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Abstract— This study employs intersection point height fre-
quency analysis to quantitatively assess the balance control
strategies used by individuals with Parkinson’s disease (PD)
during quiet stance. The changes in balance strategy are
quantified using a triple inverted pendulum human model with
a linear quadratic regulator as the neural balance controller.
By considering both translational and angular body accel-
erations, we extract intersection point frequency curves that
contain crucial information about the neuromuscular balance
strategy of the PD patients. To contextualize our findings,
we compare the observed frequency behavior with previous
studies examining quiet stance in individuals without PD.
This comprehensive investigation furnishes valuable insights
into the disparities between the balance strategies of the PD
patients and the healthy counterparts, shedding light on the
influence of PD on balance control dynamics. The findings
hold promising potential for applications in PD diagnostics
and the development of robotic assistive devices for PD patient
rehabilitation.

I. INTRODUCTION

Parkinson’s disease (PD) is an idiopathic chronic neuro-
degenerative disorder [1], [2]. The progressive PD condition
manifests in various motor symptoms, including tremors,
rigidity, bradykinesia (slowness of movement), and postural
instability, along with a range of non-motor symptoms [3].
Currently, there is no cure for PD, but medications like
levodopa help patients manage their symptoms. PD diagnosis
relies on observing motor symptoms and excluding other
possible disorders. An early and accurate diagnosis is crucial
to ensure patients receive timely medical care and proactive
symptom management. Earlier physiotherapy can help reveal
how the patient has been affected by the disease [4]. A
thorough investigation of motor behavior in PD patients is
essential to identify potential gait-based indicators of PD.

Recent studies have investigated robotic assistive devices
in PD neuromuscular rehabilitations and balance enhance-
ments [5]–[9]. However, developing effective robotic inter-
ventions requires a holistic understanding of PD patients’
neural balance mechanisms to improve their movement
quality. Quiet stance becomes intricate in PD patients due
to limited insights into the factors contributing to destabi-
lization and the strategies employed to counteract instability.
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Studies have explored postural instability in PD [10], em-
ploying various analytical metrics. Additionally, efforts have
been made to construct neuromechanical models aimed at
quantifying the PD gait abnormalities [11], [12].

This study complements existing research by investigating
gait frequencies of PD patients using the intersection point
(IP) height concept [13]. A double-inverted pendulum model
was introduced in [14] to analyze the findings of [13]. Recent
studies highlight the non-trivial aspect of knee movements in
balance strategies during quiet stance [15], [16]. To account
for knee excursions, the double-inverted pendulum model
was expanded into a triple-inverted pendulum (TIP) model
in [17]. IP height analysis has been employed to perform gait
frequency analysis in balancing strategies in walking [18],
robotic control [19], quiet standing [13] and prostheses
evaluation [17], [20]. This method offers a unique advantage
over traditional balance assessments like center of pressure
(COP) or center of mass (COM) by providing insights into
both the translational and rotational body accelerations [21].

This work analyzes the neural balance strategy and behav-
ior of PD patients under various conditions and diagnostic
categories using the IP analysis. By examining specific
PD groups, we gain a comprehensive understanding of
the dynamic nature of balance changes in the PD patient
population. The study employs a linear quadratic regulator
(LQR)-controlled TIP model to mimic human quiet stance
dynamics. The LQR represents the human neural controller
to quantify the specific parameters that define the balance
strategy. A novel contribution is the introduction of the
IP frequency curve as a quantifiable PD indicator, offering
diagnostic value and insights into PD affected neural balance
control mechanisms. The findings can be further extended
to develop effective and personalized robotic assistive de-
vices and controllers that would improve the mobility for
individuals living with PD.

This paper is organized as follows. An overview of the
neural balance control model and IP analysis method are
given in Section II. Section III details patient data and the
model data and the results. The implications of the obser-
vations are discussed in Section IV. Section V summarizes
the concluding remarks.

II. METHOD

In this section, we first present the LQR-controlled TIP
model. Then the IP concept for human postural balance in
quiet stance is reviewed. Finally, the IP height frequency
method is presented.



A. Neural Balance Control Model

The neural balance control model comprises of the TIP
biomechanical model and the LQR controller. As shown in
Fig. 1(a), the TIP model assumes that human body motion
occurs only in the sagittal plane and that the human is
on a rigid surface [17]. The TIP model includes the lower
link (shank), middle link (thigh) and upper link (head, arms
and torso). The mass, joint angle with vertical line, length,
COM position, and moment of inertia of the lower, middle
and upper links are denoted by mi, θi, li, lci, and Ii,
i = 1, 2, 3, respectively. Table I lists the parameters and
their corresponding values that are used in this study.

(a) (b)

Fig. 1. (a) Triple inverted pendulum model to represent a human at quiet
stance. (b) Visualization of the IP.

TABLE I
MODEL PARAMETERS FOR THE TIP MODEL

Parameter Link 1 Link 2 Link 3

mi (kg) 6.5 16.5 53

li (m) 0.415 0.413 0.793

lci (m) 0.24 0.255 0.265

Ii (kgm2) 0.1 0.3 3

Similar to [17], denoting θ = [θ1 θ2 θ3]
T , the equation

of motion for the TIP is written as

M(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = τ (1)

where M(θ), C(θ, θ̇), and G(θ) are the inertia, Coriolis,
and gravitational matrices, respectively. The joint torques τ
is given as

τ = τ st + ω,

where τ st = [τ1 τ2 τ3] is the stabilizing torque vector
and ω is the joint perturbations that are represented by an
uncorrelated white Gaussian noise vector with zero mean
and variance σ = diag(σ2

1 , σ
2
2 , σ

2
3). The GRFs are computed

using the total body mass (mtot = m1 +m2 +m3) and the
COM accelerations in the horizontal (ax) and vertical (az)
directions, that is,

Fx = mtotax, Fz = mtot(az + g).

The anterior-posterior (AP) COP position is computed as

COPx = τ1/Fz.

Let x = [θT θ̇
T
]T denote the state variable. To model

the neural motor stabilization as an LQR controller, we lin-
earize (1) around the upright balancing position, denoted as
x∗ = 0 and τ ∗ = 0. Using the small angle approximation,
the linear state space model is as follows.

˙̄x = Alinx̄+Blin(τ̄ + ω)|x̄=x−x∗,τ̄=τ−τ∗ , (2)

where Alin and Blin represent the linearized state space
matrices. For detail information about these matrices, readers
can refer to [17]. We introduce positive definite symmetric
matrices Q and R to penalize the state and control inputs
in the LQR cost function

J =

∫ ∞

0

[
x̄T (t)Qx̄(t) + τ̄T (t)Rτ̄ (t)

]
dt. (3)

By minimizing (3), we obtain the gain matrix Kst and the
stabilizing torques are computed as

τ st = −Kstx. (4)

The LQR controller serves as the neural controller and
ensures the stability of the closed-loop system if the
(Alin,Blin) pair is controllable. The matrix Q = I6 (identity
matrix) is used to uniformly penalize deviations in each state.
Matrix R is defined as

R = α diag(β1, β2, β3),

where α represents the relative cost between the state
deviation and control effort, and β = [β1 β2 β3]

T represents
the relative magnitude of joint effort at the ankle, knee
and hip joints, respectively. These parameters, along with
σ, constitute the variable set that characterizes the control
strategy.

B. Intersection Point Height

The IP is defined as the point at which the ground reaction
force (GRF) vectors intersect at consecutive time instants;
see Fig. 1(b). The GRF direction (ϕ (t)) is approximated as
the absolute value of the reciprocal of the horizontal (Fx)
and vertical (Fz) components, that is,

ϕ (t) ≈
∣∣∣∣Fx

Fz

∣∣∣∣ . (5)

The human subject’s height is measured to approximate the
COM. Only the AP component of the COP is considered for
IP height computation.

While there is no apparent relation between the unfiltered
COP and ϕ(t), the signals are known to be correlated for
frequencies greater than 0.4 Hz [13]. In order to unveil their
underlying relationship, the signals are initially processed
using a Hann window. A zero-lag, 2nd order Butterworth
filter is used to parse the signals into frequency bands of
0.2 Hz width to finally reveal an approximately linear trace.
The reciprocal of the slope of the trace is defined as the



height of the IP for the band considered. This process is
repeated to get 38 non-overlapping bands with frequencies
centered from 0.5 Hz to 7.9 Hz at 0.2 Hz increments. The
resultant IP height frequency curve is used for analysis.

Fig. 2 shows the IP height varying with frequency for
a healthy subject during quiet stance. The IP height is
plotted as the normalized value with respect to the COM
height. Hence, one in the IP curve figure indicates the
COM height. It is widely acknowledged that the quiet stance
IP frequency curves of healthy individuals adhere to three
distinct characteristic patterns [13]: (1) the IP is located
above the COM height at lower frequencies, (2) the IP height
decays as frequency increases, and (3) the IP height reaches
an asymptote below COM height at high frequencies. The
crossover frequency (CF) and the high-frequency asymptote
(HFA) are two pivotal metrics used to rigorously assess
the behavior of the IP curves. The CF marks the precise
frequency at which the IP curve dips below the COM,
while the HFA characterizes the IP curve’s behavior at high
frequencies. These metrics are crucial for analyzing IP curve
dynamics.

Fig. 2. A typical IP curve of a healthy subject during quiet stance.

C. Statistical Analysis Method
Fig. 3 outlines the overall procedure for IP-based data

analysis. The GRF and COP data were first derived from the
experimental and simulation data. Frequency curves were
then extracted, followed by statistical analysis for for the
datasets of each subject group. The characteristic of the
IP curve was assessed through the quantification of three
key model parameters, namely, α, β and σ. To enable
robust statistical analysis of the dependency of the IP height
on frequency, simulation studies were conducted using the
LQR-controlled TIP model. To collect enough data for
analysis, 30 trials were conducted for each parameter set
and each trial lasted 50 s at a sampling rate of 100 Hz.
The parameter sets include α, β and σ. The physiological
significance of these parameters was elaborated in [14] as
follows: (1) α characterizes the control effort employed to
attain stability, (2) β denotes the relative penalty for joint
control, and (3) σ signifies neuromuscular noise at each
joint.

III. EXPERIMENTS AND RESULTS

In this section, we first introduce the dataset of PD patients
used in our study. Subsequently, we present the results of IP
frequency curve extraction, followed by a detailed analysis
of our findings and relevant observations.

Fig. 3. Pipeline of the IP height analysis.

A. PD Patients Dataset

We conducted an extensive statistical analysis using a
publicly available dataset that was published in [22]. This
dataset contains valuable biomechanical data acquired dur-
ing experimental trials involving PD patients’ quiet stance.
Specifically, it provides GRFs and COP data in the AP
direction, which are essential for conducting IP height fre-
quency analysis. The experimental protocol had the subjects
to perform quiet standing under various testing conditions
including: (i) standing on a rigid surface (RS) or unstable
surface (US), (ii) having their eyes open (EO) or eyes closed
(EC) and (iii) being on medication (ON) or off medication
(OFF).

The patient trials were first sorted into 8 cases of inter-
est (COI) as listed in Table II. In addition to the 8 COIs
that arose from the changing test protocol, 4 other groups of
interest (GOI) were formed from the subjects with varied PD
diagnoses. This meticulous categorization allows for a com-
prehensive analysis of the dataset, enhancing the ability to
draw meaningful conclusions. Table III lists the detailed GOI
data information. We considered essential PD phenotypes,
specifically, tremor-dominant (TD) and postural instability
and gait difficulty (PIGD), as the GOIs. The PIGD subtype
manifests symptoms like bradykinesia, rigidity during move-
ment, and a notably rapid disease progression. Conversely,
the TD subtype is characterized by a resting tremor, normal
gait, and a gradual disease progression. Notably, PIGD-
diagnosed patients tend to experience significantly greater
intellectual, motor, and occupational impairment than TD
patients. Moreover, they are at a higher risk of developing
conditions such as dementia, depression, and apathy, as
noted in [23]. Furthermore, two other GOIs were formed
based on the presence or absence of freezing of gait (FoG),
distinguished as freezers and non-freezers. The comprehen-
sive categorization explores various aspects of PD and its
implications on balance and gait dynamics.

This dataset reports data from 32 patients, with 3 trials
conducted for each of the 8 COIs for every patient, amount-
ing to a total of 767 trials (32 patients × 8 cases per patient
× 3 trials per case, with one missing trial). A single IP
frequency curve was computed for each trial, as explained
in Section II-B. Subsequently, we generated a mean IP curve
by aggregating data from all trials corresponding to a specific



TABLE II
CASES OF INTEREST

S COI IP Curve Linear Fit

1 EO+RS+OFF y = −0.01685x+ 0.8013

2 EO+RS+ON y = −0.01058x+ 0.772

3 EO+US+OFF y = −0.007991x+ 0.7679

4 EO+US+ON y = −0.001201x+ 0.8079

5 EC+RS+OFF y = 0.000614x+ 0.706

6 EC+RS+ON y = 0.008483x+ 0.7158

7 EC+US+OFF y = 0.02152x+ 0.7341

8 EC+US+ON y = −0.02027x+ 0.8597

TABLE III
GROUPS OF INTEREST

S GOI COI IP Curve Linear Fit

1 PIGD EO+RS+OFF y = −0.02305x+ 0.8606

2 PIGD EO+RS+ON y = −0.03237x+ 0.9131

3 PIGD EO+US+OFF y = −0.003184x+ 0.7444

4 PIGD EO+US+ON y = 0.04575x+ 0.6329

5 PIGD EC+RS+OFF y = −0.00009x+ 0.7305

6 PIGD EC+RS+ON y = −0.01172x+ 0.8153

7 PIGD EC+US+OFF y = 0.08529x+ 0.5518

8 PIGD EC+US+ON y = −0.01529x+ 0.8124

9 TD EO+RS+OFF y = −0.01379x+ 0.7693

10 TD EO+RS+ON y = 0.002647x+ 0.688

11 TD EO+US+OFF y = −0.01113x+ 0.7847

12 TD EO+US+ON y = −0.0298x+ 0.9179

13 TD EC+RS+OFF y = 0.001244x+ 0.6911

14 TD EC+RS+ON y = 0.02184x+ 0.6541

15 TD EC+US+OFF y = −0.00969x+ 0.7883

16 TD EC+US+ON y = −0.02594x+ 0.897

17 Freezers EO+RS+OFF y = −0.02049x+ 0.848

18 Freezers EO+RS+ON y = 0.002115x+ 0.7143

19 Freezers EO+US+OFF y = −0.002411x+ 0.7586

20 Freezers EO+US+ON y = 0.03745x+ 0.6795

21 Freezers EC+RS+OFF y = −0.0004105x+ 0.7295

22 Freezers EC+RS+ON y = 0.01392x+ 0.7701

23 Freezers EC+US+OFF y = −0.01328x+ 0.8394

24 Freezers EC+US+ON y = −0.02296x+ 0.8918

25 Non-Freezers EO+RS+OFF y = −0.01436x+ 0.7694

26 Non-Freezers EO+RS+ON y = −0.01927x+ 0.8114

27 Non-Freezers EO+US+OFF y = −0.01162x+ 0.7721

28 Non-Freezers EO+US+ON y = −0.02765x+ 0.8956

29 Non-Freezers EC+RS+OFF y = 0.001315x+ 0.6907

30 Non-Freezers EC+RS+ON y = 0.004763x+ 0.6787

31 Non-Freezers EC+US+OFF y = 0.04532x+ 0.662

32 Non-Freezers EC+US+ON y = −0.01848x+ 0.8383

combination of GOI and COI.

B. Experimental IP Height Curve Analysis

Fig. 4 illustrates a comparison between an IP curve of
a healthy subject and the mean IP curve derived from all
COIs of PD patients. The stark difference between the

two curves arises from the PD patient’s behavior, which
deviates from the three well-established patterns governing
IP curves in healthy subjects. While prior IP-based investi-
gations (e.g., [17]) relied on exponential-fitted IP curves for
quantitative analysis, it is evident that this approach becomes
inadequate for PD patients. Consequently, we adopt linear
fitting to compare the IP curves of PD patients, which exhibit
a relatively flat profile interspersed with sporadic spikes of
varying amplitudes.
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Fig. 4. Comparison of IP curve between healthy subjects and PD patients.

Fig. 5(a) shows the mean IP curves for the COIs. The
highest spikes at high frequencies are generated by the
“EC+US+OFF” case, followed by the “EO+US+ON” and
“EC+RS+ON” cases. The highest spike at lower frequencies
(2-3 Hz) is achieved by the “EO+RS+ON” case. Most of
the COIs show moderate spikes in the frequency range of 1-
5 Hz, and are flat between 5-6.5 Hz. High-magnitude spikes
indicate active stabilization effort to prevent instability, while
moderate spikes mark the presence of some balancing strat-
egy implemented by the PD patients.

The detailed linear fit parameters of each subset’s mean
IP curve are listed in Tables II and III. It is noticed that
for the COIs, the slope is negative for all EO cases and
positive for all but one EC case. This observation indicates
that on the whole, for EC cases, there are more spikes at
higher frequencies than other cases. The PD patients tried
to stabilize their bodies by employing an ankle-like strategy
to reduce their sway, which could be self-perceived as
excessive. With the EO case, visual correction of perceived
sway is possible, and few corrective measures are taken
to allow for a more natural sway, which results in flat IP
curves for PD patients. The absolute values of the slope are
similar for COIs with the same visual and surface conditions,
regardless of the medication state. The intercepts of the
slopes, when arranged in ascending order, reveal pairs of
COI subsets as: “EC+RS”, “US+OFF”, “EO+RS”, and
“US+ON”. This suggests that balance in the RS test be
heavily dependent on the visual feedback to the patients
while the balance strategy for the US test is likely closely
tethered to the medication intake.

Fig. 5(b) shows the IP frequency curve comparison among
the PIGD and the TD GOIs. The average IP curve for
subjects with PIGD shows a high amplitude of spikes at
2-4 Hz and high amplitude spikes for above 7 Hz. The
TD IP curve on the other hand shows more spikes with
moderate amplitude spread throughout all frequencies than
other types of PD patients. For freezers, the absolute slope



(a) (b) (c)

Fig. 5. IP height-frequency curves from experimental data: (a) Comparison among all COIs; (b) Comparison among PIGD and TD GOIs; (c) Comparison
among freezers and non-freezers GOIs.

amplitude varies from the OFF to ON state, while there is not
significant difference in non-freezers. This indicates that the
medications have a pronounced effect on patients with FoG
as expected. High-amplitude spikes in the mean IP curve are
observed at ranges of 2-4 Hz and 6-8 Hz in freezers and 1.5-
2.5 Hz and 7-7.5 Hz in non-freezers; see Fig. 5(c). Across
all GOIs, it is noticed that the slopes of the linear fits are
almost flat for the case of “EC+RS+OFF”. It was found that
the phenomenon was due to spikes at all frequencies and this
implies that there was no structured balance strategy except
undirected efforts to stabilize upright gait.

C. Model Simulation Results

To statistically analyze the IP curves, a one-way ANOVA
was employed to extract the mean and standard deviation of
IP curves across various subgroups. Specifically, the focus
of COI was on the “EO+RS+OFF” condition as the TIP
model considered is relatively simple with a stable base. The
simulated IP curves were obtained from the LQR-controlled
TIP model. In order to find the best-fit model parameters
for each GOI’s mean IP curve, the linear fits for the several
simulated IP curve sets were found. Each experimental IP
curve’s linear fit was compared against the simulated IP
curve linear fits; see Fig. 6. The average error between the
linear fits was computed as

e =
N∑
i=1

|fitexp(i)− fitsim(i)|
N

, (6)

where N is the number of frequency bands under consid-
eration, fitexp(i) and fitsim(i) are the mean GOI and the
simulated IP curves for the ith frequency band, respectively.
The model parameter set for which magnitude of e was
minimized with respect to a given GOI was considered the
best-fit parameter set for that GOI.

The best-fit model parameters that were able to describe
the “EO+RS+OFF” experimental IP curves were highly
dissimilar from those of healthy IP curves; see Table IV.
For example, α for normal IP curves is around 106, implying
that healthy subjects use a minimum effort control strategy
to balance [14]. However, in the abnormal PD experimental
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Fig. 6. Example of finding the experimental and simulated IP curve linear
fits for comparison.

TABLE IV
THE LQR CONTROLLER PARAMETERS FOR VARIOUS CASE STUDIES

S Case α β1 β2 β3 σ1 σ2 σ3

1 Overall 10 1 0.1 0.1 0 1 1

2 PIGD 10 1 0.1 1 0 1 1

3 TD 10 1 0.1 0.1 0 1 0

4 Freezer 10 1 0.1 1 0 0 1

5 Non-Freezer 10 1 0.1 0.1 0 1 1

IP curves, the number of parameter sets increases as α goes
below a magnitude of 10. This indicates that the control
strategy employed by PD patients requires considerable
effort. Several combinations of the β and σ parameters were
examined. It was found that ankle effort was more heavily
penalized than knee and hip effort, contrary to the usual
heavy penalization of hip strategy [14]. It was also found
that knee actuation cannot be penalized heavily to get the ex-
perimental IP curve behavior. This indicates that the patients
heavily use knee and hip strategies to balance compared to
healthy subjects. The best-match relative noise was found
when less number of joint strategies were involved, that is,
when the σ set had not more than two non-zero elements.

On comparing the best-fit parameters of each GOI with the
overall parameters describing the experimental PD dataset,
we observed the differences in the balance preferences of
each subgroup. The PIGD phenotype and freezers penalized
hip strategy as much as they penalized ankle strategy. The
TD phenotype engaged fewer joints to balance than other
types of PD patients. Similarly, freezers used less joints than
non-freezers in their balance strategy. The use of knee joint



strategy was preferred across all the cases.

IV. DISCUSSION

Our findings reveal that the extracted PD patients’ IP
curves do not match all three typical characterization pat-
terns seen in healthy individuals. While further investiga-
tions are needed to validate the efficacy of IP curves in
distinguishing PD patients from healthy subjects, they hold
substantial promise as a gait-based diagnosis method for
PD. Despite limitations to the “EO+RS+OFF” case, an
advanced comprehensive model could systematically analyze
PD patient gait across various test scenarios.

The flatness observed in PD IP curves may indicate a
lack of sophisticated balance strategies in PD patients. The
work in [14] eliminated a single-inverted pendulum (SIP)
model approach to replicate the IP phenomena of healthy
humans at quiet stance. Similar to the PD IP curves in
this work, the SIP model cannot produce the IP curve
characterization patterns. However, unlike the SIP IP curves,
which cannot exceed COM mathematically, PD IP curves
exhibit spikes surpassing the COM. The observed spikes
vary in amplitudes from mild to extreme and range from
none to numerous. These spikes suggest that PD patients
attempt to employ ankle strategies to stabilize themselves.
Nonetheless, this balancing strategy is non-optimal and can
potentially contribute to balance instability.

The IP method was able to provide insights into the
preferred neural balance strategy in PD subjects. The in-
formation it furnished is detailed and extensive compared
to other common frequency analysis methodologies (e.g.,
power spectral density) and balance metrics (e.g., COP and
COM excursions [24]). While the IP curves themselves can
act as a diagnostic tools, the LQR-controlled TIP model
offers an avenue to further assess existing underlying neu-
romuscular behavior and control strategies at the joint level.
Gaining in-depth understanding into quantifiable differences
in gait characteristics among PD phenotypes is essential
to develop custom rehabilitation strategies and to design
assistive exoskeleton controllers to specifically target the
motor movement deficiencies and balance challenges.

V. CONCLUSION

This paper investigated frequency characteristics of quiet
stance in PD patients. IP height analysis was performed
on the patient data and the resultant curves were compared
with IP curves generated from a LQR-controlled TIP model.
The LQR parameters from the best linear fits were used
to quantify neural balance strategies in PD patient subsets.
Findings revealed significant differences in IP curve behavior
between the PD patients and the healthy individuals. Future
work includes applying advanced biomechanical models to
other test cases and exploring IP frequency curves’ potential
as a diagnostic tool for PD.
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