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Abstract

Large multimodal models (LMM) have recently shown
encouraging progress with visual instruction tuning. In this
paper, we present the first systematic study to investigate
the design choices of LMMs in a controlled setting under
the LLaVA framework. We show that the fully-connected
vision-language connector in LLaVA is surprisingly power-
ful and data-efficient. With simple modifications to LLaVA,
namely, using CLIP-ViT-L-336px with an MLP projection
and adding academic-task-oriented VQA data with response
formatting prompts, we establish stronger baselines that
achieve state-of-the-art across 11 benchmarks. Our final
13B checkpoint uses merely 1.2M publicly available data,
and finishes full training in ∼1 day on a single 8-A100 node.
Furthermore, we present some early exploration of open
problems in LMMs, including scaling to higher resolution
inputs, compositional capabilities, and model hallucination,
etc. We hope this makes state-of-the-art LMM research more
accessible. Code and model will be publicly available.

1. Introduction
Large multimodal models (LMMs) have become increas-
ingly popular in the research community, as they are
the key building blocks towards general-purpose assis-
tants [2, 29, 42]. Recent studies on LMMs are converg-
ing on a central concept known as visual instruction tun-
ing [35]. The results are promising, e.g. LLaVA [35] and
MiniGPT-4 [60] demonstrate impressive results on natural
instruction-following and visual reasoning capabilities. To
better understand the capability of LMMs, multiple bench-
marks [16, 26, 33, 36, 54] have been proposed. Recent
works further demonstrate improved performance by scal-
ing up the pretraining data [3, 13, 53], instruction-following
data [13, 17, 28, 57], visual encoders [3], or language mod-
els [38], respectively. The LLaVA architecture is also lever-
aged in different downstream tasks and domains, including
region-level [8, 55] and pixel-level [25, 49] understanding,
biomedical assistants [30], image generation [5], adversarial
studies [6, 58].
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Figure 1. LLaVA-1.5 achieves SoTA on a broad range of 11 tasks
(Top), with high training sample efficiency (Left) and simple mod-
ifications to LLaVA (Right): an MLP connector and including
academic-task-oriented data with response formatting prompts.

However, despite many benchmarks and developments, it
still remains unclear what the best recipe is to train LMMs
towards the goal of general-purpose assistants. For exam-
ple, LLaVA [35] excels in conversational-style visual rea-
soning and even outperforms later approaches like Instruct-
BLIP [13] on such benchmarks [54], while InstructBLIP
excels in traditional VQA benchmarks that demands single-
word or short answers. Given the significant differences
in the model architecture and training data between them,
the root cause of the disparity in their capabilities remains
elusive, despite conjectures [36, 54]: the amount of training
data, the usage of resamplers like Qformer [31], etc. To this
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end, we present the first systematic study to investigate the
design choices of LMMs in a controlled setting. Our study
originates from LLaVA and builds a road map by carefully
making effective contributions from the perspectives of the
input, model, and data.

First, we unveil that the fully-connected vision-language
connector in LLaVA is surprisingly powerful and data-
efficient, and we establish stronger and more feasible base-
lines built upon the LLaVA framework. We report that two
simple improvements, namely, an MLP cross-modal con-
nector and incorporating academic task related data such
as VQA, are orthogonal to the framework of LLaVA, and
when used with LLaVA, lead to better multimodal under-
standing capabilities. In contrast to InstructBLIP [13] or
Qwen-VL [3], which trains specially designed visual resam-
plers on hundreds of millions or even billions of image-text
paired data, LLaVA uses one of the simplest architecture
design for LMMs and requires only training a simple fully-
connected projection layer on merely 600K image-text pairs.
Our final model can finish training in ∼1 day on a single
8-A100 machine and achieves state-of-the-art results on a
wide range of benchmarks. Moreover, unlike Qwen-VL [3]
that includes in-house data in training, LLaVA utilizes only
publicly available data.

Next, we delve into an early exploration of other open
problems of large multimodal models. Our findings include:
(1) Scaling to high-resolution image inputs. We show that
LLaVA’s architecture is versatile in scaling to higher res-
olutions by simply dividing images into grids and main-
tains its data efficiency; with the increased resolution, it
improves the model’s detailed perception capabilities and
reduces hallucination. (2) Compositional capabilities. We
find that large multimodal models are capable of general-
izing to compositional capabilities. For example, training
on long-form language reasoning together with shorter vi-
sual reasoning can improve the model’s writing capability
for multimodal questions. (3) Data efficiency. We show
that randomly downsampling LLaVA’s training data mixture
by up to 75% does not significantly decrease the model’s
performance, suggesting that the possibility of a more so-
phisticated dataset compression strategy can further improve
LLaVA’s already efficient training pipeline. (4) Data scaling.
We provide empirical evidence for the scaling of data granu-
larity in conjunction with the model’s capability is crucial
for an improved capability without introducing artifacts like
hallucination.

In sum, we perform a systematic study on the training
of large multimodal models, and introduce a simple yet
effective approach to balance the multitask learning and ef-
fective scaling for large multimodal models. Our improved
baselines, LLaVA-1.5, uses only public data, achieves the
state-of-the-art on a broad range of 11 tasks, and is signif-
icantly more data-efficient than previous approaches. By

rethinking the conventional approaches and exploring the
open problems in visual instruction tuning, we pave the way
for more robust and capable systems for LMMs. We hope
these improved and easily-reproducible baselines will pro-
vide a reference for future research in open-source LMMs.

2. Related Work

Instruction-following large multimodal models (LMMs).
Common architectures include a pre-trained visual backbone
to encode visual features, a pre-trained large language model
(LLM) to comprehend the user instructions and produce
responses, and a vision-language cross-modal connector
to align the vision encoder outputs to the language mod-
els. As shown in Fig. 1, LLaVA [35] is perhaps the sim-
plest architecture for LMMs. Optionally, visual resamplers
(e.g. Qformer [31]) are used to reduce the number of vi-
sual patches [3, 13, 60]. Training an instruction-following
LMM usually follows a two-stage protocol. First, the vision-
language alignment pretraining stage leverages image-text
pairs to align the visual features with the language model’s
word embedding space. Earlier works utilize relatively few
image-text pairs (e.g. ∼600K [35] or ∼6M [60]), while some
recent works pretrain the vision-language connector for a spe-
cific language model on a large amount of image-text pairs
(e.g. 129M [13] and 1.4B [3]), to maximize the LMM’s per-
formance. Second, the visual instruction tuning stage tunes
the model on visual instructions [35], to enable the model to
follow users’ diverse requests on instructions that involve the
visual contents. Dealing with higher resolution with grids in
LMM are studied in con-current works [1, 27, 52].

Multimodal instruction-following data. In NLP, studies
show that the quality of instruction-following data largely
affects the capability of the resulting instruction-following
models [59]. For visual instruction tuning, LLaVA [35] is the
pioneer to leverage text-only GPT-4 to expand the existing
COCO [34] bounding box and caption dataset to a multi-
modal instruction-following dataset that contains three types
of instruction-following data: conversational-style QA, de-
tailed description, and complex reasoning. LLaVA’s pipeline
has been employed to expand to textual understanding [56],
million-scales [57], and region-level conversations [8]. In-
structBLIP [13] incorporates academic-task-oriented VQA
datasets to further enhance the model’s visual capabilities.
Conversely, [7] identifies that such naive data merging can
result in models that tend to overfit to VQA datasets and
thus are unable to participate in natural conversations. The
authors further propose to leverage the LLaVA pipeline to
convert VQA datasets to a conversational style. While this
proves effective for training, it introduces added complexities
in data scaling. However, in NLP, the FLAN family [12, 50]
shows that adding a large number of academic language
tasks for instruction tuning can effectively improve the gen-
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eralization ability. In light of this, we consider investigating
the root cause of the inability to balance between natural
conversations and academic tasks in multimodal models.

3. Approach
3.1. Preliminaries

As the seminal work of visual instruction tuning, LLaVA [35]
showcases commendable proficiency in visual reasoning ca-
pabilities, surpassing even more recent models on diverse
benchmarks [4, 54] for real-life visual instruction-following
tasks. LLaVA uses a single linear layer to project the vi-
sual features to language space, and optimizes the whole
LLM for visual instruction tuning. However, LLaVA falls
short on academic benchmarks that typically require short-
form answers (e.g. single-word), and tends to answer yes for
yes/no questions due to the lack of such data in the training
distribution.

On the other hand, InstructBLIP [13] is the pioneer to in-
corporate academic-task-oriented datasets like VQA-v2 [18]
along with LLaVA-Instruct [35], and demonstrates improved
performance on VQA benchmarks. It pretrains Qformer [31]
on 129M image-text pairs and only finetunes the instruction-
aware Qformer for visual instruction tuning. However, re-
cent studies [7, 54] show that it does not perform as well as
LLaVA on engaging in real-life visual conversation tasks.
More specifically, as shown in Table 1a, it can overfit to
VQA training sets with short-answers, even on requests that
require detailed responses.

3.2. Response Format Prompting

We find that the inability [7] to balance between short-
and long-form VQA for approaches like InstructBLIP [13],
which leverages instruction following data that includes both
natural responses and short-answers, is mainly due to the fol-
lowing reasons. First, ambiguous prompts on the response
format. For example, Q: {Question} A: {Answer}. Such
prompts do not clearly indicate the desired output format,
and can overfit an LLM behaviorally to short-form answers
even for natural visual conversations. Second, not finetuning
the LLM. The first issue is worsened by InstructBLIP only
finetuning the Qformer for instruction-tuning. It requires
the Qformer’s visual output tokens to control the length of
the LLM’s output to be either long-form or short-form, as in
prefix tuning [32], but Qformer may lack the capability of
properly doing so, due to its limited capacity compared with
LLMs like LLaMA.

Thus, to enable LLaVA to better handle short-form an-
swers while addressing the issues of InstructBLIP, we pro-
pose to use a single response formatting prompt that clearly
indicates the output format. It is appended at the end of VQA
questions when promoting short answers: Answer the ques-
tion using a single word or phrase. We find that when the

Visual input example, Multitask Balancing Problem:

User Is this unusual? Please explain in detail.
InstructBLIP yes

(a) Example of InstructBLIP [13] (Vicuna-13B) having difficulty balancing
between short- and long-form answers.

Visual input example, Different Format Prompts:

Normal prompt What is the color of the shirt that the man
is wearing?

Response The man is wearing a yellow shirt.

Ambiguous prompt Q: What is the color of the shirt that the
man is wearing? A:

Response The man is wearing a yellow shirt.

Formatting prompt What is the color of the shirt that the man
is wearing? Answer the question using
a single word or phrase.

Response Yellow.

(b) Comparison of how different prompts regularize the output format. The
results are obtained zero-shot directly after LLaVA undergoes the first-stage
vision-language alignment pretraining, without the second-stage visual
instruction tuning.

Table 1. Visual input example to illustrate the challenge of (a)
multitask balancing and (b) different format prompts. The same
image input is used.

LLM is finetuned with such prompts, LLaVA is able to prop-
erly adjust the output format according to the user’s instruc-
tions (see Table 1b), and does not require additional process-
ing of the VQA answers using ChatGPT [7], which further
enables scaling to various data sources. As shown in Table 2,
by merely including VQAv2 [18] in training, LLaVA’s per-
formance on MME significantly improves (1323.8 vs 809.6)
and outperforms InstructBLIP by 111 points.

3.3. Scaling the Data and Model

MLP vision-language connector. Inspired by the improved
performance in self-supervised learning by changing from
a linear projection to an MLP [9, 10], we find that improv-
ing the vision-language connector’s representation power
with a two-layer MLP can improve LLaVA’s multimodal
capabilities, compared with the original linear projection.

Academic task oriented data. We further include addi-
tional academic-task-oriented VQA datasets for VQA, OCR,
and region-level perception, to enhance the model’s capabili-
ties in various ways, as shown in Table 2. We first include
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Figure 2. LLaVA-1.5-HD. Scaling LLaVA-1.5 to higher resolutions by splitting the image into grids and encoding them independently. This
allows the model to scale to any resolution, without performing positional embedding interpolation for ViTs. We additionally concatenate
the feature of a downsampled image to provide the LLM with a global context.

Method LLM Res. GQA MME MM-Vet

InstructBLIP 14B 224 49.5 1212.8 25.6

Only using a subset of InstructBLIP training data
0 LLaVA 7B 224 – 809.6 25.5
1 +VQA-v2 7B 224 47.0 1197.0 27.7
2 +Format prompt 7B 224 46.8 1323.8 26.3
3 +MLP VL connector 7B 224 47.3 1355.2 27.8
4 +OKVQA/OCR 7B 224 50.0 1377.6 29.6

Additional scaling
5 +Region-level VQA 7B 224 50.3 1426.5 30.8
6 +Scale up resolution 7B 336 51.4 1450 30.3
7 +GQA 7B 336 62.0∗ 1469.2 30.7
8 +ShareGPT 7B 336 62.0∗ 1510.7 31.1
9 +Scale up LLM 13B 336 63.3∗ 1531.3 36.1

Table 2. Scaling results on ■ data, ■ model, and ■ resolution.
We choose to conduct experiments on GQA [20], MME [16], and
MM-Vet [54] to examine the representative capabilities of VQA
with short answers, VQA with output formatting, and natural vi-
sual conversations, respectively. ∗Training images of GQA were
observed during training.

four additional datasets that are used in InstructBLIP: open-
knowledge VQA (OKVQA [40], A-OKVQA [44]) and OCR
(OCRVQA [41], TextCaps [46]). A-OKVQA is converted to
multiple choice questions and a specific response formatting
prompt is used: Answer with the option’s letter from the
given choices directly. With only a subset of the datasets
InstructBLIP uses, LLaVA already surpasses it on all three
tasks in Table 2, suggesting LLaVA’s effective design. Fur-
thermore, we find further adding region-level VQA datasets
(Visual Genome [24], RefCOCO [23, 39]) improves the
model’s capability of localizing fine-grained visual details.

Additional scaling. We further scale up the input image
resolution to 3362 to allow the LLM to clearly “see” the
details of images, by swapping the vision encoder to CLIP-
ViT-L-336px (the highest resolution available for CLIP). In
addition, we add the GQA dataset as an additional visual
knowledge source. We also incorporate ShareGPT [45] data
and scale up the LLM to 13B as in [3, 8, 38]. Results on MM-

Vet shows the most significant improvement when scaling
the LLM to 13B, suggesting the importance of the base
LLM’s capability for visual conversations.

LLaVA-1.5. We denote this final model with all the modifi-
cations as LLaVA-1.5 (the last two rows in Table 2), which
achieves an impressive performance that significantly out-
performs the original LLaVA [35].

Computational cost. For LLaVA-1.5, we use the same
pretraining dataset, and keep the training iterations and batch
size roughly the same for instruction tuning as LLaVA [35].
Due to the increased image input resolution to 3362, the
training of LLaVA-1.5 is ∼2× as long as LLaVA: ∼6 hours
of pretraining and ∼20 hours of visual instruction tuning,
using 8× A100s.

3.4. Scaling to Higher Resolutions

In Sec. 3.3, we observe the advantage that scaling up the
input image resolution improves the model’s capabilities.
However, the image resolution of the existing open source
CLIP vision encoders is limited to 3362, preventing the
support of higher resolution images by simply replacing the
vision encoder as we did in Sec. 3.3. In this section, we
present an early exploration of scaling the LMM to higher
resolutions, while maintaining the data efficiency of LLaVA-
1.5.

When using ViT [14] as the vision encoder, to scale up
the resolution, previous approaches mostly choose to per-
form positional embedding interpolation [3, 31] and adapt
the ViT backbone to the new resolution during finetuning.
However, this usually requires the model to be finetuned on
a large-scale image-text paired dataset [3, 31], and limits the
resolution of the image to a fixed size that the LMM can
accept during inference.

Instead, as shown in Fig. 2, we overcome this by dividing
the image into smaller image patches of the resolution that
the vision encoder is originally trained for, and encode them
independently. After obtaining the feature maps of individ-
ual patches, we then combine them into a single large feature
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Method LLM Image Sample Size VQAv2 GQA VisWiz SciQA- TextVQA
Size Pretrain Finetune [18] [20] [19] IMG [37] [47]

BLIP-2 [31] Vicuna-13B 2242 129M - 65.0 41 19.6 61 42.5
InstructBLIP [13] Vicuna-7B 2242 129M 1.2M – 49.2 34.5 60.5 50.1
InstructBLIP [13] Vicuna-13B 2242 129M 1.2M – 49.5 33.4 63.1 50.7
Shikra [8] Vicuna-13B 2242 600K 5.5M 77.4∗ – – – –
IDEFICS-9B [21] LLaMA-7B 2242 353M 1M 50.9 38.4 35.5 – 25.9
IDEFICS-80B [21] LLaMA-65B 2242 353M 1M 60.0 45.2 36.0 – 30.9
Qwen-VL [3] Qwen-7B 4482 1.4B† 50M† 78.8∗ 59.3∗ 35.2 67.1 63.8∗
Qwen-VL-Chat [3] Qwen-7B 4482 1.4B∗ 50M† 78.2∗ 57.5∗ 38.9 68.2 61.5∗

LLaVA-1.5 Vicuna-7B 3362 558K 665K 78.5∗ 62.0∗ 50.0 66.8 58.2
LLaVA-1.5 Vicuna-13B 3362 558K 665K 80.0∗ 63.3∗ 53.6 71.6 61.3
LLaVA-1.5-HD Vicuna-13B 4482 558K 665K 81.8∗ 64.7∗ 57.5 71.0 62.5

Specialist SOTA: PaLI-X-55B [11] 86.1∗ 72.1∗ 70.9∗ – 71.4∗

Table 3. Comparison with SoTA methods on academic-task-oriented datasets. LLaVA-1.5 achieves the best performance on 4/5
benchmarks, and ranks the second on the other. ∗The training images/annotations of the datasets are observed during training. †Includes
in-house data that is not publicly accessible.

Method POPE [33] MME MMBench [36] SEED-Bench [26] LLaVA- MM-Vet
rand pop adv [16] en cn all img vid Wild [35] [54]

BLIP2-14B [31] 89.6 85.5 80.9 1293.8 – – 46.4 49.7 36.7 38.1 22.4
InstructBLIP-8B [13] – – – – 36 23.7 53.4 58.8 38.1 60.9 26.2
InstructBLIP-14B [13] 87.7 77 72 1212.8 – – – – – 58.2 25.6
Shikra-13B [8] – – – – 58.8 – – – – – –
IDEFICS-9B [21] – – – – 48.2 25.2 – 44.5 – – –
IDEFICS-80B [21] – – – – 54.5 38.1 – 53.2 – – –
Qwen-VL [3] – – – – 38.2 7.4 56.3 62.3 39.1 – –
Qwen-VL-Chat [3] – – – 1487.5 60.6 56.7 58.2 65.4 37.8 – –

LLaVA-7B [35] 76.3 72.2 70.1 809.6 38.7 36.4 33.5 37.0 23.8 62.8 25.5
LLaVA-1.5-7B 87.3 86.1 84.2 1510.7 64.3 58.3 58.6 66.1 37.3 65.4 31.1
LLaVA-1.5-13B 87.1 86.2 84.5 1531.3 67.7 63.6 61.6 68.2 42.7 72.5 36.1
LLaVA-1.5-13B-HD 87.5 86.4 85.0 1500.1 68.8 61.9 62.6 70.1 41.3 72.0 39.4

Table 4. Comparison with SoTA methods on benchmarks for instruction-following LMMs. LLaVA-1.5 achieves the best overall
performance.

map of the target resolution, and feed that into the LLM. To
provide the LLM with the global context and to reduce the
artifact of the split-encode-merge operation, we addition-
ally concatenate the feature of a downsampled image to the
merged feature map. This allows us to scale the input to
any arbitrary resolution and maintain the data efficiency of
LLaVA-1.5. We call this resulting model LLaVA-1.5-HD.

4. Empirical Evaluation
4.1. Benchmarks

We evaluate LLaVA-1.5 on a collection of both academic-
task-oriented benchmarks and recent benchmarks specifi-
cally proposed for instruction-following LMMs, totalling
12 benchmarks. For academic-task-oriented benchmarks,
VQA-v2 [18] and GQA [20] evaluate model’s visual percep-
tion capabilities on open-ended short answers. VizWiz [19]
contains 8,000 images to evaluate model’s zero-shot gen-
eralization on visual questions asked by visually impaired
people. Following InstructBLIP [13], the image subset of

ScienceQA [37] with multiple choice are used to evaluate
the zero-shot generalization on scientific question answering.
TextVQA [47] contains text-rich visual question answering.

For recent benchmarks proposed for instruction-following
LMMs, POPE [33] evaluates model’s degree of hallucination
on three sampled subsets of COCO [34]: random, common,
and adversarial and we report the F1 score on all three splits.
Other benchmarks evaluate the model’s capabilities on a
wide range of domains and applications, with different re-
sponse formats. MME-Perception [16] evaluates model’s
visual perception with yes/no questions. MMBench [36]
evaluates model’s answer robustness with all-round shuf-
fling on multiple choice answers. MMBench-CN [36] is the
Chinese-translated version of MMBench. SEED-Bench [26]
evaluates model’s performance on both images and videos
with multiple choice, and we sample the frame in the middle
to evaluate the accuracy on videos. LLaVA-Bench-in-the-
Wild [35] and MM-Vet [54] evaluate model’s capabilities
in engaging in visual conversations on a diverse range of
tasks, and evaluates the correctness and the helpfulness of
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Visual input example, Tricky Question:

User If there are factual errors in the questions, point it out;
if not, proceed to answering the question.
What’s happening in the desert?

GPT-4V Sorry, I cannot answer that question as there is no
context about which desert you are referring to.

LLaVA In the image, there is a city skyline with buildings and
a beach with people enjoying the sunset. The scene is
set in a desert, which is unusual for a beach setting.

LLaVA-1.5 There are no deserts in the image. The image features
a beach with palm trees, a city skyline, and a large
body of water.

Table 5. LLaVA-1.5 can detect and answer tricky questions when
prompted to verify the question.

the response with GPT-4 evaluation.

4.2. Results

We show that LLaVA-1.5 achieves the best overall per-
formance on 12 benchmarks, despite using magnitudes
smaller pretraining and instruction tuning data compared
with other methods [3, 13]. LLaVA-1.5 significantly outper-
forms LLaVA on all benchmarks for instruction-following
LMMs. Note that it is challenging to evalute the original
LLaVA on academic datasets like VQA-v2 [18] that demand
open-ended short answers.

When we continue to scale up the image resolution to
4482 with LLaVA-1.5-HD, it further improves the overall
performance on all benchmarks, especially on tasks that
require perception of details in the images (e.g. OCR in MM-
Vet, detailed description in LLaVA-Bench-in-the-Wild [35]).
Moreover, we find that adding the global context effectively
recovers the model from the split-and-merge artifacts and
guides the model to more easily locate the relevant regions
from the high-resolution features (see appendix).

It is encouraging that LLaVA-1.5 achieves the best perfor-
mance with the simplest architecture, academic compute and
public datasets, and yields a fully-reproducible and afford-
able baseline for future research. The results also suggest
that visual instruction tuning plays an important role in im-
proving an LMM’s capabilities, and raises questions upon
the common belief that LMMs require significant amount
of vision-language alignment pretraining [3, 13, 31], despite
that the vision encoders (e.g. CLIP [43], OpenCLIP [22],
EVA-CLIP [15], etc.) are already pretrained on web-scale
image-text paired data. LLaVA-1.5 (even the 7B model)

Visual input example, Constrained JSON Output:

User Please read the text in this image and return the informa-
tion in the following JSON format (note xxx is placeholder,
if the information is not available in the image, put "N/A"
instead).
{"class": xxx, "DLN": xxx, "DOB": xxx, "Name": xxx, "Ad-
dress": xxx, "EXP": xxx, "ISS": xxx, "SEX": xxx, "HGT": xxx,
"WGT": xxx, "EYES": xxx, "HAIR": xxx, "DONOR": xxx}

GPT-4V {"class": "C", "DLN": "1234568", "DOB": "08/31/1977",
"Name": "Ima Cardholder", "Address": "2570 24th Street, Any-
town, CA 95818", "EXP": "08/31/2014", "ISS": "08/31/2011",
"SEX": "F", "HGT": "5-05", "WGT": "125 lbs", "EYES":
"BRN", "HAIR": "BRN", "DONOR": "VETERAN"}

LLaVA {"class": "Driver License", "DLN": "CA123 456 789", "DOB":
"01/01/1990", "Name": "Amy", "Address": "Anytown, CA",
"EXP": "08/31/2023", "ISS": "Veteran", "SEX": “F", "HGT":
"5’5", "WGT": "130", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "Unknown"}

LLaVA-
1.5

{"class": "C", "DLN": "1132456789", "DOB": "08/23/1971",
"Name": "Ima Cardholder", "Address": "Anytown, State, Zip",
"EXP": "08/23/2014", "ISS": "California", "SEX": "F", "HGT":
"5’5", "WGT": "123", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "N/A"}

Table 6. LLaVA-1.5 can extract information from the image and
answer following the required format, despite a few errors com-
pared with GPT-4V. GPT-4V results are obtained from [51].

outperforms 80B IDEFICS [21], a Flamingo-like LMM with
billions of trainable parameters for cross-modal connection.
This also makes us rethink the benefits of the vision samplers
and the necessity of the additional large-scale pretraining, in
terms of multimodal instruction-following capabilities.

Global context. For higher resolution, we pad and resize the
image to a single image of 2242, and concatenate it with the
high resolution features to provide a global context. Ablation
on a 7B model shows that the global context effectively
boosts performance on all three validation benchmarks.

GQA MME MM-Vet

high-res patch only 62.9 1425.8 31.9
+global context 63.8 (+0.9) 1497.5 (+71) 35.1 (+3.2)

4.3. Emerging Properties

Format instruction generalization. Although LLaVA-1.5
is only trained with a limited number of format instructions,
it generalizes to others. First, VizWiz [19] requires the model
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Figure 3. Ablation on LLM choices. Data points represent the
relative performance of the best performing variant for each dataset.

to output “Unanswerable” when the provided content is in-
sufficient to answer the question, and our response format
prompt (see Appendix) effectively instructs the model to do
so (11.1% → 67.8% on unanswerable questions). We addi-
tionally present qualitative examples on instructing LLaVA-
1.5 to verify tricky questions (Fig. 5), respond in a con-
strained JSON format (Fig. 6), and more in appendix.

Multilingual multimodal capability. Though LLaVA-1.5
is not finetuned for multilingual multimodal instruction fol-
lowing at all (all visual instructions including VQA are in
English), we find that it is capable of following multilingual
instructions. This is partly due to the multilingual language
instructions in ShareGPT [45]. Although ShareGPT does not
contain images in its instructions, the model learns from this
dataset the behavior of adaptively responding with the lan-
guage that corresponds to the user’s request. We empirically
show that this behavior is transferred to visual conversations.
We also quantitatively evaluate the model’s generalization
capability to Chinese on MMBench-CN [36], where the
questions of MMBench are converted to Chinese. Notably,
LLaVA-1.5 outperforms Qwen-VL-Chat by +7.3% (63.6%
vs 56.7%), despite Qwen being finetuned on Chinese multi-
modal instructions while LLaVA-1.5 is not.

4.4. Ablation on LLM Choices

In NLP, findings [48] suggest that the capability of the
base LLM can affect its instruction-tuned successors. In
this section, we explore two families of LLMs and study
their contribution to the final model’s multimodal capabil-
ity: LLaMA-based (Vicuna-v1.1, Vicuna-v1.3) and LLaMA-
2-based (Vicuna-v1.5, LLaMA-2-Chat). Vicuna-v1.3 and
Vicuna-v1.5 use the same ∼150K ShareGPT [45] data (2×

GQA

SQA-IMG

TextVQA

POPE

MMEMMBench

MMBench-CN

SEED-Bench

MM-Vet

0.8

0.9

1.0

10%
20%
30%

40%
50%
100%

Figure 4. Ablation on data efficiency. Data points represent the
relative performance of the best performing variant for each dataset.

that used in v1.1). Unlike Vicuna series that is only trained
with supervised instruction finetuning (SFT), LLaMA-2-
Chat is further optimized with reinforcement-learning from
human-feedback (RLHF). We visualize the relative perfor-
mance of these variants in Fig. 3.

First, we find that Vicuna-v1.5 achieves the best overall
performance, and LLaMA-2-based models generally per-
form better than LLaMA-1-based, suggesting the importance
of the base language model. This is further evidenced by
the results on MMBench-CN [36]: despite Vicuna-v1.3 and
v1.5 using the same ShareGPT data for instruction tuning,
the performance in generalization to Chinese of Vicuna-v1.3
is significantly worse than v1.5.

Second, language instruction-tuning matters on specific
capabilities that are required by each dataset. For example,
although LLaMA-2-Chat and Vicuna-v1.5 achieves almost
the same performance on MMBench, the generalization to
MMBench-CN [36] of LLaMA-2-Chat is worse than Vicuna-
v1.5, which is partly due to that the most SFT/RLHF data of
LLaMA-2-Chat is in English and does not contain as many
multilingual data as in ShareGPT. Furthermore, TextVQA
requires both the model’s capability of identifying the text
characters in the images, and also processing the noisy out-
puts from the OCR engine; such noise may be more com-
monly observed in the ShareGPT data, which is collected
in-the-wild from daily usage of ChatGPT.

5. Open Problems in LMMs

Given the successful scaling of LLaVA-1.5, we conduct
additional studies on open problems in LMMs using the
model design and data mixture of LLaVA-1.5.

26302



5.1. Data Efficiency

Despite the data efficiency of LLaVA-1.5 when compared
with approaches like InstructBLIP [13], the training of
LLaVA-1.5 still doubles when compared with LLaVA. In
this section, we conduct experiments for further improving
the data efficiency by randomly sub-sampling the training
data mixture of LLaVA-1.5, with a sampling ratio ranging
from 0.1 to 0.5. We visualize the relative performance of
different sampling variants in Fig. 4.

First, the full data mixture provides the best knowledge
coverage, and allows the model to achieve the best overall
performance. To our surprise, with only 50% of the samples,
the model still maintains more than 98% of the full dataset
performance. This suggests that there is room for further
improvements in data efficiency.

Second, when downsampling the dataset to 50%, the
model’s performance on MMBench, ScienceQA, and POPE
does not decrease at all, and it even slightly improves on
MMBench. Similarly, the model’s performance remains
steady when further downscaling the data from 50% to 30%.
These results show promise of having the less-is-more [59]
benefit for multimodal models as well.

5.2. Rethinking Hallucination in LMMs

Hallucination is an important issue to tackle for LLMs and
LMMs. Often in LMMs, we attribute the model’s hallucina-
tion to the errors or hallucinations in the training dataset. For
example, the detailed descriptions in LLaVA-Instruct [35]
may contain a small amount of hallucinated content, and it
is believed that training on such data may have caused the
model to hallucinate when asked to “describe the image in
detail”. However, we find that such hallucination is signifi-
cantly reduced, when we scale the model’s inputs to higher
resolutions like 4482.

This finding is interesting as it suggests that the LMMs
may be robust to a few such errors in the training data. How-
ever, when the input resolution is not sufficient for the model
to discern all details in the training data, and the amount of
data that is at that granularity beyond the model’s capability
becomes large enough, the model learns to hallucinate. This
further suggests that there needs to be a balance between
improving the data annotation with more details and the
model’s capability to properly process the information at
such granularities. We hope this finding provides a reference
for future work in terms of dealing with hallucination and
the scaling of the models and data.

5.3. Compositional Capabilities

We demonstrate interesting compositional capabilities in
LLaVA-1.5: the model trained on a set of tasks indepen-
dently generalizes to tasks that require a combination of
these capabilities without explicit joint training. We note
some of the findings below.

First, we observe an improved language capability in vi-
sual conversations after including the ShareGPT [45] data, in-
cluding the multimodal multilingual capability as discussed
in Sec. 4.3. Moreover, the model is more capable at pro-
viding longer and more detailed responses in visual conver-
sations. Second, the additional visual knowledge from the
academic-task-oriented datasets, improves the visual ground-
ness of LLaVA-1.5’s responses in visual conversations, as
evidenced quantitatively by the improved results on MM-
Vet [54] and LLaVA-Wild [35] in Table 4.

However, there is still difficulty in achieving ideal per-
formance for some tasks that require a certain combination
of capabilities. For example, being able to correctly answer
the attribute of a certain object in VQA, does not guarantee
an accurate depiction of that object attribute in a detailed
description of the whole image. Furthermore, the capability
of engaing in conversations with certain foreign languages
(e.g. Korean) still falls behind. See appendix for examples.

These findings suggest that the compositional capabilities
of LMMs can be leveraged to improve the model’s perfor-
mance without significantly increasing the data by exhaus-
tively including all task combinations. Yet, it can be further
investigated, and a deeper understanding of the mechanism
behind the compositional capabilities of LMMs can further
improve the capability and the data efficiency of LLaVA-1.5.

6. Conclusion

In this paper, we take a step towards demystifying the design
of large multimodal models, and propose a simple, effective,
and data-efficient baseline, LLaVA-1.5, for large multimodal
models. In addition, we explore the open problems in visual
instruction tuning, scale LMMs to higher resolutions, and
present some intriguing findings in terms of model halluci-
nation and compositional capabilities for LMMs. We hope
these improved and easily-reproducible baselines as well as
the new findings will provide a reference for future research
in open-source LMM.

Limitations. Despite the promising results demonstrated
by LLaVA-1.5, it still has limitations including prolonged
training for high-resolution images, lack of multiple-image
understanding, limited problem solving capabilities in cer-
tain fields. It is not exempt from producing hallucinations,
and should be used with caution in critical applications (e.g.
medical). See appendix for a detailed discussion.
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