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Abstract

Chromatin is a polymer complex of DNA and proteins that regulates gene expression. The
three-dimensional (3D) structure and organization of chromatin controls DNA transcription
and replication. High-throughput chromatin conformation capture techniques generate Hi-
C maps that can provide insight into the 3D structure of chromatin. Hi-C maps can be repre-
sented as a symmetric matrix .A;, where each element represents the average contact
probability or number of contacts between chromatin loci iand j. Previous studies have
detected topologically associating domains (TADs), or self-interacting regions in .A; within
which the contact probability is greater than that outside the region. Many algorithms have
been developed to identify TADs within Hi-C maps. However, most TAD identification algo-
rithms are unable to identify nested or overlapping TADs and for a given Hi-C map there is
significant variation in the location and number of TADs identified by different methods. We
develop a novel method to identify TADs, KerTAD, using a kernel-based technique from
computer vision and image processing that is able to accurately identify nested and over-
lapping TADs. We benchmark this method against state-of-the-art TAD identification meth-
ods on both synthetic and experimental data sets. We find that the new method
consistently has higher true positive rates (TPR) and lower false discovery rates (FDR)
than all tested methods for both synthetic and manually annotated experimental Hi-C
maps. The TPR for KerTAD is also largely insensitive to increasing noise and sparsity, in
contrast to the other methods. We also find that KerTAD is consistent in the number and
size of TADs identified across replicate experimental Hi-C maps for several organisms.
Thus, KerTAD will improve automated TAD identification and enable researchers to better
correlate changes in TADs to biological phenomena, such as enhancer-promoter interac-
tions and disease states.
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Author summary

Chromatin, which encodes the genetic information for cells, must fold into the cell
nucleus that is many times smaller in size. The folded 3D structure of chromatin in the
nucleus enables gene expression and proper cell function. With the advent of advanced
chromatin conformation capture techniques, we can identify topologically associating
domains (TADs), which are regions of the genome that prefer to interact within them-
selves rather than with neighboring regions. Numerous methods have been developed to
automatically detect TADs in Hi-C maps, however, they frequently disagree on the loca-
tion and number of TADs. We develop a new algorithm, KerTAD, to identify TADs using
techniques from image processing and computer vision. We find that our method is more
accurate on both synthetic and manually-annotated experimental Hi-C maps than all
tested methods. Our method also performs well in the presence of noise and sparsity,
which are frequently encountered in experimental Hi-C maps. KerTAD will enable future
studies to elucidate the role of TADs in gene regulation and disease formation.

Introduction

Chromatin is a polymer complex of DNA and proteins that forms chromosomes. Chromatin
must undergo a highly organized compaction process to fit into the ym-sized nucleus. During
this compaction process, chromatin forms hierarchical structures, such as loops, A/B compart-
ments, and territories, across a range of length scales [1-4]. The spatial organization of chro-
matin is essential for many nuclear processes, such as DNA replication and transcription. For
example, during transcription, enhancer and promoter DNA regions that are separated on the
chromatin fiber must come into close proximity through the formation of loops to increase
the transcription of target genes [1, 5]. Disruptions in chromatin loop formation can alter gene
expression by preventing enhancer-promoter interactions [6, 7]. To better understand the
structural organization of chromatin, chromosome conformation capture and proximity liga-
tion derivative techniques (in particular Hi-C) have been developed to elucidate genome-wide

spatial interactions and structures [8, 9]. Hi-C generates an interaction matrix, .A,, where each

i
element represents the frequency with which two loci i and j on chromatin are close in space,
averaged over a cell population [8]. Hi-C maps reveal significant interactions off the diagonal
that are not expected for an extended polymer. In particular, Hi-C maps display topologically
associating domains (TADs), or regions of increased self-interaction (with decreased interac-
tions outside the region), typically presenting as a square of higher frequency centered on the
diagonal [10, 11]. TADs often indicate the formation, elongation, and dissolution of loops.
Loops enable enhancer-promoter interactions and TAD boundaries are frequently enriched
for insulator proteins and transcription marks, which explains why enhancer-promoter inter-
actions occur mostly within TADs [10, 12-16].

Several features of experimentally determined Hi-C maps, such as noise, sparsity, and low
resolution, make TAD identification difficult. Further, TAD features are heterogeneous, e.g.
while some TADs possess strong corner points and weak intensity in the interior of the TAD,
others possess uniform intensity in the interior with weak borders. TADs are also often diffi-
cult to differentiate from the background power-law decay in the interaction frequency away
from the diagonal that arises from expected distance-dependent polymer interactions [17].
The convention for TAD identification, or TAD calling, is to specify the starting and ending
loci of each TAD in the interaction matrix A;. However, TADs do not directly report on static
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chromatin structure, instead they provide a statistical description of dynamic chromatin orga-
nization that is influenced by the experimental methods used to construct the Hi-C maps

[12, 18, 19]. Currently, there is no ground-truth definition for TADs in Hi-C maps, and TAD
definitions are scale- and resolution-dependent [12, 18, 20]. To illustrate this point, in Fig 1A
and 1B, we show the same segment (from 9 to 13 Mb) of mouse chromosome 17 Hi-C map
using both linear and logarithmic (base e) intensity scales, respectively. On the linear scale,
TADs are not visible, whereas on the logarithmic scale, numerous overlapping and nested
TADs appear. (See the Benchmarks subsection in the Materials and Methods for definitions of
overlapping and nested TADs.) In Fig 1C we show the same segment of mouse chromosome
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Fig 1. Challenges of TAD identification in Hi-C maps. A: The choice of scale and normalization of Hi-C maps impacts the visibility of TADs. Mouse
Hi-C map of chromosome 17 (from 9 to 13 Mb) without preprocessing on a linear scale and normalized so that 0 < A; < 1 yields faint TADs. B: We
show the same Hi-C map as in (A), but plotted on a natural logarithmic scale. The blue square indicates the corner of a clear TAD and the dotted lines
in the upper triangular matrix denote its boundaries. The green circle shows a region of noise near a TAD boundary, and the white triangles (and
associated dashed lines) indicate “borderline” TADs (structures for which it is unclear whether they would count as TADs) that were not visible in the
left image. C: The same region of mouse chromosome 17, but from a different biological replicate with many more low intensity values off the diagonal.
D: A synthetic Hi-C map generated from negative binomial distribution sampling with TADs identified (shown in the upper right triangle) using three
state-of-the-art TAD calling algorithms: SpectralTAD (open circles), deDoc (crosses), and Armatus (open rectangles). Ground truth TADs (blue circles)
are shown in the lower triangular matrix.

https://doi.org/10.1371/journal.pchi.1012221.9001
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17 on a logarithmic scale, but from a different biological replicate, showing a much sparser Hi-
C map and replicate to replicate fluctuations.

Because there is currently no clear ground-truth definition of TADs in Hi-C maps, it is
challenging to determine the accuracy of TAD calling algorithms on experimental data. How-
ever, TAD calling algorithms can be tested on synthetic data that mimics experimental Hi-C
maps. The advantage of synthetic data is that it has a well-defined ground-truth and the noise
and sparsity of the data can be tuned. To generate a possible ground truth for experimental
Hi-C maps, a consensus manual annotation from multiple experts can be obtained. We can
then benchmark TAD calling algorithms on their accuracy compared to the manually anno-
tated experimental data [21].

Many algorithms have been developed to identify TADs using graph-theoretic, clustering,
machine-learning, and image transform techniques [10, 22-29]. In Fig 1D we compare three
state-of-the-art TAD calling algorithms on synthetic data generated by sampling from a nega-
tive binomial distribution (see the Complex Synthetic Hi-C Maps subsection in the Materials
and Methods for further details) meant to mimic experimental mouse Hi-C maps. These TAD
callers identify different numbers of TADs and in different locations, as expected from previ-
ous TAD identification algorithm comparison studies [21, 30-33]. Previous studies have
found that on manually annotated GM12878 and hESC Hi-C maps at 50 kb resolution, current
TAD calling algorithms rarely exceed a positive predictive value of 40% [21]. On synthetic data
for overlapping and nested TADs, these methods mostly obtain a true positive rate (TPR) (see
Metrics subsection in the Materials and methods) of < 0.6 [31, 33]. In addition, most current
TAD-calling algorithms impose strong restrictions that limit their ability to call overlapping,
nested, and gapped TADs. [21, 30-33].

In this article, we develop a novel TAD-calling algorithm, KerTAD, that applies gradient
and other image operators on Hi-C maps to accentuate and extract their off-diagonal features.
We show that KerTAD is more accurate than the current state-of-the-art methods as deter-
mined by previous studies [30-33] across three categories of Hi-C maps: synthetic maps gener-
ated via molecular dynamics simulations of block copolymers; synthetic maps with
overlapping and nested TADs sampled from a binomial distribution of intensities; and manu-
ally annotated GM 12878 maps at 50kb resolution. On all three datasets, KerTAD is the most
accurate in terms of TPR while having a negligible false discovery rate (FDR). On synthetic
data, our method has an average TPR of ~ 0.98 and =~ 0.99 on non-nested and nested maps,
respectively, and a median TPR of ~ 0.75 on manually annotated Hi-C maps. In addition, Ker-
TAD is highly resistant to noise and sparsity, achieving a higher TPR at the highest level of
noise tested than other methods with no noise. Because KerTAD outperforms every tested
method on both manually annotated experimental and synthetic data, KerTAD is likely able to
capture the underlying features in experimental Hi-C maps.

This article is organized as follows. In the Materials and methods section, we first describe
the preprocessing of the input Hi-C maps and the generation of masks to identify key features
of TADs in Hi-C maps. We also define the metrics for sensitivity and false discovery rate for
comparing the predictions of KerTAD to ground truth for the synthetic and manually anno-
tated Hi-C maps. We then define the techniques used for generating noise and sparsity in syn-
thetic data. In the results section, we summarize the performance of KerTAD (as well as six
other methods) in TAD identification on synthetic and manually annotated Hi-C maps. We
also analyze replicate Hi-C maps across four organisms and compare the variation in number
and mean size of TADs identified by three TAD identification algorithms. Finally, we discuss
how the improved accuracy in TAD identification will enable more robust inferences between
the identified TADs and chromatin organization.
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Materials and methods

The description of the Materials and methods is organized into two sections. In the first sec-
tion, we explain the new TAD identification algorithm, KerTAD, including the preprocessing
steps and the application of masks to identify key features of TADs. In the second section, we
discuss the implementation of six other state-of-the-art methods to identify TADs, metrics
that we use to quantify the accuracy of the TAD identification methods, and techniques to gen-
erate sparse and noisy synthetic data. We describe the motivation and process of manually
annotating experimental Hi-C maps, as well as the methods for comparing the accuracy of
TAD identification methods on manually annotated experimental data. We finally describe in
detail our analysis of the performance of several TAD identification algorithms on replicate
non-annotated experimental Hi-C maps across several organisms.

KerTAD

KerTAD takes as input a symmetric N x N matrix, .A;, which gives the frequency of contacts
between bins 7 and j and returns an M x 2 matrix, where each row gives the corner location of
one of the M TADs in A;. The preprocessing step normalizes A, such that A; > A, for all 4, j
and reduces fluctuations in A, while preserving edge features. The method then feeds the pre-
processed Hi-C map into two separate pipelines, each of which generates a mask. One pipeline
seeks to extract small-scale diffuse point features in the Hi-C map, while the other favors larger
scale regions near corner points. The final TADs are given by the intersection of the two
masks.

Preprocessing. There is no standard format or normalization scheme for Hi-C maps
[34-40]. Because normalization is known to significantly affect TAD-calling performance
[34], we first preprocess A, to satisfy the requirements below. First, we ensure that the diago-
nal elements of .4, are the maxima in their respective rows, i.e. A, > A;. Ifagiven A, > A,
we then set A, = A;. This condition is reasonable in the sense that we should expect that local
regions of chromatin interact with themselves more than any other region. We then locally
row-normalize by re-setting A, to (A, — ZJIL A;/N)/o,, where o; is the standard deviation
of the ith row of /.. This normalization reduces global fluctuations and also perturbs the origi-
nal A; less than other normalization schemes like requiring .A; to be both row- and column-
normalized [39]. We then filter .Aij with a Gaussian kernel with standard deviation ¢ = 3I'/2
and filter size 2[(20)] + 1, where 'N” is the number of zero elements in A, and [-] is the ceil-
ing function. This Gaussian filtering is performed since extremely sparse Hi-C maps can cause
division by zero errors in the KerTAD masks. Additionally, normalization and applying a
Gaussian kernel to A; reduces the total variation of .A;, which is defined as:

N N

VIA) =D 1A AL+ A A (1)

=1 j=1

where AyAij = A(,-H)j — Aij’ AXA,-]- = ‘Ai(j+l) — Aij,
Ay = Ay Aiviy = Ao Ay = A, and A, = A, While spatial variation is a hallmark
of TADs, excessive total variation outside of TAD boundaries (such as speckle noise) can
obscure the signal and make TAD identification challenging. It is important however to regu-
late standard smoothing techniques, like Gaussian blurring, since while they can reduce the
total variation, they can also remove stark edge features that are essential for identifying TADs.

Finally, A; is automatically segmented (if necessary) by finding outliers on the diagonal where

and the outside bins of A, are given by
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the ratio of zero elements to nonzero elements of the 5 elements around the diagonal (either to
the left or to the right of the diagonal depending on the location of the diagonal) for each row
is greater than 0.8. Further outliers are found using the Grubbs method if necessary and then
all the adjacent non-outliers are segmented into separate maps to process [41].

Mask for corner point features. The mask for corner point features is designed to identify
locations near the diagonal where there are strong changes in intensity, since these often indi-
cate transitions between TADs, and then to generate a mask of possible corner point combina-
tions in A,.. We first calculate the discrete partial derivative of .A,. We then feed the row
vectors of the partial derivative map into a non-linear function that produces a similarity
matrix. The similarity matrix is then filtered by applying a local maximum operator and global
threshold, which identifies locations on the diagonal of A, where there are sharp local changes.
We then use the identified locations on the diagonal to generate a binary mask of every TAD
corner point combination, with each diagonal location representing one index of a possible
TAD corner point. Differential operators in image processing are often represented as convo-
lutions of an image with a kernel that is separable into at least one smoothing filter. Smoothing
can reduce noise, but excessive smoothing removes edge features, making it difficult to deter-
mine TAD locations. Thus, we implement a low-order partial derivative map with no smooth-
ing filter, A A,

Next, we construct a list of row vectors {¥,, ..., ¥}, where ¥, is the ith row of A A,. We

with symmetric boundary conditions.

then construct a similarity matrix, S,

Sy = (max(V;) — min(v,) + max(¥;) — min(¥))[ V[, ||[V}]],, (2)

and max(¥,) and min(¥,) return the maximum and minimum components of ¥,, respectively.
Finally, we define the N x N binary mask of point features, M, as follows: for every i, j such
thati <j, M, = 1 ifand only if S, and S; are both local maxima in their respective 3 x 3 local
neighborhoods and S;;, S; > Q, where Q is the global threshold determined using the triangle
algorithm [42] on §;. Fig 2 illustrates the several intermediate steps and maps to transform an
i into M.

Mask for corner regions. While the previous mask captured point features of TADs
spread throughout the Hi-C map, we also need a mask to identify the specific corner regions
near the diagonal in A;. As before, we calculate an image derivative, this time A, A, using
periodic boundary conditions. For i < j, if A, A; > 0 then A A, is set to 0 and for i > j if

A A; < 0then A A, is set to 0. We then calculate

input Hi-C map, A

N
Pz‘j = (AxAikAxAzj - AxAiTl;AxAkj)' (3)

k=1
P; has several important features. First, TAD corners and edges are maxima of P; in their
local neighborhood as shown in Fig 3C. The diagonal elements of P; that correspond to TAD
corner points (i.e. if A; is the corner point of a TAD, the corresponding points in P, are P,
and P,) are strongly negative minima in their neighborhood. Taking advantage of both of
these facts, we construct the final binary mask ./\/l:J

M. = {1 if (_Pz‘j(Pii + ij)) >Q (4)

ij .
! 0 otherwise,

where Q is the threshold determined by the triangle method on the matrix, C i =—P; (P, + 73].1.).
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Fig 2. Illustration of the four steps in constructing the point feature binary mask. A: We start with a Hi-C map .A;; (with bins i and j labelled from 1
to 125). B: We first calculate the discrete partial derivative, 4,A;. C: We then construct S, from a nonlinear function of the pairs of row vectors of A A,
D: The binary mask M, is obtained by combining a local maximum filter with binary thresholding of ;. If M; = 1 (black squares), S; and S; are
both local maxima in their 3 x 3 windows and above the threshold set by the triangle method on S;.

https://doi.org/10.1371/journal.pcbi.1012221.9002

Final mask and parameters. After constructing both masks, we take the element-wise
product of M and M’ to obtain the final binary mask, B; = Mij/\/l;j. Each nonzero element

of B represents a predicted TAD corner point. For the final output, KerTAD converts B to a 2
column list where each row represents the start and end index of a TAD corner point. We
illustrate the full algorithm applied to chromosome 12 of a GM12878 cell line in Fig 4.
KerTAD does not require any user-provided parameters, taking only a Hi-C matrix as
input. However, KerTAD has two optional hard-coded parameters that can be manually over-
ridden for expert users to have more flexibility. First, the parameter « is the maximum number
of TADs that can be identified per row. Starting from the diagonal and moving outward for
each row, every nth TAD where n > k is discarded. By default, k = 3, since greater than 3
TAD:s per row is unlikely. Throughout the manuscript we use x = 3 with the exception of sim-
ple Hi-C maps where we set ¥ = 1 (to mimic simple TAD callers). The other optional parame-
ter is y, which controls how many times the initial automatic segmentation of A, is broken
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Fig 3. Illustration of the steps used to construct the mask M; for identifying corner regions in Hi-C maps. A: We start with the same input Hi-C
map A, as in Fig 2. B: We first calculate the discrete partial derivatives, A,A;. C: We then calculate P, from A,A;;. D: We obtain the final binary mask
M after applying a global threshold on -P, (P, + P,).

https://doi.org/10.1371/journal.pchi.1012221.g003

into smaller maps for additional segmentation. If a segmentation, WV, of Ai}. spans from A__ to
Ayy (ie. W,.j = A(x+i—l)(y+j—1))’ then if y = n, W is divided into » further segments, wy, . . ., w,,
where w; spans W, . 11410 10 Wiin iy T = [ ]> and [.] is the ceiling function. By
default, y = 2. Further splitting Hi-C maps is useful for large and heterogeneous Hi-C maps
where different regions have varying coverage and local intensity. Generally, TAD predictions
scale with y (i.e. increasing y will increase the number of TADs predicted). y can be tuned
based on user preference in either direction. (Increasing y will likely increase TPR, but it will
also increase FDR.) For robust Hi-C maps, ¥ can be set to 1 (i.e. no further segmentations are
calculated after the initial automatic segmentation). For this manuscript, we use y = 1 for syn-
thetic Hi-C maps and y = 2 for all other Hi-C maps.

Benchmarks

When determining the accuracy of TAD identification methods, we first categorize the Hi-C
maps into two types: synthetic and experimental Hi-C maps. For synthetic Hi-C maps, we also
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distinguish between “simple” and “complex” Hi-C maps. For simple Hi-C maps, each element
on the diagonal of A; must belong to one and only one TAD. This condition implies that i) A,
has no nested or overlapping TADs and ii) .A;; has no gaps between TADs. Thus, in a simple

Hi-C map, if a TAD is identified over a set of diagonal elements, e.g. from A;; to A, there are
no other TADs within that set and the next TAD must start at A j,1(js1). Complex Hi-C maps
are defined as any Hi-C map .4, that is not simple, i.e. .A; has either nested, overlapping, or
gapped TADs. A nested TAD is a TAD with its corner point located at .A;; (where j > i) while
there exists another TAD corner at A, (where [ > k), where k < iand j < I. An overlapping
TAD has a corner at Aij (where j > i) and another TAD corner at A, (where [ > k), where k <
iandi<Il<jori<k<jandj <l AHi-C map possesses a gapped TAD if there exists an ele-
ment on the diagonal, A,, that does not belong to any TAD. In S1 Fig, we show a graphical
illustration and examples from the GM12878 chromosome 6 Hi-C map of nested, overlapping,
and gapped TADs.

We analyze the performance of TAD identification algorithms on simple and complex syn-
thetic Hi-C maps separately. Many TAD identification algorithms assume that the input Hi-C
maps are simple. This additional information provides constraints on the locations of TADs,
which can lead to enhanced accuracy for these algorithms. However, the additional constraints
do not improve TAD prediction in manually annotated experimental Hi-C maps, as most
experimental Hi-C maps are not simple. In previous work comparing the performance of
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TAD identification algorithms, the top performers on simple and complex synthetic maps
were different [31, 33]. In the Results section, we show that KerTAD is highly accurate in iden-
tifying TADs in both simple and complex Hi-C maps, while not presupposing that a given Hi-
C map is simple or complex.

Simple synthetic Hi-C maps. To compare the performance of different TAD identifica-
tion algorithms for simple, synthetic Hi-C maps, we consider 100 Hi-C maps generated by
molecular dynamics (MD) simulations of block copolymers from previous studies [43]. In
these MD simulations, chromatin is modeled as a bead-spring polymer with non-bonded,
purely repulsive interactions to prevent bead overlaps, non-specific short-ranged attractive
interactions between bead pairs to induce compaction, and specific short-ranged attractive
interactions between bead pairs to mimic TADs that occur in specific epigenomic profiles.

From previous studies [21, 30-33] we select the top performing TAD identification algo-
rithms for simple, synthetic maps. Namely, we compare KerTAD with TopDom [27], HICSeg
[28], and CHDF [29]. We perform TAD identification on the set of 100 simple, synthetic Hi-C
maps discussed above. (Note that TopDom, HICSeg, and CHDF do not identify nested or
overlapping TADs.) For TopDom we count the “domain” predictions and set the window size
to 5 as done in previous work [31, 33] for the same synthetic Hi-C maps. Again following pre-
vious work [21, 30, 31, 33], we set the max TAD size parameter for CHDF to 50 and for HIC-
Seg we use the “G” distribution. When comparing TAD predictions from KerTAD to those for
the other algorithms on the simple, synthetic Hi-C maps, we impose a further restriction on
our identified TADs. Since KerTAD can identify nested and overlapping TADs, it has more
chances to identify correct TADs compared to methods that are unable to call nested and over-
lapping TADs. Thus, we set k = 1, considering only the innermost TAD corners with the
smallest distance from the diagonal.

Complex synthetic Hi-C maps. For generating complex, synthetic Hi-C maps, we use a
variation of a previously developed procedure [30, 44] that mimics mouse embryonic stem
cells by sampling from a negative binomial distribution of Bernoulli trials, where successful tri-
als represent contacts between chromatin loci. The distribution is characterized by a location-
dependent variance o} = y;; + ru;; (with dispersion factor r = 0.01) and mean p; = (A;). The

location-dependent mean is defined by
:uij = Kdéij + BI]Kt<l _] + ]‘)C + Nnoise’ (5)

where J;; is the Kronecker-delta, K, gives (A;), K; and ¢ are parameters that control the
power-law decay of (A;) away from the diagonal. (K,; = 35, K, = 28, and ¢ = —-0.69 were selected
to match (A;) in chromosome five in IMR90 replicate B.) 6;; = 1 when A, is inside of a TAD
(excluding diagonal elements) and 0 otherwise [17, 30]. TAD boundary lengths are selected
randomly from a uniform distribution with widths from 5 to 20 bins (where each bin repre-
sents 40 kb). We then remove randomly selected TADs from this list and fill in the gaps with
larger overlapping and nested TADs. The deletion process involves randomly selecting 25% of
TAD:s in the lower layer, removing them, and then adding a new TAD block that spans the
length of the two TADs between any deleted TADs, thus creating nested and overlapping
TADs. More specifically, if two TADs around a deleted TAD have corner points located at

(x1, ¥1) and (x3, y»), the new TAD will have a corner point located at (xy, ,). N ..
variable that mimics weak and non-specific ligation events by sampling (with replacement) a
fraction of randomly selected elements of .Aij and adding a constant, K, pise. (We set Kpyoise = 5.)

isarandom

The likelihood that an element of A, receives a noise impulse scales with (i - j + 1)".

We generate 100 complex, synthetic Hi-C maps using this protocol with A/, ., = 0, where
each Hi-C map has on average 150 TADs. From previous studies [21, 31-33] we select the top
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performing TAD callers on similar datasets of complex, synthetic Hi-C maps. We compare
KerTAD with deDoc [24], Armatus [22], and SpectralTAD [25]. As before, we follow the
default or recommended parameters for each algorithm. For Armatus we set g = 0.05 and
s=0.05 [30], for SpectralTAD we use levels = 2, and for deDoc we use both the dedoc(M) and
dedoc(E) predictions, removing duplicates. The accuracy of TAD identification was deter-
mined for these three methods, along with KerTAD, for each complex, synthetic Hi-C map.
Noise and sparsity. To test the robustness of the TAD identification algorithms, we com-
pare TAD predictions for two sets of new complex, synthetic Hi-C maps with varying levels of
added noise and sparsity. In the first set, we generate 10 complex Hi-C maps with A/, ,, = 0
(as previously described) and for each, construct an additional 20 Hi-C maps, with varying
levels of noise (totalling 210 Hi-C maps). Because many TAD identification algorithms only
accept integer counts, we do not use additive Gaussian noise. Instead, we randomly sample A

noise

(with replacement) and add a constant additive impulse, K,oise = 5, as described previously for
N noise*

divided by the number of elements of .A;. To generate the noisy maps, we increase y in incre-

The noise is parameterized by y, which represents the number of added impulses

ments of 0.05 starting from 0 to 1. For the second set, we perform the same procedure but
instead add sparsity to A, by setting random elements of .A;; equal to 0. Sparsity is parameter-
ized by &, which is the fraction of elements of A, that are set to zero compared to the total
number of elements. We generate 200 sparse maps by increasing £ in increments of 0.05 start-
ing from 0 to 0.95 (£ = 1 would mean a map of only 0s). For KerTAD, we turn off outlier detec-
tion for highly sparse Hi-C maps to avoid runtime errors.

Experimental maps. To obtain ground truth for experimental Hi-C maps, we follow the
previous manual annotations performed on Hi-C maps for the GM 12878 cell line at 50 kb res-
olution for the 40-45 Mb regions of 10 different chromosomes (chromosomes 2, 3, 4, 5, 6, 7,
12, 18, 20, and 22) [21]. In the original annotations, “any identifiable TAD structure” was
annotated and the positive predictive value (PPV) of the identified TADs was calculated for
seven TAD identification algorithms [21]. However, calculating PPV does not penalize TAD
callers that miss “obvious” TADs and even TPR may be inappropriate for gauging TAD pre-
diction accuracy if the annotations are too lenient. In addition, likely due to differences in the
pipeline or visualization, we found that many of the original annotations were displaced or
pointed at no features or structures. Thus, using the original annotations as a guide, we keep
the most “obvious” TADs and then calculate TPR to capture the accuracy of the TAD identifi-
cation methods. Because the annotations are not meant to be exhaustive, we do not calculate
FDR. Because the experimental Hi-C maps are complex, we use deDoc, Armatus, and Spectral-
TAD, as well as KerTAD, to identify TADs in the manually annotated GM 12878 Hi-C maps.
For the input maps to each TAD caller, we used the cutout sections of the genome except for
Armatus, which returned no TADs with the smaller map (a previously described bug) and for
which we used the full intrachromosomal map as input.

For experimental Hi-C maps without manual annotations, we evaluate in situ Hi-C maps
for four organisms: fruit fly S2 cells [45] (4DN accession code: 4eDNESFOADERB), zebrafish
embryos [46] (4DN accession code: 4DNESV5PGOUC), mouse CH12.LX cells [17] (4DN
accession code: 4ADNESK95HVFB), and human HCT-116 cells [47] (4DN accession code:
4DNES3QAGOZZ). All Hi-C maps were obtained from the 4DN data portal [48] and the .
pairs files for each biological and technical replicate were converted to . cool files and
then intrachromosomal Hi-C maps at 50 kb resolution were extracted using Cooler [49]. For
zebrafish Hi-C maps, we analyzed three biological replicates with one technical replicate for
each biological replicate. For fruit fly Hi-C maps, we also analyzed three biological replicates
with one technical replicate each. For mouse Hi-C maps, we used three biological replicates
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with 11, 2, and 2 technical replicates. For human Hi-C maps, we analyzed six biological repli-
cates with 3, 4, 2, 3, 2, and 2 technical replicates. For each Hi-C map, we perform TAD identifi-
cation using KerTAD and the top performers in TPR for the simple and complex Hi-C map
categories: TopDom and deDoc. For TopDom we used a window size of 10 following the rec-
ommendation for 50kb resolution from previous work [21]. Because TopDom generated an
error message for chromosome Y of biological replicate 2 for fruit fly, we do not include that
Hi-C map in our analysis for TopDom. We calculate the total number of identified TADs by
summing the number of predicted TADs for each intrachromosomal map for each replicate.
We also calculate the mean size of the identified TADs for each intrachromosomal map. We
characterize the distribution of the number of TADs and mean sizes of TADs over replicates
for each organism by calculating the median, maximum, and minimum values.

Accuracy metrics. We apply each TAD identification algorithm to each synthetic or man-
ually annotated experimental Hi-C map and compare the lists of identified TADs to ground
truth. For a predicted TAD corner point located at A, we denote it as a “true positive” if and
only if there is a ground truth TAD with the same corner point coordinates. We calculate two
metrics for each synthetic and experimental Hi-C map for every algorithm: TPR = p/G and
FDR = (7 — p)/7, where p is the number of true positives, G is the total number of ground
truth TADs, and 7 is the total number of TADs predicted. In manually annotated experimen-
tal Hi-C maps, since the TAD corners are often difficult to define, a “true positive” is counted
as long as the ground truth coordinate is one of the coordinates in the 3 x 3 square centered
around the predicted TAD corner point.

Results

In this section, we compare the performance of KerTAD against current state-of-the-art TAD
identification methods using two metrics: the ability to reliably identify ground truth TADs
(TPR) and the ability to avoid predicting incorrect TADs (FDR). We compare the accuracy of
seven different methods on two sets of synthetic Hi-C maps: a set of simple Hi-C maps
obtained from MD simulations of block copolymers and a set of complex Hi-C maps gener-
ated by sampling a negative binomial distribution. We also calculate TPR and FDR for the
same TAD identification algorithms on manually annotated Hi-C maps from the GM12878
cell line. Finally, we calculate the number and size of TADs obtained using each algorithm on
in-situ experimental Hi-C maps for four organisms: mouse, human, fruit fly, and zebrafish.

On the 100 simple, synthetic Hi-C maps, our method gives the highest median TPR ~ 0.99
and the lowest median FDR ~ 0.02 of all surveyed methods (Fig 5A). The next best performing
algorithm, TopDom, had a comparable median TPR =~ 0.94 and median FDR =~ 0.03, but Top-
Dom yields a significantly larger variance with a minimum TPR ~ 0.65 compared to ~ 0.88
for our method. In Fig 5A, we also show that the other TAD identification algorithms, CHDF
and HiCSeg, performed poorly on the simple, synthetic Hi-C maps with a median TPR < 0.6
and median FDR > 0.2. (Note that the median FDR ~ 0.7 for CHDF was larger than its
median TPR ~ 0.5.) In previous work, [31, 33] CHDF was reported to perform very well on
this synthetic dataset (hence why it was selected for comparison), scoring a mean TPR = 0.965
and FDR = 0.381. Even so, KerTAD still outperforms CHDF in both TPR and FDR. In fact,
KerTAD scores a higher mean and minimum TPR than all 27 surveyed TAD callers in previ-
ous work [31, 33]. Furthermore, when running our method on simple, synthetic Hi-C maps,
we did not allow it to call nested or overlapping TADs. Without this restriction, the median
TPR was even greater than 0.99, while maintaining small median FDR.

For the 100 complex, synthetic Hi-C maps, the differences in the median TPR between the
new method and the other tested algorithms are more pronounced, as shown in Fig 5B. The
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Fig 5. TPR and FDR on simple and complex synthetic Hi-C maps. A: Box plots of TPR (black; left axis) and FDR
(red; right axis) calculated by comparing the ground truth TADs from 100 simple, synthetic Hi-C maps generated by
MD simulations of block copolymers [43] and TADs predicted by KerTAD, TopDom, CHDF, and HiCSeg. The

box edges represent the 25th and 75th percentiles in TPR/FDR, and the central line in each box indicates the median.
The error bars represent the maximum and minimum TPR or FDR. B: Box plots for TPR (black) and FDR (red) for
100 complex, synthetic Hi-C maps that mimic mouse embryonic stem cells by sampling from a negative binomial
distribution [30, 31]. We show the TPR and FDR for KerTAD, deDoc, Armatus, and SpectralTAD.

https://doi.org/10.1371/journal.pchi.1012221.9g005

new method obtains a median TPR = 0.98, while the next best TAD identification method,
deDoc, on complex synthetic maps only had a median TPR = 0.65. The remaining algorithms,
Armatus and SpectralTAD, were roughly comparable in TPR performance with deDoc. For
FDR, Armatus performed the best (median 0.01) followed by KerTAD (median 0.08). DeDoc
and SpectralTAD had significantly higher FDRs with both greater than 0.45.

We also studied the impact of impulse noise on the calculations of TPR and FDR on com-
plex, synthetic Hi-C maps. We find that our method is highly resistant to noise. In Fig 6A, we
show that the mean TPR decays slowly with increasing y, i.e. the mean TPR > 0.8 across all
tested values of y. In contrast, none of the other tested algorithms achieve a mean TPR of 0.70
or greater at any y. In the regime 0.4 < y < 0.6, FDR for DeDoc decreases compared to the
results for less noisy Hi-C maps. This regime is likely a result of deDoc showing a unique
sharp drop in the number of TAD predictions with increasing noise, taking a “safer” approach
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Fig 6. TPR and FDR for TAD prediction in Hi-C maps with added noise. A: TPR averaged over 200 complex
synthetic Hi-C maps plotted versus the impulse noise fraction y. We calculate TPR by comparing the ground truth of
the synthetic Hi-C maps with the predicted TADs for KerTAD (blue circles), deDoc (orange triangles), Armatus
(green squares), and SpectralTAD (purple diamonds). Shaded regions denote plus and minus one standard deviation
about the mean given by the symbol. B: FDR plotted versus y for the same data in A.

https://doi.org/10.1371/journal.pcbi.1012221.9006

to TAD identification with noisier Hi-C maps (i.e. for y = 0.6, deDoc makes an average of only
56 TAD predictions, whereas methods like SpectralTAD make on average over 210 TAD pre-
dictions). While this technique results in a lower FDR, it also results in fewer identified TADs
(because of fewer predictions) and thus a lower TPR. In fact, deDoc drops much more rapidly
in TPR over the same regime compared to other methods.

In addition, we investigated the effect of sparsity on the ability of TAD identification algo-
rithms to predict TAD locations. To incorporate sparsity, we modify complex synthetic maps
by randomly selecting elements in .A; and replacing them with 0. In Fig 7A, we show that our
method achieves a higher mean TPR at almost every & than all other tested TAD identification
algorithms. We find that the mean TPR for KerTAD is significantly higher for the majority of
& values tested; for example, our method achieves a higher mean TPR at £ = 0.5 than the second
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best algorithm, deDoc, at £ = 0. The mean FDR for our method also grows more slowly com-
pared to the other tested algorithms, only passing a mean FDR of 0.5 at large sparsity, £ > 0.6.
(See Fig 7B.) Notably, while KerTAD shows the largest TPR and smallest FDR, deDoc pos-
sesses the slowest rate of change in FDR below £ < 0.7. This behavior is likely explained by the
fact that the approach for identifying TADs by deDoc, which involves partitioning the graph
generated by the Hi-C matrix based on minimal structural entropy, is relatively resistant to
local sparsity. With higher sparsity, the deDoc TAD predictions reduce in size (with the aver-
age TAD size approaching 1 bin with higher £) and deDoc begins to predict the same one bin
TAD:s for distinct maps. SpectralTAD generated error messages for large values of £ and
returned no predicted TADs (thus, for these maps we set TPR = 0 and FDR = 1). As a result,
the error bars for Spectral TAD for these values of £ (roughly between 0.3 and 0.6) are very
large, since they include 0s for TPR and 1s for FDR.
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Fig 7. TPR and FDR for TAD prediction in Hi-C maps with added sparsity. A: TPR averaged over 200 complex
synthetic Hi-C maps plotted versus the sparsity fraction & We calculate TPR by comparing the ground truth of the
synthetic Hi-C maps with the predicted TADs for the KerTAD (blue circles), deDoc (orange triangles), Armatus
(green squares), and SpectralTAD (purple diamonds). Shaded regions denote plus and minus one standard deviation
about the mean given by the symbol. B: FDR plotted versus  for the same data in A.

https://doi.org/10.1371/journal.pcbi.1012221.9007
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In addition to assessing the performance of TAD identification algorithms on synthetic Hi-
C maps, we also determined their performance on manually annotated Hi-C maps from the
GM12878 cell line. We calculated TPR and FDR averaged over 10 chromosomes (chromo-
somes 2, 3,4, 5, 6,7, 12, 18, 20, and 22) by treating the manual annotations as the ground
truth. We show in Fig 8 that our new method achieves a median TPR of nearly 0.80, while the
next best performer, deDoc, obtains a median TPR of only ~ 0.4. When using the original
annotations, we also found that KerTAD outperformed the other techniques by a factor of ~ 2
(KerTAD had a TPR of 0.4 while the next best, deDoc, had a TPR of 0.2). However, we were
unable to precisely match the maps the original annotations used, with many annotated TADs
pointing to no visible structure and hence the original annotation TPRs are likely not very
meaningful. We do not include TopDom in the manually annotated comparisons as TopDom
does not call nested or overlapping TADs. We find that TopDom achieves a median TPR of
about 0.2 on the manually annotated Hi-C maps, which is surprisingly better than Armatus
and near the performance of SpectralTAD, despite TopDom being unable to call nested and
overlapping TADs.

Our new TAD identification method achieves a higher TPR and lower FDR on both simple
and complex synthetic Hi-C maps, as well as on manually annotated experimental Hi-C maps.
Additionally, our new method achieves and maintains the highest TPR in Hi-C maps with
added noise and sparsity. Based on these results, we suggest that our method will have the
highest accuracy of TAD identification on non-annotated experimental Hi-C maps. We com-
pare the TAD predictions for the top-performing algorithms on synthetic Hi-C maps, manu-
ally annotated experimental Hi-C maps, as well as on non-annotated experimental Hi-C maps
for four organisms: zebrafish, fruit fly, mouse, and human. In Fig 9A, we find that deDoc, Top-
Dom, and our method predict different median total numbers of TADs (over the intrachro-
mosomal Hi-C maps for all technical and biological replicates). For example, deDoc gives a
median of 3370 TADs for zebrafish, while TopDom predicts roughly a factor of three fewer
TADs. For zebrafish and fruit fly, we find that the fluctuations in the number of predicted
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Fig 8. TPR on manually annotated Hi-C maps. A: Box plots of TPR calculated by comparing the ground truth TADs
from ten manually annotated GM 12878 Hi-C maps to those predicted by KerTAD, deDoc, Armatus, and
SpectralTAD. The box edges represent the 25th and 75th percentiles in TPR and the central line in each box indicates
the median. The error bars represent the maximum and minimum values of TPR

https://doi.org/10.1371/journal.pcbi.1012221.9008

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1012221  July 11, 2024 16/23


https://doi.org/10.1371/journal.pcbi.1012221.g008
https://doi.org/10.1371/journal.pcbi.1012221

PLOS COMPUTATIONAL BIOLOGY

Identifying topologically associating domains

A

Number of TADs

Mean Size of TADs (Mb)

=
o

10* |

103 |

102

[
()

—_

A I—
. s & [ e
A
i (=7
s B I
L “
@
= 5
Zebrafish Fruit Fly Mouse Human
-
K}
A e B E &
A
A
Zebrafish Fruit Fly Mouse Human

Fig 9. Number and size of TADs predicted across Hi-C map replicates from four organisms. A: The number of
TAD:s predicted from whole-genome in situ Hi-C data for technical and biological replicates of four organisms (fruit
fly, human, mouse, and zebrafish) using the KerTAD (blue circles), deDoc (orange triangles), and TopDom (green
squares). The symbols indicate the median number of TADs and the error bars indicate the maximum and minimum
values over replicates. B: Average size of the TADs in Mb for the same organisms, set of replicates, and TAD
identification algorithms in A.

https://doi.org/10.1371/journal.pcbi.1012221.g009

TADs (given by the difference in the maximum and minimum values) over replicates for each
TAD identification algorithm is smaller than the range in the median predictions between
algorithms. Among the TAD identification methods tested, TopDom and our method have
comparable variations in the number of TADs among replicates, while deDoc showed larger
variations, especially for the human Hi-C maps. In Fig 9B, we show the predictions of the
mean size of TADs identified by each algorithm. For the mouse and fruit fly Hi-C maps, we
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find small variations among the methods on the mean size of TADs, while for zebrafish and
human Hi-C maps there are large differences in the TAD sizes. For human Hi-C maps, our
method and TopDom predict similar mean sizes for TADs (0.8-1.2 Mb), while deDoc shows
large fluctuations in the sizes of TADs among replicates. (Note that the fluctuations in the
TAD sizes over replicates obtained from our method and TopDom are comparable.). While
KerTAD shows the smallest variation in mean sizes for human Hi-C maps, the range is signifi-
cant (= 0.4 Mb). This variation occurs partly because there are more human Hi-C maps in the
dataset analyzed (384 total intrachromosomal Hi-C maps) compared to the other organisms
(315 for mouse, 75 for zebrafish, and 14 for fruit fly) as well as the fact that there is more varia-
tion in coverage and sparsity across the human Hi-C maps than the other organisms (for
instance, the mean element-wise range across across chromosome 1 for all human Hi-C maps
in the dataset is ~ 1.02 contacts per bin averaged for all maps whereas for mouse Hi-C maps it
is ~ 0.13 contacts per bin). In Fig 10A, 10B and 10C we show Hi-C maps with superimposed
TAD predictions for different TAD identification algorithms. In Fig 10D, we show a non-
annotated human lymphoblastoid Hi-C map with superimposed TAD predictions from Ker-
TAD, deDoc, and TopDom. While there are some TADs for which all methods agree, we find
large variability in the locations and number of predicted TADs.

Discussion

In this article, we developed a novel algorithm, KerTAD, to identify TADs in Hi-C maps. Most
previous TAD calling algorithms assume simple Hi-C maps, i.e. each diagonal element of A,
must belong to one and only one TAD. For simple Hi-C maps, when a TAD is identified at ele-
ment i and j, the next TAD must have a starting index of j + 1 and there can be no additional
TADs between i and j. In contrast, our method does not assume that Hi-C maps are simple
and can accurately identify nested, overlapping, and gapped TADs. Among the few algorithms
that can identify TADs in complex Hi-C maps, which is necessary for accurate TAD identifica-
tion in experimental Hi-C maps, there is a large discrepancy in the number and size of TADs
called, even among replicate Hi-C maps from the same experiment. Here, we present a novel
algorithm that consistently outperforms other TAD identification algorithms on synthetic and
manually annotated Hi-C maps, while being robust to noise and sparsity.

KerTAD uses two kernel-based techniques that detect complementary features of Hi-C
maps. The method focuses on regions of Hi-C maps near the diagonal where there are large
changes in intensity and strong corner points. We show that KerTAD outperforms six state-
of-the-art TAD identification algorithms on both synthetic and manually annotated experi-
mental Hi-C maps. In particular, we calculate the TPR and FDR by comparing the results for
the predicted TADs for each algorithm to ground truth for the synthetic and experimental
manually annotated Hi-C maps. We also test the performance of the TAD identification algo-
rithms on complex, synthetic Hi-C maps with increasing levels of impulse noise and sparsity.
For all of the Hi-C maps with ground truth that we tested (i.e. simple and complex synthetic,
noisy and sparse, and manually annotated, experimental), our method has the highest TPR
and negligible FDR.

We also find that our method has low variance in the median number and size of TADs
across replicates for the experimental Hi-C maps without ground truth. In previous work [21,
31] that evaluated TAD identification algorithms, algorithms that can identify nested and over-
lapping TADs predict more TADs and possess higher variance in the number of identified
TADs over replicates. This result is consistent with the fact that simple TAD identification
algorithms can only call at most N TADs for a Hi-C map with N x N elements, whereas algo-
rithms for complex Hi-C maps can identify at most N> TADs. Our results also show that
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Fig 10. Demonstration of TAD predictions across four different types of Hi-C maps. A: Simple synthetic Hi-C map (on In scale) with TAD
predictions from the four tested TAD identification algorithms. We show the predicted TADs for KerTAD (open triangles) and ground truth (blue
circle) in the lower triangular matrix. The predicted TADs for HiCSeg (open pentagons), TopDom (open diamonds), and CHDF (crosses) are shown in
the upper triangular matrix. Gray triangles are examples of TADs that KerTAD identifies if the restriction of one TAD per row for simple maps is
removed. B: Complex synthetic Hi-C map (on log, scale) with added noise, y = 1. The upper triangular matrix shows the TAD predictions for deDoc
(crosses), Armatus (open rectangles), and SpectralTAD (open circles). The lower triangular matrix shows the same Hi-C map with no added noise, y =
0, ground truth (blue circles), and the predictions of KerTAD on the noisy Hi-C map (we show the KerTAD predictions in the lower triangular matrix
for better visibility). C: Manually annotated GM12878 chromosome 18 Hi-C map at 50kb resolution. Predictions from the same TAD identification
algorithms in B are shown. D: TAD predictions on non-annotated chromosome 4 of human lymphoblastoid Hi-C map.

https://doi.org/10.1371/journal.pchi.1012221.g010

algorithms for complex Hi-C maps identify more TADs than those for simple Hi-C maps, e.g.
deDoc identifies significantly more TADs and with higher variance among replicates than
TopDom. However, unlike deDoc, our method, which can identify TADs in complex Hi-C
maps, shows significantly lower variation among replicates, with maximum and minimum val-
ues for the numbers and sizes of TADs comparable to those for TopDom. The fact that our
method generates results for the numbers and sizes of TADs with small variations among rep-
licates suggests that our method identifies the most important features of Hi-C maps that are
insensitive to noise and sparsity.

While KerTAD outperforms other current TAD identification algorithms on synthetic
Hi-C maps, it can be improved. For Hi-C maps where there are high-intensity regions
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compared to the local neighborhood, we find that despite TVR reducing the variation, our
method still tends to identify TADs in the regions of high intensity, rather than in regions of
low intensity. Since TADs are usually defined locally, using global techniques that threshold
across the whole Hi-C map will invariably suffer from this problem. Unfortunately, this
results in a well-known dilemma: if one does not normalize weaker intensity regions, the
algorithm will miss TADs, but normalizing weak intensity regions will bring out noise caus-
ing false positive TADs. This can be controlled to some degree by separating large maps into
smaller ones (i.e. setting y = 1), but risks “cutting off” TAD boundaries. In future work, we
will develop new techniques to reduce noise, while maintaining the ability to identify TADs
in weak intensity regions.

Because our method possesses the highest accuracy on synthetic and manually annotated
experimental Hi-C maps, we hypothesize that our method will be accurate in capturing the
true number and size of TADs in experimental Hi-C maps. However, it is worth reiterating
that there is currently no ground truth definition of TADs in experimental Hi-C maps, which
means that TPR and FDR on synthetic and manually annotated data, while useful, are only
proxies for the accuracy of TAD identification algorithms on experimental Hi-C maps. Previ-
ous research groups [21, 30, 31, 33] have benchmarked their TAD identification algorithms
using different metrics. For example, several studies have searched for correlations between
predicted TAD boundaries and CTCF enrichment as a measure of TAD identification accu-
racy. However, this benchmark may not be related to benchmarks that rely on visual identifi-
cation of TADs in experimental Hi-C maps.

Currently, there can be large variations in the experimentally determined Hi-C maps from
one experiment to the next. As chromatin conformation capture experiments continue to
improve, it will be possible to determine well-defined, relatively noise-free, and experimentally
reproducible Hi-C maps. It is also important to understand how Hi-C maps depend on the
phase of the cell cycle, cell type, cell-to-cell fluctuations, and tissue type in each organism.
After such experimental studies are carried out and well-defined Hi-C maps are obtained,
computational studies can be carried out to determine in an unsupervised way the important
features that distinguish one Hi-C map from another. After identifying these key features, fur-
ther studies can be carried out to understand the spatiotemporal dynamics of chromatin that
give rise to each of the key features in Hi-C maps.

Supporting information

S1 Fig. Graphical description and examples of different types of TADs. We illustrate graph-
ically (from left to right) nested, overlapping, and gapped TADs in the top row. In the bottom
row, below each type of TAD, we show an example of that particular type of TAD (outlined
using dotted lines) in an experimental Hi-C map of chromosome 6 from the human GM12878
cell line.
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