
 

FARe: Fault-Aware GNN Training on ReRAM-

based PIM Accelerators  

Pratyush Dhingra1, Chukwufumnanya Ogbogu1, Biresh Kumar Joardar2, Janardhan Rao Doppa1, Ananth Kalyanaraman1, Partha Pratim Pande1. 
1 Washington State University, Pullman WA, USA. 2 University of Houston, Houston TX, USA.

Abstract— Resistive random-access memory (ReRAM)-

based processing-in-memory (PIM) architecture is an attractive 

solution for training Graph Neural Networks (GNNs) on edge 

platforms. However, the immature fabrication process and 

limited write endurance of ReRAMs make them prone to 

hardware faults, thereby limiting their widespread adoption for 

GNN training. Further, the existing fault-tolerant solutions 

prove inadequate for effectively training GNNs in the presence 

of faults. In this paper, we propose a fault-aware framework 

referred to as FARe that mitigates the effect of faults during 

GNN training. FARe outperforms existing approaches in terms 

of both accuracy and timing overhead. Experimental results 

demonstrate that FARe framework can restore GNN test 

accuracy by 47.6% on faulty ReRAM hardware with a ~1% 

timing overhead compared to the fault-free counterpart. 
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I. INTRODUCTION 

Graph Neural Networks (GNNs) have achieved state-of-
the-art performance across a wide spectrum of graph-based 
applications such as node classification, link prediction, and 
graph clustering [1]. As a result, there is a growing demand 
for training GNNs at the edge. This necessitates the design of 
edge platforms based on single chips or embedded systems to 
support GNN training [2]. However, GNN training is both 
memory and compute-intensive. Conventional edge 
platforms, designed with CPUs/GPUs require large volumes 
of off-chip data movement, giving rise to performance 
bottlenecks [3]. Hence, this has motivated the need to explore 
computing architectures that reduce data movement for edge 
platforms. In this regard, processing-in-memory (PIM)-
enabled architectures have emerged as a potential solution as 
they enable reduction of unnecessary data movement. 

 ReRAM-enabled PIM architectures have become popular 
for high-performance and energy-efficient Neural Network 
(NN) training and inferencing using edge devices with small 
form factors [4]. The crossbar array structure of ReRAM-
based PIM architectures makes them well-suited for 
performing highly parallel matrix-vector multiplication 
(MVM) operations, which is the predominant computation 
kernel in both GNN training and inferencing. However, the 
relatively less mature fabrication process of ReRAMs 
compared to standard CMOS and their low endurance give 
rise to different types of hardware faults. These faults lead to 
unreliable training and poor test accuracy [5]. The most severe 
faults are stuck-at-faults (SAFs), which make the ReRAM cell 
resistance unchangeable. Hence, hardware/software fault-
mitigation techniques are being studied to enable reliable 
training and testing using unreliable ReRAM-based systems. 

The GNN training and inferencing computations are split 
into two phases: aggregation and combination. The 
aggregation phase computes the aggregated node features 
using the graph adjacency matrix, while the combination 
phase computes the node embeddings for the GNN layer using 
learnable weights. These two computation phases require that 

both graph adjacency matrices and GNN weights to be stored 
on ReRAM crossbars. However, existing fault-mitigation 
methods are mostly tailored towards NN with only their 
weight parameters mapped to ReRAM crossbars (such as in 
CNNs). As we show later, SAFs in ReRAM crossbars storing 
graph adjacency matrix also lead to significant accuracy loss. 
Hence, any fault-tolerant scheme should address faults on 
ReRAM cells storing both adjacency and weight matrices to 
ensure reliable GNN training without introducing significant 
performance overhead. 

In this work, we propose a Fault-aware GNN training 
framework for ReRAM-based PIM architectures referred to as 
FARe. Our approach mitigates the adverse effect of faults in 
ReRAM crossbars when training with various GNN models 
and datasets. FARe considers the SAF distribution in ReRAM 
crossbars to appropriately map the graph adjacency matrix and 
leverages weight clipping to address faults on the GNN weight 
matrix. Unlike existing fault-tolerant approaches, the model- 
and dataset-agnostic nature of FARe makes it generalizable 
across different types of GNN workloads and graph datasets, 
which is demonstrated by our experiments. Specific 
contributions of this paper are: 

• We propose a novel fault-tolerant framework called 
FARe that enables on-device GNN training using 
ReRAM-based architectures. FARe is agnostic to both 
GNN models and graph datasets. 

• We demonstrate the limitations of existing fault-
tolerant methods when used for GNN training, 
highlighting their significant performance overhead. 

• We show that FARe achieves near-ideal accuracies in 
scenarios of high fault rates of up to 5%. Remarkably, 
FARe enables reliable training with <1% test accuracy 
loss and around 1% performance overhead with state-
of-the-art GNN models and diverse graph datasets. 

To the best of our knowledge, this is the first work that 
comprehensively addresses SAFs in ReRAM-based PIM 
architectures for GNN training. The rest of this paper is 
organized as follows; Section II discusses prior work; Section 
III outlines the GNN computation kernel, and Section IV 
elaborates on the proposed fault-tolerant solution. Section V 
presents the experimental results, and section VI concludes the 
paper by summarizing the key findings of this work.  

II. RELATED WORK 

A. Faults in ReRAMs 

ReRAMs are susceptible to various types of faults. These 
faults lead to deviations in the resistance of a ReRAM cell due 
to various factors including noise, process variations, 
temperature, IR drop, etc. [5]. Among these, SAF is one of the 
most severe faults that can hinder reliable computation on 
ReRAM-based architectures [5]. SAFs manifest in two forms: 
Stuck-at-0 (SA0) and Stuck-at-1 (SA1) faults, causing the 
ReRAM cell to be permanently stuck in either a low resistance 
state (LRS) or a high resistance state (HRS) [6]. These faults  
an arise pre-deployment (at t = 0−) because of manufacturing This work was supported, in part by the US National Science Foundation 
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defects or post-deployment (emerged during their use, i.e., at 
t > 0) due to limited cell endurance. Built-in self-test (BIST) 
circuits can identify the type and location of SAFs [7], which 
can be utilized to develop fault-tolerant design methodologies.  

B. Existing Fault-tolerant Techniques 

Several fault-tolerant techniques have been proposed to 
handle SAFs in ReRAM-based architectures. These 
techniques can be broadly categorized into hardware and 
software-based approaches. Hardware techniques typically 
involve adding redundancy to the system, such as using 
redundant columns as a replacement for faulty ReRAM 
columns [8]. The use of a fault map to compensate the output 
is also proposed as another possible solution [9]. However, 
these approaches require additional hardware, which increases 
the overall energy and area cost required for on-device 
training. Software approaches, on the other hand, typically 
involve implementing algorithmic mechanisms to mitigate the 
effects of SAFs. Neuron reordering is a remapping approach 
that proposes permutating neurons to overlap with SAFs for 
fault tolerance [7]. However, the performance impact of 
repeatedly computing the remapping during the training 
process is significant. Other software methods include model 
retraining or fine-tuning to recover the accuracy loss due to 
SAFs. Unstructured weight pruning fixes faulty weight 
elements to constant values based on SAF information [10]. 
Another retraining approach is stochastic training on pre-
trained models [11]. However, fault-tolerant retraining 
algorithms are specifically targeted toward inferencing, and 
the focus of this paper is on training the GNN model from 
scratch. Recently, weight clipping has been proposed as a low-
cost solution to deal with faults in ReRAM [12]. However, 
weight clipping cannot be used solely as a fault-mitigation 
technique, as faults affecting the adjacency matrix remain 
unaddressed by clipping only GNN weights. Table I 
summarizes the existing approaches aimed at SAF mitigation 
along with their capabilities and limitations. None of the 
existing methods have all the necessary features. Hence, we 
explore a new fault-tolerant framework for GNN training to 
fill this gap. This framework is aimed at handling SAFs in 
both phases of GNN computation while minimizing 
performance overheads. 

III. GNN COMPUTATION IN THE PRESENCE OF FAULTS 

In this section, we discuss the impact of SAFs during GNN 

training on the ReRAM-based PIM accelerator. 

A. SAFs During Training 

Recently, ReRAM-based PIM architectures have been 
proposed to accelerate the sparse and dense MVM operations 
in the aggregation and combination phases (defined above) of 
GNN training and inferencing [13]. These architectures 
employ mini-batch training where the input graph is first 
partitioned into smaller subgraphs, and the subgraphs are 
processed in batches. Subsequently, a pipelined training 
strategy is adopted where all the GNN layers are processed 
simultaneously [3]. Consequently, both phases of GNN 
computation are susceptible to SAFs.  

The weights on ReRAM-based architectures are 
commonly represented using 16-bit fixed-point precision. The 
16 bits are distributed across multiple cells with architectures 
often adopting a 2-bit representation per cell. Subsequently, 
partial outputs are accumulated using a shift-and-add 
operation to obtain the final output of the MVM operation. 
Due to this distributed mapping, faults at different positions 

within a single weight vector have varying impacts on the final 
output. Specifically, faults near the most significant bit (MSB) 
position have an exponential effect when compared to faults 
near the least significant bit (LSB) position. Fig. 1(a) 
illustrates the effect of a SA1 fault near the MSB of the weight 
matrix. Unlike GNN weights, the adjacency matrix is stored 
in a binary format on crossbars indicating whether any given 
pair of vertices are connected in the graph or not. A SAF in 
the adjacency matrix can result in the addition (SA1) or 
deletion (SA0) of an edge in the stored graph, which alters the 
graph structure. SA0 faults in positions representing "one" in 
the adjacency matrix lead to edge deletion, whereas SA1 faults 
in positions representing "zero" adds an erroneous edge. The 
addition/deletion of edges results in incorrect aggregation 
leading to accuracy loss. Fig. 1(b) shows the effect of faults 
on the adjacency matrix. 

IV. THE FARE FRAMEWORK 

In this section, we present the salient features of the 
proposed FARe framework. FARe uses a fault-tolerant 
mapping algorithm to map the graph adjacency matrix to 
faulty crossbars for the aggregation phase, and a weight 
clipping technique to mitigate the effects of ReRAM faults on 
the weights in the combination phase. These two synergistic 
strategies enable reliable GNN training on ReRAM-based 
architectures with both pre- and post-deployment faults. 

A. Handling Faults in The Aggregation Phase 

The aggregation phase in GNN training and inferencing 
performs neighborhood aggregation (or message passing) 
using the graph adjacency matrix. However, current 
techniques only focus on ensuring efficient hardware 
utilization while mapping the adjacency matrix and are 
oblivious to ReRAM faults [14]. In this work, we propose a 
fault-aware approach to map the adjacency matrix to ReRAM 
crossbars. Our approach guarantees efficient resource 

TABLE I. COMPARISON OF EXISTING FAULT-TOLERANT TECHNIQUES  

 

Ref. 

 

Training  

Performance 

Overhead 

Combination/

Aggregation 

Mitigate Post-

deployment 

Faults 

[8] Y HIGH Y  /  Y Y 

[10] N LOW Y  /  N N 

[11] N LOW Y  /  Y N 

[9] N HIGH Y  /  N N 

[12] Y LOW Y  /  N Y 

[7] Y HIGH Y  /  Y Y 

a. "Y" represents suitability, while "N" denotes unsuitability for the technique. 

 

 

(a)  Weight Matrix 

        
(b) Adjacency Matrix 

Fig.1. Conceptual illustration of SAF in the ReRAM crossbars storing the 

weigth and graph adjacency matrices.  
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utilization while also incorporating fault-awareness. The 
algorithm reduces the problem to one of finding an optimal 
weighted bipartite graph matching that maps blocks of the 
adjacency matrix to ReRAM crossbars in a manner that 
maximizes its overlap with the location of SAFs, thereby 
minimizing the impact of faults. The static nature of the 
adjacency matrix facilitates a one-time computation to 
determine the fault-tolerant mapping considering pre-
deployment faults. 

The inputs to the mapping algorithm are: the adjacency 

matrix 𝐴i  of the 𝑖𝑡ℎ batch of subgraphs, the available set of m 
crossbars (𝐶 =  {𝑐0, 𝑐1, … , 𝑐𝑚−1}), and the existing ReRAM 
crossbar fault distribution (ℱ[0, … , 𝑚 − 1]).  The fault 
distribution ℱ[𝑗]  of each crossbar j is provided through a 
BIST circuit designed for SAF detection in ReRAM crossbars 
[7]. The BIST circuit adds a minimal area overhead (0.13% of 
total area) and is enabled initially to provide the pre-
deployment fault map. The output of the algorithm is the fault-
aware mapping (𝛱). Algorithm 1 shows the pseudocode for 
mapping the adjacency matrix 𝐴i . The algorithm is executed 
during the pre-processing phase on the host device. 

The steps of the mapping algorithm are as follows. First, 
the (𝑁 × 𝑁) adjacency matrix 𝐴i is decomposed into a set 𝐵 
of (𝑛 × 𝑛) disjoint equal sized blocks, where 𝑛 is the number 
of rows (and columns) of an ReRAM crossbar (𝑛 < 𝑁). Next, 
we compute a 𝑐𝑜𝑠𝑡(𝑖, 𝑗)  function to map all the 𝑛  rows of 
block 𝑎i in 𝐵 onto any given crossbar 𝑐j in 𝐶  using its fault 

map ℱ[𝑗]. This cost is defined as the minimum number of 
mismatches between a given row permutation of the matrix 
block and the target crossbar’s SA0 and SA1 locations – e.g., 
the mapping example shown in Fig. 1(b) will generate a cost 
of 3. We formulate this mapping problem as a weighted 
bipartite matching problem (line 5 of Algorithm 1), by 
constructing a bipartite graph: 𝐺1(𝑉1, 𝑉2, 𝐸) with 𝑉1 as the set 
of 𝑛 rows of block 𝑎i ; 𝑉2 as the set of n rows of the crossbar 
𝑐j, and E as the set of all edges connecting every row in 𝑎i to 

every row in 𝑐j . The weight of an edge is the number of 

mismatched locations for that row-to-row mapping. In our 
implementation, we use the b-Suitor algorithm, which is a 
half-approximation algorithm for optimal matching [15]. 

Next, using the information of all possible 𝑐𝑜𝑠𝑡(𝑖, 𝑗) 
values – i.e., minimum cost way to map every block in B to 
every crossbar in 𝐶 – we determine an optimal assignment for 
mapping the b blocks of B to the 𝑚 crossbars of 𝐶, where 𝑏 ≤
𝑚 (line 18 of Algorithm 1). Specifically, we consider another 
instance of minimum bipartite matching. The bipartite graph 
here is 𝐺2(𝑉1, 𝑉2, 𝐸) with 𝑉1 = 𝐵, 𝑉2 = 𝐶, and 𝐸 comprising 
of all edges connecting blocks to crossbars with their 
corresponding 𝑐𝑜𝑠𝑡(𝑖, 𝑗)  weights attached. The minimum 
matching output so obtained (𝛱) is then an optimized way to 
map the blocks in 𝐵 given 𝑚 crossbars from the set 𝐶. 

In addition, SA1 faults are more critical than SA0 faults as 
we show later. We incorporate this knowledge into the 
algorithm. In particular, we examine the minimum SA1 non-
overlap resulting from mapping any block in 𝐵 to the crossbar 
𝑐i. Additionally, we compute the edge density of blocks in 𝐵 
where edge density refers to the fraction of non-zero values 
(ones) within a given block. If the minimum non-overlap 
count is greater than the edge density of the sparsest block in 
𝐴i, we remove 𝑐i from the set of available crossbars (Line 12 
of Algorithm 1). This reduces the value of 𝑚. In cases where 
𝑏 = 𝑚, we compute the density distribution of the adjacency 
matrix blocks in the batch. We observe edge density as low as 

0.001 implying that only 0.1% of the values in the blocks are 
equal to one. Thus, we remove the sparsest block to be mapped 
onto crossbars (Line 14 of Algorithm 1) given the minimum 
non-overlap comparison. In such cases, we are reducing 𝑏 in 
our optimization problem to provide greater freedom while 
mapping. Note this is a worst-case scenario where SA1 fault 
pattern within a crossbar does not overlap with any blocks 
available in the batch even with row permutation. 

Post-deployment faults: During the mini-batch GNN 
training, subgraph adjacency matrices need to be mapped to 
the ReRAM crossbars in batches to enable pipelined training 
[13] (as shown in Fig. 2). This process leads to multiple 
ReRAM cell write operations. Therefore, we also consider 
post-deployment faults in addition to pre-deployment faults 
during GNN training. To achieve this, we enable the BIST 
circuit at the end of each epoch to obtain the fault distribution 
due to post-deployment faults. The BIST circuit introduces a 
negligible timing overhead (~0.13% to the overall execution 
time). At the end of an epoch, Algorithm 1 can be reinitialized 
to address the post-deployment faults. However, the overall 
mapping will be similar, given endurance of ReRAM cells 
(106-1012) is orders of magnitude higher than the number of 
writes in one epoch [5]. Hence, we only perform row 
permutation within crossbars to tackle post-deployment faults 
on top of the mapping 𝛱  (line 18 of Algorithm 1) for few 
faults that might appear after an epoch. The necessary 
computation for the row permutations (bipartite matching) is 

Fig.2. Pipelined GNN training in the presence of faults. 
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performed on the host (CPU/GPU) where the bipartite graphs 
are already created while computing the parameter 𝛱 . The 
matching algorithm used for row-permutations has a linear 
time complexity and generates the mapping for the next batch 
parallelly on the host device while the current batch is being 
executed on ReRAMs. This ensures that mapping 
computation considering post-deployment faults does not lead 
to additional performance impact. 

B. Handling Faults in the Combination Phase 

The Combination computation phase involves MVM with 
the GNN weight matrix. As discussed in Section III, a single 
SA1 fault near the MSB position can cause the weight value 
to become very high, also known as ‘weight explosion’. The 
explosion of even a small fraction of weights due to faults 
during training can cause significant deterioration of the 
predictive accuracy [12]. Therefore, it is crucial to tackle 
faults affecting weights, thereby ensuring reliable GNN 
training. We incorporate clipping during the combination 
phase to prevent weight explosion. The clipping operation 
restricts weight values from exceeding a specific threshold in 
presence of SAFs [12]. This threshold is a hyperparameter and 
remains constant throughout the training process. Applying 
clipping to unrealistically large weight values prevents the 
training process from becoming unstable. Consequently, the 
backpropagation algorithm can effectively train the remaining 
weights and compensate for the ones mapped to the faulty 
cells during training. This method acts as an implicit 
regularization technique and reduces the sensitivity of the loss 
function to faults. Weight clipping is equally effective for both 
pre- and post-deployment faults without any modification.  

V. EXPERIMENTAL RESULTS 

In this section, we present an experimental analysis of the 
proposed FARe framework for fault-aware GNN training on 
ReRAM-based PIM architectures. First, we describe the 
experimental setup used for the performance evaluation. Next, 
we assess the impact of SA0/SA1 faults. Finally, we compare 
the effectiveness of FARe in terms of GNN model accuracy 
and overall performance with respect to existing methods.  

A. Experimental Setup 

We consider four graph datasets in our experimental 

evaluation: protein-protein interaction (PPI), Reddit, Open 

Graph Benchmark-citation2 (Ogbl), and Amazon2M [16]. 

These graph datasets represent the typical size and diversity 

of use cases for training GNN models at the edge. Note that 

massive graphs (e.g., billions of nodes and edges) are best 

processed on cloud platforms and are not suitable for our 

work. We also use three types of GNN models to demonstrate 

the generalizability of FARe: Graph Convolution Networks 

(GCN), Graph Attention Networks (GAT), and Graph 

Sample and Aggregate (SAGE) [16]. Table II presents the 

details of the datasets, training hyperparameter 

configurations including learning rate (lr), batch size (Batch), 

number of graph partitions, number of training epochs used 

in this work. We employ mini-batch training, which uses 

small graph clusters (subgraphs) obtained from a monolithic 

graph via partitioning for GNN training [16]. Here, the graph 

is partitioned into smaller subgraphs using the METIS graph 

partitioning tool [17]. The partitioning step using METIS is a 

one-time process that takes a small portion of preprocessing 

time on the host device for the datasets considered here. The 

specifications of the ReRAM architecture used are described 

in Table III. Each ReRAM tile consumes 0.34W of power and 

occupies 0.157 mm2 of area. The ReRAM tile is equipped 

with a 16-bit comparator and a 2:1 mux for implementing 

weight clipping, which has little area and power overheads 

[12]. The modeling of area, latency of all on-chip buffers, and 

peripheral circuits were obtained using NeuroSim v2.1 [18]. 

We employ a PyTorch-based wrapper, which we 

incorporate into NeuroSim to simulate the effect of SAFs. 

SAFs are generally known to cluster across various fault 

centers [6]. Hence, we adopt a Poisson distribution of SAFs 

across the ReRAM crossbars and a uniform fault distribution 

within each crossbar. This results in some crossbars having a 

higher fault density than others, and an equal probability of 

fault occurrence in any ReRAM cell within a crossbar. Here, 

we define “fault density” as the percentage of ReRAM cells 

that are faulty in the architecture under consideration. 

Following prior work, we consider a SA0:SA1 fault density 

ratio of 9:1, indicating that SA0 faults are nine times more 

likely to occur than SA1 faults [6]. However, given the 

ongoing evolution of the ReRAM manufacturing process, we 

also consider a scenario where SA0 and SA1 faults have an 

equal probability of occurrence (i.e., SA0:SA1 = 1:1). FARe 

is equally applicable for any other fault ratio as well. 

B. Impact of SA0 and SA1 faults on GNN Training 

 First, we investigate the overall impact of SAFs on the 
GNN training process. Specifically, we assess the severity of 
SA0 and SA1 faults using two cases: i) SA0 only, and ii) SA1 
only. We did not consider fault densities beyond 5% in our 
evaluation, as such densities are not practical in real-world 
scenarios. This is because any faulty chip with a fault density 
exceeding 5% can be tested offline and subsequently 
discarded. In Fig. 3, we show the impact of SA0/SA1 faults 
on the final test accuracy of a GNN trained with the SAGE 
model and Amazon2M dataset as an example. Faults were 
introduced into the crossbars storing the weights and 
adjacency matrices separately to assess the impact of faults on 
each computational phase. We observe that SA1 faults have a 
greater negative effect on accuracy than SA0 faults for both 

TABLE II . GRAPH DATASETS & GNN WORKLOAD CONFIGURATION  

Dataset 
Dataset Statistics Hyperparameters 

(lr =0.01,epochs=100) 

GNN 

# Nodes # Edges Model 

PPI 56,944 818,716  Batch=5, Partitions=250 
GCN 

GAT 

Reddit 232,965 11,606,919  Batch=10, Partitions=1500 GCN 

Amazon2M 2,449,029 61,859,140  Batch=20, Partitions=10,000  
GCN 

SAGE 

Ogbl 2,927,963 30,561,187  Batch=16, Partitions=15,000 SAGE 

TABLE III. RERAM-PIM ARCHITECTURE SPECIFICATIONS 

ReRAM Tile  

96-ADCs (8-bits), 12×128×8 DACs (1-bit), 96 

crossbars, 128×128 crossbar size, 10MHz, 2-

bit/cell resolution, 8-comparators (16-bit, 2GHz), 
8-mux (2:1) 

 

 
Fig.3. The accuracy of trained model after introducing 5% SA0 or SA1 pre-
deployment faults on the weight and adjacency matrix separately. 
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weight and adjacency matrices. This knowledge is integrated 
into FARe, which efficiently addresses SA1 faults during both 
phases (aggregation and combination) of GNN training.  

C. Training with faults  

Next, we evaluate the effectiveness of the proposed FARe 
framework during GNN training on faulty ReRAM crossbars. 
Specifically, we compare the training accuracy achieved by 
FARe (Fig. 4(b)) versus fault-unaware (Fig. 4(a)) on the 
Reddit dataset with the GCN model as an example. We 
observed the same trend for the remaining datasets and GNN 
models. Here, “fault-unaware” refers to the naïve 
implementation of GNN training without the incorporation of 
any fault-mitigation strategy. Additionally, for the baseline, 
we compared both FARe and fault-unaware against the fault-
free GNN trained on ideal ReRAM crossbars. For a thorough 
evaluation, we vary the fault density from 1% to up to 5% with 
SA0:SA1 fault ratio of 9:1. Fig. 4(a) illustrates how the 
presence of faults seriously affects the accuracy for fault-
unaware, making the training process unstable. Conversely, 
the training accuracy of the fault-aware GNN training using 
FARe overlaps with the fault-free training as the GNN model 
converges.  This demonstrates the effectiveness of FARe in 
mitigating the adverse impact of faults in ReRAM crossbars. 

D. FARe Accuracy Evaluation 

Now, we evaluate the test accuracy of the trained models 
on faulty ReRAM crossbars using the FARe framework. We 
consider neuron reordering (NR) as one of the baselines since 
it can be used for both phases of GNN training unlike other 
techniques and does not need additional hardware (Table I). 
Since the neurons for the entire neural network are 
interconnected in a cascaded manner, we employ NR to 
permutate neurons to overlap with SAFs in both combination 
and aggregation phases in a unified manner. We also consider 
weight clipping as the second baseline to examine its 
effectiveness as a stand-alone fault-mitigation strategy during 
GNN training. Fig. 5 presents a comparative analysis of the 
test accuracy achieved by the trained GNN with three different 
models and four datasets when employing the fault-unaware 
method, NR, weight clipping, and FARe. In Fig. 5(a), we 
consider SA0:SA1 fault ratio of 9:1, and experiment with 
three fault densities: 1%, 3%, and 5%. As shown in Fig. 5(a), 
the use of fault-unaware mapping results in significant 
accuracy loss on faulty ReRAM crossbars, thereby 
demonstrating the need for a fault-tolerant approach. NR as a 
fault-tolerant technique improves accuracy; however, the 

accuracy drop is significant compared to the fault-free case. 
This is primarily due to the dimension of reordering being 
relatively large. For instance, considering a hidden layer with 
a dimension of 1024 and each GNN weight distributed across 
eight cells (using 2-bits/cell resolution, and 16-bit fixed point 
representation), the resulting reordering unit will have a 
dimension of 1024×8. Consequently, the use of such large 
units for reordering may not find significant overlap with 
SAFs. Similarly, weight clipping observes a significant 
accuracy drop as a stand-alone technique as faults affecting 
the aggregation phase of computation remain unaddressed. 
The faults in the adjacency matrix propagate false information 
leading to contamination in the learned GNN parameters after 
training. On the other hand, the FARe approach restores 
accuracy of the trained GNN with an accuracy drop of less 
than 1% even at high fault densities. This result demonstrates 
the remarkable effectiveness of FARe for fault-tolerant GNN 
training compared to the existing techniques.  

Now, we consider a scenario where SA1 and SA0 faults 
are equally probable. In Fig. 5(b), we show a similar accuracy 
comparison as earlier but with SA0:SA1=1:1. We observe a 
significantly higher accuracy drop with this fault ratio as an 
increase in the number of SA1 faults compared to the 9:1 
SA0:SA1 ratio leads to a more substantial impact on the 
model's accuracy. Since FARe effectively addresses SA1 
faults for both weights and adjacency matrices, it exhibits only 
a 1.1% loss in accuracy compared to fault-free case and 
restores the accuracy by 47.6% for the Reddit dataset as an 
example. Interestingly, NR performed especially poorly under 
1:1 fault ratio, with an accuracy drop of 14.5%. The significant 
accuracy drop observed can be attributed to the fact that NR 
does not consider the criticality of SA1 fault over SA0 fault. 

So far, we have considered only pre-deployment faults. 
Next, we also consider post-deployment faults during training. 

          Reddit (GCN)   

 
Fig.4. Training accuracy without/with the adoption of FARe approach under 

varying pre-deployment fault densities. 
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Fig.5. Comparative analysis of the trained model considering different pre-deployment fault densities, using the fault-unaware, NR, weight clipping, FARe 

approaches against the fault-free trained GNN model. 

0.5

0.7

0.9

1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5%

PPI (GCN) PPI (GAT) Reddit (GCN) Ogbl (SAGE) Amazon2M (GCN) Amazon2M (SAGE)

A
cc

u
ra

cy

fault-free fault-unaware NR Weight Clipping FARe

0.3

0.5

0.7

0.9

1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5%

PPI (GCN) PPI (GAT) Reddit (GCN) Ogbl (SAGE) Amazon2M (GCN) Amazon2M (SAGE)

A
cc

u
ra

cy

fault-free fault-unaware NR Weight Clipping FARe

               fault free                      1%                      3%                     5% 

Authorized licensed use limited to: Washington State University. Downloaded on July 08,2024 at 16:53:21 UTC from IEEE Xplore.  Restrictions apply. 



To simulate post-deployment faults, we uniformly increase 
the fault density every epoch by a total of 1%, adding to the 
pre-deployment faults. It is important to note that this 
represents a worst-case scenario, as faults may not occur after 
every epoch. Fig. 6 shows the training accuracy considering 
post-deployment faults. For this experiment, we have 
considered three scenarios: 1%, 2%, and 3% pre-deployment 
fault density with 1% additional post-deployment faults. We 
experiment with SA0:SA1 fault ratios of both 9:1 and 1:1. We 
observe a similar trend where FARe demonstrates better fault 
tolerance with a maximum accuracy loss of 1.9%, while NR 
incurs an accuracy loss of up to 15%. Overall, FARe achieves 
nearly ideal accuracy levels, with an accuracy drop of less than 
1% and 2% for SA0:SA1 fault ratios of 9:1 and 1:1 
respectively across graph datasets and GNN models 
considering both pre- and post-deployment faults. 

E. FARe performance evaluation 

Next, we compare the timing overhead of using the fault-
tolerant approaches with respect to training on fault-free 
hardware. The overall execution time of the pipelined 
implementation is determined by the end-to-end pipeline 
depth (𝑁 + 𝑆 − 1) and the delay of each pipeline stage, where 
𝑁 is the number of input subgraphs, and 𝑆 is the number of 
pipeline stages. Fig. 7 shows the normalized execution time 
for FARe, NR, and weight clipping. FARe introduces a 1% 
timing overhead initially in the pre-processing phase to 
determine the optimal mapping of the adjacency matrices on 
the crossbars. Further, weight clipping necessitates an 
additional pipeline stage to perform the clipping operation. 
Given that 𝑁 is significantly larger than 𝑆, the added cycle 
introduced by weight clipping is negligible in comparison to 
the total execution time. Overall, the execution of FARe 
introduces an overhead of ~1%. On the contrary, using NR as 
a fault-tolerant technique incurs a significant performance 
penalty. This is due to the pipeline being stalled repeatedly 
after processing each batch to perform reordering on the 
updated weight values. 

VI. CONCLUSION 

ReRAM-based architectures enable high-performance and 
energy-efficient training of GNNs. However, the current 
ReRAM fabrication process and repeated writes result in 
faults that hinder reliable operation of the whole system. In 
this work, we have proposed a framework, FARe, to address 
faults in both the computational phases of GNN training. 

FARe uses fault-aware mapping for the adjacency matrix 
along with weight clipping for the weight matrix to handle 
faults. Notably, FARe is agnostic to GNN models and 
achieves near-ideal accuracy even with a high fault density of 
5%. Further, FARe achieves up to 4× speedup as compared to 
current fault-tolerant approaches. 

REFERENCES 

[1]  J. Zhou et al., "Graph neural networks: A review of methods and 

applications," AI Open, vol. 1, pp. 57-81, 2020.  

[2]  F. Wang et al., "Deep Learning for Edge Computing Applications: A 

State-of-the-Art Survey," IEEE Access, vol. 8, pp. 58322-58336, 

2020.  

[3]  L. Song, Q. Xuehai, H. Li and Y. Chen, "PipeLayer: A Pipelined 

ReRAM-Based Accelerator for Deep Learning," in HPCA, 2017.  

[4]  A. Ankit et al., "PANTHER: A Programmable Architecture for Neural 
Network Training Harnessing Energy-Efficient ReRAM," IEEE TC, 

2020.  

[5]  Z. He et al., "Noise Injection Adaption: End-to-End ReRAM Crossbar 
Non-ideal Effect Adaption for Neural Network Mapping," in DAC, 

2019.  

[6]  C.-Y. Chen et al., "RRAM Defect Modeling and Failure Analysis 
Based on March Test and a Novel Squeeze-Search Scheme," IEEE 

TC, vol. 64, p. 180 –190, 2015.  

[7]  L. Xia et al., "Fault-Tolerant Training Enabled by On-Line Fault 

Detection for RRAM-Based Neural Computing Systems," IEEE 

TCAD, vol. 38, pp. 1611-1624, 2019.  

[8]  L. Xia et al., "Stuck-at Fault Tolerance in RRAM Computing 

Systems," IEEE Journal on Emerging and Selected Topics in Circuits 

and Systems, vol. 8, no. doi: 10.1109/JETCAS.2017.2776980, pp. 
102-115, 2018.  

[9]  H. Shin, M. Kang and L. -S. Kim, "Fault-Free: A Framework for 

Analysis and Mitigation of Stuck-at-Fault on Realistic ReRAM-Based 
DNN Accelerators," IEEE TC, vol. 72, pp. 2011-2024, 2023.  

[10]  G. Yuan et al., "Improving DNN Fault Tolerance using Weight 

Pruning and Differential Crossbar Mapping for ReRAM-based Edge 
AI," in ISQED, 2021.  

[11]  S. Wang et al., "Fault-Tolerant Deep Neural Networks for Processing-

In-Memory based Autonomous Edge Systems," in DATE, 2022.  

[12]  B. K. Joardar et al., "Learning to Train CNNs on Faulty ReRAM-

based Manycore Accelerators," ACM Transactions on Embedded 

Computing Systems, pp. 1-23, 2021.  

[13]  A. I. Arka et al., "Performance and Accuracy Tradeoffs for Training 

Graph Neural Networks on ReRAM-Based Architectures," IEEE TC, 

vol. 29, no. 10, pp. 1743-1756, 2021.  

[14]  L. Song et al., "GraphR: Accelerating Graph Processing Using 

ReRAM," in HPCA, 2018.  

[15]  A. Khan et al., "Efficient Approximation Algorithms for Weighted B-
Matching," in SIAM Journal on Scientific Computing, 2016.  

[16]  W. Hu et al., "Open Graph Benchmark: Datasets for Machine 

Learning on Graphs," in NeurIPS, 2020.  

[17]  G. Karypis and V. Kumar, "A Fast and High Quality Multilevel 

Scheme for Partitioning Irregular Graphs," SIAM Journal on Scientific 

Computing, vol. 20, no. 6, p. 359–392, 1998.  

[18]  X. Peng et al., "DNN+NeuroSim V2.0: An end-to-end benchmarking 

framework for compute-in-memory accelerators for on-chip training," 

arXiv:2003.06471, 2020.  

 
    Fig.7. Normalized execution-time using FARe, NR, weight clipping,  

    and w.r.t. fault-free training as the baseline. 
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Fig.6. Comparative analysis of the trained model considering different pre-deployment fault densities along with 1% additional post-deployment faults, 

using the fault-unaware, NR, weight clipping, and FARe approaches against the fault-free trained GNN model. 
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