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1 Introduction

Understanding the underlying mechanisms of the spread of information in strongly in-
teracting quantum systems is a challenging problem that connects quantum information,
condensed matter theory and quantum gravity. Out-of-time order correlators (OTOCs)
provide a useful measure of how fast a local perturbation spreads across a quantum many-
body system under time evolution [1–14]. Originally introduced as a semiclassical approach
to superconductivity [15], OTOCs experienced a renaissance with the discovery of a deep
connection between quantum chaos and black holes, where black holes have been shown to
be fast scramblers [1, 16] and a bound on the rate of growth has been conjectured [3].

The Sachdev-Ye-Kitaev (SYK) model [7, 17–19], a system of N Majorana fermions
with q-body interactions, i.e. q-local, has been extensively explored as a solvable model of
quantum chaos and holography. At low temperatures, the system displays an approximate
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conformal symmetry and, as in generic black holes, it scrambles information at the fastest
possible rate. Among its many variants, the sparse-SYK model [20, 21] stands out as a
simplified version with fewer interactions which allows one to probe finite N corrections
via numerical simulations. Remarkably, the sparse-SYK model with sparseness parameter
k and only kN interaction terms in the Hamiltonian, is still a fast scrambler [20, 21]
and it can be shown to approximately reproduce properties of the original SYK model
while allowing to uncover other features as in the spectral form factor studied in [22].
Additionally, the sparse-SYK model can serve as a replacement for the original SYK model
when modeling traversable wormholes [23, 24] including, remarkably, its simulation on a
quantum processor [24].

In this work, we study out-of-time order correlators in the sparse-SYK model, both
analytically and numerically. Even though the sparse Hamiltonian contains fewer terms
than the all-to-all SYK, there are more diagrams contributing to the OTOCs at order O( 1

N ).
We investigate ladder diagrams contributing to the OTOCs and present an algorithm to
sum the diagrams at any given order of 1/(kq)n. However, an analytic expression for the
sum of the diagrams to all orders of 1/(kq)n is out of reach because the methods used in the
all-to-all SYK are not applicable here. Another of our main results is the numerical study
of the OTOCs. We investigate them as a function of the sparsity parameter k, with the
goal of determining the Lyapunov exponent. We also explore to what extent the symmetry
describing the large N behavior of the OTOCs in SYK is present in the sparse model.

2 Preliminaries

2.1 Chaos and OTOCs

Scrambling in quantum systems can be quantified via out-of-time order correlators (OTOCs).
In a chaotic system, OTOCs display an exponential growth at intermediate times charac-
terized by a Lyapunov exponent λL, and the fast scrambling property translates into a
Lyapunov exponent that saturates the chaos bound λL ≤ 2π/β [3]. The definition of OTOCs
can be motivated as the quantum analog of the classical characterization of chaos using
Poisson brackets, where the brackets are promoted to commutators (or anticommutators
for fermionic operators)

C(t) = −⟨[W (t), V (0)]2⟩β , (2.1)

where V and W are generic local Hermitian operators. The operators evolve according to the
Hamiltonian H of the system via W (t) = eiHtW (0)e−iHt. The brackets denote the thermal
expectation value ⟨·⟩β = Z−1tr[. e−βH ] at inverse temperature β = 1/T and Z = tr[e−βH ] is
the partition function. Intuitively, this correlator measures how much an early perturbation
V affects the later measurement of W . After the expansion of the commutator squared,
we see the appearance of a four-point correlator that is out-of-time ordered

F (u)(t) = ⟨W (t)V (0)W (t)V (0)ρ⟩β , (2.2)

where ρ = e−βH . In the SYK model, we typically consider W and V as two distinct
Majorana operators. The above expression is the standard OTOC that is also referred to
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in the literature as ‘unregularized’ OTOC. In the study of quantum chaos at finite N , a
slightly modification of this correlator have been considered, named ‘regularized’ OTOC

F (r)(t) = ⟨W (t)ρ1/4V (0)ρ1/4W (t)ρ1/4V (0)ρ1/4⟩β , (2.3)

in which we split ρ evenly between the operators. One of the reasons to work with the
regularized version is because this version is less sensitive to finite-size effects, and it can be
shown that the extracted Lyapunov exponent is the same as in the unregularized version [25].

From the OTOC, one could derive the Lyapunov exponent by fitting an exponential
function a+ b eλfitt to the region of exponential growth. However, this method is known to
lead to incorrect results in the SYK model for several reasons. The main subtlety is that, due
to strong finite-size effects, the OTOC does not display a well-defined exponential growth
window at intermediate times and finite size N . An alternative method was proposed [25],
where it is assumed that the OTOC admits the following large N expansion based upon
analytical arguments [5, 11]

F (t) = C0 + C1

(
eλLt

N

)
+ C2

(
eλLt

N

)2

+ . . . (2.4)

for t ≲ 1
λL

logN , which means that F (t) obeys the rescaling symmetry

N → cN, t→ t+ 1
λL

log c. (2.5)

This symmetry is expected to hold for any many-body chaotic model governed by ladder
diagrams close to the semiclassical limit.

2.2 Sparse SYK

The Sachdev-Ye-Kitaev (SYK) model [7, 17–19] is a toy model of lower dimensional quantum
black holes consisting of a system of Majorana fermions with all-to-all interactions. The
sparse-SYK model [20, 21] is a variant of the original model, which we will refer to as
all-to-all SYK, with the advantage of allowing for more efficient computer simulation while
preserving important black hole physics behavior. The Hamiltonian of the sparse-SYK
model with N Majorana fermions χj , j = 1, . . . , N , and q-body interactions is defined as

H = iq/2 ∑
j1<...<jq

Jj1...jqxj1...jqχj1 . . . χjq . (2.6)

The parameters xj1...jq are either 0 or 1 and they can be defined in different ways leading
to different sparse models. The couplings Jj1...jq are drawn from a Gaussian distribution
with zero mean and variance given by1

⟨
(
Jj1...jq

)2⟩ = (q − 1)!J2

pN q−1 , (2.7)

where p is the fraction of terms in the Hamiltonian, i.e., the number of the terms such that
xj1...jq = 1 divided by

(N
q

)
, the number of terms in the all-to-all version. The parameter J

1Sparse models with non-Gaussian couplings have also been considered [26].
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has dimensions of energy and sets the energy scale of the theory. It will be convenient to
define the parameter

k ≡ p

N

(
N

q

)
, (2.8)

which is such that the Hamiltonian is a sum of kN independent terms. Due to the random
nature of the couplings, physical observables are obtained after performing an average over
different disorder realizations of the system. If we choose all xj1...jq to be 1, we recover the
original all-to-all SYK Hamiltonian

Hall-to-all = iq/2 ∑
1≤j1<...<jq≤N

Jj1...jqχj1 . . . χjq . (2.9)

In this case we have p = 1 and we also recover the variance of the all-to-all SYK model

⟨
(
Jj1...jq

)2⟩all-to-all =
(q − 1)!J2

N q−1 . (2.10)

One possible implementation of sparseness in the SYK model consists of taking xijkl = 1
with probability p and xijkl = 0 with probability 1− p. The system becomes more sparse
as p→ 0 and we recover the all-to-all SYK when p = 1. This procedure, known as random
pruning, is perhaps the simplest to implement. However, it makes necessary to take an
additional average since xijkl are treated as random variables and can potentially lead
to disconnected clusters of Majorana fermions that do not interact with the rest of the
system [21].

A different approach to characterize the sparseness is to use regular hypergraphs, in
which the Majorana fermions are identified as vertices of a hypergraph whose hyperedges
contain q vertices. The regularity condition imposes that each fermion appears exactly the
same number of times in the list of hyperedges. The hypergraph is also uniform, meaning
that all hyperedges contain the same number, q, of vertices. An important property of
random-uniform-regular hypergraphs is that they are expected to be expanders [27]. That is,
they are expected to have good connectivity even though they are sparse. Note that the q-
uniformity condition is related to the Hamiltonian being q-local but the regularity condition
is imposed for convenience. A simple counting argument shows that the hypergraph should
be kq-regular. Measures of connectivity of this type of hypergraph in the sparse-SYK
context were studied in [23]. An example of a regular hypergraph is given in figure 1.

3 OTOCs in sparse SYK

In [7, 11], it was shown that, in the all-to-all SYK, to obtain the leading order in N and
late time contributions to the OTOC, we should calculate ladder diagrams of dressed
propagators. This is also true for the sparse model. In this section, we will present an
analytic calculation of ladder diagrams in the sparse-SYK. We find that the standard
contribution obtained through the sum over ladder diagrams is corrected, in the sparse-SYK,
by higher order terms of order 1/(kq)n. In the all-to-all SYK the ladder diagrams can be
summed exactly, giving an expression for the OTOC from which a Lyapunov exponent
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Figure 1. A concrete regular hypergraph representation of the sparse-SYK Hamiltonian with
N = 8, q = 4, and k = 1/2 with hyperedges = {(2, 3, 6, 7), (1, 4, 6, 8), (3, 4, 5, 8), (1, 2, 5, 7)}. Each
vertex is contained in exactly kq = 2 hyperedges.

can be computed [7]. The same ressumation does not go through in the case of the sparse
model and an analytic expression for the ladder diagrams to all orders of 1/(kq)n cannot be
obtained. However, we found an algorithm to sum the diagrams up to any given order of
1/(kq)n that we present in this section. The intricacies of the procedure are in appendix A.

3.1 Ladder diagrams

As a first step, we will analyze the combinatorics related to ladder diagrams in a sparse-SYK
model with random pruning [20]. In this model, each interaction term in the Hamiltonian
comes with a factor, xabcd, which is either 0 or 1 with probability p. This is telling us that
each term in the Hamiltonian is deleted with probability 1− p. In this model, we normalize
the couplings to have a p dependent variance,

〈
J2

abcd

〉
= (q − 1)!J2

pN q−1 , (3.1)

where after averaging, the multiplication of two couplings is only non-zero if their indices
are equal (up to permutations of one another). As in the standard SYK model, the ladder
diagrams will be the diagrams that contribute to the OTOC [5, 7, 11],

F(t1, t2, t3, t4) =
1
N2 Tr

(
ρ1/4χi(t1)ρ1/4χj(t2)ρ1/4χi(t3)ρ1/4χj(t4)

)
, (3.2)

at leading order in late time t. We will now proceed by showing how the ladder diagrams
can be summed at zero temperature — although the OTOC is clearly a finite temperature
quantity, the zero temperature calculation will be sufficient for showing the general procedure
of ladder diagram summation. The zero temperature calculation can be extended to finite
temperatures in a fairly straightforward manner by writing retarded propagators along the
real time portion of a Schwinger-Keldish contour and Wightman functions between the two
real parts of the contour [5, 7, 12].
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We find, as in [20], a series in both 1/N and 1/(kq). This means that at each order
in 1/N we will find a series expression for a prefactor that is a proportionality constant
for each diagram in 1/(kq). This series terminates at an order corresponding to the order
of the ladder diagram being considered. At zeroth order in 1/(kq), we have the familiar
diagrams of the dense model. But at higher orders, there are corrections organized in a
1/(kq) expansion. To leading order in N , we find that a ladder diagram of O(J2n) (think a
ladder with n rungs) will contain a series in 1/(kq) up to order 1/(kq)n−1, i.e.

· · · × n ≡ Fn ∼ (−1)n(q − 1)nJ2n

N

(
1 + c1

kq
+ c2

(kq)2 + · · ·+ cn−1
(kq)n−1

)
. (3.3)

The dashed line implies that the diagram is disorder averaged. For the rest of this section,
dashed lines will be dropped from diagrams, and should be assumed.

Let us now write down the first few terms of the ladder diagram sum

τ1, i

τ2, i

τ3, i

τ4, i

+
i

i

j

j

a b +
i

i

j

j

c

c′

a b a′ b′ + · · · . (3.4)

The first two diagrams are given by

F0 =
1
N

[−G(τ13)G(τ24)+G(τ14)G(τ23)] (3.5)

F1 =
(q−1)J2

N

∫
dτdτ ′

[
G(τ1−τ)G(τ2−τ ′)Gq−2(τ−τ ′)G(τ−τ3)G(τ ′−τ4)−(τ3 ↔ τ4)

]
,

(3.6)

where G(τ) is the Euclidean-time propagator, i.e. the time-ordered product

G(τ) = ⟨T (χ(τ)χ(0))⟩ . (3.7)

Let us now focus on the combinatoric factor that appears in front of the integral, and
is given generally by (3.3). First, let us look at the overall factor outside of the parenthesis
in (3.3). The (−1)n comes from the addition of a fermion loop at each successive order. The
(q− 1)n is a combinatoric factor coming from the number of ways Wick contractions can be
done on the interaction vertices. Inside the parenthesis, we can find each term by considering
the ways ⟨Jia1b1c1Jia1b1c2 · · ·⟩ can be contracted at leading order in N . Focusing on F1, we
have ⟨JiabjJiabj⟩ which gives us back (3.1) a priori, except now there is a sum over i, j, a, b
which will give a factor of N q. We will also obtain a factor of p since, xiabjxiabj = xiabj and
⟨xiabj⟩ = p. Ignoring the Wick contraction combinatorics, which amounts to the (q − 1)
factor above, we have

1
N2

J2

pN q−1N
qp = J2

N
. (3.8)
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This is the 1 inside the parenthesis in (3.3). Every diagram in the sum will contribute
the same 1, however the terms of order 1/(kq) and up will change based on the order of
perturbation theory we are working in.

The two rung diagram will give〈
JiabcJiabc′Jja′b′cJja′b′c′

〉
= ⟨JiabcJiabc′⟩

〈
Jja′b′cJja′b′c′

〉
+
〈
JiabcJja′b′c

〉 〈
Jiabc′Jja′b′c′

〉
+
〈
JiabcJja′b′c′

〉 〈
Jiabc′Jja′b′c

〉
. (3.9)

There are now two possibilities to consider. The first is when ja′b′ is not a permutation of
iab. In this case, the second two terms in the cumulant expansion vanish while the first will
give us a factor of 1 as above. When ja′b′ is a permutation of iab, then the combinatoric
pre-factor will be

3 1
N2

J4

p2N2q−2N
q(q − 1)! p = 3J

4(q − 1)!
NN q−1p

= J4

N

3
kq
, (3.10)

where the 3 is from the three different terms in the sum. The last equality can be seen
from the identity p = kq!/N q−1. So, we see that the one-rung diagram has two terms that
contribute at leading order in N . One that is k independent and one that is of order 1/(kq).
We can proceed in this way for higher order rung diagrams order by order and find a series
in 1/(kq) at leading order in N . At each order, care must be taken to consider which indices
are permutations of the others and in how many ways they can be made permutations of
each other. The procedure is quite tedious; we have worked out the first six pre-factors and
present them below for the reader.

F1 ∼ 1 (3.11)

F2 ∼ 1 + 3
kq

(3.12)

F3 ∼ 1 + 9
kq

+ 15
(kq)2 (3.13)

F4 ∼ 1 + 18
kq

+ 90
(kq)2 + 105

(kq)3 (3.14)

F5 ∼ 1 + 30
kq

+ 300
(kq)2 + 1035

(kq)3 + 945
(kq)4 (3.15)

F6 ∼ 1 + 45
kq

+ 750
(kq)2 + 5205

(kq)3 + 13675
(kq)4 + 10395

(kq)5 . (3.16)

A general expression for the first two terms and the last term in the series is shown below

Fn ∼ (q − 1)nJ2n

N

(
1 + 3

2n(n− 1) 1
kq

+ 5
4n(n− 1)2(n− 2) 1

(kq)2 + · · ·+ (2n)!
2nn!

1
(kq)n−1

)
.

(3.17)
In appendix A, we present a straightforward and general algorithm for calculating a given
coefficient to arbitrary order.

We would now like to make an attempt at summing the ladder diagrams. Since we do
not have an analytic expression for the ladder diagram to all orders in J2 and 1/(kq), we
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choose to work at order 1/(kq)2. We can move between successive ladders (adding rungs to
the zero-order diagram) through multiplication of a kernel Kn,

Fn(τ1, τ2, τ3, τ4)=
∫
dτdτ ′ Kn(τ1, τ2;τ,τ ′)F0(τ,τ ′;τ3, τ4) (3.18)

=
∫
dτdτ ′ Kn

(
1+3

2n(n−1) 1
kq

+5
4n(n−1)2(n−2) 1

(kq)2

)
F0, (3.19)

where

K(τ1, τ2; τ3, τ4) = −(q − 1)J2G(τ13)G(τ24)Gq−2(τ34). (3.20)

We can now attempt to perform the sum over all ladders by viewing the integral operation
in (3.18) as matrix multiplication. We obtain

F =
∞∑

n=0
Fn =

∞∑
n=0

Kn
(
1 + 3

2n(n− 1) 1
kq

+ 5
4n(n− 1)2(n− 2) 1

(kq)2

)
F0

= 1
1−K

(
1 + 3K2

kq(1−K)2 + 15K3(1 +K)
(kq)2(1−K)4

)
F0. (3.21)

In all-to-all SYK, the sum of all ladder diagrams at early times can be shown to scale as
F ∼ eλLt/N . For large kq the sum of ladder diagrams is the same as the all-to-all case, as
expected. However, it is unclear how the corrections of the form 1/kq will contribute to the
exponential behavior of F .

3.2 Diagram counting intuition and hypergraphs

The importance of ladder diagrams in all-to-all SYK is because they contain all O( 1
N )

contributions to the four-point function. As we showed in the previous section, in the
sparse model there are additional contributions (compared to all-to-all) of the form 1

kq .
This implies that sparse-SYK has more diagrams at O( 1

N ). This may seem counterintuitive
at first since sparse-SYK decreases the number of couplings, however, an analysis of how
the couplings themselves change elucidates this problem. Note that we have redefined the
variance in the pruning model to be

〈
J2

ijkl

〉
= (q − 1)!J2

pN q−1 ≈ J2

kq
, (3.22)

where we have used k = p/N
(N

q

)
≈ pN q−1/q!. Therefore, the contributions of O( 1

N ) no
longer depend on the number of couplings Jijkl, rather the O( 1

N ) counting moves to the
pruning coupling xijkl

⟨xijkl⟩ = p ≈ kq!
N q−1 =

〈
xn

ijkl

〉
, (3.23)

where n is any positive integer. Intuitively, the right equality follows because if xijkl = 1,
then the couplings with labels {i, j, k, l} exist in the Hamiltonian. Hence, a diagram vertex
representing this coupling is non-zero, so we can insert these vertices an arbitrary number of
times and the diagram will still exist in the theory. In other words, if couplings with indices
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{i, j, k, l} exist with probability p, then the probability of the same couplings contributing
twice is not less likely (such as p2), because said couplings already exist in the theory.
Another version of this statement is that since xijkl can only be 1 or 0, 1n = 1 and
0n = 0. Additionally, any non-zero term will have the same 1/kq contribution from the J ’s,
specifically the nth order ladder diagram will have 1/(kq)n from the J ’s. Therefore, the
order of any specific term in O(1/kq) is determined by how many p’s (from the pruning
couplings) contribute in that term. Hence, the 1/kq counting for any given term is also
determined by the sparsity couplings xijkl.

In summary, this means that the O( 1
N ) counting moves to the xijkl couplings, and since

these behave differently from the Jijkl couplings, the contributions of O( 1
N ) should change

in the sparse pruning model.
An open question remains: we have performed this analysis using the random pruning

method, yet the preferable numerical choice appears to be the hypergraph method, do
we expect the ladder diagrams in the hypergraph method to yield the same expansion
in 1/kq? While we cannot comment on the expected behavior for a fixed hypergraph
configuration as any given diagram would be dependent on which couplings are present,
we also find in the subsequent section that a fixed hypergraph is insufficient to extract the
Lyapunov exponent using the known numerical methods for the SYK model. It is only upon
averaging over hypergraphs that the Lyapunov exponent can be extracted accurately, it is
important to note that averaging over random pruning and averaging over hypergraphs (for
sufficiently large averages) will lead to the same behavior. This is because when averaging
over hypergraphs, the hypergraph configuration is chosen randomly, in which case (upon
sufficient averaging) each coupling will occur will probability p by construction. This is
analogous to the random pruning model and hence we expect the same behavior, albeit the
hypergraph should require less averaging due to its higher connectivity.

4 Lyapunov numerics

Numerical methods are needed to study the Lyapunov exponent at finite q and finite
coupling in the all-to-all SYK because no closed form is currently known in this regime.2
The need for numerical methods to study the growth of OTOCs is even more pressing in the
sparse-SYK model, where the general analytic relation between the Lyapunov exponent, λL,
and the sparsity parameter k is unknown. As we showed in the previous section, the early
time behavior of the OTOC contains 1/kq contributions and it is unclear how to account
for these contributions in models for extracting analytically the Lyapunov exponent.

In this section we numerically simulate the behavior of the regularized OTOCs (3.2) at
finite N in the sparse-SYK model. We employ the regular hypergraph method of generating
sparseness, as it ensures greater connectivity for any given realization of the Hamiltonian.
The qualitative behavior from varying k is shown in figure 2, for which we see a decrease in
the rate of exponential growth as k decreases. This behavior is physically expected, as the
sparse model reduces the number of connections between fermions, and hence it decreases
the sensitivity to operator perturbations. At this stage, the computational benefit from

2Perturbative expressions in 1/βJ and in the q → ∞ limit [7] do exist.
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Figure 2. A comparison between the double commutators C(t) = 2− 2F(t) of the all-to-all model
(denoted ‘a2a’) and various sparsity parameters k for the sparse model. All curves use the same
number of fermions (N = 30), number of fermions per interactions (q = 4), temperature (β = 1),
and number of disorder realizations (D = 1000). For each k, hypergraphs are averaged over, a choice
justified in the main body of the paper. Higher k’s closely resemble the curves of the all-to-all case,
however as k → O(1), i.e. the limit still expected to retain chaos, the exponential growth starkly
decreases.

sparse-SYK is undeniable. Table 1 demonstrates that even for relatively low N , sparse
simulations reap massive efficiency gains, an effect that further widens the higher N one
chooses to probe.

If one wishes to capitalize on these efficiency benefits to quantify quantum chaos by
means of a Lyapunov exponent, one needs a model for use in extraction. In the all-to-all
model, the best known method for accurate extraction of the Lyapunov exponent [25]
utilizes a symmetry of the OTOC expansion

OTOC ≈ C0 + C1
eλLt

N
+ C2

e2λLt

N2 + · · · , (4.1)

which is invariant under
t→ t+ 1

λL
log c, N → cN. (4.2)

We know the sparse model will approach the all-to-all model in the large k limit, and hence
this symmetry is expected to be recovered in said limit. Our aim is to determine whether the
aforementioned symmetry still holds in the sparse-SYK model, even if only approximately,
in such a way that it allows a quantifiable extraction of the Lyapunov exponent for a given k.
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Time Comparisons Average, q = 4 β = 1 (112 Samples)
Size (N) All-to-All k = 50 k = 10 k = 4
26 00:02:14 00:00:33 00:00:10 00:00:04
28 00:06:22 00:01:19 00:00:23 00:00:10
30 00:17:44 00:03:09 00:00:52 00:00:22
32 00:47:42 00:07:15 00:01:55 00:00:48
34 02:06:27 00:16:26 00:04:14 00:01:48
36 05:27:22 00:37:26 00:09:28 00:04:02

Table 1. Time comparisons between all-to-all SYK and various sparseness (k’s) in sparse-SYK
using the hypergraph method over a range of N ’s from N = 26 to N = 36. All simulations were
run on a single processor with β = 1 and q = 4, averaging over 112 samples to account for time
differences in individual runs. Times are rounded to the nearest second.

4.1 Extraction methods

Typical numerical methods for extracting the Lyapunov exponent via the OTOC involve
performing an exponential fit in the exponential regime of the OTOC [28–31]. However,
this method was found to be insufficient at finite N and q = 4 for the all-to-all model,
where the OTOC at finite-size could only be matched to a simple exponential for a very
short time interval. It has been shown [25] that a numerical derivative method exploiting
the symmetry (4.2) is most effective in extracting the Lyapunov exponent. For each value
of N , a fitted Lyapunov exponent λfit(N) was found as follows. Since a shift under the
symmetry (4.2) leaves the OTOC invariant, we can pick a constant value of the OTOC,
say F∗, between all N ’s simulated and use interpolation to find the time t∗ associated to
each F∗. It follows that the fitted Lyapunov exponent between two curves (assuming the
symmetry holds) is

1
λfit

= Log(N2)− Log(N1)
t∗2 − t∗1

, (4.3)

which could then be plotted vs 1/N to see the effect as the system approached large N .
Taking a second order fit in 1/N for λfit, λL is defined as the value when 1/N → 0

λfit(N) ≈ λL + λ1
N

+ λ2
N2 . (4.4)

In our simulations, we use F∗ = 0.4. See figure 3 for a concrete example of this
procedure. We test the robustness of this choice by using different values in appendix C.
Due to the success of the numerical derivative method exploiting the symmetry (4.2), we
choose to closely match the numerical tools employed by [25] in their extraction of the
Lyapunov exponent. This includes utilizing dynamite [32], a Python package allowing fast
simulation of quantum dynamics with Krylov subspace implementation [33]. As stated in
section 2.1, a regularized OTOC

F(t) = ⟨W (t)ρ1/4V (0)ρ1/4W (t)ρ1/4V (0)ρ1/4⟩β (4.5)
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Figure 3. Plot visualizing the extraction of λfit in all-to-all SYK (q = 4, β = 1, 116430 disorder
realizations) from the double commutator C(t) via a numerical derivative. (a) Plots of the C(t)
versus time for N = 16 to N = 36. To calculate the numerical derivative, a horizontal cross section
F∗ must be chosen, here F∗ = 0.4. The symmetry (labelled within the grey box) describes at what
times subsequent curves should intersect F∗. (b) After the numerical derivative between subsequent
curves is calculated via (4.3), λfit is plotted versus 1/N and fitted to a 2nd order polynomial (in
grey box) to extract the large N Lyapunov exponent, here λL = 0.79.

has been shown to reduce finite-size effects, and here V and W are chosen as distinct single
Majorana operators. Additionally, it is known for large N that the thermal expectation
value involving the trace can be closely approximated by calculating the expectation value
via Haar random states [25, 34, 35], i.e. for a Haar random state |ψ⟩

tr
[
e−βHÔ

]
≈ ⟨ψ|e−βHÔ|ψ⟩. (4.6)

The finite N error in this approximation can be reduced through sufficient averaging over
different initial random states, represented by the overline. It has been shown that averaging
these states separately or simultaneously with the couplings Jijkl in the all-to-all case had no
significant difference in error. Hence, in this work, we also employ simultaneous averaging
of the couplings and initial random states.

We find another source of averaging that is important to the extraction of the Lyapunov
exponent not present in the all-to-all model, namely averaging over many hypergraphs (by
generating regular hypergraphs using different seeds). As we will explain below, the fixed
hypergraph method does not produce the expected symmetry. Only after averaging over
many hypergraphs does the desired symmetry becomes apparent (see appendix C). Thus,
only for an aggregate of hypergraphs the symmetry-based method could be used to extract
the Lyapunov exponent.
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In order to quantify the error of λL, we simulate a large number of realizations
≳ 100, 000 and subdivide these realizations into subgroups, from which we extract the
Lyapunov exponent for each subgroup. By performing statistics on many of these subgroups,
we can derive a mean Lyapunov exponent λ̄, a standard deviation σ, and a coefficient of
determination R2. We explain this procedure in more detail in what follows.

4.2 Averaging over hypergraphs

The ultimate goal of this section is to glean whether the symmetry as described by (4.2)
holds in the sparse-SYK model, and if so to extract Lyapunov exponents and determine
their dependence on the sparsity parameter k. We can get a qualitative idea of whether the
symmetry holds from figure 4, where we plotted the Double Commutators of the sparse
model in comparison to the all-to-all model over D = 1000 realizations. These results
employ simultaneous averaging over hypergraphs, couplings, and random initial states. At
this level of averaging, the inconsistent behavior in spacing between subsequent curves
suggest that the symmetry breaks down as sparsity increases. This behavior admits at
least three possible explanations. Either the symmetry itself does not hold in the sparse
model, the sparse model is more susceptible to finite-sized effects, or the averaging over
hypergraphs produces random fluctuations requiring a higher degree of averaging.

A quantitative approach must be employed to separate these possibilities. To test the
impact of random fluctuations, we note that an average over a sufficiently large number of
realizations must converge to a certain value, and therefore repeating the experiment using
the same number of realizations should not change that value. We measure the dependence
on the number of realizations by repeating the extraction of the Lyapunov exponent many
times, where each extraction utilizes Dg realizations. From these repetitions, we obtain
a mean value for the Lyapunov exponent λ and a standard deviation σ for each Dg. By
varying Dg, we can analyze how the error on λ is modified. The choice of how many
repetitions to average over is completely arbitrary, we find that the choice yielding the
smoothest results for Lyapunov extraction is to average the “maximum” number of times, i.e.
if there are Dtot total number of realizations, then we can make Dtot/Dg unique groupings
of Dg realizations and hence we average over all of these groups. When Dtot/Dg < 10 we
stop increasing Dg, so as to allow sufficient samples to be averaged over. Another possible
choice is to choose a set number of samples to average over regardless of Dg, we do this
with 10 and 20 samples in appendix C as a test of robustness.

The other quantitative tool utilized is the coefficient of determination R2, which
represents in our case how well the numerical derivative data of a given group fits (4.4). It
has the formula

R2 = 1− SSres
SStot

. (4.7)

The term SSres refers to the sum of squares of residuals, SSres =
∑

i(xi − x̂i)2, xi refers to
our numerical data and x̂i refers to the prediction based upon our model from (4.4). This
represents the total sum of variances between our model’s prediction and the numerical
data. SStot on the other hand is the sum of the variance of the data, SStot =

∑
i(xi − x)2.

– 13 –



J
H
E
P
1
1
(
2
0
2
3
)
0
8
8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

1.0
C

(t
)

All to all q = 4 = 1 D = 1000

N = 16
N = 18
N = 20
N = 22
N = 24
N = 26
N = 28
N = 30
N = 32
N = 34
N = 36

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

1.0

C
(t

)

k = 50 q = 4 = 1 D = 1000

N = 16
N = 18
N = 20
N = 22
N = 24
N = 26
N = 28
N = 30
N = 32
N = 34
N = 36

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

1.0

C
(t

)

k = 10 q = 4 = 1 D = 1000

N = 16
N = 18
N = 20
N = 22
N = 24
N = 26
N = 28
N = 30
N = 32
N = 34
N = 36

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

1.0
C

(t
)

k = 4 q = 4 = 1 D = 1000

N = 16
N = 18
N = 20
N = 22
N = 24
N = 26
N = 28
N = 30
N = 32
N = 34
N = 36

(d)

Figure 4. Comparison of C(t) = 2 − 2F(t) between All-to-all and various Sparse models with
D = 1000 disorder realizations. Presented data is averaged over many different hypergraphs. (a) In
the All-to-all model, the symmetry visually holds as N increases; subsequent curves get successively
closer together. (b, c, d) Plots for k = 50, 10, 4 respectively. The symmetry visually appears to break
down in the Sparse regime at this level of realizations, i.e. the spacing between subsequent curves is
not consistent with the symmetry.

The ratio SSres/SStot, also called the fraction of variance unexplained, represents the ratio
between the “unexplained” variance (from the discrepancy between model and data) and
the total variance. If a set of data implements the symmetry given by (4.2), λfit will closely
match the data, implying SSres/SStot → 0 and therefore R2 ≈ 1. Hence, by analyzing how
R2 changes with Dg, we can see whether simply greater averaging is sufficient to recover
the symmetry.
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Due to the outputs of the mean Lyapunov exponent, associated standard deviation,
and R2 all roughly lying in the range [0, 1], we can plot these values together in the same
plot, which can be seen in figure 5. These plots indicate that random fluctuations, caused
in large part because hypergraphs must be averaged over, have a much larger effect for
sparse models. It is not until far larger numbers of disorder realizations in the Sparse
case that similar values for error and R2 as compared to the all-to-all model are achieved.
At this level of disorder groupings, the all-to-all model demonstrates convergence in the
mean, standard deviation, and R2 values with groups of roughly Dg ∼ 10, 000, with R2 → 1
suggesting the symmetry based model closely matches the data. As k decreases, the stability
of this convergence slightly decreases, with somewhat higher fluctuations. However, given a
large enough Dg, such as Dg ∼ 175, 000 for k = 4, we can also recover R2 → 1 and some
convergence in error and mean Lyapunov exponent. We illustrate this point in figure 6.

Overall, we find that as k decreases, the number of disorder realizations goes up to
(and exceeds) an order of magnitude greater than in the all-to-all case. This suggests the
following interpretation: as k decreases, the structure/connections of the sparse Hamiltonian
further and further diverge from that of the all-to-all model. To compensate for a given
hypergraph being a poor representation of the all-to-model from which it is constructed,
hypergraphs (and hence the connections/structure) must be averaged over if the symmetry
is to be recovered. The subsequent section provides further evidence for this interpretation.

One important observation from figure 5 is the appearance of the k = 50 average
Lyapunov exponent being higher than that of the all-to-all model, this is surprising as
increasing sparseness should decrease the chaotic properties. This is however an artifact of
numerical error, specifically that the Lyapunov exponent approaches its asymptotic value
from above. At our level of disorder realizations, the standard deviation and R2 (for all k)
make it clear that full convergence has not yet been achieved, the k = 10 and k = 4 cases
demonstrate that as one approaches convergence by increasing Dg, the average Lyapunov
exponent continues to decrease. They also demonstrate that for lower k, convergence is
not achieved until higher levels of R2 are achieved as compared to the all-to-all model. We
expect that given enough disorder realizations, the extracted Lyapunov exponent for k = 50
would drop below that of the all-to-all model. A reasonable cause for why the standard
deviation may asymptote above zero is due to finite N effects, and it appears for the k = 50
case this asymptote may be above that of the all-to-all case. It is also possible that some
disagreement with symmetry-based models is due to finite N behavior acting more strongly
in the sparse model. Hence, our next goal is to investigate whether this is the case, and if
simulating larger N can lead to more accurate extraction of the Lyapunov exponent.

4.3 Is accurate extraction possible at larger N?

It is natural to ask if going to larger N will allow us to extract the Lyapunov exponent more
accurately, as it does for the all-to-all model. Unfortunately, we find that at fixed k, the
answer seems to be no. In this section, we probe higher N ’s in the sparse model to test if
finite-sized effects can explain some of the disagreement with symmetry-based models. Our
methods match those used in the previous section, except rather than comparing different
k’s we compare different ranges of N ’s for the k = 4 model, which approaches the minimum
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Figure 5. Many realizations are subdivided into groups sized Dg, from which a Lyapunov exponent
and R2 is extracted. This process is repeated Dtot/Dg times, the average values of λL (blue) and
R2 (green) are plotted, as well as the standard deviation of λL, σ (orange). Resolution of plots all
have ∆Dg = 50. (a) all-to-all model. Exhibits convergence for plotted quantities; R2 → 1 shows
agreement with the symmetry. (b,c,d) k = 50, 10, 4 respectively. For similar values of R2, display
similar values of error (even compared to (a)), however fluctuations increase as compared to all-to-all.
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Figure 6. R2 for the plots in figure 5. As the model becomes more sparse, the number of realizations
has to increase considerably to obtain reliable results. As in previous plots, N = 16 to 36, q = 4,
β = 1.

limit of sparsity while still retaining chaos, and is correspondingly the fastest of our choices
of k to simulate. We chose to retain the lower bound of N = 16 when extracting the
Lyapunov exponent for all higher N ’s as it led to better agreement with symmetry methods.
In appendix C we have also included an alternative analysis with a constant range of N ’s
(e.g. for N = 42 the range would be N = 22 to N = 42).

The corresponding plots for these simulations can be found in figure 7. We find that
not only do random fluctuations actually increase in size with higher N , but also the R2

value has no better agreement as N increases. There is a likely explanation for these trends.
Recall that the number of interactions scales as ∼ N q for the all-to-all model and as ∼ kN

in the sparse models. Therefore, as N increases, the ratio of interaction terms between the
all-to-all and sparse models grow as N q−1. Our results in section 4.2 show that the further
one strays from the all-to-all configuration, the more averaging one must do to recover the
symmetry. Thus, as N increases and the difference in interaction terms grows larger, the
sparse model requires higher levels of averaging to recover the symmetry.

Hence we have demonstrated that for low k, there does not appear to be a simple
method to consistently extract the Lyapunov exponent at finite N using currently known
methods without averaging over massive number of realizations. Another approach one
could employ is varying β, however it is unlikely this would lead to better behavior, certainly
for β > 1 as fluctuations rise in this case, in part due to fewer values of N being suitable
for extraction since the OTOC expansion being valid requires N ≳ βJ .

4.4 Efficiency and Lyapunov exponents

The previous sections have made evident that higher degrees of sparsity (lower k) require
greater averaging (and hence greater computation times) in order to accurately extract
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Figure 7. Many realizations are subdivided into groups sized Dg, from a Lyapunov exponent and
R2 is extracted. This process is repeated Dtot/Dg times, the average values of the λL (blue) and
R2 (green) are plotted, as well as the standard deviation of λL (orange). Resolution of plots all
have ∆Dg = 10. All plots are of k=4 sparse model, and have the same max Dg. (a) Max value
N = 36, scaled down version of figure 5(d), baseline of comparison. (b,c,d) Max value N = 38, 40, 42
respectively. All exhibit greater fluctuations and no significant change to R2 for this range of Dg.

– 18 –



J
H
E
P
1
1
(
2
0
2
3
)
0
8
8

the Lyapunov exponent. We now seek to determine whether the computational benefit
inherit in sparse-SYK is retained after the large amounts of disorder averaging that must
be performed. In this section, we present a rudimentary method to determine the relative
efficiencies of sparse models as compared to all-to-all, granting that more sophisticated
methodology could be employed to perhaps gain greater insight as to how they compare.
Based upon our methodology, we find that the computational trade-off between inherent
speed increase in sparse models and time increase due to greater disorder averaging roughly
cancel out, meaning accurate Lyapunov extraction is no more efficient for low k models as
it is for all-to-all models. We also present the numerically calculated Lyapunov exponents
for our given range of k’s.

Our rudimentary choice of calculating efficiency starts with choosing what qualifies as
“accurate” Lyapunov extraction. Given our ranges of simulated Dg, a goodness of fit of
R2 = 0.9 was our choice of where to begin considering the extraction as accurate enough.
Since we do not have exact curves corresponding to how R2 varies with Dg, we instead
chose to analyze the corresponding values of Dg where the numerically calculated values of
R2 were within 0.005 of R2 = 0.9. This gives us a range of Dg values, interpreted to mean
that on average, samples extracted with those values of Dg will produce curves for λfit with
a goodness of fit of R2 ≈ 0.9. For data that passes through R2 = 0.9 multiple times, the
largest continuous cluster is chosen.

We also need to quantify the time advantage sparse-models have over all-to-all models,
which can be straightforwardly done by finding the time (on average) it takes to simulate a
single disorder realization for our range of N ’s (N = 16 to N = 36). The full list of times per
N is provided in appendix B, we present in this section just the total time for all values of N .
By dividing the total time (in seconds) by the total time of the all-to-all model, one achieves
a “time factor”, representing the ratio of how much faster a given sparse model is per
realization as compared to the all-to-all model. Multiplying the previously described ranges
of Dg by these time factors will yield the relative number of disorder realizations needed to
achieve accurate (as deemed by R2 = 0.9) Lyapunov extraction. For the calculated values
of the Lyapunov exponent and associated standard deviation, we average over the data
with R2 > 0.9 (rounded within 0.01), which all achieve convergence within those ranges.
Results of this analysis can be found in table 2. For discussion regarding the appearance
of the k = 50 extracted Lyapunov exponent being higher than that of the all-to-all model,
refer to the end of section 4.2.

This analysis demonstrates that the necessity of greater disorder averaging required
for accurate Lyapunov extraction within sparse-SYK roughly negates the computational
benefit provided per realization by sparse models, since the relative efficiency is roughly
comparable between all models.

5 Conclusions

We studied the quantum chaotic behavior in the sparse-SYK model as diagnosed by out-of-
time ordered correlators (OTOCs). We approached the problem through both analytical
and numerical methods. In the large N limit, where the OTOCs are given by a sum of
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Efficiency Table (112 Samples for Time)
All-to-All k = 50 k = 10 k = 4

Total Time (N = 16 to 36) 08:49:51 01:06:44 00:17:11 00:07:18
Time Factor 1 0.126 0.0324 0.0138
Dg Range, R2 ≈ 0.9 1400–1500 9700–12250 53500–68000 90000–111000
Relative Efficiency 1400–1500 1222–1543 1733–2203 1242–1531
Lyapunov Exponent 0.80 0.88 0.81 0.58
Standard Deviation 0.16 0.30 0.28 0.34

Table 2. Efficiency comparisons between all-to-all SYK and various sparse models. The total time is
the average total time (over 112 samples) to simulate a single disorder realization. The time factor is
the fraction of time (compared to all-to-all) spend per disorder realization. The Dg range is the range
of disorder groupings which yield a value of R2 = 0.9 within 0.005. The relative efficiency is the range
of Dg multiplied by the corresponding time factor. The Lyapunov exponent and standard deviation
is the average of the corresponding quantities over the range of Dg’s with R2 > 0.9 from figure 5.

ladder diagrams, we found an algorithm for calculating the 1/kq corrections to the ladder
diagrams. This allows us to obtain analytic expressions for ladder diagrams of arbitrary
order expanded to arbitrary orders in 1/kq — see appendix A for details. Importantly, the
kernel in (3.18) obtained in this procedure is dependent on the ladder diagram order, a
feature not shared by the all-to-all SYK. Thus, the summation over ladder diagrams needs
to be truncated at some order in 1/kq, and the summation to extract the corrections to the
early time exponential behavior of the OTOC cannot be performed with the same tools as
in the all-to-all model.

The numerical approach employed in this work followed the symmetry-based method
in [25], previously applied to the all-to-all SYK, which is the only known accurate method
for extraction of the Lyapunov exponent from finite N simulations. We found that sparse
models with k ≲ 50 require far larger averaging of disorder realizations for accurate
extraction as compared to the all-to-all model. In a fixed regular hypergraph sparse model,
the extraction of the Lyapunov exponent led to inconsistent results, i.e., two fixed regular
hypergraphs with the same level of sparseness resulted in different Lyapunov exponents
even when we significantly increase the number of disorder realizations. This indicates that
the symmetry (4.2) does not hold for a fixed hypergraph configuration. In order to recover
the symmetry, we performed an additional average over regular hypergraphs with the same
sparseness parameter k. We find that even with the extra average, the fluctuations in the
Lyapunov exponent are still larger compared to the all-to-all SYK, and these fluctuations
increase even more as k decreases.

As shown in section 4, a reliable extraction of the Lyapunov exponent is still possible
for low values of k but a very large number of realizations is needed. Therefore, there
is a trade-off between efficiency and variance in the extracted Lyapunov exponent in the
sparse-SYK. One could argue that these fluctuations can be reduced through probing
larger values of N . However, as we argued in section 4.3, the opposite effect takes place for
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Lyapunov extraction in the sparse-SYK model. The reduction in computation time of a
single realization is offset by the larger number of simulations needed to be performed. In our
numerical tests, the offset of the two effects is roughly comparable, i.e., the computational
resources required to achieve similar levels of accuracy for Lyapunov extraction are roughly
the same between all-to-all and sparse models.

We remark that our numerical results are consistent with the previous statement in [21]
that quantum chaos is present in the sparse-SYK model for k ∼ O(1), derived from level
statistics [36]. Interestingly, the analysis of [21] also revealed the existence of emergent
symmetries in the sparse-SYK model. It is possible that these emergent symmetries are
correlated with the large fluctuations observed in the Lyapunov exponent.

Our results suggest several directions to explore in the future.

• In [37] the authors calculate the Lyapunov exponent in a variant of the SYK model
by solving the Schwinger-Dyson equations numerically. It would be interesting to
investigate if this method can be an alternative way to extract the Lyapunov exponent
of the sparse-SYK model.

• Our numerical results indicate that the early time behavior of the OTOCs is affected
by the sparseness of the model. It would be interesting to further explore the
summation of the ladder diagrams to determine the leading corrections to the early
time exponential ansatz F ∼ eλt/N in the sparse-SYK model.

• A better understanding of the emergent symmetries found in [21], especially their
effect at larger N , could also provide insights on how the sparseness affect the behavior
of OTOC expansion (2.4).
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A Sparse SYK ladder diagram general algorithm

A.1 Simplifying diagram calculations

As seen from the calculations in section 3, general ladder diagram calculations will heavily
involve combinatorics, especially as their order increases. Additionally, since the kernel is
dependent on the order of the diagram, finding a given ladder diagram to arbitrary order is
a non-trivial procedure. However, as we will see from calculating the first several ladder
diagrams, a pattern emerges. In this section, we will develop the notation and motivation
behind this procedure.

Let us return to the example of the two rung ladder diagram

i

i

j

j

c

c′

a b a′ b′ (A.1)

General ladder diagrams require c = c′ to be O( 1
N ). In this case, we notice the Gaussian

moment expansion (3.9) simplifies to〈
JiabcJiabcJja′b′cJja′b′c

〉
= ⟨JiabcJiabc⟩

〈
Jja′b′cJja′b′c

〉
+ 2

〈
JiabcJja′b′c

〉 〈
JiabcJja′b′c

〉
. (A.2)

Recall from (3.1) that only if two couplings’ indices are equal (up to permutation) may
the multiplication of the two be non-zero after averaging. Let us adopt a convention of
labelling vertices from left to right in the ladder diagram. At the order of 1/N the vertices
connected by rungs have the same indices, so we can label them by the same vertex number.
Our convention will involve replacing couplings by their corresponding vertex numbers, for
instance Jiabc → 1. In this new labeling scheme, (A.1) corresponds to

1

1

2

2

(A.3)

Similarly, we can replace (3.9) with

⟨1122⟩J = ⟨11⟩J ⟨22⟩J + 2 ⟨12⟩J ⟨12⟩J . (A.4)

In our new convention, the term ⟨12⟩J should be interpreted to mean that after averaging,
⟨12⟩J = J2

kq , only if vertices 1 and 2 have indices which are equal up to permutations of
each other. Recall that the two relevant cases here are if vertex 1 and 2 are or are
not permutations of each other. In the latter case (not permutations), ⟨12⟩J = 0 (not
permutations), so only the term ⟨11⟩J ⟨22⟩J contributes. Let us represent the sparsity
couplings ⟨xabcdxabcd⟩ = ⟨xabcd⟩ as ⟨11⟩x = ⟨1⟩x, we found the pruning couplings contributed
a factor of ⟨1⟩x ⟨2⟩x = p2.
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In the other case, vertices 1 and 2 do have indices equal up to permutations. However
since all vertices are equal, the averaging over x reduces to ⟨1122⟩x = ⟨1⟩x = p, so overall
only a single factor of p is contributed from the x’s. Recall that the total expression (in
our new notation) is ⟨1122⟩J ⟨1122⟩J , so the factors from averaging over J ’s must also be
considered. Overall, our goal is to find the numerical/combinatorial terms multiplying these
p’s since these are what determine the order in 1/kq, which are embedded in averaging over
the J ’s. By using (3.9) and dropping the factors of J2 (these can be pulled out across the
entire expression), let us create a table which counts all relevant contributions:

⟨1122⟩J = ⟨11⟩J ⟨22⟩J + 2 ⟨12⟩J ⟨12⟩J Total

p2 1 1
p 1 + 2 3

Let us repeat this process for the ladder diagram with three rungs in full detail. For
this case we have

⟨112233⟩J = ⟨11⟩J ⟨2233⟩J + 2 ⟨12⟩J ⟨1233⟩J + 2 ⟨13⟩J ⟨1223⟩J (A.5)
= ⟨11⟩J ⟨22⟩J ⟨33⟩J + 2 ⟨11⟩J ⟨23⟩J ⟨23⟩J + 2 ⟨12⟩J ⟨12⟩J ⟨33⟩J +
+ 2 ⟨13⟩J ⟨13⟩J ⟨22⟩J + 8 ⟨13⟩J ⟨12⟩J ⟨23⟩J . (A.6)

Let us organize again by order in p, the case p3 is given by no vertices being equal up to
permutations. In that case, as was the case for n = 2, only the first term contributes. For
order p2, the counting gets trickier. There are three cases which contribute, if vertices 1
and 2 are equal, vertices 1 and 3 equal, and vertices 2 and 3 are equal. For 1 and 2 equal,
we have ⟨13⟩J = 0 = ⟨23⟩J , leaving a coefficient of 1 + 2 = 3. Each other case of order p2

has this same numerical coefficient, making the total numerical coefficient 9. For order p,
all terms contribute giving a numerical constant of 15.

Since all we care about is the order of p, not the specific case of which vertex is a
permutation of another, we notice that every term with coefficient 2 in (A.6) is the same
up to relabelling of vertices, therefore they contribute at the same order of p. We therefore
wish to label these terms by a factor which suggests that they all contribute equally at the
same order of p. If the highest order of p a term contributes is pk, we will relabel these
terms by the factor Pk. In this way may rewrite (A.6) as

⟨112233⟩J ∼ P3 + 6P2 + 8P. (A.7)

Our current notation is still burdensome, as the expansion contains terms with both ⟨·⟩J

and ⟨·⟩x, our goal will be to combine them. We can do this by notationally decomposing our
average over x into groups of 2 vertices (like that which is naturally done from the Gaussian
moment expansion for the J ’s). To see this concretely, let ⟨·⟩d be a term in the decomposed
average, such that ⟨aabb . . .⟩x ≡ ⟨aa⟩d ⟨bb⟩d ⟨. . .⟩d. Note that these decomposed terms are
not a true average nor should they be interpreted as one, they can recombine/decompose
freely (to conserve the relevant structure) but only after a total recombination of the ⟨·⟩d’s
do they represent something physically meaningful, namely it recovers the original average
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over x. Their purpose is simply for notational convenience. The use of this becomes
apparent when we let ⟨ab⟩ ≡ ⟨ab⟩J ⟨ab⟩d, meaning we have the following identities

⟨aa⟩J ⟨aa⟩x = ⟨aa⟩ ∼ P (A.8)

⟨ab⟩J⟨ab⟩J ⟨abab⟩x =
(
⟨ab⟩J ⟨ab⟩d

)(
⟨ab⟩J ⟨ab⟩d

)
= ⟨ab⟩ ⟨ab⟩ ∼ P (A.9)

⟨ab⟩J⟨ac⟩J ⟨abac⟩x = ⟨ab⟩ ⟨ac⟩ ∼ ⟨bc⟩. (A.10)

The second identity is true because the term is only non-zero when ⟨ab⟩J ̸= 0, meaning
vertices a and b are permutations of one another. In that case, ⟨abab⟩x = ⟨a⟩x = p, meaning
the highest order the term can contribute is p1, hence the term corresponding to P. The
third identity can not be further simplified (ie, we cant set it equal to P) because if ⟨bc⟩ ∼ P ,
that would imply ⟨bc⟩ ⟨bc⟩ ∼ P2, which contradicts the second identity. The origin of this
comes from equivalent vertices appearing in pairs in the ladder diagram.

Another way to see why we make this replacement is to note as stated earlier that
a relabelling of indices will not change the way in which the counting at each order of p
is done, therefore we can always choose to relabel terms such that they combine into the
form (A.7), for example

⟨112233⟩ = ⟨11⟩ ⟨2233⟩+ 2 ⟨12⟩ ⟨1233⟩+ 2 ⟨13⟩ ⟨1223⟩
= ⟨11⟩ ⟨2233⟩+ 4 ⟨12⟩ ⟨1233⟩
= ⟨11⟩ ⟨22⟩ ⟨33⟩+ 2 ⟨11⟩ ⟨23⟩ ⟨23⟩+ 4 ⟨12⟩ ⟨12⟩ ⟨33⟩+ 8 ⟨13⟩ ⟨12⟩ ⟨23⟩
= ⟨11⟩ ⟨22⟩ ⟨33⟩+ 6 ⟨11⟩ ⟨23⟩ ⟨23⟩+ 8 ⟨13⟩ ⟨12⟩ ⟨23⟩
∼ P3 + 6P2 + 8P. (A.11)

Note that the process of finding the coefficient at O(pk) is not as simple as just reading
off the coefficient of Pk as written above, recall for example the term ⟨11⟩ ⟨22⟩ ⟨33⟩ ∼ P3

contributed for every possible case of order p2. Therefore we need to multiply each coefficient
by all the cases where it contributes. Let us define two vertices as “connected” (forming a
“connection”) if their indices are equal up to permutations. Additionally, we will define the
number of “free” vertices as the number of vertices whose indices may take on independent
values while still ensuring the term is non-zero. For instance, ⟨aa⟩ ⟨bb⟩ has two free vertices,
since vertices a and b can both take on independent indices. On the other hand, ⟨ab⟩ ⟨ab⟩ is
only non-zero if a and b are connected, meaning there is only one free vertex (say a, since b
must have its vertices equal up to permutation of a).

For the third-order ladder diagram, there must therefore be one additional connection
(involving two vertices) for the leading term to contribute at order p2. The term ⟨11⟩ ⟨22⟩ ⟨33⟩
has three free vertices (1,2, and 3), of which we choose two to be equal at order p2, hence
its contribution will be multiplied by

(3
2
)
. This is not the case for the term ⟨11⟩ ⟨23⟩ ⟨23⟩;

vertices 2 and 3 already must be equal for the term to be non-zero.
The general counting procedure will therefore be as follows: create a table with the

left column denoting the order of p, and the top row corresponding to the expansion of
the average of the couplings in terms of P . For order pk, take the coefficient of Pk and all
higher powers of P and multiply them by the number of combinations required to form
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enough connections to be of order pk. For instance at order p, ⟨11⟩ ⟨22⟩ ⟨33⟩ must undergo
2 connections involving 3 free indices, so that means out of 3 free vertices choose 3 to be
connected, which is

(3
3
)
= 1. Similarly for ⟨11⟩ ⟨23⟩ ⟨23⟩ there are 2 free vertices (2 or 3

must be equal to the other to be non-zero, removing a free vertex) with one connection
involving 2 vertices, implying a factor of

(2
2
)
= 1. In general this pattern will hold. Another

reason to see why their combinatoric factors should be 1 is that at order p, all vertices are
equal so there is only one way to combine them all. So our table for the third order ladder
diagram becomes

⟨112233⟩ = P3 + 6P2 + 8P Total

p3 1 1
p2 1

(3
2
)

+ 6 9
p 1 + 6 + 8 15

We will continue to 4th order to further demonstrate how these combinatoric factors
work. At order p2, the factor P4 undergoes two connections, however this time there are
two cases. With four free vertices, three vertices could be all connected (making 2 total
connections) or two sets of two connections could be formed. The latter of which has

(4
2
)

for the first choice and
(2

2
)
= 1 for the second choice. Therefore the table becomes

⟨112233⟩ = P4 + 12P3 + 44P2 + 48P Total

p4 1 1
p3 (4

2
)
+ 12 18

p2 (4
3
)

+
(4

2
)(2

2
)

+ 12
(3

2
)

+ 44 90
p 1 + 12 + 44 + 48 105

For this procedure to work for arbitrary order of ladder diagram, we must find a closed form
for the expansion of averaged couplings into P ’s as done above, and find a general method
for calculating the combinatoric factors. These will both be addressed in the next section.

A.2 General Procedure

Let us first address the combinatoric factors. Recall based on our definition of free vertices
that the monomial Pk has k free vertices. At order pk no connections need be formed, so
the term does not gain a combinatoric factor (although still has a coefficient multiplying
Pk). The term Pk+1 has k + 1 free vertices, and must undergo 1 connection to be of order
pk. Out of the k + 1 free vertices, two must be chosen to form a connection, hence the
combinatoric factor becomes

(k+1
2
)
. For Pk+2, there must be two connections between free

vertices at order pk. However we must choose how to partition these connections, they
can either all be grouped together, meaning three free vertices are all permutations of one
another (2 connections) or be separated into two different connections (1+1 connections).
For any grouping of connections, there is always one more vertex than connection, which is
what the combinatorics are performed on. So for the two connections grouped together,
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the combinatoric factor will be
(k+2

2+1
)
=
(k+2

3
)
. For two separate connections, we do the

combinatorics out of all the free vertices with one connection
(k+2

1+1
)

and then do combinatorics
on the remaining free vertices for the next connection

( k
1+1
)

making a total combinatoric
factor of

(k+2
2
)(k

2
)
.

As an example, let us calculate the order p2 contribution at n = 6 order in ladder
diagrams. Additionally, we will denote the nth order diagram by an(P). It turns out at
n = 6 this becomes

a6(P) ≡ ⟨112233445566⟩ ∼ P6 + 30P5 + 340P4 + 1800P3 + 4384P2 + 3840P. (A.12)

So at order p2, we start with the combinatoric factors of P6. 6− 2 = 4 connections must
be made. These connections can be partitioned into the following sets: {4}, {3, 1}, {2, 2},
{2, 1, 1}, {1, 1, 1, 1}. We add one to each of these sets to represent the possible combinatorics
on the free vertices, so {5}, {4, 2}, {3, 3}, {3, 2, 2}, {2, 2, 2, 2}. We then need to find the
combinatoric factors by taking the j = 6 free vertices and doing successive choose functions
on each member of the set, this will give a factor of the form

P6 at order p2 :
(
6
5

)
+
(
6
4

)(
2
2

)
+
(
6
3

)(
3
3

)
+
(
6
3

)(
3
2

)(
1
2

)
+
(
6
2

)(
4
2

)(
2
2

)(
0
2

)
(A.13)

Notice that terms like
(0

2
)
= 0 =

(1
2
)

make those coefficients vanish, so those terms do
not contribute. These factors effectively mean it is not possible to construct the sufficient
connections with that partition set. Repeating this process for all P ’s along with using the
coefficients from (A.12) yields(

6
5

)
+
(
6
4

)(
2
2

)
+
(
6
3

)
+30

((
5
4

)
+
(
5
3

))
+340

((
4
3

)
+
(
4
2

))
+1800

(
3
2

)
+4384=13675

(A.14)

Since ⟨112233445566⟩ contains 6 powers of
〈
J2

abcd

〉
∼ 1/p, at order p2 to total contribution

from p’s is 1/p4 ∼ 1/(kq)4, which matches our coefficient in the expansion from (3.11).
The general procedure for combinatoric factors should become clear from this. At order

pk and ladder diagram order n, the combinatoric factor for Pj is as follows: if k > j, then
the factor is zero. If k = j, the factor is 1 (effectively zero choices of free vertices need to
be made). If j > k, then j − k ≡ m number of connections need to be made. The number
of distinct combinatoric factors is equal to the number of partition numbers of m, since m
different connections must be partitioned into groups. For any given group of connections,
the number of vertices is one more than the number of connections in said group. Create a
list corresponding to each possible partition of m (so the number of different lists will be the
number of partitions of m), and add 1 to each member of the list to represent the number
of free vertices. For a given list ml, place each member mls ∈ ml into the lower value of a
choose function,

( ·
mls

)
, and multiply all of these choose functions together. The upper value

will start with j (coming from the free vertices available from Pj), and then decrease by the
number of free vertices connected ml1, which will be of the form

( j
ml1

)(j−ml1
ml2

)(j−ml1−ml2
ml3

)
· · · .
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This process will repeat for all sets of partitions ml, and then for all values j from Pj such
that j > k. After multiplication by the corresponding coefficient of Pj and summing all
terms together, this will form the total factor contributing to pk.

The last step of our procedure is to find the expansion of an(P) in terms of P’s for
arbitrary n. The first step is to form a recursion relation for ⟨11 · · ·nn⟩ in terms of P’s.
There are 2 ways for vertices 1 and 2 to be paired, and n− 1 different vertices that may be
paired with vertex 1. Since we have the ability to relabel vertices without impacting the
expansion of P’s, we arrive at

an(P) = ⟨11 · · ·nn⟩ = ⟨11⟩ ⟨2233 · · ·nn︸ ︷︷ ︸
n−1

⟩+ 2(n− 1)⟨12⟩⟨12 33 · · ·nn︸ ︷︷ ︸
n−2

⟩, (A.15)

where the underbrace refers to the number of unique vertices (before considering permu-
tations). Since ⟨22 · · ·nn⟩ involves n − 1 unique vertices which we are free to relabel, it
is therefore equivalent to an−1(P). Additionally ⟨11⟩ = P, which leaves the second term.
We can choose to define the second term as bk(P) and find its recursion relation by again
expanding and relabelling

bk(P) ≡ ⟨ab⟩⟨ab 11 · · · kk︸ ︷︷ ︸
k

⟩ = ⟨ab⟩ ⟨ab⟩ ⟨11 · · · kk⟩+ 2k⟨ab⟩ ⟨a1⟩ ⟨b1 22 · · · kk︸ ︷︷ ︸
k−1

⟩. (A.16)

Using (A.9) and our above expressions we can rewrite our recursion equations as a set of
two coupled recursion relations

an(P) = Pan−1(P) + 2(n− 1)bn−2 (A.17)
bk(P) = Pak(P) + 2kbk−1(P). (A.18)

These sets of equations can be solved to find

an(P) = 2n−1P
Γ(P2 + n)
Γ(1 + P

2 )
. (A.19)

While this solution may at first glance seem complicated, an expansion for the first few n’s
makes the pattern apparent:

a1(P) = ⟨11⟩ = P (A.20)
a2(P) = ⟨1122⟩ = P(P + 2) (A.21)
a3(P) = ⟨112233⟩ = P(P + 2)(P + 4) (A.22)
a4(P) = ⟨11223344⟩ = P(P + 2)(P + 4)(P + 6). (A.23)

Our goal is therefore to find the coefficient of Pk for every 1 < k < n for the nth order
ladder diagram. This is a solved problem for the polynomial x(x+ 1)(x+ 2) · · · (x+ n− 1),
where the coefficient of xk is given by the unsigned Stirling numbers of the first kind, and
are denoted by [ n

k ] [38]. Therefore the solution of an(P) is given by

an(P) =
n∑

k=1
ckPk; ck = 2n−k [ n

k ] . (A.24)
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Putting this all together, we arrive at the algorithm for calculating the nth order ladder
diagram:

1. Find the expansion of an(P) =∑n
k=1 ckPk by using ck = 2n−k [ n

k ]

2. To find the coefficient of pk (which corresponds to 1
(kq)n−k ):

(a) For every Pj such that j ≥ k:

i. Find the number of connections needed to be of order pk, which is j−k ≡ m

ii. Calculate the sets of partitions for m, and then add 1 to every element to
represent the free vertices

iii. For each set, place the elements into the lower values of multiplied choose
functions, and fill the upper values with j −

∑
ml, where ml correspond to

the lower values of any choose function multiplying to the left.

iv. Sum all these choose functions together, and then multiply by the coefficient
cj , call this number hjk

(b) Sum together all coefficients corresponding to pk, which will be ∑n
j≥k hjk, this is

the coefficient of pk, call this coefficient gk

3. The nth order ladder diagram will have an expansion in terms of p’s as ∑n
z=1 gkp

k.

As a demonstration, we will calculate the first 4 coefficients of an nth order ladder
diagram using these techniques:

⟨11 · · ·nn⟩ = Pn+2[ n
n−1 ]Pn−1+4[ n

n−2 ]Pn−2+8[ n
n−3 ]Pn−3+· · · Total

pn ∼ 1 1 1
pn−1 ∼ 1

(kq)
(n

2
)
+[ n

n−1 ]2 3
2n(n−1)

pn−2 ∼ 1
(kq)2

(n
3
)
+
(n

2
)(n−2

2
)
+2[ n

n−1 ]
(n−1

2
)
+4[ n

n−2 ] 5
4n(n−1)2(n−2)

pn−3 ∼ 1
(kq)3

(n
4
)
+
(n

3
)(n−3

2
)
+
(n

2
)(n−2

2
)(n−4

2
) 1

24n(n−1)(n−2)(n−3)
+2[ n

n−1 ]
((n−1

3
)
+
(n−1

2
)(n−3

2
))

+4[ n
n−2 ]

(n−2
2
)
+8[ n

n−3 ] ×(77+n(19n−69))
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B Computational specifications

All numerical simulations presented in this paper were done through the Texas Advanced
Computing Center (TACC) on the Frontera supercluster [39]. The supercluster is comprised
of 8,386 nodes (of which a maximum of 200 were ever used per simulation), with each node
contains 56 cores. For ease of access, compute node specifics are transcribed here:

Intel Xeon Platinum 8280 (”Cascade Lake”) Compute Node

Total cores per CLX node: 56 cores on two sockets (28 cores/socket)
Hardware threads per core: 1
Clock rate: 2.7GHz nominal
RAM: 192GB (2933 MT/s) DDR4
Cache: 32KB L1 data cache per core;

1MB L2 per core;
38.5 MB L3 per socket.
Each socket can cache up to 66.5 MB

Local storage: 144GB /tmp partition on a 240GB SSD.

Time Comparisons Average, q = 4 β = 1 (112 Samples)
Size (N) All-to-All k=50 k=10 k=4

16 00:00:02 00:00:02 00:00:00 00:00:00
18 00:00:05 00:00:03 00:00:01 00:00:00
20 00:00:16 00:00:05 00:00:01 00:00:01
22 00:00:48 00:00:11 00:00:03 00:00:01
24 00:00:48 00:00:14 00:00:04 00:00:01
26 00:02:14 00:00:33 00:00:10 00:00:04
28 00:06:22 00:01:19 00:00:23 00:00:10
30 00:17:44 00:03:09 00:00:52 00:00:22
32 00:47:42 00:07:15 00:01:55 00:00:48
34 02:06:27 00:16:26 00:04:14 00:01:48
36 05:27:22 00:37:26 00:09:28 00:04:02

Total (16 to 36) 08:49:51 01:06:44 00:17:11 00:07:18
Time Factor 1 0.126 0.0324 0.0138
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C Fixed hypergraph configuration & tests of robustness

The analytical tools used in section 4 can be applied to a fixed hypergraph configuration,
results of which can be seen in figure 8. For this set of figures the mean, standard deviation,
and R2 must be separated as their outputs lie in vastly different ranges. The lack of
convergence and small value of R2 demonstrate that a given fixed hypergraph exhibits
complete disagreement with the symmetry based methods. These results remain true for
various choices of hypergraph seeds, k, and Dg.

As a check that the results of this paper are robust to the various choices of analysis used
in the main body of this work, we provide here alternative methodology to demonstrate our
conclusions remain consistent. The first encountered choice which could make a significant
change is which value F∗ is chosen in the analysis. The main body of the paper utilized
F∗ = 0.4, however in figures 9, 10 we demonstrate that the behavior exhibited in figure 5 is
consistent with F∗ = 0.3 and F∗ = 0.5 respectively.

The next natural choice of variation is the size of the groupings statistically analyzed
for each Dg, as it may be argued the proper choice would be to have a consistent number of
samples regardless of Dg. Hence, we provide plots for two different choices, the first being 10
samples (figure 11) and the second being 20 samples (figure 12). These plots are compared
to figure 5 from the main body, they exhibit a higher degree of fluctuation for smaller values
of Dg. This result is expected, as lower values of Dg (meaning a given Lyapunov exponent is
extracted with low number of realizations) will inherently have higher error than for higher
values of Dg. This inherent instability makes Lyapunov extraction more inconsistent, hence
the choice of extraction used in the main body. However even given these choices, our main
findings (namely R2 → 1 can be achieved at low k with sufficiently high Dg) still hold.

Lastly, we analyze whether including the same lower bound N = 16 regardless of the
maximum simulated N is a good choice. Instead, we could keep a set number of N in a given
range (in this case, 11 different N ’s) leading to a change in the lower bounds. Hence the
ranges compared are N = 16 to N = 36, N = 18 to N = 38, N = 20 to N = 40, and N = 22
to N = 42, which can be found in figure 13. As compared to figure 7, these simulations
actually exhibit worse correspondence with the symmetry based model, and exhibit higher
amounts of random fluctuations. This behavior is consistent with our arguments from
section 4.3; by disregarding data points from lower N values, the remaining data (higher
N ’s) of the sparse models have higher discrepancy with the all-to-all model, hence requiring
more averaging.
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Figure 8. Data analysis of Lyapunov extraction for a fixed hypergraph seed (meaning for each N ,
the Hamiltonian interaction configuration is fixed for each disorder realization). Random variations
persist through random states used in each disorder realization. Extraction was performed on a
sparse model with k = 4 between N = 16 to N = 36 with β = 1. All plots demonstrate high variance
and lack of convergence, suggesting the numerical derivative method of extraction is unsuitable for a
fixed hypergraph seed. Each Dg is averaged over 10 times. (a) The mean fitted Lyapunov exponent
λL versus Dg (b) The standard deviation of the fitted λL’s, σ, versus Dg (c) The mean R2 value
over each set of λL’s. The very low values of R2 suggest a very poor fit to the data.
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Figure 9. A replication of figure 5 (see corresponding caption for plot details) with a single
parameter change: F∗ = 0.3. Convergence and behavior is consistent with figure 5 across this range
of Dg’s.
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Figure 10. A replication of figure 5 (see corresponding caption for plot details) with a single
parameter change: F∗ = 0.5. Convergence and behavior is consistent with figure 5 across this range
of Dg’s.
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Figure 11. Many realizations are subdivided into 10 samples with Dg number of realizations, from
which is extracted a Lyapunov exponent and R2. For each choice of Dg, Lyapunov exponents are
averaged over the 10 samples (blue) with standard deviation (orange). The R2 factor for each Dg

are also averaged (green). Resolution of plots all have ∆Dg = 50. (a) all-to-all model. Exhibits
convergence for plotted quantities; R2 → 1 shows agreement with the symmetry. (b) k = 50, R2

exhibits some divergence from (a), larger fluctuations. Error appears to asymptote at a higher value
compared to (a). (c,d) k=10,4 respectively. Random fluctuations have much larger effect, very high
values of Dg must used to perform consistent Lyapunov extraction.
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Figure 12. A replication of figure 11 (see corresponding caption for plot details) with a change
of grouping sizes for statistics, namely 20 simulations are averaged over for each Dg. This reduces
the maximum Dg (and hence the range) by 1

2 . As a result, higher values of R2 are unable to be
attained for the sparse models (i.e. for (b), (c), (d)), requiring probing of higher maximum values of
Dg. Within the ranges present, the behavior is consistent with figure 11.

– 35 –



J
H
E
P
1
1
(
2
0
2
3
)
0
8
8

0 10000 20000 30000 40000
Dg

0.0

0.2

0.4

0.6

0.8

1.0 k = 4 N = 16 to N = 36 q = 4 = 1

R2

(a)

0 10000 20000 30000 40000
Dg

0.0

0.2

0.4

0.6

0.8

1.0 k = 4 N = 18 to N = 38 q = 4 = 1

R2

(b)

0 10000 20000 30000 40000
Dg

0.0

0.2

0.4

0.6

0.8

1.0 k = 4 N = 20 to N = 40 q = 4 = 1

R2

(c)

0 10000 20000 30000 40000
Dg

0.0

0.2

0.4

0.6

0.8

1.0 k = 4 N = 22 to N = 42 q = 4 = 1

R2

(d)

Figure 13. A replication of figure 7 (see corresponding caption for plot details) with changes in
the lower bounds of N used to extract the Lyapunov exponent, namely (a) N = 16 to N = 36
(unchanged) (b) N = 18 to N = 38 (c) N = 20 to N = 40 (d) N = 22 to N = 42. Despite a majority
of data overflowing the plot, the choice of ranges for the axes was maintained to demonstrate even
further disagreement from figure 7.
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