivariate spline basis and of the function σ2 entail that∣∣Bξ (pi)σ (pi)µ
Dn
∣∣ = O

(
D−(1+η)

n

)
. (B.15)

45

Li, Yu, Wang, Wang, Wang and Lai

Next we show that tail part vanishes almost surely. Recall that E|ε2+η
n | ≤ υη in Assumption

(A2), so
∞∑
n=1

P {|εn| > Dn} ≤
∞∑
n=1

E |εn|2+η

D2+η
n

≤ υη

∞∑
n=1

D−(2+η)
n < ∞.

By the Borel-Cantelli Lemma, we have

P {ω|∃N (ω) , |εn (ω)| ≤ Dn for n > N (ω)} = 1.

Let υε = max{|ε1| , |ε2| , ...,
∣∣εN(ω)

∣∣} and there exists N1 (ω) > N (ω), DN1(ω) > υε. Since
Dn = nα is an increasing function, we have Dn > DN1(ω) > υε, for n > N1 (ω). Thus,

P {ω|∃N (ω) , |εi (ω)| ≤ Dn, 1 ≤ i ≤ n, for n > N (ω)} = 1,

which implies that

P
{
ω|∃N (ω) ,

∣∣∣εDn
i,1

∣∣∣ = 0, 1 ≤ i ≤ n, for n > N (ω)
}
= 1.

The boundedness of the spline basis implies that∣∣∣∣∣ 1n
n∑

i=1

σ (pi) ε
Dn
i,1 Bξ (pi)

∣∣∣∣∣ = Oa.s.

(
n−k

)
, for any k > 0. (B.16)

Next let Zi = n−1εDn
i,2 σ (pi)Bξ (pi). Since E(εDn

i,2) = 0, we have

Var
(
εDn
i,2

)
= E

(
ε2i
)
− E

[
ε2i I {|εi| > Dn}

]
−
(
µDn

)2
= 1 +OP

{
D−η

n +D−2(1+η)
n

}
.

According to Equation B.12, E[B2
ξ (pi)σ

2 (pi)] ≤ C(β, σ)N−1VΩ. Note the independence of

εDn
i,2 , i = 1, · · · , n and the independence between εDn

i,2 and Bξ (pi), we therefore obtain that

V 2
n = Var (

∑n
i=1 Zi) = c (nN)−1 for some c > 0. By the fact that |εDn

i,2 | < 2Dn, we have

E
∣∣∣εDn

i,2

∣∣∣k ≤ 2k−2Dk−2
n E

∣∣∣εDn
i,2

∣∣∣2 , k ≥ 2.

Note that

E |Zi|k = n−kE
∣∣∣εDn

i,2

∣∣∣k E |σ (pi)Bξ (pi)|
k

≤ n−kE
∣∣∣εDn

i,2

∣∣∣k Ck−2
σ ∥Bξ∥k−2

∞,Ω E |σ (pi)Bξ (pi)|
2 ≤ (2Dnn

−1)k−2k!E(Z2
i).

Thus, {Zi}ni=1 satisfies the Cramer condition with constant c∗ = 2n−1Dn. By the Bernstein
inequality, for any δ > 0 large enough,

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≥ δ

√
log n

nN

)
≤2 exp

 −δ2 lognnN

4V 2
n + 2c∗δ

√
logn
nN

= 2exp

 −δ2 log n

4c+ 4Dnδ
√

N logn
n

≤ 2n−3.

46

3D Point Cloud Learning

Therefore,

∞∑
n=1

P

(
max
ξ∈M

∣∣∣∣∣ 1n
n∑

i=1

εDn
i,2 σ (pi)Bξ (pi)

∣∣∣∣∣ ≥ δ

√
log n

nN

)
≤ N

3
(d+ 1)(d+ 2)(d+ 3)

∞∑
n=1

n−3 < ∞

for such δ > 0. Thus, the conclusion follows by combining Borel-Cantelli’s lemma with
Equations B.15 and B.16.

Proof of Proposition 7. Note that the penalized spline sρn,ϵ of ε is characterized by the
orthogonality relations

n ⟨ε− sρn,ε, u⟩n,Ω = ρn ⟨sρn,ε, u⟩E , for all u ∈ Sr
d(△). (B.17)

In particular, s0,ε is characterized by

⟨ε− s0,ε, u⟩n,Ω = 0, for all u ∈ Sr
d(△). (B.18)

Inserting u = s0,ε − sρn,ϵ in Equation B.17 and using Equation B.18 with this u yield that

n ∥s0,ε − sρn,ε∥
2
n,Ω = ρn ⟨sρn,ε, s0,ε − sρn,ε⟩E

= ρn(⟨sρn,ϵ, s0,ϵ⟩E − ⟨sρn,ϵ, sρn,ϵ⟩E).

It follows, by Cauchy-Schwarz inequality, that

∥sρn,ε∥
2
E ≤ ⟨sρn,ε, s0,ε⟩E ≤ ∥sρn,ε∥E ∥s0,ε∥E ,

which implies that ∥sρn,ε∥E ≤ ∥s0,ε∥E . Thus, by Cauchy-Schwarz inequality and the defini-
tion of V n.

n ∥s0,ε − sρn,ε∥
2
n,Ω ≤ ρn ∥sρn,ε∥E ∥s0,ε − sρn,ε∥E ≤ V nρn ∥sρn,ε∥E ∥s0,ε − sρn,ε∥n,Ω .

Hence, we have

∥s0,ε − sρn,ε∥n,Ω ≤ n−1V nρn ∥s0,ε∥E . (B.19)

Combining Equations 11 and B.19 yields that

∥s0,ε − sρn,ε∥∞,Ω ≤ Vn ∥s0,ε − sρn,ε∥n,Ω ≤ n−1VnV nρn ∥s0,ε∥E .

Again, applying Markov’s inequality Theorem 15.28 in Lai and Schumaker (2007), we get

∥s0,ε∥E ≤ C1

|△|2
∥s0,ε∥L2(Ω) .

It therefore follows

∥sρn,ε∥∞,Ω ≤ ∥s0,ϵ∥∞,Ω + ∥s0,ε − sρn,ϵ∥∞,Ω ≤ ∥s0,ε∥∞,Ω +
ρn
n
VnV̄n

C1

|△|2
∥s0,ε∥L2(Ω).

According to Lemma B.4, we have ∥s0,ε∥∞,Ω = OP

{
n−1/2|△|−3/2(log n)1/2

}
. The conclu-

sion of Proposition 7 follows from Proposition 6.

47

Li, Yu, Wang, Wang, Wang and Lai

B.3 Variance of the Noise Term

In this section, we first derive the size of the asymptotic conditional variance given in
Theorem B.5.

Theorem B.5 Under Assumptions (A1)—(A4), we have with probability approaching one
as n → ∞

C1c
2
σ

n(1 + n−1|△|−4ρn)2|△|3
≤ Var {sρn,ϵ(p)|P} ≤ C2C

2
σ

n|△|3
, p ∈ Ω,

for positive constants C1 and C2.

Proof Note that

sρn,ϵ(p) = B(p)⊤ĉρn,ε, (B.20)

where ĉρn,ε is the coefficient vector for sρn,ϵ using basis functions Bξ, ξ ∈ M and B(p) =
[Bξ(p), ξ ∈ M]⊤ is the vector of basis functions. Note that

ĉρn,ε =

[
n∑

i=1

Bξ (pi)Bζ (pi) + ρn⟨Bξ, Bζ⟩E

]−1

ξ,ζ∈M

[
n∑

i=1

Bξ (pi)σ (pi) εi

]
ξ∈M

and Var{sρn,ϵ(p)|P} = B(p)⊤E
(
ĉρn,εĉ

⊤
ρn,ε|P

)
B(p). Recall the definition of Γρn in Equation

B.13 in main part, we have E
(
ĉρn,εĉ

⊤
ρn,ε|P

)
equal to

Γ−1
ρn E

[1
n

n∑
i=1

Bξ (pi)σ (pi) εi

]
ξ∈M

[
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

]⊤
ξ∈M

∣∣∣∣∣∣P
Γ−1

ρn .

The central conditional expectation term in the above line satisfies that

c2σ
n
Γ0 ≤

1

n2

[
n∑

i=1

Bξ (pi)Bζ (pi)σ
2 (pi)

]
ξ,ζ∈M

≤ C2
σ

n
Γ0.

That is,

n−1c2σB(p)⊤Γ−1
ρn Γ0Γ

−1
ρn B(p) ≤ Var {sρn,ϵ (p) |P} ≤ n−1C2

σB(p)⊤Γ−1
ρn Γ0Γ

−1
ρn B(p).

Let αmin(ρn) and αmax(ρn) be the smallest and largest eigenvalues of the positive definite
matrix Γρn . It follows easily that with probability approaching one,

c2σ
n
αmax(ρn)

−2αmin(0)∥B(p)∥2 ≤ Var {sρn,ϵ(p)|P} ≤ C2
σ

n
αmin(ρn)

−2αmax(0)∥B(p)∥2.

Note that ∥B(p)∥2 =
∑

ξ∈MB2
ξ (p) is bounded above by a constant C2 < ∞ and below

by C1 > 0 for any point p ∈ Ω. Indeed, if C1 = 0 for a point p, then Bξ(p) = 0 for
all ξ ∈ M. That is, we have 0 =

∑
ξ∈MBξ(p). It follows that these basis functions are

linearly dependent which is a contradiction. On the other hand, for any fixed point p ∈ Ω,

48

3D Point Cloud Learning

there is at most C2 nonzero terms in the above summation, where C2 is dependent on the
smallest angle of the triangulation △. Note that Bξ is uniformly bounded for all ξ ∈ M,
say bounded by 1. Thus, we know C2 < ∞. We summarize the above discussion to get

n−1C1c
2
σαmax(ρn)

−2αmin(0) ≤ Var {sρn,ϵ(p)|P} ≤ n−1C2C
2
σαmin(ρn)

−2αmax(0)

with probability approaching one.
We now spend some effort to estimate the largest and smallest eigenvalues of Γρn . It is

easy to see that for any vector a = [aξ, ξ ∈ M]⊤,

a⊤Γρna = a⊤

[
1

n

n∑
i=1

Bξ (pi)Bζ (pi) +
ρn
n
⟨Bξ, Bζ⟩E

]
ξ,ζ∈M

a

=

 1

n

n∑
i=1

∑
ξ∈M

aξBξ (pi)


2+

ρn
n
E

∑
ξ∈M

aξBξ

 .

Let sa =
∑

ξ∈M aξBξ ∈ Sr
d(△) be the spline associated with vector a = (aξ, ξ ∈ M)T .

By Equation B.4, we have

∥sa∥2n,Ω =

{
1 +OP

(√
log n

n/N

)}
∥sa∥2L2(Ω) ≤ K2

{
1 +OP

(√
log n

n/N

)}
|△|3∥a∥2.

Here we have used the stability conditions in Lemma B.1. Furthermore, using Markov’s
inequality, we have

ρn
n
E

∑
ξ∈M

aξBξ

 ≤ ρn
n

C

|△|4
∥sa∥2L2(Ω) ≤

ρn
n

C

|△|
K2∥a∥2.

Thus, the largest eigenvalue αmax(ρn) of the matrix Γρn in Equation B.13 is less than or
equal to

K2

{
1 +OP

(√
log n

n/N

)}
|△|3 +K2

ρn
n

C

|△|
.

Thus, we have with probability approaching one{
αmax(0) ≤ C|△|3, if ρn = 0

αmax(ρn) ≤ C
(
|△|3 + ρn

n|△|

)
, if ρn > 0

for positive constant C. On the other hand, we use Lemma B.1 and Equation B.4 to have

∥sa∥2n,Ω =

{
1 +OP

(√
log n

n/N

)}
∥sa∥2L2(Ω) ≥ K1

{
1 +OP

(√
log n

n/N

)}
|△|3∥a∥2.

Therefore, the smallest eigenvalue αmin(ρn) of the matrix Γρn in Equation B.13 is greater

than K1{1 +OP (
√
Nn−1 log n)}|△|3 = C|△|3. Summarizing the above discussions to con-

clude that for ρn = 0, we have with probability approaching one,

cβc
2
σn

−1|△|−3 ≤ Var {sρn,ϵ(p)|P} ≤ CβC
2
σn

−1|△|−3.

49

Li, Yu, Wang, Wang, Wang and Lai

This establishes the result in the case for ρn = 0. Similar for the case ρn > 0. We have
therefore completed the proof.

The above variance result can be more precise when spline space S−1
0 (△) is considered.

The next lemma provides the pointwise variance of ŝρn,ε when using spline space S−1
0 (△).

Lemma B.6 Consider piecewise constant spline space S−1
0 (△) and suppose that the tetra-

hedra are of equal size. Under Assumptions (A1)—(A4), if the density function f(p) of p
is continuous and positive on Ω, then

Var {sρn,ϵ (p)} =
1

n

σ2 (p)

f (p)VT
{1 + o(1)},

where VT is the volume of the tetrahedron T as defined before.

Proof When using spline space S−1
0 (△), the space of piecewise constant functions over △,

we have E(s) = 0 for all s ∈ S−1
0 (△). Thus, following Equation B.20, we have sρn,ε (p) =

B(p)⊤ĉρn,ε, where

ĉρn,ε =

[
∥Bξ∥−2

n,Ω

1

n

n∑
i=1

εiBξ (pi)σ (pi)

]
ξ∈M

.

Let s̃ρn,ε (p) = B(p)⊤c̃ρn,ε, where

c̃ρn,ε =

[
∥Bξ∥−2

L2(Ω)

1

n

n∑
i=1

εiBξ (pi)σ (pi)

]
ξ∈M

.

For any p ∈ Ω,

|sρn,ϵ (p)− s̃ρn,ε (p)| ≤ |s̃ρn,ε (p)|max
ξ∈M

∣∣∣∥Bξ∥2L2(Ω)/∥Bξ∥2n,Ω − 1
∣∣∣ .

According to Lemma 3, we have

max
ξ∈M

∣∣∣∣∣∥Bξ∥2L2(Ω)

∥Bξ∥2n,Ω
− 1

∣∣∣∣∣ ≤ Rn

1−Rn
= OP

{√
N log n/n

}
.

Thus,

|sρn,ϵ (p)− s̃ρn,ε (p)| ≤ OP

{
(N log n/n)1/2 |s̃ρn,ε (p)|

}
.

Hence, finding the asymptotic variance of ŝρn,ε(p) is equivalent to finding the asymptotic
variance of s̃ρn,ε(p). Next we calculate the pointwise variance of s̃ρn,ε(p). Note that

Var {s̃ρn,ε (p)} = B(p)⊤E
(
c̃ρn,εc̃

⊤
ρn,ε

)
B(p)

=
∑
ξ∈M

B2
ξ (p) E

{
1

n

n∑
i=1

εiBξ (pi)σ (pi) ∥Bξ∥−2
L2(Ω)

}2

.

50

3D Point Cloud Learning

For any p ∈ Ω, let Tξ(p) be the tetrahedron that contains p. It is easy to see that

∥Bξ∥2L2(Ω) =

∫
Ω
B2

ξ (p) f (p) dp =

∫
Tξ(p)

f (p) dp.

For any continuous function g, let ω(g, ϱ) = supp,p′∈Ω,∥p−p′∥≤ϱ |g(p)− g(p′)| be the moduli
of continuity of g on Ω. Then for any p′ ∈ Tξ(p), we can write {f (p′) − ω(f, dT)}VT ≤
∥Bξ∥2L2(Ω) ≤ {f (p′)+ω(f, dT)}VT with dT being the diameter of the smallest ball containing
T . Next, we have

nVar {s̃ρn,ε (p)} = n
∑
ξ∈M

∥Bξ∥−4
L2(Ω)B

2
ξ (p) E

{
1

n

n∑
i=1

εiBξ (pi)σ (pi)

}2

=
∑
ξ∈M

∥Bξ∥−4
L2(Ω)B

2
ξ (p) E

{
B2

ξ (p)σ
2 (p)

}
=

∑
ξ∈M

∥Bξ∥−4
L2(Ω)B

2
ξ (p)

∫
Ω
B2

ξ

(
p′)σ2

(
p′) f (p′) dp′.

By the continuity of functions σ2(p) and f(p), we have

Var {s̃ρn,ε (p)} =
1

n

∑
ξ∈M

∥Bξ∥−4
L2(Ω)B

2
ξ (p)

×

[
σ2 (p) f (p)VT +

∫
Tξ(p)

{
σ2
(
p′) f (p′)− σ2 (p) f (p)

}
dp′

]

≤ 1

n

{
σ2 (p) f (p) + ω(σ2f, |T |)

}
VT

[{f (p)− ω(f, |T |)}VT]
2 =

1

n

σ2 (p)

f (v)VT
{1 + o(1)}.

The conclusion follows.

B.4 Proof of Theorem 12

Proof of Theorem 12. To prove Theorem 12, we first show that under Assumptions
(A1)—(A4),

sρn,ϵ (p)√
Var {sρn,ϵ (p) |P}

D−→ N (0, 1) , n → ∞. (B.21)

Let {Bξ}ξ∈M be the constructed spline basis functions for S, where M stands for the
index set for spline bases. Note that sρn,ϵ(p) = B(p)⊤ĉρn,ε, where ĉρn,ε is the coefficient
vector for sρn,ϵ with basis functions Bξ, ξ ∈ M and B(p) = [Bξ(p), ξ ∈ M]⊤ is the vector
of basis functions. Then, we have

ĉρn,ε =

[
n∑

i=1

Bξ (pi)Bζ (pi) + ρn⟨Bξ, Bζ⟩E

]−1

ξ,ζ∈M

[
n∑

i=1

Bξ (pi)σ (pi) εi

]
ξ∈M

.

51

Li, Yu, Wang, Wang, Wang and Lai

Recall the definition of Γρn in Equation B.13, then we have

sρn,ϵ (p) = B(p)⊤Γ−1
ρn

[
1

n

n∑
i=1

Bξ (pi)σ (pi) εi

]
ξ∈M

=
1

n

n∑
i=1

B(p)⊤Γ−1
ρn B(pi)σ (pi) εi.

Let ai = n−1B(p)⊤Γ−1
ρn B(pi)σ (pi). Obviously, sρn,ϵ (p) =

∑n
i=1 aiεi, and

a2i = n−2B(p)⊤Γ−1
ρn B(pi)B(pi)

⊤Γ−1
ρn B(p)σ2 (pi) .

For any vector c = (cξ, ξ ∈ M)T , we have

c⊤B(pi)B(pi)
⊤c =

∑
ξ∈M

cξBξ(pi)


2

≤ ∥c∥22
∑
ξ∈M

B2
ξ (pi),

which means the maximal eigenvalue of the matrixB(pi)B(pi)
⊤ is bounded by

∑
ξ∈MB2

ξ (pi).
Consequently, according to the proof of Theorem B.5 in Section B.3, with probability ap-
proaching one,

a2i ≤ n−2
∑
ξ∈M

B2
ξ (pi)B(p)⊤Γ−1

ρn Γ
−1
ρn B(p)σ2 (pi)

≤ C2
σ

n2 |△|6
∑
ξ∈M

B2
ξ (pi)B(p)⊤B(p) =

C2
σ

n2 |△|6
∑
ξ∈M

B2
ξ (p)

∑
ξ∈M

B2
ξ (pi).

On the other hand,
∑

a2i = Var{sρn,ϵ(p)|P}. Using similar arguments in the proof
of Theorem B.5, for ρn = 0, we have

∑
a2i ≥ c2σn

−1|△|−3
∑

ξ∈MB2
ξ (p) with probability

approaching one. Therefore, there exists some positive constant C, such that

max
1≤i≤n

a2i∑
a2i

≤ CC2
σ

n |△|3 c2σ

∑
ξ∈M

B2
ξ (pi) = OP

(
Nn−1

)
= oP (1) .

Hence,
∑

aiεi/
(∑

a2i
)1/2 → N (0, 1) by Linderberg-Feller CLT. Similarly for ρn > 0, we

have with probability approaching one,∑
a2i ≥

c2σ

n (1 + n−1|△|−4ρn)
2 |△|3

∑
ξ∈M

B2
ξ (p) ,

and

max
1≤i≤n

a2i∑
a2i

≤
CC2

σ

(
1 + n−1|△|−4ρn

)2
n |△|3 c2σ

∑
ξ∈M

B2
ξ (pi) = OP

(
Nn−1

)
= oP (1) ,

which gives Equation B.21.
Note that under Assumptions (A3), (A4’) and (A5), the bias term in Equation 12

is negligible compared to the order of [Var{sρn,ϵ(p)|P}]1/2 given in Theorem B.5 in the
supplementary material (Section B). Thus, Theorem 12 follows directly from Equation
B.21.

52

3D Point Cloud Learning

References

Eleonora Arnone, Alois Kneip, Fabio Nobile, and Laura M. Sangalli. Some first results
on the consistency of spatial regression with partial differential equation regularization.
Statistica Sinica, 32:209–238, 2022.

Gerard Awanou, Ming-Jun Lai, and Paul Wenston. The multivariate spline method for
scattered data fitting and numerical solutions of partial differential equations. Wavelets
and splines: Athens 2005, pages 24–74, 2006.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël Guennebaud,
Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. A survey of surface reconstruction
from point clouds. Computer Graphics Forum, 36(1):301–329, 2017.

Denis Bosq. Nonparametric statistics for stochastic processes. Springer-Verlag, New York,
1998.

Moo K. Chung, Yanli Wang, and Guorong Wu. Discrete heat kernel smoothing in irregular
image domains. In 2018 40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pages 5101–5104, 2018.

Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Berlin:
Springer-Verlag, 1993.

Jean Duchon. Fonctions-spline à énergie invariante par rotation. Technical Report 27,
Université de Grenoble, 1976.

Paul HC Eilers and Brian D Marx. Flexible smoothing with b-splines and penalties. Sta-
tistical science, 11(2):89–121, 1996.

Qianqian Fang and David A. Boas. Tetrahedral mesh generation from volumetric binary
and grayscale images. In 2009 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, pages 1142–1145, 2009.

Jeff Goldsmith, Lei Huang, and Ciprian M Crainiceanu. Smooth scalar-on-image regression
via spatial bayesian variable selection. Journal of Computational and Graphical Statistics,
23(1):46–64, 2014.

Peter J Green and Bernard W Silverman. Nonparametric regression and generalized linear
models: a roughness penalty approach. Chapman and Hall, London, 1994.

Junyi Guo, Xiaojun Duan, and C K Shum. Non-isotropic gaussian smoothing and leak-
age reduction for determining mass changes over land and ocean using GRACE data.
Geophysical Journal International, 181(1):290–302, 2010.

Peter Hall and Joel Horowitz. A simple bootstrap method for constructing nonparametric
confidence bands for functions. The Annals of Statistics, 41(4):1892–1921, 2013.

Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and techniques third
edition. The Morgan Kaufmann Series in Data Management Systems, 5(4):83–124, 2011.

53

Li, Yu, Wang, Wang, Wang and Lai

Jianhua Z Huang. Local asymptotics for polynomial spline regression. The Annals of
Statistics, 31(5):1600–1635, 2003.

Shuhao Huo, Gui Rong Liu, Junqi Zhang, and Chongmin Song. A smoothed finite element
method for octree-based polyhedral meshes with large number of hanging nodes and ir-
regular elements. Computer Methods in Applied Mechanics and Engineering, 359:112646,
2020.

Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. Cgalmesh: A
generic framework for delaunay mesh generation. ACM Transactions on Mathematical
Software (TOMS), 41(4):1–24, 2015.

Yicheng Kang. Consistent blind image deblurring using jump-preserving extrapolation.
Journal of Computational and Graphical Statistics, 29(2):372–382, 2020.

Myungjin Kim and Li Wang. Generalized spatially varying coefficient models. Journal of
Computational and Graphical Statistics, 30(1):1–10, 2021.

Ming-Jun Lai. On construction of bivariate and trivariate vertex splines on arbitrary mixed
grid partitions. Phd thesis, Texas A&M University, College Station, Texas, 1989.

Ming-Jun Lai and Larry L Schumaker. Spline functions on triangulations. Cambridge
University Press, 2007.

Ming-Jun Lai and Larry L Schumaker. A domain decomposition method for computing
bivariate spline fits of scattered data. SIAM journal on numerical analysis, 47(2):911–
928, 2009.

Ming-Jun Lai and Li Wang. Bivariate penalized splines for regression. Statistica Sinica, 23
(3):1399–1417, 2013.

Honggu Lee, Soohwan Song, and Sungho Jo. 3d reconstruction using a sparse laser scanner
and a single camera for outdoor autonomous vehicle. In 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), pages 629–634, 2016.

Yingxing Li and David Ruppert. On the asymptotics of penalized splines. Biometrika, 95
(2):415–436, 2008.

Finn Lindgren, H̊avard Rue, and Johan Lindström. An explicit link between gaussian fields
and gaussian markov random fields: the stochastic partial differential equation approach.
Journal of the Royal Statistical Society Series B (Statistical Methodology), 73(4):423–498,
2011.

Rong Liu and Yichuan Zhao. Empirical likelihood inference for generalized additive partially
linear models. TEST, 30(3):569–585, 2021.

Shujie Ma. Two-step spline estimating equations for generalized additive partially linear
models with large cluster sizes. Annals of Statistics, 40:2943–2972, 2012.

Enno Mammen. Bootstrap and wild bootstrap for high dimensional linear models. The
Annals of Statistics, 21:255–285, 1993.

54

3D Point Cloud Learning

Jeffrey S Morris and Raymond J Carroll. Wavelet-based functional mixed models. Journal
of the Royal Statistical Society Series B (Statistical Methodology), 68(2):179–199, 2006.

Per-Olof Persson and Gilbert Strang. A simple mesh generator in matlab. SIAM Review,
46(2):329–345, 2004.

The CGAL Project. CGAL user and reference manual. CGAL Editorial Board, 5.1.1
edition, 2020. URL https://doc.cgal.org/5.1.1/Manual/packages.html.

Tim Ramsay. Spline smoothing over difficult regions. Journal of the Royal Statistical Society
Series B (Statistical Methodology), 64(2):307–319, 2002.

Philip T Reiss and R Todd Ogden. Functional generalized linear models with images as
predictors. Biometrics, 66(1):61–69, 2010.

David R Roberts, Volker Bahn, Simone Ciuti, Mark S Boyce, Jane Elith, Gurutzeta
Guillera-Arroita, Severin Hauenstein, José J Lahoz-Monfort, Boris Schröder, Wilfried
Thuiller, et al. Cross-validation strategies for data with temporal, spatial, hierarchical,
or phylogenetic structure. Ecography, 40(8):913–929, 2017.

Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point rendering sys-
tem for large meshes. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’00, pages 343–352, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

Jinyang Shao. Testing object detection for autonomous driving systems via 3d reconstruc-
tion. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 117–119, 2021.

Jonathan Richard Shewchuk. A condition guaranteeing the existence of higher-dimensional
constrained delaunay triangulations. In Proceedings of the Fourteenth Annual Sympo-
sium on Computational Geometry, SCG ’98, pages 76–85, New York, NY, USA, 1998.
Association for Computing Machinery.

Hang Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions
on Mathematical Software (TOMS), 41(2):1–36, 2015.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. The
Annals of Statistics, 10:1040–1053, 1982.

Charles J Stone. The use of polynomial splines and their tensor products in multivariate
function estimation. The Annals of Statistics, 22(1):118–171, 1994.

Roozbeh Valavi, Jane Elith, José J Lahoz-Monfort, and Gurutzeta Guillera-Arroita.
blockcv: An r package for generating spatially or environmentally separated folds for
k-fold cross-validation of species distribution models. Methods in Ecology and Evolution,
10(2):225–232, 2019.

Haonan Wang and M Giovanna Ranalli. Low-rank smoothing splines on complicated do-
mains. Biometrics, 63(1):209–217, 2007.

55

https://doc.cgal.org/5.1.1/Manual/packages.html

Li, Yu, Wang, Wang, Wang and Lai

Jing Wang and Lijian Yang. Polynomial spline confidence bands for regression curves.
Statistica Sinica, 19(1):325–342, 2009.

Li Wang, Guannan Wang, Ming-Jun Lai, and Lei Gao. Efficient estimation of partially
linear models for data on complicated domains via bivariate penalized splines over trian-
gulations. Statistica Sinica, 30(1):347–369, 2020a.

Lu Wang, Lan Xue, and Lijian Yang. Estimation of additive frontier functions with shape
constraints. Journal of Nonparametric Statistics, 32(2):262–293, 2020b.

Matthieu Wilhelm, Luca Dedè, Laura M Sangalli, and Pierre Wilhelm. Igs: an isogeomet-
ric approach for smoothing on surfaces. Computer Methods in Applied Mechanics and
Engineering, 302:70–89, 2016.

Raymond KW Wong, Thomas CM Lee, Debashis Paul, and Jie Peng. Fiber direction
estimation, smoothing and tracking in diffusion mri. The Annals of Applied Statistics, 10
(3):1137–1156, 2016.

Simon N Wood. Thin plate regression splines. Journal of the Royal Statistical Society Series
B (Statistical Methodology), 65(1):95–114, 2003.

Yidong Xu. Multivariate spline method for scattered data fitting, curve and surface recon-
struction, and numerical solution to Poisson equations via domain decomposition method.
PhD thesis, University of Georgia, Athens, Georgia, 2019.

Shan Yu, GuannanWang, Li Wang, Chenhui Liu, and Lijian Yang. Estimation and inference
for generalized geoadditive models. Journal of the American Statistical Association, 115
(530):761–774, 2020.

Yu Yue and Paul L Speckman. Nonstationary spatial gaussian markov random fields.
Journal of Computational and Graphical Statistics, 19(1):96–116, 2010.

Hongtu Zhu, Jianqing Fan, and Linglong Kong. Spatially varying coefficient model for
neuroimaging data with jump discontinuities. Journal of the American Statistical Asso-
ciation, 109(507):1084–1098, 2014.

56

	Introduction
	Trivariate Splines over Triangulations and Basic Properties
	Triangulations
	Point Clouds to Triangulations
	Trivariate Splines on a Triangulation

	Penalized Spline Estimators
	Theoretical Results
	Convergence Rate
	Asymptotic Normality

	Implementation Details
	Construction of Penalty Matrix
	Penalty Parameter Selection
	Triangulation Selection
	Uncertainty Studies

	Numerical Studies
	Unstructured Complete Point Clouds
	Structured Point Clouds with Missing Data
	Standard Error Evaluation
	Biomedical Imaging Analysis

	Conclusions and Discussion
	Detailed Introduction of Trivariate Splines on Triangulation
	Barycentric Coordinates and Bernstein Basis Polynomials
	Directional Derivatives and Smoothness
	Example of the Constraint Matrix
	Proof of Theorems in Section A.2
	Theoretical properties of Bernstein bases
	Proof of Theorems A.4 and A.5

	Directional Derivatives for Basis Functions
	Details of Constructing Penalty Matrix

	Proof of Theoretical Results
	Preliminaries
	Size of the Bias and Noise Terms (Propositions 5—7)
	Variance of the Noise Term
	Proof of Theorem 12

