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Abstract— Resistive random-access memory (ReRAM)-
based processing-in-memory (PIM) architecture is an attractive
solution for training Graph Neural Networks (GNNs) on edge
platforms. However, the immature fabrication process and
limited write endurance of ReRAMs make them prone to
hardware faults, thereby limiting their widespread adoption for
GNN training. Further, the existing fault-tolerant solutions
prove inadequate for effectively training GNNs in the presence
of faults. In this paper, we propose a fault-aware framework
referred to as FARe that mitigates the effect of faults during
GNN training. FARe outperforms existing approaches in terms
of both accuracy and timing overhead. Experimental results
demonstrate that FARe framework can restore GNN test
accuracy by 47.6% on faulty ReRAM hardware with a ~1%
timing overhead compared to the fault-free counterpart.

Keywords— ReRAM, PIM, Fault-Tolerant Training, GNNs.

1. INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-
the-art performance across a wide spectrum of graph-based
applications such as node classification, link prediction, and
graph clustering [1]. As a result, there is a growing demand
for training GNNs at the edge. This necessitates the design of
edge platforms based on single chips or embedded systems to
support GNN training [2]. However, GNN training is both
memory and compute-intensive. Conventional edge
platforms, designed with CPUs/GPUs require large volumes
of off-chip data movement, giving rise to performance
bottlenecks [3]. Hence, this has motivated the need to explore
computing architectures that reduce data movement for edge
platforms. In this regard, processing-in-memory (PIM)-
enabled architectures have emerged as a potential solution as
they enable reduction of unnecessary data movement.

ReRAM-enabled PIM architectures have become popular
for high-performance and energy-efficient Neural Network
(NN) training and inferencing using edge devices with small
form factors [4]. The crossbar array structure of ReRAM-
based PIM architectures makes them well-suited for
performing highly parallel matrix-vector multiplication
(MVM) operations, which is the predominant computation
kernel in both GNN training and inferencing. However, the
relatively less mature fabrication process of ReRAMs
compared to standard CMOS and their low endurance give
rise to different types of hardware faults. These faults lead to
unreliable training and poor test accuracy [5]. The most severe
faults are stuck-at-faults (SAFs), which make the ReRAM cell
resistance unchangeable. Hence, hardware/software fault-
mitigation techniques are being studied to enable reliable
training and testing using unreliable ReRAM-based systems.

The GNN training and inferencing computations are split
into two phases: aggregation and combination. The
aggregation phase computes the aggregated node features
using the graph adjacency matrix, while the combination
phase computes the node embeddings for the GNN layer using
learnable weights. These two computation phases require that
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both graph adjacency matrices and GNN weights to be stored
on ReRAM crossbars. However, existing fault-mitigation
methods are mostly tailored towards NN with only their
weight parameters mapped to ReRAM crossbars (such as in
CNNs). As we show later, SAFs in ReRAM crossbars storing
graph adjacency matrix also lead to significant accuracy loss.
Hence, any fault-tolerant scheme should address faults on
ReRAM cells storing both adjacency and weight matrices to
ensure reliable GNN training without introducing significant
performance overhead.

In this work, we propose a Fault-aware GNN training
framework for ReRAM-based PIM architectures referred to as
FARe. Our approach mitigates the adverse effect of faults in
ReRAM crossbars when training with various GNN models
and datasets. FARe considers the SAF distribution in ReRAM
crossbars to appropriately map the graph adjacency matrix and
leverages weight clipping to address faults on the GNN weight
matrix. Unlike existing fault-tolerant approaches, the model-
and dataset-agnostic nature of FARe makes it generalizable
across different types of GNN workloads and graph datasets,
which is demonstrated by our experiments. Specific
contributions of this paper are:

e We propose a novel fault-tolerant framework called
FARe that enables on-device GNN training using
ReRAM-based architectures. FARe is agnostic to both
GNN models and graph datasets.

e We demonstrate the limitations of existing fault-
tolerant methods when used for GNN training,
highlighting their significant performance overhead.

o We show that FARe achieves near-ideal accuracies in
scenarios of high fault rates of up to 5%. Remarkably,
FARe enables reliable training with <1% test accuracy
loss and around 1% performance overhead with state-
of-the-art GNN models and diverse graph datasets.

To the best of our knowledge, this is the first work that
comprehensively addresses SAFs in ReRAM-based PIM
architectures for GNN training. The rest of this paper is
organized as follows; Section II discusses prior work; Section
II outlines the GNN computation kernel, and Section IV
elaborates on the proposed fault-tolerant solution. Section V
presents the experimental results, and section VI concludes the
paper by summarizing the key findings of this work.

II. RELATED WORK
A. Faults in ReRAMs

ReRAMs are susceptible to various types of faults. These
faults lead to deviations in the resistance of a ReRAM cell due
to various factors including noise, process variations,
temperature, IR drop, etc. [5]. Among these, SAF is one of the
most severe faults that can hinder reliable computation on
ReRAM-based architectures [5]. SAFs manifest in two forms:
Stuck-at-0 (SA0) and Stuck-at-1 (SA1) faults, causing the
ReRAM cell to be permanently stuck in either a low resistance
state (LRS) or a high resistance state (HRS) [6]. These faults
an arise pre-deployment (at t = 0—) because of manufacturing
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defects or post-deployment (emerged during their use, i.e., at
t > 0) due to limited cell endurance. Built-in self-test (BIST)
circuits can identify the type and location of SAFs [7], which
can be utilized to develop fault-tolerant design methodologies.

B. Existing Fault-tolerant Techniques

Several fault-tolerant techniques have been proposed to
handle SAFs in ReRAM-based architectures. These
techniques can be broadly categorized into hardware and
software-based approaches. Hardware techniques typically
involve adding redundancy to the system, such as using
redundant columns as a replacement for faulty ReRAM
columns [8]. The use of a fault map to compensate the output
is also proposed as another possible solution [9]. However,
these approaches require additional hardware, which increases
the overall energy and area cost required for on-device
training. Software approaches, on the other hand, typically
involve implementing algorithmic mechanisms to mitigate the
effects of SAFs. Neuron reordering is a remapping approach
that proposes permutating neurons to overlap with SAFs for
fault tolerance [7]. However, the performance impact of
repeatedly computing the remapping during the training
process is significant. Other software methods include model
retraining or fine-tuning to recover the accuracy loss due to
SAFs. Unstructured weight pruning fixes faulty weight
elements to constant values based on SAF information [10].
Another retraining approach is stochastic training on pre-
trained models [11]. However, fault-tolerant retraining
algorithms are specifically targeted toward inferencing, and
the focus of this paper is on training the GNN model from
scratch. Recently, weight clipping has been proposed as a low-
cost solution to deal with faults in ReRAM [12]. However,
weight clipping cannot be used solely as a fault-mitigation
technique, as faults affecting the adjacency matrix remain
unaddressed by clipping only GNN weights. Table I
summarizes the existing approaches aimed at SAF mitigation
along with their capabilities and limitations. None of the
existing methods have all the necessary features. Hence, we
explore a new fault-tolerant framework for GNN training to
fill this gap. This framework is aimed at handling SAFs in
both phases of GNN computation while minimizing
performance overheads.

III. GNN COMPUTATION IN THE PRESENCE OF FAULTS

In this section, we discuss the impact of SAFs during GNN
training on the ReRAM-based PIM accelerator.

A. SAFs During Training

Recently, ReRAM-based PIM architectures have been
proposed to accelerate the sparse and dense MVM operations
in the aggregation and combination phases (defined above) of
GNN training and inferencing [13]. These architectures
employ mini-batch training where the input graph is first
partitioned into smaller subgraphs, and the subgraphs are
processed in batches. Subsequently, a pipelined training
strategy is adopted where all the GNN layers are processed
simultaneously [3]. Consequently, both phases of GNN
computation are susceptible to SAFs.

The weights on ReRAM-based architectures are
commonly represented using 16-bit fixed-point precision. The
16 bits are distributed across multiple cells with architectures
often adopting a 2-bit representation per cell. Subsequently,
partial outputs are accumulated using a shift-and-add
operation to obtain the final output of the MVM operation.
Due to this distributed mapping, faults at different positions

TABLE I. COMPARISON OF EXISTING FAULT-TOLERANT TECHNIQUES

Performance | Combination/ N([;et;)glz;empe(:lstt_
Ref. | Training Overhead Aggregation Faults
[8] Y HIGH Y/Y Y
[10] N LOW Y /N N
[11] N LOW Y/Y N
9] N HIGH Y /N N
[12] Y LOW Y /N Y
[7] Y HIGH Y/Y Y

&Y™ represents suitability, while "N" denotes unsuitability for the technique.
within a single weight vector have varying impacts on the final
output. Specifically, faults near the most significant bit (MSB)
position have an exponential effect when compared to faults
near the least significant bit (LSB) position. Fig. 1(a)
illustrates the effect of a SA1 fault near the MSB of the weight
matrix. Unlike GNN weights, the adjacency matrix is stored
in a binary format on crossbars indicating whether any given
pair of vertices are connected in the graph or not. A SAF in
the adjacency matrix can result in the addition (SAl) or
deletion (SAO0) of an edge in the stored graph, which alters the
graph structure. SAOQ faults in positions representing "one" in
the adjacency matrix lead to edge deletion, whereas SA1 faults
in positions representing "zero" adds an erroneous edge. The
addition/deletion of edges results in incorrect aggregation
leading to accuracy loss. Fig. 1(b) shows the effect of faults
on the adjacency matrix.

IV. THE FARE FRAMEWORK

In this section, we present the salient features of the
proposed FARe framework. FARe uses a fault-tolerant
mapping algorithm to map the graph adjacency matrix to
faulty crossbars for the aggregation phase, and a weight
clipping technique to mitigate the effects of ReRAM faults on
the weights in the combination phase. These two synergistic
strategies enable reliable GNN training on ReRAM-based
architectures with both pre- and post-deployment faults.

A. Handling Faults in The Aggregation Phase

The aggregation phase in GNN training and inferencing
performs neighborhood aggregation (or message passing)
using the graph adjacency matrix. However, current
techniques only focus on ensuring efficient hardware
utilization while mapping the adjacency matrix and are
oblivious to ReRAM faults [14]. In this work, we propose a
fault-aware approach to map the adjacency matrix to ReRAM
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Fig.1. Conceptual illustration of SAF in the ReRAM crossbars storing the
weigth and graph adjacency matrices.
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utilization while also incorporating fault-awareness. The
algorithm reduces the problem to one of finding an optimal
weighted bipartite graph matching that maps blocks of the
adjacency matrix to ReRAM crossbars in a manner that
maximizes its overlap with the location of SAFs, thereby
minimizing the impact of faults. The static nature of the
adjacency matrix facilitates a one-time computation to
determine the fault-tolerant mapping considering pre-
deployment faults.

The inputs to the mapping algorithm are: the adjacency
matrix A, of the i batch of subgraphs, the available set of m
crossbars (C = {cg, ¢y, .., Cm—1}), and the existing ReRAM
crossbar fault distribution (F[O,..,m —1]). The fault
distribution F[j] of each crossbar j is provided through a
BIST circuit designed for SAF detection in ReRAM crossbars
[7]. The BIST circuit adds a minimal area overhead (0.13% of
total area) and is enabled initially to provide the pre-
deployment fault map. The output of the algorithm is the fault-
aware mapping (IT). Algorithm 1 shows the pseudocode for
mapping the adjacency matrix 4;. The algorithm is executed
during the pre-processing phase on the host device.

The steps of the mapping algorithm are as follows. First,
the (N X N) adjacency matrix 4; is decomposed into a set B
of (n X n) disjoint equal sized blocks, where n is the number
of rows (and columns) of an ReRAM crossbar (n < N). Next,
we compute a cost(i, ) function to map all the n rows of
block a; in B onto any given crossbar ¢j in C using its fault
map F[j]. This cost is defined as the minimum number of
mismatches between a given row permutation of the matrix
block and the target crossbar’s SAO and SA1 locations — e.g.,
the mapping example shown in Fig. 1(b) will generate a cost
of 3. We formulate this mapping problem as a weighted
bipartite matching problem (line 5 of Algorithm 1), by
constructing a bipartite graph: G; (Vy, V,, E) with V; as the set
of n rows of block a; ; V, as the set of n rows of the crossbar
¢j, and E as the set of all edges connecting every row in a; to
every row in ¢;. The weight of an edge is the number of
mismatched locations for that row-to-row mapping. In our
implementation, we use the b-Suitor algorithm, which is a
half-approximation algorithm for optimal matching [15].

Next, using the information of all possible cost(i,j)
values — i.e., minimum cost way to map every block in B to
every crossbar in C — we determine an optimal assignment for
mapping the b blocks of B to the m crossbars of C, where b <
m (line 18 of Algorithm 1). Specifically, we consider another
instance of minimum bipartite matching. The bipartite graph
here is G,(V4,V,, E) with V; = B,V, = C, and E comprising
of all edges connecting blocks to crossbars with their
corresponding cost(i,j) weights attached. The minimum
matching output so obtained (/) is then an optimized way to
map the blocks in B given m crossbars from the set C.

In addition, SA1 faults are more critical than SAO faults as
we show later. We incorporate this knowledge into the
algorithm. In particular, we examine the minimum SA1 non-
overlap resulting from mapping any block in B to the crossbar
¢;. Additionally, we compute the edge density of blocks in B
where edge density refers to the fraction of non-zero values
(ones) within a given block. If the minimum non-overlap
count is greater than the edge density of the sparsest block in
A;, we remove ¢; from the set of available crossbars (Line 12
of Algorithm 1). This reduces the value of m. In cases where
b = m, we compute the density distribution of the adjacency
matrix blocks in the batch. We observe edge density as low as

Algorithm 1: Algorithm for mapping an adjacency
matrix on to the ReRAM crossbar
Input: A;[N, N]: The adjacency matrix for batch i
C' ={cg, 1, ... Cm—1}: The set of m crossbars available
for mapping
F0,m — 1]: Fault distribution for all crossbars
n: The target number of rows per crossbar
Output: A mapping II of the blocks of A; on to C
: B + Block decompose A; into blocks of size n x n each
: Let b« |B|
. cost[b, m| + Initialize a 2D matrix
: for all ((I,g:(ij> S (B, C} do
cost[i, j] + MinBipartiteMatch(a;.c;, F)
. end for
D; + the edge density of block a;, Va; € B
: for j € cost[:,m] do
agp + Dj.popMin() /= find sparsest block «/
if min(SAl(cost[:,j])) > a,, then
if m > b then
remove ¢; from C
else
remove a,, from B
end if
end if
: end for
. Il «~ MinBipartiteMatch(B, C,cost)
. return I

C®E RS9 E BT 2Y

0.001 implying that only 0.1% of the values in the blocks are
equal to one. Thus, we remove the sparsest block to be mapped
onto crossbars (Line 14 of Algorithm 1) given the minimum
non-overlap comparison. In such cases, we are reducing b in
our optimization problem to provide greater freedom while
mapping. Note this is a worst-case scenario where SA1 fault
pattern within a crossbar does not overlap with any blocks
available in the batch even with row permutation.

Post-deployment faults: During the mini-batch GNN
training, subgraph adjacency matrices need to be mapped to
the ReRAM crossbars in batches to enable pipelined training
[13] (as shown in Fig. 2). This process leads to multiple
ReRAM cell write operations. Therefore, we also consider
post-deployment faults in addition to pre-deployment faults
during GNN training. To achieve this, we enable the BIST
circuit at the end of each epoch to obtain the fault distribution
due to post-deployment faults. The BIST circuit introduces a
negligible timing overhead (~0.13% to the overall execution
time). At the end of an epoch, Algorithm 1 can be reinitialized
to address the post-deployment faults. However, the overall
mapping will be similar, given endurance of ReRAM cells
(105-10'?) is orders of magnitude higher than the number of
writes in one epoch [5]. Hence, we only perform row
permutation within crossbars to tackle post-deployment faults
on top of the mapping I (line 18 of Algorithm 1) for few
faults that might appear after an epoch. The necessary
computation for the row permutations (bipartite matching) is
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Fig.2. Pipelined GNN training in the presence of faults.
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performed on the host (CPU/GPU) where the bipartite graphs
are already created while computing the parameter I1. The
matching algorithm used for row-permutations has a linear
time complexity and generates the mapping for the next batch
parallelly on the host device while the current batch is being
executed on ReRAMs. This ensures that mapping
computation considering post-deployment faults does not lead
to additional performance impact.

B. Handling Faults in the Combination Phase

The Combination computation phase involves MVM with
the GNN weight matrix. As discussed in Section 111, a single
SA1 fault near the MSB position can cause the weight value
to become very high, also known as ‘weight explosion’. The
explosion of even a small fraction of weights due to faults
during training can cause significant deterioration of the
predictive accuracy [12]. Therefore, it is crucial to tackle
faults affecting weights, thereby ensuring reliable GNN
training. We incorporate clipping during the combination
phase to prevent weight explosion. The clipping operation
restricts weight values from exceeding a specific threshold in
presence of SAFs [12]. This threshold is a hyperparameter and
remains constant throughout the training process. Applying
clipping to unrealistically large weight values prevents the
training process from becoming unstable. Consequently, the
backpropagation algorithm can effectively train the remaining
weights and compensate for the ones mapped to the faulty
cells during training. This method acts as an implicit
regularization technique and reduces the sensitivity of the loss
function to faults. Weight clipping is equally effective for both
pre- and post-deployment faults without any modification.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental analysis of the
proposed FARe framework for fault-aware GNN training on
ReRAM-based PIM architectures. First, we describe the
experimental setup used for the performance evaluation. Next,
we assess the impact of SAO/SA1 faults. Finally, we compare
the effectiveness of FARe in terms of GNN model accuracy
and overall performance with respect to existing methods.

A. Experimental Setup

We consider four graph datasets in our experimental
evaluation: protein-protein interaction (PPI), Reddit, Open
Graph Benchmark-citation2 (Ogbl), and Amazon2M [16].
These graph datasets represent the typical size and diversity
of use cases for training GNN models at the edge. Note that
massive graphs (e.g., billions of nodes and edges) are best
processed on cloud platforms and are not suitable for our
work. We also use three types of GNN models to demonstrate
the generalizability of FARe: Graph Convolution Networks
(GCN), Graph Attention Networks (GAT), and Graph
Sample and Aggregate (SAGE) [16]. Table II presents the
details of the datasets, training hyperparameter
configurations including learning rate (Ir), batch size (Batch),
number of graph partitions, number of training epochs used
in this work. We employ mini-batch training, which uses
small graph clusters (subgraphs) obtained from a monolithic
graph via partitioning for GNN training [16]. Here, the graph
is partitioned into smaller subgraphs using the METIS graph
partitioning tool [17]. The partitioning step using METIS is a
one-time process that takes a small portion of preprocessing
time on the host device for the datasets considered here. The
specifications of the ReRAM architecture used are described

TABLE II . GRAPH DATASETS & GNN WORKLOAD CONFIGURATION

Dataset Dataset Statistics Hyperparameters GNN
atase
# Nodes | # Edges (Ir =0.01,epochs=100) Model
. GCN
PPI 56,944 818,716 |Batch=5, Partitions=250

GAT
Reddit 232,965 | 11,606,919 | Batch=10, Partitions=1500 GCN
. GCN

Amazon2M| 2,449,029 | 61,859,140 | Batch=20, Partitions=10,000
SAGE
Ogbl 12,927,963 (30,561,187 | Batch=16, Partitions=15,000 | SAGE

TABLE III. RERAM-PIM ARCHITECTURE SPECIFICATIONS

96-ADCs (8-bits), 12x128x8 DACs (1-bit), 96
crossbars, 128x128 crossbar size, 10MHz, 2-

ReRAM Tile bit/cell resolution, 8-comparators (16-bit, 2GHz),

8-mux (2:1)

in Table III. Each ReRAM tile consumes 0.34W of power and
occupies 0.157 mm? of area. The ReRAM tile is equipped
with a 16-bit comparator and a 2:1 mux for implementing
weight clipping, which has little area and power overheads
[12]. The modeling of area, latency of all on-chip buffers, and
peripheral circuits were obtained using NeuroSim v2.1 [18].

We employ a PyTorch-based wrapper, which we
incorporate into NeuroSim to simulate the effect of SAFs.
SAFs are generally known to cluster across various fault
centers [6]. Hence, we adopt a Poisson distribution of SAFs
across the ReRAM crossbars and a uniform fault distribution
within each crossbar. This results in some crossbars having a
higher fault density than others, and an equal probability of
fault occurrence in any ReRAM cell within a crossbar. Here,
we define “fault density” as the percentage of ReRAM cells
that are faulty in the architecture under consideration.
Following prior work, we consider a SA0:SA1 fault density
ratio of 9:1, indicating that SAO faults are nine times more
likely to occur than SA1 faults [6]. However, given the
ongoing evolution of the ReRAM manufacturing process, we
also consider a scenario where SAO and SAI faults have an
equal probability of occurrence (i.e., SAO:SA1 = 1:1). FARe
is equally applicable for any other fault ratio as well.

B. Impact of SAO and SA1 faults on GNN Training

First, we investigate the overall impact of SAFs on the
GNN training process. Specifically, we assess the severity of
SAO0 and SAT1 faults using two cases: i) SA0 only, and ii) SA1
only. We did not consider fault densities beyond 5% in our
evaluation, as such densities are not practical in real-world
scenarios. This is because any faulty chip with a fault density
exceeding 5% can be tested offline and subsequently
discarded. In Fig. 3, we show the impact of SAO/SA1 faults
on the final test accuracy of a GNN trained with the SAGE
model and Amazon2M dataset as an example. Faults were
introduced into the crossbars storing the weights and
adjacency matrices separately to assess the impact of faults on
each computational phase. We observe that SA1 faults have a
greater negative effect on accuracy than SAOQ faults for both
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weight and adjacency matrices. This knowledge is integrated
into FARe, which efficiently addresses SA1 faults during both
phases (aggregation and combination) of GNN training.

C. Training with faults

Next, we evaluate the effectiveness of the proposed FARe
framework during GNN training on faulty ReRAM crossbars.
Specifically, we compare the training accuracy achieved by
FARe (Fig. 4(b)) versus fault-unaware (Fig. 4(a)) on the
Reddit dataset with the GCN model as an example. We
observed the same trend for the remaining datasets and GNN
models. Here, “fault-unaware” refers to the naive
implementation of GNN training without the incorporation of
any fault-mitigation strategy. Additionally, for the baseline,
we compared both FARe and fault-unaware against the fault-
free GNN trained on ideal ReRAM crossbars. For a thorough
evaluation, we vary the fault density from 1% to up to 5% with
SAO0:SA1 fault ratio of 9:1. Fig. 4(a) illustrates how the
presence of faults seriously affects the accuracy for fault-
unaware, making the training process unstable. Conversely,
the training accuracy of the fault-aware GNN training using
FARe overlaps with the fault-free training as the GNN model
converges. This demonstrates the effectiveness of FARe in
mitigating the adverse impact of faults in ReRAM crossbars.

D. FARe Accuracy Evaluation

Now, we evaluate the test accuracy of the trained models
on faulty ReRAM crossbars using the FARe framework. We
consider neuron reordering (NR) as one of the baselines since
it can be used for both phases of GNN training unlike other
techniques and does not need additional hardware (Table I).
Since the neurons for the entire neural network are
interconnected in a cascaded manner, we employ NR to
permutate neurons to overlap with SAFs in both combination
and aggregation phases in a unified manner. We also consider
weight clipping as the second baseline to examine its
effectiveness as a stand-alone fault-mitigation strategy during
GNN training. Fig. 5 presents a comparative analysis of the
test accuracy achieved by the trained GNN with three different
models and four datasets when employing the fault-unaware
method, NR, weight clipping, and FARe. In Fig. 5(a), we
consider SA0:SA1 fault ratio of 9:1, and experiment with
three fault densities: 1%, 3%, and 5%. As shown in Fig. 5(a),
the use of fault-unaware mapping results in significant
accuracy loss on faulty ReRAM crossbars, thereby
demonstrating the need for a fault-tolerant approach. NR as a
fault-tolerant technique improves accuracy; however, the
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Fig.4. Training accuracy without/with the adoption of FARe approach under
varying pre-deployment fault densities.

accuracy drop is significant compared to the fault-free case.
This is primarily due to the dimension of reordering being
relatively large. For instance, considering a hidden layer with
a dimension of 1024 and each GNN weight distributed across
eight cells (using 2-bits/cell resolution, and 16-bit fixed point
representation), the resulting reordering unit will have a
dimension of 1024x8. Consequently, the use of such large
units for reordering may not find significant overlap with
SAFs. Similarly, weight clipping observes a significant
accuracy drop as a stand-alone technique as faults affecting
the aggregation phase of computation remain unaddressed.
The faults in the adjacency matrix propagate false information
leading to contamination in the learned GNN parameters after
training. On the other hand, the FARe approach restores
accuracy of the trained GNN with an accuracy drop of less
than 1% even at high fault densities. This result demonstrates
the remarkable effectiveness of FARe for fault-tolerant GNN
training compared to the existing techniques.

Now, we consider a scenario where SA1 and SAOQ faults
are equally probable. In Fig. 5(b), we show a similar accuracy
comparison as earlier but with SA0:SA1=1:1. We observe a
significantly higher accuracy drop with this fault ratio as an
increase in the number of SA1 faults compared to the 9:1
SAO0:SAL1 ratio leads to a more substantial impact on the
model's accuracy. Since FARe effectively addresses SAl
faults for both weights and adjacency matrices, it exhibits only
a 1.1% loss in accuracy compared to fault-free case and
restores the accuracy by 47.6% for the Reddit dataset as an
example. Interestingly, NR performed especially poorly under
1:1 fault ratio, with an accuracy drop of 14.5%. The significant
accuracy drop observed can be attributed to the fact that NR
does not consider the criticality of SA1 fault over SAO fault.

So far, we have considered only pre-deployment faults.
Next, we also consider post-deployment faults during training.
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Fig.5. Comparative analysis of the trained model considering different pre-deployment fault densities, using the fault-unaware, NR, weight clipping, FARe

approaches against the fault-free trained GNN model.
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Fig.6. Comparative analysis of the trained model considering different pre-deployment fault densities along with 1% additional post-deployment faults,
using the fault-unaware, NR, weight clipping, and FARe approaches against the fault-free trained GNN model.

To simulate post-deployment faults, we uniformly increase
the fault density every epoch by a total of 1%, adding to the
pre-deployment faults. It is important to note that this
represents a worst-case scenario, as faults may not occur afier
every epoch. Fig. 6 shows the training accuracy considering
post-deployment faults. For this experiment, we have
considered three scenarios: 1%, 2%, and 3% pre-deployment
fault density with 1% additional post-deployment faults. We
experiment with SA0:SA1 fault ratios of both 9:1 and 1:1. We
observe a similar trend where FARe demonstrates better fault
tolerance with a maximum accuracy loss of 1.9%, while NR
incurs an accuracy loss of up to 15%. Overall, FARe achieves
nearly ideal accuracy levels, with an accuracy drop of less than
1% and 2% for SA0:SA1 fault ratios of 9:1 and 1:1
respectively across graph datasets and GNN models
considering both pre- and post-deployment faults.

E. FARe performance evaluation

Next, we compare the timing overhead of using the fault-
tolerant approaches with respect to training on fault-free
hardware. The overall execution time of the pipelined
implementation is determined by the end-to-end pipeline
depth (N + S — 1) and the delay of each pipeline stage, where
N is the number of input subgraphs, and S is the number of
pipeline stages. Fig. 7 shows the normalized execution time
for FARe, NR, and weight clipping. FARe introduces a 1%
timing overhead initially in the pre-processing phase to
determine the optimal mapping of the adjacency matrices on
the crossbars. Further, weight clipping necessitates an
additional pipeline stage to perform the clipping operation.
Given that N is significantly larger than S, the added cycle
introduced by weight clipping is negligible in comparison to
the total execution time. Overall, the execution of FARe
introduces an overhead of ~1%. On the contrary, using NR as
a fault-tolerant technique incurs a significant performance
penalty. This is due to the pipeline being stalled repeatedly
after processing each batch to perform reordering on the
updated weight values.

VI. CONCLUSION

ReRAM-based architectures enable high-performance and
energy-efficient training of GNNs. However, the current
ReRAM fabrication process and repeated writes result in
faults that hinder reliable operation of the whole system. In
this work, we have proposed a framework, FARe, to address
faults in both the computational phases of GNN training.
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Fig.7. Normalized execution-time using FARe, NR, weight clipping,
and w.r.t. fault-free training as the baseline.
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FARe uses fault-aware mapping for the adjacency matrix
along with weight clipping for the weight matrix to handle
faults. Notably, FARe is agnostic to GNN models and
achieves near-ideal accuracy even with a high fault density of
5%. Further, FARe achieves up to 4% speedup as compared to
current fault-tolerant approaches.
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