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Abstract

Increasing system complexity affects the complexity of their verification strategies, cognitively overloading engineers throughout
the system development lifecycle. A graph-based approach has been developed to allow a scalable verification strategy complexity
analysis through the use of fundamental patterns. Through the verification strategies graphs, this paper proposes a possibility of a
mathematical measurement for verification strategies independent from the system complexity in terms of requirements and their
verification. Two verification strategies on real world systems were used to showcase the scalability and resource efficiency of the
approach. Ordinal comparison between the two graphs revealed that there were mathematical graph complexity measures correlated
with the complexity of verification strategies they represent, with their fundamental patterns providing additional information on
their differences. These correlations indicate that the verification strategy complexity is connected to their graph complexity,
validating the feasibility of a quantitative measurement applicable to existing real-world applications and future system
developments.
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1. Introduction

Verification is the process of assessing the fulfillment of a number of system requirements by a system using
various verification methods including inspection, analysis, demonstration, or testing (Engel, 2010). These verification
activities are performed in a specific sequence to satisfy relevant requirements, forming a verification strategy (Walden
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et al.,, 2015). These sequences are designed to achieve certain functional confidence in target systems while
maximizing resource efficiency. We suggest that the complexity of these verification strategies is dictated by the
number of requirements, verification activities, and their interconnections. Verification strategies can also be
conceptualized as a sequential information transaction, since a verification activity is defined as “the collection of
information about a specific aspect of the system under development” (Jung and Salado, 2023a). Such information, in
the form of verification evidence, forms an information influence between verification activities and requirements
(Salado and Kannan, 2018). Since information processing requires cognition (Piccinini and Scarantino, 2011), more
complex verification strategy likely requires an increased cognitive load of engineers, which is known to be positively
associated with human errors (Ayres, 2001; Dorner and Giiss, 2022) when there is cognitive overload (Kirsh, 2000).
We hypothesize that, as a result of verification complexity, engineers could experience a range of cognition bias errors
from overgeneralizations, information misinterpretations, false assumptions, or priority mismatches (Ddrner and Giss,
2022).

Reducing the cognitive load of engineers may therefore be crucial to reduce possible human errors during
verification planning and assessment. Providing a more computational foundation to the field is one of the possible
approaches to such problem, converting the verification strategy into a machine-readable data. This conversion allows
a mathematical approach to verification strategy analysis that can provide better data visualization (Anderson et al.,
2011) or isolating elements for task complexity reduction (Ayres, 2006).

The goal of this paper is to assess the feasibility of a quantifiable complexity metric for verification strategies. This
was because we only had access to two real world verification strategies eliminating the possibility of non-linear
interpolation in the previous research (Jung and Salado, 2023a). On top of that, there is no publicly available numerical
complexity metrics for verification strategies to our knowledge. Linear regression cannot be done without an existing
numerical measure, be it manual or automated. Expanding on the previous research on graph-based verification
strategy analysis, this paper searched differences in graph complexity of the two datasets. These differences were then
compared to manually determined verification complexity, where one verification strategy was deemed more complex
than the other by the domain experts.

The paper identified a set of graph complexity measures as verification strategy complexity indicators based on
their ordinal similarity between two datasets and the manually perceived verification strategy complexity order. A
series of graph complexity measures were found and their relative differences between two datasets were analyzed to
detect possible complexity differences between them. The measures with adequate relative differences are considered
as the verification strategy complexity indicators, showing possible correlations between the graph complexity and
verification strategy complexity in contextually rich real-world verification strategies.

This paper is organized as follows. Section 2 discusses the research design, including the scale of verification
strategies, knowledge graph construction, descriptions of two data sources, and the metrics used during the analysis.
Section 3 shows the ordinal comparison between two datasets based on a size-based heuristic and expert opinions
about their perceived complexities, on the whole graphs as well as their subgraphs specific to a number of fundamental
verification strategy patterns. Section 4 provides discussions and concluding remarks on the study, accompanied by a
description of planned future work on the verification complexity measure proposal.

2. Research Design
2.1. Data sources and Knowledge Graphs

A graph-based approach to verification strategy complexity analysis has been proposed to allow a scalable complex
verification strategy analysis. A verification strategy graph is an acyclic directed knowledge graph representing the
verification strategy, having verification activity entities as nodes and information flow as edges (Salado and Kannan,
2018). An initial analysis of these knowledge graphs revealed that the graph-based approach was capable of
representing complex verification strategies used in two real-life industrial applications. The complex interconnections
between requirements and verification activities were represented as a single graph, successfully representing large-
scale verification strategies exceeding traditional verification engineering research use cases in terms of problem sizes
and entity interdependencies (Engel, 2010). Quantifiable measurements with visualizations provided evidence of
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analysis that can be performed quickly on verification strategies regardless of their sizes and the interconnections
within them while the graph visualizations offered manually interpretable summary of the verification strategies (Jung
and Salado, 2023a). The graph-based approach was then expanded with eight fundamental patterns that were based
on fundamental patterns of verification strategies identified in past research (Jung and Salado, 2023b; Salado and
Kannan, 2019). Eight fundamental patterns were proposed as substitutes for the elemental patterns to cover a wider
range of verification behaviors, each with distinct graph structure characteristics. The retrieved subgraphs were
manually interpreted to reveal the informative nature of fundamental pattern subgraphs, reducing the cognitive load
of engineers by presenting a more focused view with a specific goal in smaller entity sizes. In this research, graphical
quality measures were assumed to have connections to the quality and complexity of the verification strategies.

Two verification strategy datasets, corresponding to two different systems, were independently provided by two
international private companies in the form of Excel files containing requirements and verification matrices. The first
project pharma was aimed at providing a non-pharmacological physical treatment device for a specific medical
condition, while the second project defense developed a defense system product. In accordance with non-disclosure
agreements made between the University of Arizona and both companies, any competitively sensitive information
was protected through anonymization and sanitation. The verification matrix for the pharma project contained system
requirements, associated verification activities, associated verification evidence in the form of verification closeout
documents, and additional information about the model used in the verification activities. Traceability between the
different objects was provided by having them in the same row in one sheet or manually assigning unique identifiers
across different sheets. The artifacts for the defense project were produced in a DOORS database, which was exported
to a single file before deliberation. The verification matrix contained system requirements and associated verification
events and/or activities. Traceability between the different objects was managed in DOORS and was exported as
objects in the same row in one sheet or assigning unique identifiers across different sheets.

Both strategies encompass complex, real-world problems with requirement and verification sizes far exceeding
other data sources used in the existing literature; defense contains 5,779 requirements and 3,115 verification activities
as shown in Table 1 while the largest toy problem used in existing literature has 15 of each (Salado and Kannan,
2019). They underwent graph a construction process we previously employed (Jung and Salado, 2023a). The
parameter and verification nodes were read as the basis of respective verification strategy graphs, while other external
entities such as model and document were added when direct connections to the former node types were found within
the datasets. The relationships are divided into four categories: a verification verifies a parameter, a parameter satisfies
another parameter, a parameter requires a model, and a verification generates a document. There are clear size
differences between the two datasets, both in terms of entities (nodes) and relationships (edges). Following the
heuristic of size correlating with complexity as well as manual domain expert determination, the defense graph is
assumed to have higher cognitive loads compared to the pharma graph due to their differences in verification strategy
complexity.

Table 1 The number of entities and relationships in pharma and defense verification strategy graphs

Nodes Verification Parameter Document = Model Edges verifies  satisfies  requires  generates
pharma 179 129 48 48 pharma 179 61 129 194
defense 3,115 5,779 - 28 defense 11,036 3,768 2,515 -

2.2. Fundamental Patterns Used for Analysis

The elemental patterns of verification strategies represent seven distinctive verification scenarios in their basic
format (Salado and Kannan, 2019). The culmination of a single pattern results in a set of connected subgraphs
representing each of the pattern’s verification scenarios. We hypothesize that these subgraphs would exhibit
quantitatively distinguishable graphical characteristics containing human-readable contexts. The complexity of human
cognition in understanding these pattern subgraphs would therefore be correlated with graph complexity measures.

The structure of the available dataset resulted in three elemental patterns inaccessible. Patterns II and IV were
excluded due to the lack of hierarchical variation activities in the dataset, while the lack of temporal variations in the
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source verification matrices rendered Pattern VII inapplicable. We previously proposed eight fundamental patterns
(Jung and Salado, 2023b) to cover more variations in the verification scenarios in order to observe the similarities and
differences between graphical structures and verification scenarios in more detail. Five of these fundamental patterns
in Table 2 were used in this research. First, a generic pattern S! represents a structural characteristic baseline. S*, S*,
and S7 are slightly altered versions of elemental patterns. S® examines the orthogonality in the verification strategy,
which is defined as parameter subsets independently verified without accessing each other. A semi-orthogonal pattern
was found as a variation of S8, where the definition of orthogonality is relaxed resulting in more frequent pattern
matches. Each pattern is found within the graph, and all edges satisfying it are combined to generate a pattern graph,
a set of connected subgraphs representing a verification strategy specific to the given pattern. S? was not utilized as
the cycle bases overlap each other heavily, while S° and S° were skipped for their lack of appearances on the pharma
dataset.

Table 2 List of the five fundamental patterns and one variation used in the analysis

Pattern Name Description

St Connected Subgraphs Reflects how centralized verification strategies are.

S? 1V—IP Stricter Pattern I, allowing only one-to-one relationships.

S* nV—I1P Stricter Pattern III, allowing only many-to-one relationships.

s’ nP-1P Pattern VI, calculates the maximum spanning trees between parameters.
St Orthogonal Captures verification-parameter orthogonality in verification strategies.
S¥ Semi-Orthogonal Adds possibly orthogonal relationships with longer paths to S°.

2.3. Metrics Used for Analysis

There is no single universal measure for graph complexity as the graph can manifest in various ways. For example,
spanning tree count (Brown et al., 1996) would fail to capture the accurate graph complexity when the graph is
disconnected. Multiple graph measures are therefore calculated to determine measures correlated with the verification
strategy complexities. Table 3 lists the ten graph complexity measures used for analysis in this paper.

Table 3 List of the ten graph complexity measures used in the analysis

ID  Name Description

my  Node count Number of nodes.

m;  Edge count Number of edges.

my  Density The ratio of edges over all possible edges, 2m2/ ml(m1 -1).

ms  Subgraph count Number of connected components, or subgraphs.

my  Modularityaper propagaiion  Modularity score based on the label propagation community detection algorithm.
ms  Centrality cioseness Average of the inverse of average shortest path lengths starting from each node.
ms  Centralityinformaiion Variation of closeness centrality, measured as the contribution to global efficiency.
m;  Efficiency Average of the inverse shortest path lengths between all node pairs

mg  Communicability The sum of all possible walks in the graph using adjacency matrix exponentiation.
my _ Graph energy The sum of absolute eigenvalues of the adjacency matrix.

Basic graph attributes such as the node count, edge count, and density were first calculated. These graph complexity
measures are based on the simple heuristic of ‘bigger, heavier, and dense graphs are more complex’, and could be
considered as the baseline estimation of the verification strategy complexity. Density decreases when the graph grows
with non-exponential edge growth, therefore the larger defense graph is expected to show lower density. Subgraph
count was added as another basic graph attribute. This was introduced under the assumption that the disconnected
verification strategy subsets require individual attention; each subgraph could be interpreted as an independent task,
therefore bigger subgraph would increase the overall cognitive load of the involved engineers. Connectivity also
represents the graph complexity by measuring the minimum number of nodes or edge removals required to disconnect
the given graph. The use of the minimal connection between components is not suitable for analyzing the verification
strategy graph as a one-on-one relationship (S%) is one of their major elemental patterns. Pilot experiments showed
that 93.76% out of the total of 1,122 graphs had node and edge connectivity of one; the lack of variations resulted in
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both measures not being considered during the analysis. The average shortest paths and eccentricity were not used as
the verification strategies are not expected to be represented as connected graphs.

Modularity measures the strength of modules within a graph, or how easily communities can be formed and how
pronounced their boundaries are. This is done by detecting communities with statistically significant edge abundance.
Three sets of community detection algorithms, Clauset-Newman-Moore greedy modularity, Louvain community
detection, and label propagation algorithms were used to detect three community sets. All three algorithms generated
similar modularity values on both graphs and their pattern graph pairs, with their relative ratios ranging from 1.0197
to 1.1139. Among these, the former two showed almost identical modularity values with comparatively less distinction
between the two datasets. Modularity based on label propagation communities (Newman, 2004) was used, where
communities are found by iteratively populating community labels based on a small number of randomly assigned
seeds. The community labels are diffused throughout the graph at each iteration, utilizing neighboring nodes as the
source. Clique numbers as well as a number of cliques were tested to show different perspectives of modular subsets,
but the preliminary experiment showed that there are no cliques of size over two. There is no triangle in either graph,
therefore the clique measures were not analyzed further.

Centrality on the other hand ranks the nodes by their importance in graph traversal, assigning higher values to the
hub nodes at the center of communication. Five centrality measures were calculated and averaged in the pilot
experiment: betweenness, closeness, degree, Kats, and information centrality. All five measures shared high
correlations with each other, with the lowest correlation coefficient of 0.7812 between closeness and betweenness
centralities which was expected due to the two measures having conceptually different perspectives of centrality.
Therefore, only two measures were selected for analysis. The closeness centrality of a node is measured as the inverse
of the average length of all shortest paths starting from it, showing the most deviation from the other four centrality
measures. Information centrality is a variation of closeness centrality and efficiency (Fortunato et al., 2004), focusing
on the information propagation efficiency of the graph. The information centrality of a node is measured as the drop
in global graph efficiency with its removal, representing how much in-graph communications were affected (Latora
and Marchiori, 2007). Cognitive complexity is closely correlated with the information flow during the mearing process
hence this measure was expected to represent complexity more tailored to human cognition. Average efficiency is
calculated as the average of inverse shortest distances between all node pairs and was also considered in the analysis.

Communicability (Estrada and Hatano, 2008) was selected to reflect the philosophy of cyclomatic complexity
measure developed for the software engineering domain. The procedural nature of software implementation and
verification strategies made cyclomatic complexity a candidate, measuring the number of independent execution paths
in the flow graph (Watson et al., 1996). A sum of various length walks was calculated with the communicability
measure instead in this paper as datasets used in the experimented lacked information on their verification sequences.
The verification strategy graphs therefore had no single entry points rendering the original measure inapplicable. This
measure can be viewed as an antithesis of efficiency, where paths of all lengths are considered together instead of the
shortest path. Lastly, graph energy was used for its unique approach to measuring graphs as it showed positive
correlation to the system complexity in real applications (Gutman, 2001; Sinha and de Weck, 2013). It applies the
concept of the chemical energy of electrons, measuring the energy of a graph by summing the absolute graph
eigenvalues. Binary measures showed that the graphs are not planar nor Eularian as with most of their pattern graphs;
there were fewer comparative values therefore the binary graph measures were not used.

3. Analyzing the Connection Between Verification Strategy Complexity and Graph Complexity Measures

The traditional verification strategy complexity measures required manual interpretations of detailed verification
implementation records. Direct complexity calculations were therefore unfeasible for both pharma and defense using
existing methods, as both datasets were too large for manual interpretations and their verification matrices did not
track the verification implementation records. Instead of numerically comparable complexity measures, the size-based
heuristic was used to find a complexity difference between the two graphs; pharma was considered to have a lower
verification strategy complexity compared to defense. A series of graph complexity measures were ordinally compared
between the two graphs to find possible complexity hierarchy in the two verification strategies they represent. Their
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absolute values, large or small in their relative value range, were inconsequential to ordinal comparisons and therefore
were not considered during the analysis.

3.1. Ordinal Indicators for Verification Strategy Complexity
The comparison was done by reviewing the measure ratio, which is defined as:

r(m,) = ma e fmPrarme where n = [0, ...,9] (1)

for all graph complexity measures, dividing the measured value for defense (mgef €'5¢) by the same measure calculated

for pharma (mflharma). Both r(mo) and r(m;) in Table 4 reflected the size differences between the two graphs, showing
that the defense had 21.9298 times more entities and nearly 30.7620 times more relationships than the pharma graph.
These results naturally aligned with the size-based complexity heuristic, rendering them the most basic verification
strategy complexity indicators. The relatively small difference between r(mo) and r(m;) indicated a non-exponential
edge growth in the verification strategy graph. This proportionate increase in edge count made the defense a
significantly sparse graph compared to pharma reflected by a density ratio (m2) = 0.0638. This was an expected
behavior of verification strategies sharing a set of elemental patterns for additional edges. While being one of the
fundamental graph complexity measures, density is mostly used for distinguishing graphs with different fundamental
structures. The verification strategies used in the experiment rarely showed a significant density difference
independent of differences in nodes and edge counts; it was therefore deemed as a less informative indicator when
used in conjunction with the former two.

Table 4 The relative ratio of complexity measures r(m,) using the whole graphs

r(mg)  r(m;)) r(my) r(ms) r(my) r(ms) r(mg) r(my) r(ms) r(my)

2193 3076 0.06 1530 1.11 088 0.06 080 1.00E+09 18.91

The ratio between the subgraph count r(msz)= 153000 followed another size-based heuristic of a larger system
having more components, showing a significant difference between the two graphs following my and m;. This finding
was in sync with the verification strategy’s characteristics, where partition in orthogonal sets was considered one of
the verification strategy complexity indicators; the more orthogonal partitions there are, the more independent
verifications are required. S® represented the partition count in orthogonal sets, therefore it was considered as the main
analysis focal point for m;. Like the density, both r(m4) =1.1139 and r(ms) = 0.8849 visualized the effects of sharing
a set of elemental graph patterns. Modularity and closeness centrality showed significantly smaller differences
between the graph than density as well, again indicating that both graphs shared similar graph structures independently
of their size differences. The purpose and roles of the hub nodes were similar in both graphs (being high-level
Parameters and Models) sharing a pseudo-tree structure, therefore similar degrees of modularizations were expected.
The goal of verification strategy complexity indicators was to distinguish the difference within the similarly structured
verification strategies, therefore both 74 and ms were deemed not suitable indicators.

A significant difference could be observed between the information centralities with r(ms) = 0.0638, returning
significantly lower values for defense similar to density m;. The value reflected the relatively higher degree of
information stored in pharma edges, resulting in lower information resistance and larger information coverages in its
paths. The verification strategy complexity comes from the complexity engineers experience during the verification
process, therefore strategies with higher complexity can be described as cognitively complex, as well. The defense
graph had higher cognitively complexity due to the relative information shortage in their modules, forcing engineers
to traverse more entities to reach the same degree of information compared to the number of entities required in a
cognitively less complex pharma dataset. As a variation of closeness centrality, the information centrality (ms) was
not fully dependent on graph structures and therefore was deemed as an effective cognitive complexity indicator. The
same cannot be said for the efficiency measure r(m;) = 0.8016 as it utilizes the shortest paths between node pairs; it
shares the same pitfalls of other structure-dependent complexity measures, failing to detect significant differences
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between the two verification strategies. The ratio differences between ms and m; were attributed to the node count
differences; pharma had fewer nodes to measure the average on. The information centrality was measured by
calculating how much global efficiency decreased when each node was removed from the graph therefore a smaller
graph, with shared elemental patterns, would have nodes each with relatively more role in the global information
dissemination effort.

The communicability measure was where the differences were the most pronounced with r(ms) = 1.0038E+09, as
the number of possible walks grew exponentially with increasing graph sizes. The measure was intended to compare
graphs with smaller size differences; the ratio was over-emphasizing the difference between the two graphs as it was
determined that one was realistically not a billion times more complex than another. Communicability was considered
a successful but less desirable complexity indicator that could be utilized when other measures fail. Graph energy is a
lesser used complexity measure with the recent surge in its usage. It represents a graph as a chemical molecule,
calculating the electron energy level from nodes. r(mg) = 18.9136 is slightly lower than the value of r(m;), indicating
that the graph energy could also become an effective complexity indicator.

3.2. Ordinal Indicators for Verification Strategy Complexity in Pattern Graphs

The use of pattern graphs with ms showed that the variations in fundamental patterns are significant enough to
warrant further analysis of pattern-specific complexity measures. This was done to test whether the different
fundamental patterns affect existing indicators differently, potentially offering their pattern-specific variations as
better indicators. Previously discarded graph complexity measures were also tested to discover potentially viable
variations based on specific patterns. Defining m¥X as the complexity measure m, on the pattern graph for S¥, Table 5
shows how each of the six patfern graphs affected the relative graph complexity measure ratio, marking the previously
selected indicators (mg, m;, m3, ms, ms, and my) in bold. The first pattern S' showed identical values to those in Table
4 as the connected subgraphs (S') pattern graph is identical to the whole graph. This row was added for comparative
presentation and was not analyzed duplicitously.

Table 5 The relative ratio of complexity measures (r(mX)) using their respective pattern graphs for the five fundamental patterns and a variation

r(mk) mo mi m; ms my ms ms m; ms my

st 2193 30.76 006 1530 1.11 0.88 0.06 0.80 1.00E+09 18.91
S’ 1051 1115 0.10 1051 093 0.18 0.10 020 3.29E+00 10.54
A\ 1450 1541 0.07 10.09 1.05 0.16 0.07 0.16 7.11E-01 12.77
s’ 38.83 6253 0.04 1291 093 0.66 0.02 0.69 1.55E+03 44.08
S* 92.33 211.28 0.02 1067 093 1.18 0.01 1.17 852E+04 117.35
S¥ 23.68 3650 006 16.50 1.15 0.84 0.08 0.75 1.18E+09 20.52

Average 33.63 61.27 0.06 1266 1.02 065 0.06 0.63 3.64E+08 37.36

Both the node and edge count ratios #(my) and r(m;) increased when pattern graphs were utilized, from 21.9298
and 30.7620 to 33.6310 and 61.2704 respectively. This indicates that the pattern graphs on average were larger in the
defense graph even when their size differences were accounted for. This size disparity was also observed with graph
energy mo, with the average ratio 7(my) increased to 37.3601 from 18.9136. The detailed analysis revealed that S® and
its variation were the main source of size disparity between r(m,,) and r(mk) where n = [0,1,8,9], reflecting the
increasing ratio of orthogonal subsets in the larger verification strategy. S® showed outlier maximum ratios for g, m;,
and my and an outlier minimum ratio for ms. This was in sync with the assumption that the verification strategy
orthogonality is correlated with its complexity; higher orthogonality is assumed to result in lower complexity. The
Pharma dataset had 343 orthogonal subgraphs out of 404 nodes while the Defense has 2,451 orthogonal subgraphs
out of 8,922 nodes. The relative ratio of 0.8490 versus 0.2747 indicated that the presumably less complex Pharma
had relatively higher orthogonality, satisfying the aforementioned assumption. Increasingly greater differences
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between graphs were also seen relative to their differences in orthogonal subset counts as well. The semi-orthogonal
subsets S* was the sole contributor to the extremely high r(ms) value, having (mg') =1.1775E+09. This was because
the semi-orthogonal pattern included several paths with long distances, exponentially increasing the number of
possible paths within each semi-orthogonal subset. S¥ showed the maximum complexity ratio for partition count 3,
albeit with less significant differences from other pattern graphs. It is also worth noting that S* did not share the
outlier characteristics of S® in my, m;, and my; the ratio for these measures stayed similar to those of the whole graphs,
indicating that the semi-orthogonality should be used for measuring verification strategy complexity paired with a
specific set of measures.

To verify the similarity between the two graphs in terms of independent components, m3 was measured for pattern
graphs where a verification strategy graph was filtered by edges satisfying a specific fundamental pattern. Table 6
shows the number of pattern-specific partitions found in the pharma and defense graphs. The original connected
subgraph measure m; was identical to m} while m$ represented the orthogonal subset count. The difference between
the two datasets was clearly visible with all six patterns having a minimum of 10.09 relative ratio. This was in sync
with the assertion that defense requires more human cognition than pharma due to its complexity. It is also worth
noting that the S¥', a semi-orthogonality pattern, showed the largest difference between the datasets when r(m$) was
in a lower end of the ratio spectrum. This could be interpreted as the weaker orthogonal connections exacerbating the
gaps by providing more bridges to less complex orthogonal sets, which would more frequently be found in less
complex datasets. This suggested that m; could be replaced with m&’ for a more contextually relevant complexity
indicator for human cognition in verification strategies.

Table 6 The number of partitions made by the fundamental patterns for each dataset and their ratio

Pattern m} m3 mi m} m$ ms’

Pharma 10 97 32 11 9 4
Defense 153 1,019 323 142 96 66
r(m¥) 1530 10.51 10.09 1291 10.67 16.50

The effects of fundamental patterns in the complexity measures were the most consistent in S3 and S4 through four
out of the six indicators (mg, m;, ms, and my). Pattern graphs from both patterns returned the lowest ratio between the
two graphs with significant gaps against the others. The shared effect of S* and S* could be attributed to them having
a single parameter; parameters are the basic building blocks of the verification requirements and excluding the
possibility of multiple parameter interconnections minimized the difference between the two varying-sized
verification strategies. This was most noticeable with the almost negligible differences in communicability (ms), where
the patterns do not have enough structural variations to warrant significant differences in their paths. The parameter
hierarchy pattern S7 was positioned as a midpoint between the verification-based patterns (S, S*) and the orthogonality
pattern (S?) with r(mfﬁ) <r(m?) <r(m8) and was therefore deemed a less distinctive pattern for comparing
verification strategy complexities.

The structurally limited ¥— P patterns (S® and S*) had the advantage of discovering relatively smaller differences
in graph complexity measures, shown by distinctive variations in their values compared to other fundamental patterns.
Such disparities were also observed in closeness centrality ms and efficiency m; while their relative indifferences
between graphs were explained by the shared use of the fundamental pattern set. Unlike the information centrality
ratio 7(m¥) ranging from 0.0145 to 0.0985, r(m’s‘) had a larger variance across different pattern graphs with the ratio
ranging from 0.1628 to 1.1809. The closeness centrality was sensitive to the specific patterns more so than to the
graphs, with 7(m2) and r(m2) averaging at 0.1732 near the minimum threshold. This was also the case for efficiency
m7 with r(m3) and r(m%) averaging at 0.1820 against the maximum r(m¥) = 1.1695 when k = 8. Both measures
showed some degree of indicative power when used on the two pattern graphs, making them conditional auxiliary
verification strategy complexity indicators.

Table 7 summarizes the eight complexity measures considered as the ordinal indicators for verification strategy
complexity. The first three (mg, m;, and m3) were baseline graph complexity measures based on heuristics of graph
and verification strategy complexities. Size differences in nodes and edges were the basis of size-based heuristics and
therefore considered as basic indicators of cognition complexity in verification strategies. The subgraph count was
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conceptually related to the number of independent verification subtasks and therefore also considered as a viable
indicator. The next three (mg, ms, and mo) were the graph complexity measures cognizant of the verification strategy
implementation process. Information centrality measured the information propagation efficiency effectively reflecting
the information transfer during the verification process, showing significant differences between the two datasets
while not being fully dependent on graph structures. Communicability was conceptually similar to cyclomatic
complexity measuring the complexity of procedural processes such as verification strategies. The exponential nature
of the measure made the difference between datasets exuberant, making this a less desirable complexity indicator
when numerical accuracy is necessary. The graph energy measured information energy stored in the graph with
similarities to the node count differences therefore also considered one of the effective indicators. The last two (ms
and m7) were conditional indicators that would be effective when calculated on pattern graphs for S* and S*. The
structurally simple V— /P relationships revealed structurally innate differences in closeness centrality and efficiency,
which were considered not significant when the whole graphs were compared. The orthogonality subsets S and its
variation S¥ could also be utilized to fine-tune these indicators, while the use of fundamental patterns was not found
to be non-essential in comparing the verification strategy complexity.

Table 7 List of the eight graph complexity measures considered as the verification strategy complexity indicators

ID Name ID Name ID Name

my  Node count ms  Centralityinformation | ms — Centralityioseness
m;  Edge count mg  Communicability | m;  Efficiency

m;  Subgraph count | mg¢  Graph energy

4. Conclusions and Limitations

This paper showed verification strategies can be numerically analyzed in knowledge graph format, ordinally
comparing two real-world industrial systems in terms of complexity. The smaller medical device system and the larger
defense system both captured the complete set of requirements and verification activities employed in the development
of the system. The larger system had a total of 8,922 verification entities connected by 17,319 relationships showcasing
the necessity of the scale-free graph-based approach for verification planning and assessment. Due to its larger size
and heavier interconnections, the defense system was determined by domain experts to have a more complex
verification strategy; engineers would experience higher cognitive loads verifying the system.

Two verification strategy graphs were drawn from their respective verification matrix documents, and differences
in their graph complexity measures were ordinally compared against the manually asserted premise of difference in
verification complexity. This was done to detect possible indicators for verification strategy complexity; a graph
complexity measure having clear differences between two strategies was assumed to be ordinally correlated to their
cognitive complexity as well. A total of 25 measures were considered for the experiment, discarding 15 due to the
structural characteristics of the verification strategy graphs. Ten remaining measures were calculated in two graphs
and their pattern graph variations, measuring complexities on different verification scenarios in both. The experiment
showed that there were five effective indicators of verification strategy complexities (node, edge, subgraph counts,
information centrality, and graph energy) with communicability as a substitute measure. Traditionally dominant graph
quality measures such as modularity and betweenness centrality were unable to distinguish the two verification
strategies as both shared a set of elemental patterns, limiting their structural variability. Focusing on each pattern at a
time, however, revealed that two fundamental patterns contributed to additional information gained from closeness
centrality and efficiency. The (semi-)orthogonality subsets also provided a strong distinction between the two
verification strategies. In summary, the fundamental patterns provided additional information but were not found to
be essential in distinguishing two verification strategies with a significant complexity difference.

The limitation of small data points limited the findings to ordinal comparison; numerical correlations between the
verification strategy complexity and the graph complexity measures were not found. Additional analysis with a larger
number of verification strategies is planned for future work. Based on the findings of this paper, future work would
focus on a set of smaller, artificial projects where manual complexity calculations are feasible. These values would be
used as a golden answer set with machine learning models using the previously found complexity indicators as the
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input, producing a regression formula for the automatic calculation of verification strategy complexities. The
artificially generated datasets with verification sequence information would be used to compare and distinguish
verification strategies with varying degree of data availability. This measure is expected to propose an optimal number
of engineers required to implement the given verification strategy without overloading their cognitive capacities which
can result in possible human errors.
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