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Abstract

Phylogenetic estimation is, and has always been, a complex endeavor.

Estimating a phylogenetic tree involves evaluating many possible
solutions and possible evolutionary histories that could explain a set
of observed data, typically by using a model of evolution. Modern
statistical methods involve not just the estimation of a tree, but also
solutions to more complex models involving fossil record information
and other data sources. Markov Chain Monte Carlo (MCMC) is a
leading method for approximating the posterior distribution of
parameters in a mathematical model. It is deployed in all Bayesian
phylogenetic tree estimation software. While many researchers use
MCMC in phylogenetic analyses, interpreting results and diagnosing
problems with MCMC remain vexing issues to many biologists. In this
manuscript, we will offer an overview of how MCMC is used in
Bayesian phylogenetic inference, with a particular emphasis on
complex hierarchical models, such as the fossilized birth-death (FBD)
model. We will discuss strategies to diagnose common MCMC
problems and troubleshoot difficult analyses, in particular

convergence issues. We will show how the study design, the choice of

models and priors, but also technical features of the inference tools
themselves can all be adjusted to obtain the best results. Finally, we

will also discuss the unique challenges created by the incorporation of
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fossil information in phylogenetic inference, and present tips to
address them.

Plain language summary

Phylogenetic trees provide important information on the evolutionary
relationships between organisms, as well as their diversification
dynamics. Phylogenies are commonly built using Bayesian inference
with MCMC, a powerful but also complex algorithm. This inference is
implemented in software frameworks which propose a wide range of
models and customization options. The amount of choices offered by
these tools can be confusing for users, especially as many of these
choices will affect the performance of the inference. This work is
intended as a practical guide for preparing and troubleshooting a
phylogenetic inference using the Bayesian MCMC method. First, we
introduce the different components of this inference method, and
how they are implemented in practice. We present the important
factors which should be accounted for when designing a study using
Bayesian phylogenetic inference with real data. We also list multiple
issues which are frequently encountered by users when running the
inference, and we provide advice on how to resolve these problems.
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phylogenetic inference software, fossilized birth-death, total-evidence,
BEAST2, MrBayes

This article is included in the Marie-Sklodowska-

Curie Actions (MSCA) gateway.

This article is included in the Evolution and

Ecology gateway.

This article is included in the Horizon 2020

gateway.

This article is included in the Evolutionary

Biology collection.

article can be found at the end of the article.

Page 2 of 38



Open ResearCh Euro pe Open Research Europe 2023, 3:204 Last updated: 02 JUL 2024

Corresponding author: Joélle Barido-Sottani (joelle.barido-sottani@m4x.org)

Author roles: Barido-Sottani J: Conceptualization, Investigation, Project Administration, Writing — Original Draft Preparation, Writing —
Review & Editing; Schwery O: Investigation, Writing — Original Draft Preparation, Writing — Review & Editing; Warnock RCM:
Conceptualization, Investigation, Writing — Original Draft Preparation, Writing — Review & Editing; Zhang C: Investigation, Writing —
Original Draft Preparation, Writing — Review & Editing;  Wright AM: Investigation, Project Administration, Writing — Original Draft
Preparation, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme
under the Marie Sklodowska-Curie grant agreement No. 101022928 to JBS. OS was funded by NSF DEB 2045842837 and a Swiss National
Science Foundation Postdoc Mobility Fellowship (P500PB 203131). AMW was supported on NSF DEB 2045842 and NSF CIBR 2113425. CZ
was funded by the National Natural Science Foundation of China (42172006).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2023 Barido-Sottani J et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Barido-Sottani J, Schwery O, Warnock RCM et al. Practical guidelines for Bayesian phylogenetic inference
using Markov Chain Monte Carlo (MCMC) [version 1; peer review: 3 approved, 1 approved with reservations]Open Research
Europe 2023, 3:204 https://doi.org/10.12688/openreseurope.16679.1

First published: 20 Nov 2023, 3:204 https://doi.org/10.12688/openreseurope.16679.1

Page 3 of 38




1 Introduction to MCMC

Phylogenetics has always had a fundamental problem. For any
reasonable number of taxa, the number of possible topologies
that could connect them quickly scales to be larger than the
number of stars in the sky. It is intractable to evaluate all of
them. And yet, increased taxon sampling is crucial to phy-
logenetic accuracy (Heath et al., 2008; Hillis et al., 2003;
Rannala et al., 1998). One computational technique revolu-
tionized our ability to enumerate and evaluate solutions in a
Bayesian framework. That technique is Markov Chain Monte
Carlo (MCMQ).

To understand MCMC, we must first take a step back and under-
stand mathematical models. In a model, parameters describe
what the researcher views as important facets of the process
that generated our observed data. For example, in a phyloge-
netic model of molecular evolution, there may be a parameter
governing the rate at which transitions have occurred and a
different one governing the rate at which transversions have
occurred to generate an observed multiple sequence align-
ment. In most models, parameters are usually random (also
called stochastic) variables, meaning the value of a parameter is
derived from an event with some element of randomness, such
as a draw from a probability distribution or a coin flip. In the
models we consider, most of the parameters are continuous,
meaning they can take any value within their reasonable ranges.
The uncertainty of a continuous parameter is described by a
probability density function (e.g., a uniform or an exponential
distribution), and the probability within a range of values is
the area under the curve of the probability density function. For
discrete parameters, such as the tree topology, each possible
value of the parameter has a probability. We collectively use
“probability distribution” for both discrete and continuous
parameters.

In a maximum likelihood (ML) estimation, we try to find the
values for all our parameters that maximize the likelihood of the
parameters given our data. ML solutions can be efficiently esti-
mated through a number of mathematical techniques. In a Baye-
sian estimation, we estimate a distribution of the parameters
that are plausible under our model given the data. In addition,
Bayesian inferences integrate prior distributions, which
describe our prior knowledge and understanding about the
model and parameters, before having looked at the data. Baye-
sian inference thus offers a more complete picture of the
results, integrating uncertainty in the results as well as existing
information from previous studies. However, it is also more
complex, because for many real world scenarios, the true
distribution of plausible parameters cannot be calculated directly.

MCMC algorithms allow us to find the set of plausible
solutions of a Bayesian inference, that is, an estimation of the pos-
terior distribution of the parameters. The algorithm for MCMC
sampling most frequently employed in phylogenetic studies
is known as the Metropolis-Hastings (MH) algorithm, though
others exist. The general way it works is that a starting set of
values is proposed for the parameters. This set is then scored
according to some criterion. Then, one or more model param-
eters are perturbed, or changed. This could be a simple change,
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like making a number a little bigger. In the case of phyloge-
netics, we often need to use more complex moves to propose
new values for non-numeric objects like clades and trees
(this will be described in Moves/Operators). “Monte Carlo”
is the operative term here. The city Monte Carlo is famous
for its casinos and games of chance. This means that we per-
turb the parameters pseudorandomly (at random within some
set of conditions). The new value or set of values proposed will
be re-scored according to the evaluation criterion. If it is better,
this solution becomes the new parent solution from which new
moves will be performed. If the score of the proposed value is
worse than the parent, we still have a chance to accept it — this
ensures that we explore the entire parameter space and do
not stay stuck in a local optimum. The probability of accept-
ing the proposal depends on the difference of evaluation values
between the new and parent scores, so that much worse propos-
als mostly will be discarded. The “Markov” chain part of the
name comes from this being a Markov process, meaning a mem-
oryless process. That is, the new state proposed depends only
on the current state, not on the previous states. If a parameter
value (or a region of values) has a high score, it will be vis-
ited many times in an analysis. In Bayesian phylogenetics,
MCMC samples parameter values proportional to their posterior
probability. Therefore, if a set of values for model param-
eters give a good solution according to the evaluation crite-
rion, the MCMC will tend to sample those values and other
similar values often. Finally, MCMC is sometimes referred to as a
“simulation” algorithm, which can be confusing. The reason
for this is that we are not changing the underlying data, but
proposing new values for model parameters to try and improve
the fit of the model to the data. Often, this involves drawing
parameter values out of a distribution, or scaling parameters in
our model — both of these are forms of simulating new values.

Much like Bayesian analysis itself, MCMC was not developed
to deal with phylogenetics, or even biological data directly.
Those applications came later. Invented in the early 1950’s,
MCMC was originally used in physics to describe equilib-
rium between the liquid and gas phases of a chemical. In this
case, all the values being perturbed in the model are numerical,
which is not always the case with phylogenetics. From a
humble beginning of trying to model a simple physical system,
the MH MCMC algorithm drew the attention of statisticians,
who popularized its use across nearly every quantitative
discipline. In the following sections, we will discuss how
MCMC works for phylogenetic inferences, how to troubleshoot
an MCMC inference, and some tips and tricks for MCMC
success.

2 MCMC inference applied to phylogenetics

2.1 The Bayesics

Before we can understand MCMC in-depth, we need to dis-
cuss some basic information about Bayesian inference. Baye-
sian inference refers to a statistical framework for evaluating
the fit of models and parameters to the observed data, based on
a quantity called the posterior distribution. The posterior
distribution is calculated from three quantities: the prior dis-
tribution, the likelihood, and the marginal probability of
the data. Bayes’ Theorem is shown in Figure 1 and shows the
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Figure 1. The top panel shows Bayes’ theorem and the relationship between the posterior, likelihood, priors and the marginal
probability of the data. The right-hand side shows an alternative way of writing the marginal probability, which illustrates more explicitly

why the marginal probability is difficult to calculate. During MCMC we sample new parameter values at each step and compare their

posterior probability to the previous set of values using the Hastings or posterior odds ratio. The second panel shows the Hastings ratio,
and illustrates that since the marginal probability cancels out, we avoid having to calculate it during MCMC.

relationship between these three quantities. We will first describe
them and how they fit together, then move on to how MCMC is
used in their calculation.

2.1.1 The likelihood. The likelihood of the models and param-
eter values describes how probable the observed data is

given those models and values, i.e., how likely it is that those
models and values represent the true generating process. If we
are only concerned with the highest likelihood given the data,
we usually do not need MCMC inference. Many phylogenetic

tools can perform maximum likelihood (ML) inference,

which finds a set of values for the model parameters that maximize

the probability of observing the data.

In a phylogenetic context, the data will usually be our observed
molecular sequence alignment and/or morphological charac-
ter matrix. The model will typically describe the process of
evolution that generated these data. In a Bayesian phyloge-
netic inference, the calculation of the likelihood will include a
substitution model, which describes the relative rate of change
from one character to another, and a clock model, which
describes the overall rate of change through time and across
the tree. For example, the simplest substitution models are the
Jukes-Cantor model (molecular data; Jukes and Cantor, 1969)
and the Mk model (morphological data; Lewis, 2001). These
models assume that one parameter describes the process of
sequence evolution generating the data, and as a result these
models are often referred to as ‘all-rates-equal models’. This
one parameter is a rate of change between different molecu-
lar or morphological character states. Many substitution mod-
els (such as the Kimura 2-parameter model (Kimura, 1980),

the Felsenstein 1981 model (Felsenstein, 1981), the Hasegawa-
Kishino-Yano model (Hasegawa et al., 1985), and the General
Time-Reversible model (Tavaré, 1986)) are more complex,
and reflect different assumptions regarding the hypothesized
process of sequence change and evolution.

In a Bayesian analysis, the likelihood is one component of the
three parts of Bayes’ Theorem (Figure 1). It is calculated at
each step in the MCMC analysis and is an important part used
to estimate the posterior probability distribution given the data.
The other important part is the prior.

2.1.2 The prior. A crucial analytical difference between a
maximum likelihood method and a Bayesian one is the pres-
ence of a prior. The term prior means that the distribution
of the parameters reflects one’s belief before observing the
data. Each parameter in a Bayesian analysis has a prior prob-
ability distribution. For instance, we can set an exponential
distribution on a given rate parameter. Under this prior, a rate
that is very high is believed to be less likely than one that is
very short. This means that rates are expected to be fairly low,
but we still allow the possibility that they could be higher.

In Bayes’ Theorem, the prior and the likelihood are multi-
plied together, thus proposed parameter values are evaluated
based on both the likelihood and the prior distribution. There-
fore, if we expected a solution to be unlikely and thus speci-
fied a low prior probability for it, that low prior will lower the
posterior when being multiplied with the likelihood. Impor-
tantly however, if against our expectations, this solution is
strongly supported by the data, the resulting high likelihood may
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overcome the effect of the low prior and still lead to high pos- As explained in the previous section, the theoretical poste-

terior support. This is how we can still find solutions which
are different from our initial expectations, if the data suggest
them. But this also highlights why we have to be careful not
to specify priors that are too strict (i.e., that specify the prior
probability of reasonable solutions to be 0), and prevent the
MCMC from exploring the parameter space the data would
favour.

2.1.3 The marginal probability. The marginal probability of
the data is the probability of the data without considering any
particular model parameters, but conditioned on the mod-

els themselves and the constraints of the prior. Thus it gives the

overall likelihood of the chosen model over all possible param-
eter values. This is usually the most challenging part of the
calculation, as calculating the absolute probability of the
data averaging over all possible values of the model param-
eters is not computationally feasible in many cases. In a typi-
cal Bayesian phylogenetic inference, we avoid calculating
the marginal probability using the MH algorithm (Figure 1,
explained below). However, if we can calculate the marginal
probability, it allows us to perform model selection. The
marginal probability is typically computed by sampling many
different solutions and averaging them for their probability.
Different estimation methods have been developed to approxi-
mate the marginal likelihood, such as path sampling (Baele
et al., 2012) or nested sampling (Russel et al., 2018), but
they remain expensive. Note that prior specificity matters for
model selection, and overly-vague priors can cause issues for
model selection and parameter estimation, even if the true
parameter is included (Zwickl & Holder, 2004).

2.1.4 The posterior. The posterior distribution (posterior for
short) is the probability distribution of the model parameters
given the data. The posterior can change if the underlying
data, model, or prior distributions change.

The Metropolis-Hastings algorithm
Flowchart

Generate
starting values

Accept any
changes that Perturb parameter

increase values
the posterior

Occasionally
accept
ok i Rl et
. parameter values
posterior

(eeeee

Log parameter
values

Figure 2. Flowchart and pseudocode showing the main steps in the Metropolis-Hastings algorithm.

description of the Hastings ratio.

rior (i.e., the exact, ‘true’ solution) is almost always impossible
to calculate directly. Hence we use MCMC to sample a set of
parameter values that can approximate the posterior distribu-
tion of the parameters (usually called the posterior sample or
MCMC sample), using the machinery introduced in section
Implementation of MCMC in phylogenetic inference soft-
ware. MCMC is key in Bayesian computation, as it allows us
to sample from the posterior distribution. MCMC can even
evaluate different potential model solutions through reversible-
jump MCMC, which allows the chain to move between differ-
ent models (and their associated parameter spaces) during the
inference. It is important to note that the result of an MCMC
inference is the full posterior sample and the distribution of
solutions. The individual points in the posterior sample are
meaningless without the rest of the distribution, and cannot be
analyzed separately.

2.1.5 The Metropolis-Hastings algorithm. The MH algorithm
enables us to sample from the posterior without having to cal-
culate the marginal probability of the data. The trick is that
we use the posterior odds ratio or Hastings ratio (R) to evalu-
ate how the chain proceeds, i.e., whether we accept the newly
proposed values at each iteration. More specifically, this is the
ratio of the posterior probabilities for the new values versus
the current (parent) values. Since the marginal probability is the
same in both cases, it cancels out when we calculate the ratio,
meaning we only need to calculate the likelihood and the prior
probability for each set of values, shown in Figure 1.

Figure 2 shows the main steps in the MH algorithm. As described
in the Introduction, we first propose an initial set of values
for all model parameters, including the topology (if estimat-
ing), and record the likelihood and prior probability associ-
ated with these. In each subsequent step, at least one model
parameter is perturbed, and again we record the likelihood and

Pseudocode

initialize starting values;

for i in mcmc steps
do
propose new parameter values;

calculate the Hastings ratio R;

if(R> 1)
accept the new values;
else

accept the new values with Pr = R;

store the values with frequency j;

done

See Figure 1 for a full
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prior probability. We evaluate the new values using the Hast-
ings ratio. If R > 1, i.e., the new values improve the posterior,
these are always accepted and become the updated parent val-
ues from which the chain proceeds. If R < 1, the new values
are only accepted with probability = R. This means, if the pos-
terior associated with the new values is much lower, there is
only a small chance of them being accepted. If the new values
are not accepted, then the parent values remain unchanged. By
following these rules, the algorithm spends most of its time
in regions of the parameter space with the highest posterior
probability. We repeat the process of perturbation and evalu-
ation until we have a sufficient number of MCMC samples to
approximate the posterior. We do not need to store the values at
every iteration, but we typically record the state of the chain
with a frequency that results in a minimum of 10,000 posterior
samples.

2.1.6 The posterior sample. The posterior sample is a set of
plausible solutions for a given dataset, derived through MCMC
analysis. The posterior sample is composed of all recorded
steps, which is a subsample of the steps visited by the infer-
ence. The distribution of solutions in the posterior sample is,
itself, meaningful. Each entry sample in our posterior sam-
ple will have a posterior probability, and solutions will be
sampled proportional to their posterior. A solution with a good
posterior probability will be visited many times, whereas a solu-

tion with a poor one will be seldom seen in the posterior sam-
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Dated trees are naturally rooted, as the earliest time point of
the tree is obviously the origin of the process. Undated trees
can also be rooted, by using one or more outgroup samples. In
this case, the root is placed at the point in the tree where these
outgroups diverge from the main clade of study.

A much wider array of biological questions can be addressed
using dated phylogenetic trees (e.g., diversification rate esti-
mation or the application of phylogenetic comparative meth-
ods), but inferring dated trees increases the complexity of
the analysis, making MCMC inference more challenging.
Thus we mainly target this article at analyses which include a
molecular clock as well as time information, although many
of the tips detailed here are equally applicable to undated
phylogenies.

2.2.2 General frameworks. Bayesian phylogenetic infer-
ence is often implemented in large software frameworks
which group together many different models. In this paper, we
chose to focus on BEAST2 (Bouckaert et al., 2014), MrBayes
(Huelsenbeck & Ronquist, 2001) and RevBayes (Hohna et al.,
2016) as our examples. These frameworks are generally
designed to be modular, with each component of the analysis
operating independently from the others. This means that
any component, e.g., the substitution model, can be modified
easily or extended without having to change anything else. It
also means that core parts of the MCMC inference, for instance

ple. How often a solution is sampled out of the total number of the MCMC algorithm itself, do not have to be reimplemented

samples is often considered a measure of support. For example,
a common measure of support for clades on a tree is the poste-
rior probability, which corresponds to the proportion of trees
in the posterior sample which contain that specific subclade.
A nice property of the posterior sample is that it not only
provides the joint estimation of all the parameters, but also
individual estimations for all the parameters. Indeed, taking
only the sampled values for a specific parameter provides the
marginal posterior distribution of this parameter, which allows
us to estimate values for that parameter while integrating over
all possible values of the other parameters. This means that all
parameters of the inference can be analyzed independently.

2.2 Implementation of MCMC in phylogenetic inference
software

2.2.1 Unrooted versus rooted trees. Phylogenetic trees exist
in multiple forms. The first important distinction is between
unrooted trees, which simply describe the evolutionary rela-
tionships of all the samples, and rooted trees, which include
an explicit origin or starting point for the evolutionary process.
Another important feature of phylogenies is whether they are
dated, i.e., whether their branch lengths are expressed in units
of genetic distance or in units of time. Estimating a dated phyl-
ogeny requires a model for the molecular or morphological
clock, as well as time information to calibrate the tree. This
information can be provided directly through the data, if the
dataset includes samples from multiple points in time, such
as fossil specimens. Alternatively, the information can be pro-
vided as node calibrations, which provide information directly
on the ages of specific nodes of the phylogeny.

when a new model or a new type of data is introduced.

2.2.3 Moves/operators. As introduced earlier, MCMC inference
relies on moving step by step through the parameter

space and recording the state of the model parameters

periodically. The recorded parameter states are the MCMC

sample. Thus, Scaling move the components designed to

advance the chain are a core part of any MCMC inference

software. In phylogenetic inference tools, these components can
be called proposals, moves, or operators, but they all perform
the same function in the inference. Examples of some of these
moves are shown in Figure 3.

Moves are composed of three elements: first is the parameter or
parameters they act on, meaning the parameters they change.
Some moves only operate on one parameter at a time, while
more complex moves can act on several (correlated) param-
eters at the same time. For instance, the up-down operator in
BEAST?2 will scale both the branch lengths of the tree, and the
clock rate simultaneously. The second component of a move
is the algorithm used to change the value of the parameter(s).
These range from basic operations, such as proposing a new
value using a sliding window centered on the current value,
or scaling the current value of the parameter by a given fac-
tor, to much more complex ones such as those used to modify
the tree. Finally, the third component of a move is its weight,
which determines the frequency with which it will be used
during the actual inference. A move with higher weight will

be used more often, which should in principle lead to the
corresponding parameters moving more often, and in turn
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Sliding move
X
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T
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SubTree eXchange
(STX) move

Subtree Pruning and
Regrafting (SPR) move

Figure 3. Examples of some common moves used in Bayesian phylogenetic inference. Scaling and sliding moves operate on a
numerical parameter (X), such as the molecular clock rate, the speciation rate or the age of a fossil. Subtree exchange (STX) and subtree

pruning and regrafting (SPR) moves operate on the tree topology.

provide more accurate estimates for these parameters. It should
be noted that MCMC implementations differ in how weight is
applied. Some attempt one move per step in the MCMC chain
(e.g., BEAST2 and MrBayes), meaning only one parameter
changes at a time and the weights represent the probability for
any particular one to be chosen. Others move a whole set of
parameters at each step (e.g., RevBayes), with the weights
representing how many times a move is attempted for a particular
parameter during each step. This is also the reason why the number
of generations that were run for a given analysis cannot always
be compared directly between implementations, as one ‘iteration’

or ‘generation’ of the chain may actually imply different
numbers of actual parameter moves (or attempted moves).

However, the efficiency of the MCMC inference also depends
on the acceptance proportion of each move, i.e., the percent-
age of times that the move is accepted during the MCMC
run. A move with a very low acceptance rate will have little
impact on the overall inference, even if its weight is high. On
the other hand, a very high acceptance rate can indicate that the
move is proposing new values that are too close to the origi-
nal values, which slows down the inference and increases the
number of steps needed to properly explore the parameter
space. For MCMC moves operating on a continuous numerical
parameter, such as a branch length or evolutionary rate, the
highest efficiency is typically achieved when the acceptance
proportion is around 0.2 to 0.4 (Yang, 2014, section 7.3-7.4).

Software implementations such as MrBayes, BEAST2, and
RevBayes, typically provide an automatic tuning mechanism,
which is enabled by default and adjusts each operator’s con-
figuration to reach the target acceptance proportion, say 0.3. For
topological moves or moves which jump between different
models, the efficiency is different from that of the more simple
moves, and essentially depends on the specific design of the
proposal algorithm. As a result, general users cannot easily
optimize these moves. Good tree proposals are still under
development, there is no perfect one to rule them all. In prac-
tice, using a collection of moves that make both big and small
topological changes is advised. For example, MrBayes com-
bines a Nearest Neighbour Interchange move (NNI, a narrower
implementation of STX) and two SPR variants (see Figure 3)
to update the tree. Tree moves should usually have much
higher weights than the simple moves, as the tree space is
tremendous.

The array of available moves in phylogenetic inference can
be daunting for users. Luckily, most inference software pro-
poses a default setup for standard analyses, which includes
reasonable moves covering all parameters of the analysis.
The default selection of moves usually leads to satisfying
results for most standard analyses, however, they certainly
cannot fit all circumstances. We will see in later sections how to
diagnose and adjust the move setup to help with misbehaving
analyses.

Page 8 of 38



3 Challenges of phylogenetic MCMC inference

As mentioned in the section Introduction to MCMC, MCMC
was not developed for use in phylogenetics. It was developed
for use with physics models, which usually have solely numeri-
cal components, often with many observations relative to the
number of parameters. The use of MCMC for phylogenetics
raises a new set of issues. In a phylogenetic analysis, we are
often principally concerned with estimating a non-numeric
parameter: the phylogeny itself! We also often have high-dimen-
sionality models, which contain a large number of parameters.
Biology is complex, and we expect the generating model to be
complex as well. This can raise serious performance issues for
our MCMC inference, either when exploring the tree space or
when calculating the posterior values. We will now dive into
some of these issues, and how MCMC inference has been
adapted to work with phylogenetic trees and data.

3.1 Non-numeric data

As explained in the previous section, MCMC relies on per-
turbing our model parameters through moves. For numerical
parameters, it is often very easy to perform a move. For exam-
ple, slide moves simply change the numeric value of a param-
eter within a window of a given size. Scale moves make values
a bit bigger or smaller, while ensuring negative numbers stay
negative and positive ones stay positive. For more com-
plex cases, such as simplexes (sets of values that must sum
to a number, typically one — for instance nucleotide frequen-
cies in a substitution model) or ratios, moves can be designed
to ensure the conditions on the parameter are always met.

However, a tree is not a simple number or set of numbers, but a
complex structure describing the arrangement of all the sam-
ples in a topology. To explore the tree space, we thus need
to change not only the branch lengths, but also the order and
the composition of all subclades of the tree. This requires
a different set of MCMC moves, often called tree moves or
topology moves. These moves propose rearrangements of the
tree topology, and need to adjust or resample the associated
branch lengths. Indeed, traversing tree space was a core
challenge in developing phylogenetic applications of MCMC.
This was largely solved in the late 1990s (Mau & Newton, 1997;
Mau et al., 1999), when Bayesian approaches for phylogenet-
ics began to appear. However, for more complex models, for
instance models involving networks or multiple correlated
trees, designing good tree moves remains an issue.

3.2 High-dimensionality models

Biology is complex, and therefore, models to describe the behav-
ior of biological systems will also tend to be complex. Think
for a moment about a phylogenetic substitution model, for
example, the GTR + I' model. In this model, each nucleotide
(A,C,T,G) has a different frequency, and the rates of substitu-
tion between all pairs of nucleotides are different. In addition
different sites of the alignment have different overall rates
of substitution, modelled by a gamma distribution. Applied
in a Bayesian context, the model has many parameters: a tree
topology, the branch lengths on the tree, exchangeability rates
between nucleotides, equilibrium state frequencies of the nucle-
otides, the parameters of the gamma distribution representing
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among-site rate heterogeneity. For even a small tree with few
samples, this is many parameters. In addition, some of these
parameters may be correlated, for instance the branch lengths
of a timed tree and the average clock rate have an inverse rela-
tionship. As a result, many posterior spaces in phylogenetic
inference are in configurations referred to as “rugged” (Brown
& Thomson, 2018), or having mixed areas of high prob-
ability (“peaks”) and areas of low probabilities (“valleys”).
This ruggedness can make it difficult to use MCMC in high-
dimensional space. As shown on Figure 2, MCMC will gener-
ally refuse to take a step if the proposed solution will be much
worse than the current one. Thus the inference can end up
trapped in local optima. New computational methods are
required to traverse these types of rugged spaces. For example,
using proposal algorithms which perturb several correlated
parameters at the same time can make it easier to find alternative
peaks in the posterior surface.

In addition to traversal issues, more complex models can also
suffer from performance issues in the likelihood calculation
itself. A common problem for tree models such as birth-death
processes, for instance, is that we do not observe the parts
of the phylogeny which have not been sampled. Thus we are
missing a large part of the true evolutionary process. When
calculating the prior probability of the phylogeny given the
diversification model, we have to account for all possible
histories in the unobserved parts of the tree. In more com-
plex models, this calculation will frequently involve numerical
integration, which is computationally very expensive and can
suffer from numerical instability, meaning that the probability
value cannot be estimated for some parameter configurations.

Although this issue can be improved by smart implementation
of the models (see for instance the work done by Scire et al.
(2022) on the BEAST2 package BDMM), it represents a
fundamental limitations for more complex processes.

3.3 Inferring dated trees and incorporating fossils
Inferring dated trees is substantially more challenging than
non-time constrained tree inference — it requires the addi-
tion of a clock model and uses more complex tree models, usu-
ally coalescent or birth-death process models. It also requires
additional time information. In macroevolutionary phylogenies,
this time information generally comes from the fossil record,
either in the form of node calibrations, or by directly includ-
ing fossil specimens in the inference (sometimes called tip
calibrations). Tip-calibrated analyses provide a better repre-
sentation of the uncertainty associated with the fossil record,
and arguably involve less subjective user choices, such as the
choice of the distribution used for node calibrations (Ronquist
et al., 2012). However, including fossils also presents specific
challenges.

There are two main sources of uncertainty associated with fos-
sils that should be considered in Bayesian inference: taxonomic
or topological uncertainty and fossil age uncertainty. Inference
under the fossilized birth-death (FBD) process can incor-
porate both phylogenetic and age information (Heath et al.,
2014; Stadler, 2010). And because the model incorporates
the fossil sampling process explicitly, extinct samples can be
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recovered as tips or sampled ancestors along internal branches.
This requires special moves that propose changes to the total
number of nodes in the tree, since each sampled ancestor
reduces the number of tips by one (Gavryushkina et al., 2014;
Heath et al., 2014). In terms of data, we have two alternative
options for informing the position of extinct samples within the
tree. First, fossils with no character data can be assigned to a
node using topological constraints. Constraints can be based
on evidence from previous phylogenetic analyses or descrip-
tive taxonomy. Using this strategy, the position of the
fossil below the constraint node is sampled using MCMC. The
precise position of the fossil cannot be inferred without char-
acter data, but the posterior output will reflect the uncertainty
associated with fossil placement below the constraint node.

Alternatively, if morphological character data is available for
fossil and extant samples, we can use a ‘total-evidence’ approach.
Using this strategy, fossil placement can be sampled using
MCMC and the position of taxa with character data can be
inferred (Barido-Sottani et al., 2022a; Gavryushkina et al., 2017;
Zhang et al., 2016). This approach is conceptually preferable,
since it more directly accounts for the phylogenetic uncertainty
associated with fossils. In practice, however, character data is
not available or limited for most groups (many morphological
matrices contain <100 characters) and, unlike DNA, character
states can be subjective and uncertain (Wright, 2019).

Fossil age uncertainty is straightforward to incorporate into
Bayesian phylogenetic inference using the FBD process. Fossils
are dated to within a known geological interval and the
bounds of this age range (i.e., the minimum and maximum
ages) can be used to inform priors on fossil ages. The age of
fossils is then sampled during MCMC, therefore accounting
for this uncertainty. This is preferable to fixing fossil ages to a
point estimate within the known range of uncertainty, which can
lead to erroneous parameter estimates (Barido-Sottani et al.,
2019; Barido-Sottani et al., 2020). In fact, fossil ages can be
even be estimated using this approach (Barido-Sottani et al.,
2022b; Drummond & Stadler, 2016). Typically, a uniform
distribution is used to model the age uncertainty associated
with fossils, between the minimum and maximum possible ages
based on stratigraphic and radiometric evidence. However, addi-
tional information could be used to construct more informative
non-uniform priors on fossil ages.

4 Troubleshooting tools and techniques

4.1 How do I know if my MCMC is good?

Before we talk about troubleshooting, we first must figure
out how we even know if there is anything to troubleshoot.
We generally consider an MCMC inference to be complete
when it reaches what is termed convergence. This is typically
when a chain has arrived in its stationary distribution, that is,
when additional sampling no longer affects the distribution of
state values estimated. In plain language, once you are in the
stationary distribution, you can do moves and change indi-
vidual parameters, but the overall distribution of values will
not change. The goal is to find this stationary distribution for
all the parameters in your analysis. At the very least, users
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should ensure that the parameters primary interest to their
research questions, along with the prior, likelihood and
posterior, have converged satisfactorily. The phase before the
chain has converged is called burn-in. The samples collected
during burn-in should be discarded, usually 10-30% of the
chain length, only keeping the remaining samples for the
parameter estimation.

This sounds easy on the surface, but much ink has been spilled
on appropriate ways of diagnosing whether or not our analy-
sis has converged. Assessing convergence is usually done
with convergence diagnostics. These are summary statistics
that tell the researcher about how the MCMC inference, or
chain, has performed and if it has converged. By far, the most
commonly used diagnostic in phylogenetics is the Effective
Sample Size, or ESS.

When we perform MCMC inference, each time we do a
move, we draw new values for one or more parameters, then
accept or reject these values (Figure 2). This is often called an
MCMC step. Different software implementations and models
will require different numbers of steps to reach convergence.
You might think that the number of steps would be equiva-
lent to the number of samples in the posterior sample. But in an
MCMC chain, different steps will be correlated with one
another. This is referred to as autocorrelation, and is the result
of the fact that the parameter values present at step i are used to
propose the parameter values for step i + 1 (Figure 2). The ESS

is specific to a posterior sample, and describes the number
of uncorrelated (independent) samples that would be needed
to approximate the posterior distribution of a parameter with
similar precision to that posterior sample. It is usually defined
as ESS = N/z, in which N is the number of generations and 7 is
the autocorrelation time. Due to autocorrelation, the ESS is
typically smaller than the number of steps in the MCMC
chain, because the difference between two successive samples

is usually quite small. If we were drawing completely inde-
pendent samples, the difference between sample i and sample

i + 1 could be quite large (i.e., an independent sample could be
drawn from anywhere in parameter space, so a series of such
samples may explore the different areas of that space more
quickly than when done step by step by an MCMC chain).

An ESS of over 200 has become the de facto standard in
biological analyses, though reasons for this are largely
arbitrary (but see section Convenience). Another simple way to
check for convergence is to run several different chains for the
same analysis. MCMC chains which use the same data, models
and priors are guaranteed to converge on the same distribution,
independent of the starting values used. Thus running multi-
ple chains from different starting values and checking if the
results obtained match is a good way to assess if the analysis
has converged. Note that posterior samples from all chains
can be combined together in the final result, thus the time spent
on the different chains is not wasted.

In the next section, we will discuss software and tools for assess-
ing ESS that were developed for Bayesian phylogenetics, as
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well as other avenues for understanding convergence issues.
Other tools exist that were not developed with phylogenetics
in mind, but are nonetheless also very useful, e.g., the R package
coda (Plummer et al., 2006).

4.2 Tools of the trade

4.2.1 Tracer. Tracer (Rambaut et al., 2018) is one of the most
commonly used pieces of software for convergence assess-
ment, due to the ease with which it can be used. A log file of
sampled solutions from the MCMC can be read in. In its default
view, a list of parameters in the model and their ESS value
can be seen, as well as estimates of the value (mean, median,
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and spread) for each parameter sampled. Tracer automati-
cally flags ESS values below a threshold of 200. Although
this threshold value is somewhat arbitrary, it has been widely
accepted in current practice as offering a good trade-off between
convergence and computational cost of the inference.

The trace panel, however, is most useful for debugging conver-
gence issues (see the next section for some common issues).
The trace window shows the values sampled for each param-
eter over the MCMC run. An example of different traces can
be seen in Figure 4. Ideally, the trace will appear as what
is often termed the “hairy caterpillar” (Figure 4, last row).
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Figure 4. The target distribution is a half-half mixture of two normal distributions, one with mean 0 and standard deviation

0.5, the other with mean 2 and standard deviation 0.5. This distribution is estimated using MCMC with the sliding move (see Figure 3).
The window size (w) is a turning parameter of the move. For each w value, the left panel shows the trace of the MCMC samples, while the
right panel shows the histogram of the MCMC samples (discarding the first 20% samples as burn-in).
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This is a sample that is well-converged. This pattern is
generated by finding a good solution (or a set of good
solutions) and sampling around that solution. Typically when
this happens, the run has reached its stationary distribution.

4.2.2 RWTY. Tracer remains the most used software for
convergence, but it does not calculate an effective sample size
for the most important model parameter — the tree itself. The
ESS of the overall posterior or the ESS of parameters tied
to the tree, such as the tree height or MRCA ages of specific
clades, can be used as indirect signs of the (lack of)
convergence of the phylogeny, however it is preferable to have
a direct indicator. The R package RWTY (aRe We There Yet;
Nylander et al., 2008; Warren et al., 2017) calculates an approxi-
mate ESS of the tree topology, which can provide additional
information on the convergence of the tree. Additional graphi-
cal outputs can be generated in RWTY, such as treespace plots,
which allow the visualization of how an MCMC chain explored
parameters during its run.

4.2.3 Convenience. Convenience (Guimardes Fabreti & Hohna,
2022) is an R package that takes a fundamentally different
approach to both how to calculate and how to assess ESS than
RWTY and Tracer. It can produce visual outputs for convergence
assessments, but also can produce simple text outputs stating if
a run has converged or not.

ESS is still calculated in convenience. But rather than using
an arbitrary threshold, such as an ESS of 200, convenience
calculates a minimum threshold for a good ESS based on
the standard error of the mean (SEM). The SEM allows a
researcher to know how much error there is in the estimate of
the posterior mean, compared to the variance of the posterior
distribution. For this calculation, the posterior distribution is
assumed to be shaped like a normal distribution, so the width
of the 95% probability interval of the distribution is approxi-
mately equivalent to 40, with 0 being the standard deviation.
This quantity is the reference used to calculate the thresh-
old. By default, the ESS threshold in convenience is set
to 625, which corresponds to an SEM equal to 1% of the
interval width. By contrast, the threshold of 200 set by Tracer
corresponds to an SEM of 1.77% of the interval width.
Although higher ESS values are always better from a con-
vergence point of view, they can also come at considerable
computational cost, particularly for more complex analyses.
Thus the choice of threshold should be adapted to each situation,
for instance by using larger thresholds for critical parts of the
inference and lower thresholds for less important estimates.

Convenience also allows the tree convergence to be estimated,
by calculating the ESS of splits in the tree. A split represents
a particular subclade of the tree, which can be either present
or absent in each posterior sample. By calculating the ESS
of all splits, we can thus obtain an estimate of the ESS of
the tree topology. Finally, the reproducibility of an MCMC
run is also considered by convenience. Two MCMC runs
of the same analysis can be compared against each other
using the Kolmogorov—Smirnov (KS) statistical test, which
tests if two samples were drawn from the same underlying
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distribution. If your two MCMC chains do not seem to be
drawn from the same distribution, then this means your
MCMC simulations are not consistently finding the same
stationary distribution. This is likely due to one or both chains
not having converged yet. It can also be indicative of the
presence of multiple alternative possible solutions, with each
chain finding a separate local optimum. Different slices of
the same MCMC chain can also be compared against one
another using the KS test to assess if the chain is in the process

of converging.

5 Common issues and proposed resolutions

As we have seen, MCMC analyses are composed of many
different parts, which can make it difficult to identify the cause
of problems. In this section, we detail some common issues
which can affect the convergence of an MCMC inference, or
even prevent it entirely from starting. An abbreviated overview
of all the issues and resolutions described below can be found
in Figure 5.

5.1 Inference technical setup

5.1.1 Moves/operators. If an analysis does not converge well,
or takes unreasonably long, it is worth checking the opera-
tors. Each parameter that is supposed to be estimated by the
analysis needs to have at least one operator associated to it, in
order to be optimised. If an operator is missing, that parameter
will never change from its initial value, which not only means
it will not converge, but also that other parameters can be
prevented from converging properly.

Another possibility is that the weights of the individual opera-
tors may need to be reconsidered (i.e., how often a new value
should be proposed for the corresponding parameter). In

some cases, some parameters are mixing well, and only a

few specific ones are causing problems. In this case, it can

help to increase the weight of the operators corresponding to

badly-estimated parameters, so that more moves are being

proposed each generation for them. Similarly, decreas-

ing the weights of operators corresponding to well-estimated

parameters will decrease the amount of computational time

spent on proposals for these parameters, without affecting

convergence too much.

Alternatively, if changing the weight did not fix the chain’s
behaviour, we should consider its proposal size (i.e., how far
from the current parameter value a proposed new value is).
Many proposals, especially proposals on numerical param-
eters, include a configuration value which affects this size. A
proposal size that is too small will make convergence of the
corresponding parameter very slow, even at high operator
weights, and may even trap the chain on a local optimum. If
proposal sizes are too large instead, the chain may ‘overshoot’
the optimal parameter values or roam too far from them to
converge properly. The sampling pattern for that parameter
may then also be too ‘coarse’ to properly capture the peaks and
valleys in the likelihood.

A way to catch issues related to proposal-size is to check the
final acceptance ratios for all operators, as well as the final
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Choose reasonable parameters/priors

® Review prior literature in group or question

® Do model and process match for your data?

® Plot prior distributions to assess reasonability
Check # generations of similar analyses (and
data dimensions) in literature

Success!

® Rerun for longer
® Reduce complexity

( N
Technical Issues
® Trace jumps between several positions or gets
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¢ Individual parameters converge slower than rest
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® Estimated values are inappropriate or unreasonable
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® Estimated values conflict with each other
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process accounted for in the model?

® |s there sufficient signal in your data to inform the
model parameters (or is the model too complex for
the available data)?
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\ conflicting signals? /

Check for missing operators
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auto-tuning

Consider adding multiple move-types
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Reduce model complexity

Run different data types separately and
check for conflict

4

2

{ Get Help: Post on forums, reach out to developers ]

Figure 5. A flowchart to guide users through the MCMC-debugging process, highlighting key points mentioned in the text,
with common issues in blue boxes and corresponding resolutions in green. Note that the different types of issues and resolutions
within the orange box are not meant to be addressed in the order shown, but represent different avenues for investigating an issue.

trace. BEAST?2 will even offer suggestions for adjusting the pro-

posal sizes based on acceptance ratios at the end of the chain.

Other than that, appropriate proposal sizes are not always
straightforward for users to determine, but the problem can
be alleviated in two ways: by letting the inference software
auto-tune them, or by using a combination of proposals oper-
ating on the same parameter, but with varying proposal sizes.
The latter is particularly helpful if the likelihood surface is

very heterogeneous, as the chain then has a variety of step-sizes
available, potentially increasing the likelihood that the appro-
priate one can be proposed. However, auto-tuning should be
turned off if this strategy is chosen, so the separate proposal
sizes will not change throughout the chain.

If auto-tuning is turned on (which is the default in BEAST2
and MrBayes, and optional in RevBayes), proposal sizes of
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moves will periodically be adjusted to guarantee a good accept-
ance ratio (e.g., to match a goal of 0.4). For example, if too
many of the recently proposed moves were accepted, this
might indicate that their size was too small (i.e., they may be
slowly trudging uphill towards an optimum) and it will thus
be increased. If too few proposals were accepted, this might

in turn mean their size was too large (i.e., they shoot past
optimal values into parts of parameter space with lower
likelihoods) and will be decreased.

We generally recommend making use of such tuning fea-
tures, but urge users not to mistake them for a magic solution
to all proposal-size problems. Instead, one should be cautious
not to ‘mis-tune’ or ‘over-tune’ the analysis. The main consid-
erations when setting up auto-tuning are how often, and for how
long to tune. Depending on the implementation, users can spec-
ify during what portion of the chain the parameters are tuned
(i.e., during a dedicated tuning interval or burn-in phase, or
throughout the run), and how often the parameters are being
tuned during that interval. Tuning orients itself on the behaviour
of the proposals during the chosen tuning intervals. Thus, these
intervals need to be representative for the rest of the chain going
forward, if the tuned values should be useful. In particular
during the early stages of the MCMC (i.e., the burn-in phase),
larger proposal sizes may be favoured as the chain moves from
parameter values with low likelihood towards the optima,
whereas smaller sizes might be favoured when exploring the
likelihood surface around the optima. This generally means
that proposals should possibly be re-tuned multiple times, to
allow for feedback from the new behaviour of the tuned opera-
tor, and suggests that longer phases of tuning are needed for
chains initialised at naive starting values, than for those tailored
to possibly start closer to the optima. However, if tuning inter-
vals are kept too short, the available information might not be
representative for the operator’s behaviour, resulting in unnec-
essary or inappropriate proposal size changes. Furthermore,
while continuous tuning throughout the analysis can help
account for the different requirements far from the optima versus
close, there is a danger to tune towards the current location of
the chain, homing in on smaller and smaller proposal sizes and
thereby ‘trapping’ the chain on a local optimum. We would
thus prefer to mainly tune during burn-in, and not during
the main part of the analysis unless there is evidence that it

is necessary. However, using the aforementioned strategy
of multiple operators with varying, un-tuned proposal sizes
might be a more helpful approach in such a case. Note that
these changes can be integrated when running a new chain or
when resuming the current one, as proposal configurations do
not change the posterior distributions.

It can be difficult to identify which parameters exactly are
causing the problem, since they can affect the mixing of
others, blurring the picture. In particular, if the tree estimation
has not converged, this can affect many other parameters. Often
it is possible to identify the culprits by revisiting how the param-

eters are causally connected in the model. If available, a look at
a schematic representation of the model might help getting more
clarity on how different parameters may affect each other’s
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mixing. In BEAST2 or RevBayes, this representation can be
obtained directly from the software (through BEAUti in the
case of BEAST?2, or by printing the model’s DAG [directed
acyclic graph] in the case of RevBayes).

5.1.2 Starting values. Another problem is the initialisation
of the MCMC chain at a ‘bad’ position. This means that our
analysis started at a combination of parameter values that is
either very far from the true values, or at a combination of val-
ues that is implausible or hard to compute given our data. As
a result, the analysis may take much longer to converge (since
it has to first slowly make its way out of the poorly fitting area
of parameter space), or may crash altogether (e.g., because no
likelihood could be calculated for conflicting parameter val-
ues). Ideally, users will have thought well about the possible
values of all parameters and have set the respective prior distri-
butions to favour the most plausible parameter values. However,
the initial values are often left as the default (in BEAST2) or
are picked at random from the prior (in RevBayes), so the chain

can start in an unfavourable part of parameter space, or at an
implausible combination of values. For example, we could
start with some proposed very short branches along with
a very low mutation rate, which could never explain the
observed differences between the sequences of taxa. Or the
starting values for the speciation and extinction rates could be
implausibly high compared to the root age of the tree and its
number of taxa.

To combat this, we usually have the option to specify the start-
ing values for each parameter to something we deem reason-
able. It may not always be straightforward to know what those
values should be for a particular parameter, but beyond trial
and error, a few standard options have been established. One
possibility is to start at the expected mean of a prior distribu-
tion, which would be expected to work well as long as the prior
distribution itself is sensible. Reminding oneself of the param-
eters’ biological meaning can also help to come up with a good
solution. For example, speciation and extinction rates eventu-
ally just determine how many species we expect to arise and
die out again over a given time period. Thus, a commonly used
starting value for speciation rate is 4 In(nTips/2)/rootAge,
which gives a simple estimate of net diversification (sometimes
called the Kendall-Moran estimate; Baldwin and Sanderson,
1998), while extinction is set to u = A/10. Starting values can
also be set for non-numerical parameters. Starting trees can
be provided which may already be closer to the true solution
(e.g., a quick maximum likelihood tree or a previously-
published estimate) than a randomly drawn tree sample.
However, attention has to be paid to the tree not being in con-
flict with other priors or constraints. For instance, the starting
tree needs to be compatible with additional time information
such as node calibrations, and with added constraints such as
monophyletic subclades.

It is important to remember that starting values do not have to
be spot-on estimates of where the actual true values lie, because
after all, the MCMC is expected to go find those. The goal is
merely to ensure that we have set a feasible combination of
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values for the chain to start from. Doing so does not only pre-
vent computational issues (in case of unfeasible parameter com-
binations), but can also speed up the analysis (because we do
not force the chain to trudge through parameter space that is far
from the optima anyways, and instead allow it to start explor-
ing feasible solutions instead). Also, it may prevent issues with
the auto-tuning performed by the software. Since auto-tuning
usually happens at the beginning of the inference, the behav-
iour of the moves may end up being tuned to suit a different
part of parameter space than where the chain eventually
should spend most of its time exploring, as described above.

5.2 Choice of model and priors

Even with all the technical aspects of the analysis set
correctly, we can get convergence problems and faulty
behaviour of the parameters. Such issues can either stem from
unexpected interactions of priors, clashing components of the
model, or mismatches of the model with the data. It can at first
be challenging to distinguish those. If we do not already have a
suspicion as to what the culprit might be (e.g., based on the
trace, peculiarities of the data or model), one way to tell
whether the issue lies with the analysis setup per se or with
the pairing of data and model, is to run the MCMC ‘under the
prior’. This means removing the likelihood from the posterior
calculation, so that only values from the prior will be sam-
pled and none of the data is involved. Thus, any remaining
issues will be due to problems in the analysis setup, such as
conflicting or interacting priors — and vice versa, if there are
no such remaining issues, the problem may lie with the data
or the model. Running the MCMC inference under the prior

is useful not only for troubleshooting potential setup issues,
but also for interpreting the results of the actual analysis.
The difference between the prior distribution and the full
posterior gives an estimate of how much of the signal present
in the posterior sample actually comes from the sequence or
character data, as opposed to the prior distributions. Note that
although fossil ages are technically data, the probability of the
tree under the FBD process given the fossil ages is considered
part of the prior by BEAST2 and RevBayes. This can impact
model selection and marginal likelihood estimators, as detailed
in May and Rothfels (2023).

5.2.1 Priors. The choice of good priors can make a big dif-
ference for the success of the MCMC. Of course, coming up
with good priors is not trivial, and generally applicable advice
is not always available. One difficulty is that priors should
be clearly separated from the data. In a Bayesian inference,
the probability of the data is accounted for by the likelihood.
So, if the priors are also informed by the same data, then
the information provided by the data ends up being counted
twice by the inference, which will artificially increase its
contribution to the posterior. Priors can thus be based on previ-
ous studies or biological knowledge, but not on analyses using the
current dataset under study.

So how do we set priors? It may be tempting to just follow tuto-

rials or use default priors at first, however, we strongly encour-
age users to think more critically about the implications of the
prior choice for each individual analysis. While it is true that
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developers often design default settings to be a reasonable start-
ing point for most analyses, they are by no means meant to

be a one-fits-all solution, and one should not expect them to
necessarily be an optimal or even good fit for ones own prob-
lem. As an example, the default prior on clock rates in BEAST?2

is set to Uniform(0, +o0), because what constitutes a reason-
able value for the clock rate is extremely dependent on both the
organism and the timescale of the dataset. Thus it is up to the
user to select a reasonable prior distribution for this param-
eter. In general, your data or question may be quite different
from what the method developers had anticipated, and often
the behaviour of a model with different data and under differ-
ent parameters is something that can only really be started to be
explored once a new model/use case has been developed.

Thinking more carefully about the priors and their implica-
tions will go hand in hand with a deeper understanding of the
model itself, which should be an additional encouragement
to dive into it. The key is to remember that the prior distribu-
tion of a parameter represents the probability of those values
being proposed during the MCMC, and values outside of it can
never be tried. In particular, this means that long-tailed prior
shapes, such as lognormal or exponential distributions, are often
better than uniform distributions, which restrict the range of
values which can be tried by the inference. Note also that pri-
ors always influence the results of the inference, and that set-
ting very vague priors is not an optimal choice in most circum-
stances. For instance, in the example of the clock rate prior
presented earlier, a prior distribution of Uniform(0, +oo) puts

a lot of weight on very high values for that parameter, and will
thus encourage the inference to try these values. If the data is not
very informative on this particular parameter, this can result in esti-
mated values which are absurdly high from a biological point of
view. A better prior would use our understanding of evolutionary
processes to put more weight on biologically plausible values.

When choosing a prior, we thus need to consider what
particular parameter values would imply for the data. For
instance, substitution rates describe how fast mutations happen
in the sequences and become fixed, and thus how much the
sequences of the species under consideration could diverge
over time.

Overall, in order to identify reasonable priors, we can ask the
following questions:

* Have the parameters used in our analysis been estimated
in other contexts or for similar datasets?

* What priors have similar studies chosen and how
comparable is their data to ours? Note that these priors
still need to be critically evaluated, as our understanding
of plausible parameter values may have changed since
the previous study.

* Does the range of parameter values allowed by the
prior make sense given our data and analysis setup, for
instance is it consistent with the expected number of
substitutions in the alignment or the minimal clade ages?
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* Can we do rough calculations to calibrate our prior
expectations by, e.g., dividing the number of extant spe-
cies by the assumed clade age, to get a rough estimate
of net diversification?

e Can we obtain estimates for the parameters from
sources outside of our dataset, for example using the
fossil record to get an idea of how much extinction
our focal clade may have experienced? Note that this
requires making sure that the parameters chosen actually
represent the same quantities between models, which
is not always the case. For instance, extinction rates
obtained from the fossil record represent a different param-
eter than death rates used in the fossilized birth-death
process (Silvestro et al., 2018; Stadler et al., 2018).

Although this may sound like a lot of work, it is also impor-
tant to remember that identifying reasonable values for the
different parameters, finding previous estimates for compari-
son, and evaluating the biological implications of the differ-
ent values will always be needed to interpret the results of
the analysis. The main difference in a Bayesian inference
compared to other types of inference is that this work has to be
performed upfront, rather than after the inference is finished.

It is generally advisable to plot the specified prior distribu-
tions and think about what they imply. Overall, the actual shape
of the distribution (lognormal, gamma, etc.) is usually less
important than the range of plausible values covered by the dis-
tribution (the 5% and 95% quantiles). However, the shape of
the distribution affects the weight given to different parts of
the range, i.e., whether low values are more likely under the
prior than high values. Comparing the distributions for
different values by using the visualization tool in BEAUti or
plotting them in R is a great way to get a better idea of what is
happening. It should be noted that simply looking at a curve
may be misleading. Because the area under a certain section of
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relaxed clocks for molecular data. EvoPhylo (Simdes et al.,
2023) can do a similar selection for morphological data par-
titions. Although model selection can not be used to select
between alternative birth-death sampling models because fos-
sil ages are technically considered as part of the prior (May &
Rothfels, 2023), integrated tools in the Paleobiology Database
website can also assist in finding reasonable starting parameters
for FBD analyses. These tools use established paleontologi-
cal methods for estimating parameters for speciation, extinc-
tion and fossilization rates. Using these sorts of tools can help
with setting priors that have some support from the established
literature.

If different data sources are being used for joint analyses, one
might want to try running the different data separately in order
to confirm whether they might support incompatible solu-
tions. For example, in a total-evidence analysis, molecular and
morphological data may each support different tree topologies.
So when analysed jointly, solutions which could increase the
likelihood of one type of data will decrease it for the other
type, and vice versa, thereby making convergence around an
optimal solution impossible. The same could apply to other
combinations of data sources, e.g., conflicting molecular
markers. Running the data for each type/partition separately can
help a researcher determine if the convergence is poor due to
methodological issues, or true signal conflict.

Much more fundamentally, the analysis might also just struggle
to run or converge because the chosen model is not suitable
for the data at all. Carefully revisiting the model’s assumptions
and how those should manifest in the data is required to
judge this, e.g., are there patterns of variation in our data, for
instance between different groups, which the model needs to be
able to address? An approach specifically designed to judge
such model-data mismatches is model adequacy testing. This
is done by simulating new data sets from the inferred posterior
distributions, an approach termed posterior predictive simu-

the curve (e.g., a long tail) may still be large, even if the heightlations (PPS). These simulated data sets are then compared

of that section of the curve looks small. Thus, quantifying
how much area is covered by the distribution (such as through
quantiles) is still important. But in the case of node calibra-
tions, even if each calibration is reasonable by itself, their
combination can restrict the parameter space in unexpected
ways (Warnock et al., 2015). This brings us back to running
the analysis under the prior alone, as mentioned initially. This
type of analysis can help spot situations in which the analy-
sis is not specifying parameter distributions that the researcher
considers reasonable. The effective prior on a node age in an infer-
ence will be the product of the prior set by the tree model, and
of all additional calibration times set for the tree.

5.2.2 Model. When the analysis is set up correctly and pri-
ors are reasonable, the cause for convergence problems may
lie with the model itself, or how it relates to the data. It may
seem daunting to choose between all the different types of
models out there. There are a few pieces of software that can
help researchers get an idea of plausible models. ClockstaR
(Duchéne et al., 2014) can be used to choose appropriate

to the initial data using summary statistics which capture
its relevant characteristics. If the model is adequate to describe/
analyse the wvariation in the data, that should be revealed
through significant differences in the summary statistics
between the data and the posterior simulations. These types of
tests exist for a variety of phylogenetic models, including sub-
stitution models (Bollback, 2002; Brown & ElDabaje, 2009;
Lewis et al., 2014; Nielsen, 2002), tree inference (Brown,
2014; Duchene et al., 2019; Reid et al., 2014), continuous and
discrete trait evolution (Blackmon & Demuth, 2014; Huelsenbeck
et al., 2003; Pennell et al., 2015; Slater & Pennell, 2014),
and diversification models (Schwery & O’Meara, 2020;
Schwery et al., 2023). However, that approach technically
would require posterior estimates from a more or less success-
ful MCMC, which would not be available if the analysis keeps
crashing, and which would likely be uninformative if the
MCMC did not converge. A good way to circumvent this
would be to try and simulate datasets from scratch, based on
more or less comparable parameters to the empirical data, and
then compare them using the same summary statistics as one
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would use in the PPS approach. This would be akin to using
approximate Bayesian computation (ABC). Exploring how the
empirical data differs from what is expected under the model
may allow you to judge the nature of the model-data mismatch.

Finally, it might be worth trying to reduce the complexity of
one’s model. While it is tempting to make full use of the lev-
els of complexity modern approaches allow us to model, one
ought to consider whether there is enough information in the
data for the model to work with. Just like any statistical test has
sample size requirements to have the power to detect signifi-
cant differences, these models need the data to have sufficient
size and structure/heterogeneity to be able to infer parameter
estimates without too much uncertainty. For example, we may
want to use a relaxed clock model to account for the possibil-
ity that different parts of our tree evolve at different rates. But
if we only have one fossil to calibrate our node ages with, or
the sequences are not substantially variable, the model has
limited information on which to base any rate differences on
the tree. As a result, the different branch rates suggested by the
MCMC will possibly meander around the parameter space
without any receiving overwhelming support. Using a strict
clock instead might neglect possible rate heterogeneity, but will
at least be able to converge on reasonable estimates given the
limited information available.

5.3 Data quality issues

In general, assembling more data leads to more precise and
more accurate inferences. For example, previous research has
shown that total-evidence studies require ~300 morphologi-
cal characters to obtain reliable estimates of tree topology and
divergence times in extinct clades (Barido-Sottani et al., 2020).
Purely from a performance perspective however, it is impor-
tant to note that additional data is not necessarily better for the
convergence of an MCMC inference. Indeed, adding more data
comes with added computational costs, and thus can have a net-
negative impact on the performance, especially if the added
data is very uncertain or conflicts with the rest of the data or
with the chosen models and priors. For instance, Portik et al.
(2023) built phylogenies using either a complete alignment of
nuclear markers, a supersparse matrix of-300 genes with large
amounts of missing data, or the combination of both. They
found that trees obtained using the combined dataset did not
significantly differ from the trees obtained using the complete
alignment alone. One possible avenue for resolving conver-
gence issues is thus to remove genes or partitions which contain
low amounts of information.

Similarly, increasing the number of extant or fossil samples
in the tree leads to an exponential increase in the number of
possible topologies, and so represents an important drag on
performance. We typically select a subsample of the taxa to be
included in our analyses. We may assume extant taxa are sampled
uniformly at random; but in many cases, they are sampled
sparsely by keeping only one living representative per genus
or subclade. The diversified sampling scheme has been
implemented in the FBD model (Zhang et al, 2016) to
accommodate such a case.
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As mentioned above, there are two options for incorporating
fossils directly in the phylogeny using the FBD process: assign-
ing fossils to nodes via constraints or using morphological
data in a total-evidence framework. Both approaches to posi-
tioning fossils present a challenge for MCMC inference, since
even with character data, the topological uncertainty associ-
ated with fossils is typically large. And when there is a large
amount of phylogenetic uncertainty, the posterior can span a
broader flatter area, taking more effort to sample and making
it harder to reach convergence. The use of very broad
constraints (e.g., assigning all fossils to the root) in particu-
lar can lead to convergence issues, since there is insufficient
information to inform the topology or other model parameters.
To improve convergence, researchers could use the most precise
constraints available, i.e., less inclusive nodes or lower taxonomic
divisions, such as genera. In addition, it is possible to set a
backbone extant tree, which will fix or strongly restrict the
position of extant samples in the phylogeny, leaving only
the positions of the fossils and the branch lengths to be
estimated. That said, we emphasise that constraints should be
implemented with extreme caution, as errors in constraints can
lead to inaccurate results (Barido-Sottani et al., 2022a). Having
character data for fossils can help improve convergence, as
it provides direct information about the topology. If conver-
gence issues persist, provided additional taxonomic information
is available, both approaches to fossil placement (the use of
character data + constraints) could be combined. If additional
taxonomic information or morphological data is unavailable,
researchers might need to reconsider the scope of their analyses
and the application of the FBD process to the data.

If age uncertainty is substantial for many or all fossils in your
analysis, the MCMC might also take longer to converge. How-
ever, compared to analyses that used fixed fossil ages, Barido-
Sottani et al. (2019) showed using simulations, that incorporat-
ing fossil age uncertainty does not make the MCMC inference
less efficient, i.e., more iterations are not always required to reach
convergence, at least for data sets typical of Cenozoic mammals.
This is probably because the use of fixed fossil ages introduces
conflict into the tree space, leading to less efficient mixing.

In addition to extant taxa, fossils are also usually sampled
non-uniformly, with abundant fossils in some strata but rare
in others. The FBD model can also take this into account by
allowing the sampling rate of fossils to vary through time
(Gavryushkina et al., 2014; Zhang et al., 2016). To increase the
biological realism of the FBD process, researchers might be
tempted to incorporate variation in the sampling or diversifica-
tion processes. This leads to an increase in the number of free
parameters and another trade-off between model complexity
and data availability that must be considered. Increasing the
number of fossils will improve parameter estimation, leading
to more accurate and precise estimates of the FBD model
parameters, as well as divergence times and topology
(provided the model is not strongly violated). However, users
should bear in mind that adding fossils increases overall tree
size — each fossil is a tip or potential sampled ancestor, whose
position must be sampled using MCMC.
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This means that although fossils do not typically burden the com-
putation through the addition of character data, which would
increase the cost of calculating the likelihood, they increase
the tree space, which will take longer to sample using MCMC.
For many broader clades (e.g., mammals, animals, plants),
including all fossil occurrences, while desirable, is not feasi-
ble. Presently, the maximum tree size that could reasonably be
inferred using the FBD process is around 500 samples. One
approach to get around this for large clades, or datasets with
large numbers of fossil occurrences, is to randomly subsam-
ple the fossil data (O’Reilly & Donoghue, 2020). This allows
us to obtain a more manageable dataset without violating the
sampling process assumptions.

5.4 How long should I run my analysis before giving up?
Some analyses take a long time to converge because it is
hard to find the optimal values in a large parameter space, or
because several local optima exist, and sometimes it takes a
long time because a lot of uncertainty exists around the opti-
mal values. Visually inspecting the parameter traces can give
indications for this. Are they stabilising around certain val-
ues, still showing a trend into a certain direction, or just wildly
meandering around? Trends in the trace can indicate that the
MCMC is still searching for optimal values and just requires
more time to find them (or perhaps needs to be restarted
with starting values further in the suggested direction). But
continuously rising or declining parameter values can also be
pathological behaviour, suggesting misspecified priors or
overly strict constraints in related parameters. Over-tuning
of moves can also lead to such erratic behaviour, e.g., if the
step-size for some parameters was tuned to be overly short or
long. Wildly meandering traces could again be an indication of
the data not containing enough information for those param-
eters to be identifiable, or step-sizes to be too long to allow it
to settle around the optimal value.

A behavior researchers sometimes observe is that an MCMC
will appear to stabilize on a set of values, then jump to a com-
pletely different likelihood. This can be either an improvement
(finding better values) or worse. This can happen because the
analysis was previously stuck in a local optimum. That is, a
region of parameter space that was good, but not the best in
treespace. Thus, exploring this new optimum further is warranted.
Or it may be that making a change to one parameter, such as
the tree, causes a jump to a worse parameter space for other
model parameters. In either event, running multiple MCMC
chains is an advisable way to discern between these two
scenarios. Many software packages default to using two MCMC
chains. Some, such as RevBayes, allow more to be used. 2-4
MCMC chains are common in published analyses.

Overall, the number of steps required to achieve convergence
is difficult to estimate, as it will depend on all the components
of the analysis, including the specific software used. Search-
ing the literature for similar analyses, both in terms of data-
set size and of models used, can provide a reasonable order
of magnitude for the number of steps needed. The original
publications of the specific model or package used, if avail-
able, will also provide estimates for what the original authors

Open Research Europe 2023, 3:204 Last updated: 02 JUL 2024

believed was a reasonable dataset size. Importantly, inference
software all integrate a checkpointing mechanism, so analyses
which have not converged can be resumed without losing
the work already done. Thus it is not an issue if the initial

number of steps is too low. Running several different chains with

the same analysis can also be helpful in assessing how far
the chain is from convergence. If the posterior distributions
obtained by the different chains are largely mismatched,
then convergence is likely still very far.

It is not uncommon for users of MCMC inferences to be aghast
at the required run time. This is particularly the case when
analyses are set up to incorporate too many different factors.
Thus, minimizing the complexity of the setup from the start

is generally a good idea. Ideally, we would want our analysis
to be simple enough to be tractable, but complex enough to
capture the relevant aspects of the data to answer our question.
Unfortunately, the complexity that strikes that balance is often
hard to determine a priori (or may not even exist for some
combinations of question and data). While both gradually
simplifying an overly complex model or gradually adding
complexity to an overly simple model should be feasible
strategies, we feel that erring on the side of simplicity may be
more advisable. A successfully completed analysis that ends
up being overly simplistic provides more information on how to
improve it than an overly complex one that fails to run in the
first place. Preliminary model testing, such as determining
the most suitable substitution model using jModelTest (Darriba
et al., 2012; Posada & Crandall, 1998; Posada, 2008), can help
us narrow down an appropriate range of complexity to start at.

An important contributor to analysis complexity is the number
of partitions, so it is good to consider whether they are all
needed, and if some of them can share substitution or clock
models. In particular, if you notice in the trace that param-
eters associated with some partitions are purely driven by the
prior, then the data is likely over-partitioned. Similarly, using
uncorrelated relaxed clock models increases the number of
parameters by a large amount, as each branch of the tree is then
associated with its own clock rate. If the dataset contains little
time information, then there will be little signal in the data
to estimate these rates, which is likely to lead to convergence
issues. Luckily, there exist several tools to help determine
what number of partitions may be best for a given dataset. We
have already mentioned how EvoPhylo (Simdes et al., 2023)
can be used to partition morphological character data. For
molecular data, the software package PartitionFinder (Lanfear
et al., 2012; Lanfear et al., 2017) can similarly be used to find
partitions and test for the best substitution models for them.
Its output files can be used as input for the aforementioned
ClockStaR (Duchéne et al., 2014), to further determine which
partitions require different clock models.

Additionally, model adequacy testing (e.g., using posterior
predictive simulations, PPS, as previously described in section
5.2.2) can also tell us whether our models are of appropriate
complexity for the data. If the complexity of the model does not
match that of the data, the differences in the summary statis-
tics between the data and the posterior simulations should show
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that. However, as mentioned above, unlike preliminary model
testing, PPS approaches come into play after the main analysis,
as they rely on having the successfully inferred posterior
distributions. Thus, starting with as much complexity that
prevents successful completion of an MCMC run will prevent
us from using this approach.

Finally, note that using informative priors helps reduce the
complexity of the analysis, by reducing the size of the param-
eter space that needs to be explored by the inference. This
is especially true for parameters for which there is little
signal in the data, such as the clock rate in an analysis with
little time calibration information, or the extinction rate in an
analysis with only extant species. For these parameters many
different values will result in very similar posterior densities,
so the inference can spend a large amount of time exploring a
very wide plausible range of values. In this case constraining
the values using fairly strict priors will ensure that the inference
converges more quickly.

6 Good places to look for help

In addition to the guidance provided in this document, many
software-specific resources can help in diagnosing and
fixing misbehaving phylogenetic inferences. Bayesian infer-
ence frameworks are generally associated with a manual, some
tutorials and help repositories which provide guidance on
frequently used analyses. Specifically, users can look at the
built-in help messages in MrBayes, the Taming the BEAST
website (https://taming-the-beast.org) for BEAST2 or the
RevBayes website (https://revbayes.github.io/tutorials/) for
RevBayes. For more detailed and targeted help, forums such as
the BEAST user group (https://groups.google.com/g/beast-users)
or the RevBayes user forum (https://groups.google.com/g/
revbayes-users) are also available. Making good use of search
engines can usually solve most common problems. If the prob-
lem appears to be due to a bug in the software (for instance,
the inference crashes or returns non-sensical results), filing
an issue on the Github repository is the best way to report it.
Reporting an issue automatically alerts all developers, and
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makes the problem visible to other affected users. Note that for
BEAST?2, each package has a separate repository, so if the
problem appears tied to a specific package the issue should be
filed on the package repository rather than the general BEAST2
one. Before opening a new issue, you should make sure that
the problem has not been reported already by looking through
the list of open issues. As a last resort, developers can be con-
tacted directly, although we recommend exploring the above
resources first.

Several rules should be kept in mind when requesting help on
forums or from tool developers and when filing issues. First,
it is generally good to assume that any would-be helper will
need to run the analysis themselves in order to identify the
issue. Thus, all data, configuration and code files required
to reproduce the problem should be included in the help
request. The full error message or problematic output should
also be included, so helpers can verify that they have cor-
rectly reproduced the issue. If possible, simplifying the analysis
by removing elements which do not trigger the issue, or
comparing the problematic analysis to a similar analysis which
worked, will also be very helpful to track down a problem.
Finally, detailed information on the computer configuration
used (operating system type and version, software version,
compiler version if the software was compiled manually,
whether the analysis was run on a local machine or computer
cluster) should be provided, particularly when the analysis
crashes or fails to start.
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Authors: Barido-Sottani J, Schwery O, Warnock RCM, Zhang C, and Wright AM

Summary:

The manuscript by Barrido-Sottani et al. offers practical guidelines for biologists conducting
phylogenetic analysis using softwares that implement Bayesian frameworks, namely MrBayes,
RevBayes, and BEAST2. The authors focus on Markov chain Monte Carlo (MCMC) that is used in
Bayesian phylogenetic inference, and present how to diagnose some common problems and how
to troubleshoot them, how to fine-tune parameters for to achieve convergence, and unique
challenges when fossil information is incorporated. Overall, the manuscript is in a great shape,
very well explained without using unnecessary jargons. | believe this manuscript is well-suited for
introductory read for understanding MCMC in Bayesian phylogenetic inference to general
audience. Below, | tried to point out any place that can be clarified where a novice to Bayesian
phylogenetics (or phylogenetics in general) can possibly get confused.

Comments:

[1] MCMC: Markov Chain Monte Carlo — Markov chain Monte Carlo, unless intended.

[2] Keywords: May be include RevBayes as well?

[3] Abstract: (1) It would be more accurate to say that “estimating a phylogenetic tree involves
evaluating many possible hypotheses”, instead of solutions? If the authors meant parameter
estimates by the “solutions', it should be clarified.

[4] Introduction to MCMC Paragraph 1: If possible, providing some numbers to demonstrate the
vastly large number of possible topologies for given number of taxa n would help readers to
admit that it is not feasible to evaluate all possible topologies (even when n is not large). For
example, there are < 34 million topologies when n = 10 (Degnan and Salter, 2005, Evolution, 59(1),
p.34).

[5] Introduction to MCMC P3: (1) Try to avoid begin a sentence with an abbreviation (i.e., ML,
sentence 2). (2) Plus, it would be good idea to provide some references of the mathematical
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techniques in sentence 2. (3) Also, the concept of prior distribution is briefly introduced here, and

it would be nice to direct reader that the concept is described in more detail in the coming section
(i.e., 2.1.2?))

[6] Introduction to MCMC P4: (1) Please mention some examples (or references) of MCMC
sampling algorithms other than MH. (2) The authors mention that the one or more model
parameters are perturbed, like making a number a little bigger. It would be clearer if stated as “a
value of the parameter is increased"? (3) The connection between Monte Carlo and pseudorandom
parameter perturbation is not obvious. (4) The concept of ‘parent solution’ should have been
introduced, possibly when a ‘starting set of values’ was introduced in the beginning of this
paragraph?

[7] Introduction to MCMC P5: Provide reference for the original MCMC in early 1950s?

[8] Section 2.1: | like “The Bayesics.” Just a suggestion, but unless intended, how about listing the
three quantities in the order of apparance in the text (i.e., the likelihood, the prior, and the

marginal probability)?

[9] Figure 1: The cartoon illustration of Bayes’ theorem looks great. (1) Just make sure to keep the
capitalization consistent (Bayes’ theorem vs. Bayes Theorem (in text)). (2) It would be more helpful
if both top and bottom (i.e., not the second panel) are mentioned in the bolded portion of the
caption. (3) Mention the asterisk () represents new parameter values in the caption. (3) | think
using either one of Hastings ratio or the posterior odds ratio in the figure itself would remove
unnecessary confusion, and mention that both refer to the same thing in the caption.

[10] Section 2.1.1 P1: ML for maximum likelihood is already introduced previously. No need to
redo it here.

[11] Section 2.1.2 P1: (1)Use ML since it has been introduced previously. (2) “...than one that is very
short - low?”

[12] Section 2.1.4 P2: Provide reference for reversible MCMC. Possibly provide an example for its
application (e.g., phylogenetic network inference?).

[13] Section 2.1.5 P2: There is no section called Introduction, but Introduction to MCMC.

[14] Figure 2: | am not sure it it is necessary to include both flowchart and pseudocode. | feel like
they are redundant and either one of them should be enough to explain MH. It is up to the

authors to choose which one. Furthermore, in the flowchart, it would be more clear to say that the
changes that decrease the posterior is accepted at probability of R, instead of vague 'Occasionally’.
In pseudocode, possibly add a line somewhere that explains the variable j.

[15] Section 2.2.1 P1: (1) The definition of unrooted trees should be more explicit by including the
concept of lack of evolutionary directionality (i.e., unable to identify the ancestor-descent
relationship between the nodes). (2) It would also be important to specify the trees where branch
lengths represent genetic distance are dated only if the constant molecular clock assumption is
met.

[16] Section 2.2.1 P2: (1) Could you define outgroup samples in simple terms? (2) May be use the
term ‘ingroup’ instead of “main clade”, because the main clade can be a portion of ingroup taxa.
[17] Section 2.2.3 P1: (1) Are the terms 'moves' and 'operators' synonyms? They are being used
interchangeably. If so, it might be a good idea to state that they are the same thing upfront (i.e.,
move the second last sentence to the top) and stick with one of them throughout the section. (2) |
don't think “Scaling move” is not explained in the text at this point, or direct readers to Figure 3.
[18] Section 2.2.3 P2: The last sentence of this paragraph that begins with “This is also the
reason...” seems to be very important for the readers when comparing results from different
implementations. Could you add a couple sentences with an example?

[19] Section 2.2.3 P3: Two abbreviations STX and SPR were never defined in text. Also, it would be
useful to direct readers to some literature where the details of these tree moves are explained.
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[20] Section 2.2.3 P4: Please explain what it means by “satisfying” results. This may lead to the
subjectivity issue.

[21] Figure 3: (1) Please explicitly define, at least in caption, the notations used in the figure: a, s, d,
etc., in scaling and sliding moves, for example. U for Uniform distribution? (2) | thought subtree
exchange moves swaps the two points in two different branches in the tree (Vaughan et al,2014)
[Ref 1]. Currently, it looks like as if two leaves, blue and orange, are swapped and no branch plays
a role in this move. Is this what STX really does? Otherwise, the graphical representation may be
misleading and confusing. Similar issue in SPR move.

[22] Section 3: “Posterior values” — "posterior probabilities" for a set of parameter values?

[23] Section 3.1 P1: Refer to Figure 3 when explaining the moves involving numerical change.
[24] Section 3.1 P2: (1) “networks” — phylogenetic networks; It would be good idea to define
phylogenetic networks or provide citations where the networks are defined and distinction
between the trees and networks (e.g., Kong S, Et al, 2022 [Ref2] In the last sentence, it might be
more accurate to say ‘topology moves’ rather than “tree moves” since the concept of networks is
introduced.

[25] Section 3.2 P1: | feel like the first sentence (“Biology is complex...”) is repeating what has been
said previously.

[26] Section 3.3: This section is very clear and informative. Beautifully written!

[27] Section 4.1 P1: While the proportion of burn-in might not (or might) directly influence MCMC
inference result (particularly if ran long enough), could you elaborate on the consequences of
setting the proportion of burn-in either too small or large? For starters, setting this value may
seem arbitrary and difficult to decide.

[28] Section 4.3 P1: May be | missed, what do you mean by the autocorrelation time t? How is it
measured?

[29] Figure 4: The description of left and right panels are well explained in the caption. However, it
would be great what the different rows represent is described. (i.e., top row being not coverged
vs. bottom row being the converged “hairy caterpillar"?

[30] Section 5.1.1 P4: The term “acceptance ratios” was used. Is this synonymous to “acceptance
proportion” mentioned in section 2? If so, please mention it or keep these terms consistent.

[31] Section 5.1.1 P7: The abbreviation “DAG” is introduced, but never used again in the
manuscript. May be unnecessary.

[32] Section 5.2.2 P2: “...help a researcher determine” - ‘...help a researcher to determine’?

References

1. Vaughan TG, Kuhnert D, Popinga A, Welch D, et al.: Efficient Bayesian inference under the
structured coalescent. Bioinformatics. 2014; 30 (16): 2272-9 PubMed Abstract | Publisher Full Text
2. Kong S, Pons JC, Kubatko L, Wicke K: Classes of explicit phylogenetic networks and their
biological and mathematical significance. J Math Biol. 2022; 84 (6): 47 PubMed Abstract | Publisher
Full Text

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
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If any results are presented, are all the source data underlying the results available to
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Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.
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Grégoire Clarté
University of Helsinki, Helsinki, Finland

This paper summarises the current knowledge about Bayesian phylogenetic inference with a
particular focus on numerical methods. The paper is particularly welcome as this problem is
particularly complex and frequent in numerous applications. No new method is presented, but the
article offers a nice presentation of the most common method and their implementation. It
contains also a general workflow for carrying Bayesian Phylogenetical Inference.

Overall, | think some choices are strange (for example the strange notations for parameters and
observations in Fig. 1). These choices must be explained by the readers having little mathematical
background. Nevertheless, | think this is not a good idea, as the article should aim at giving the
mathematical tools needed to the reader, and | don't think ideographic representation gives

better understanding than proper definitions (I needed some time to understand the images).
Introducing proper notations would also allow to discuss the notion of “"non informative priors"

and more importantly conjugated priors that would help the choice of priors. It can also be
beneficial to allow the users to communicate with the computational statisticians that developed
the tools.

For example, in 2.1.6. | think the article would benefit from mentioning the standard results of
Markov Chain theory (that is ergodicity of the chain). This in return would be of interest when
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mentioning the different moves that can be used in MCMC algorithm, and could give insight as for
possible reasons of failures.

The part about the different problems of MCMC methods is well written and contains all the
important information in my opinion.

| disagree with section 5.1.2, or | think the phrasing is strange: the choice of a fixed initial value
can be misleading (see later the case of poorly ergodic chains because of multimodality). | think
the choice of a random initialisation from the prior along with repeated runs should be the correct
recommendation (along with more careful observation of convergence).

| also have some doubts on the diagnostic section: this problem is one of the most difficult in
phylogenetics, for the reason that the parameters of the model (that include the topology) cannot
be all summarised by one ESS. Overall all the existing methods are inefficient (but once again
that's a review of the numerical methods that exists, and these inefficient methods are the only
ones implemented). It would be interesting to the reader to see what are the possible issues that
arises from using the ESS in the phylogenetic case (which itself has to be defined, as the author
mention). Nevertheless, | am happy to see the part about the trace observation (which should be
the first check run by any user of an MCMC method).

| am a little surprised the authors do not mention earlier the most simple method to detect
multimodality: running several chains in parallel. If the chains converge to different trees, that
indicates that further study is required. In particular the use of standard MCMC such as the ones
presented in the paper (MrBeast, etc.) will not be able to handle these problems. In my field this is
a very frequent case of failure of the MCMC. This is mentioned later in the paper but it would be
beneficial to discuss that earlier. On the question of detecting convergence, the remarks of 5.4 can
have links with the results on MCMC convergence on trees developed following the works of
Biswas, N., Jacob, P. E. and Vanetti, P. (2019) Estimating convergence of Markov chains with L-lag
couplings (NeurlPS 7389-7399). These methods are not implemented in the current software but
they have the advantage of being theoretically sound, and have been applied to phylogenetics. Of
course, this is out of the scope of the article if we consider that the users will only make use of the
already implemented tools.

A problem | can see, is that the article mentions problems that cannot be solved in most of the
software mentioned unless the user has a good knowledge of them. For example, if there are
mixing problems for some parameters, this can be a problem of correlation between the
parameters, and a move in the joint space would be recommended, which is unfortunately not
possible to implement easily in most cases.

Finally, | am wondering if mentioning more complex but more efficient methods such as SMC for
trees (for example the works from Bouchard-Cété) can be interesting. My idea is that if there are
problems with the standard methods, the user should move on to more complex numerical
methods, although they are not implemented in a user friendly way.

As a conclusion, | would say that the article is good but requires some polishing depending on the
goals the authors have. It obviously is tailored for non-statisticians that are using Bayesian
phylogenetics tools. It does a great job at presenting the problems, the tools, and the possible
solutions (I am happy to see the recommendation to discuss complex problems on the forums)
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but I still think stronger maths would be beneficial.

Minor comments:
"2.1 The Bayesics" I'm not sure the pun is needed in this kind of article (also, it can be
difficult to understand for non native english speakers that would pronounce Bayes
differently).

| have philosophical problems with the notion of "choosing" the prior, as the prior is not
chosen by the user but just exists out of the general knowledge (as is described by the
paper). | think the author could mention repeated experiments with different priors to
ensure the prior effect is negligible with respect to the results.

| use more often marginal likelihood than marginal probability to designate the integrate of
the likelihood times the prior, | don't know what are the terms used in the phylogenetics
community.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational bayesian phylogenetics, computational statistics, numerical
methods in bayesian statistics.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 30 May 2024
Joélle Barido-Sottani
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Thank you very much for the review and suggestions! Please find our detailed
response below (in bold). Overall, | think some choices are strange (for example the

strange notations for parameters and observations in Fig. 1). These choices must be

explained by the readers having little mathematical background. Nevertheless, | think this is

not a good idea, as the article should aim at giving the mathematical tools needed to the

reader, and | don’t think ideographic representation gives better understanding than

proper definitions (I needed some time to understand the images). Introducing proper

notations would also allow to discuss the notion of “non informative priors” and more

importantly conjugated priors that would help the choice of priors. It can also be beneficial

to

allow the users to communicate with the computational statisticians that developed the

tools.

We have chosen to retain the pictures used in place of mathematical notation in
Figure 1 (although, as described in response to reviewer 2, we have made the image
clearer and we now include a figure legend with descriptions of the components). Our
reasoning for this is that phylogenetics is perhaps unusual in that it draws a lot of
users who have no formal training in mathematics, who often have limited practice or
experience reading equations in any context. Formal notation appears in many
fundamental textbooks and papers that introduce Bayesian phylogenetics and MCMC
(e.g., Ziheng Yang's (2006) Computational Molecular Evolution book or Joseph
Felsenstein’s (2004) Inferring phylogenies book). These resources can be challenging
at first for those unfamiliar with mathematical notation and new to phylogenetics.
Our intention is to provide a reference that is both complementary to these resources
and more accessible for beginners. This perspective is based on our experience as
individual researchers

and our experience teaching Bayesian phylogenetics in a wide range of contexts
(especially, as part of the RevBayes or BEAST2 workshops which are aimed at empirical
researchers).

We have included some discussion on the use of non-informative or improper priors
and the potential issues these can cause (section 5.2 Choice of model and priors).
However, we chose not to discuss the use of conjugate priors, as it is not often
possible to use these in the context of Bayesian phylogenetics. A regular phylogenetic
software user would rarely (if ever) encounter this term. For example, in 2.1.6. | think

the article would benefit from mentioning the standard results of Markov Chain theory (that

is ergodicity of the chain). This in return would be of interest when mentioning the different

moves that can be used in MCMC algorithm, and could give insight as for possible reasons

of failures.

We have added some information on ergodicity and its implications on the MCMC
moves. The part about the different problems of MCMC methods is well written and

contains all the important information in my opinion.

| disagree with section 5.1.2, or | think the phrasing is strange: the choice of a fixed initial

value can be misleading (see later the case of poorly ergodic chains because of

multimodality). | think the choice of a random initialisation from the prior along with

repeated runs should be the correct recommendation (along with more careful observation

of convergence).

We have edited this to make it clearer. We aren't trying to argue for one method of
doing this over another, simply to state the major classes of solutions found in the
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literature. To this section, we've added some explanation about how starting point
may affect the inference, and how to detect sensitivity to starting point. | also have
some doubts on the diagnostic section: this problem is one of the most difficult in
phylogenetics, for the reason that the parameters of the model (that include the topology)
cannot be all summarised by one ESS. Overall all the existing methods are inefficient (but

once again that’s a review of the numerical methods that exists, and

these inefficient methods are the only ones implemented). It would be interesting to the

reader to see what are the possible issues that arises from using the ESS in the phylogenetic
case (which itself has to be defined, as the author mention). Nevertheless, | am happy to see
the part about the trace observation (which should be the first check run by any user of an
MCMC method).

Standard convergence diagnostics in phylogenetics involve calculating one ESS per
parameter that is involved in the analysis, rather than one single ESS for the whole
model, as the initial text might have implied. Some of the confusion may have
resulted from the later mention of the topology ESS as calculated by Convenience,
since that comes closest to the idea of one single ESS for the whole analysis. We have
thus edited the text to make that clearer. We have furthermore added a brief section
detailing which ESS to check and what to pay attention to. | am a little surprised the
authors do not mention earlier the most simple method to detect multimodality: running

several chains in parallel. If the chains converge to different trees, that indicates that further
study is required. In particular the use of standard MCMC such as the ones presented in the
paper (MrBeast, etc.) will not be able to handle these problems. In my field this is a very
frequent case of failure of the MCMC. This is mentioned later in the paper but it would be
beneficial to discuss that earlier.

We now mention the use of multiple chains in the convergence assessment section.
We have edited this part to emphasize that certain issues such as multimodality can
only be detected through this method. On the question of detecting convergence, the
remarks of 5.4 can have links with the results on MCMC convergence on trees developed
following the works of Biswas, N., Jacob, P. E. and Vanetti, P. (2019) Estimating convergence
of Markov chains with L-lag couplings (NeurlPS 7389-7399). These methods are not
implemented in the current

software but they have the advantage of being theoretically sound, and have been applied

to phylogenetics. Of course, this is out of the scope of the article if we consider that the

users will only make use of the already implemented tools.

We agree that while this may be a nascent method, it might be useful for readers to
be aware of it and explore the possibilities of its use. We have thus added a mention of
it to the convergence section, along with two papers by Kelly et al, who already apply
the method of Biswas et al. in a phylogenetic context. A problem | can see, is that the
article mentions problems that cannot be solved in most of the software mentioned unless

the user has a good knowledge of them. For example, if there are mixing problems for

some parameters, this can be a problem of correlation between the parameters, and a

move in the joint space would be recommended, which is unfortunately not possible to
implement easily in most cases.

We have tried to cover as many as possible solutions available in the software that
users can adjust or fine-tune across appropriate sections. We now clearly state that
our focus in on solutions which can be implemented by the user without additional
development, but that many issues do require changes in the software itself. The
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problem of correlation between parameters is particularly hard to deal with, typically
requiring the developers to implement efficient MCMC moves to overcome it.
Nevertheless, we now mention the up-down operator in BEAST2 which will scale both
the branch lengths of the tree, and the clock rate simultaneously. Finally, | am
wondering if mentioning more complex but more efficient methods such as SMC for trees

(for example the works from Bouchard-Coét€é) can be interesting. My idea is that if there are
problems with the standard methods, the user should move on to more complex numerical
methods, although they are not implemented in a user friendly

way.

We added references to other algorithms when introducing MCMC. These are very
interesting and worth discussing, but out-of-scope for us. As a conclusion, | would say
that the article is good but requires some polishing depending on the goals the authors

have. It obviously is tailored for non-statisticians that are using Bayesian phylogenetics

tools. It does a great job at presenting the problems, the tools, and the possible solutions (|

am happy to see the recommendation to discuss complex problems on the forums) but |

still think stronger maths would be beneficial. Minor comments:

“2.1 The Bayesics” I'm not sure the pun is needed in this kind of article (also, it can be

difficult to understand for non native english speakers that would pronounce Bayes

differently).

Thank you for pointing out the valid concern about non-native speakers. In
consultation with the non-native English speakers among the authors, we opted to
remove the pun here. | have philosophical problems with the notion of "choosing” the

prior, as the prior is not chosen by the user but just exists out of the general knowledge (as

is described by the paper). | think the author could mention repeated experiments with

different priors to ensure the prior effect is negligible with respect to the results.

We disagree with the idea that the prior should be negligible. If the prior is reflecting
sound empirical information, that information should be incorporated in the analysis.
But more to the point, any analysis contains many choices. Whether it is a choice of
methodology, or the choice of null and alternative hypotheses, these choices are often
consequential. Thus, it's our feeling that as with any other choice, consequentiality is
less important than justifiability. We have kept the phrasing of “choice” when
discussing the priors, but we now mention testing different priors to explore their
impact on the results and conclusions. We also now emphasise that in some contexts
in Bayesian phylogenetics the parameters of interest are not fully identifiable (this is
especially true for divergence time estimation) and that as a result the priors need to
very carefully considered (sections 2.1.2 and 3.3). | use more often marginal likelihood

than marginal probability to designate the integrate of the likelihood times the prior, | don’t

know what are the terms used in the phylogenetics community.

We edited the first mention of the term to state that both terms are used
interchangeably.

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 March 2024

https://doi.org/10.21956/0penreseurope.18012.r37731
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© 2024 Hu Z. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

e

Zhirui Hu
Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA

The authors provide a very thorough introduction of Bayesian analysis, MCMC for posterior
inference in Bayesian phylogenetics, common issues and troubleshooting of model choices and
running MCMC. The article is well-structured, informative, easy to read and technically sound. In
general, | think it would be more helpful to include more examples and figures to illustrate issues
and troubleshooting techniques, and/or an example illustrating the entire process from model
design, MCMC convergence diagnostics and model selection or update.

Besides, there are a few minor issues in the article:
page 4, “between the new and parent scores”, “current” is more commonly used than
“parent” to indicate the current state in the Markov chain.

Figure 1, the cartoon illustration for phylogeny and alignment etc. is interesting but too
small to read. Also, summation sign instead of integral could be used for summing over
discrete variables, i.e. phylogenetic trees.

Page 7, “a minimum of 10,000 posterior samples”, | think choosing the number of MCMC
samples should depend on how correlated samples are or ESS.

Section 2.2.3, “Scaling move the components”, is it a typo?

Pg 9, section 3.1, the author mentioned that traversing tree space was largely solved in the
1990s but later mentioned challenges in phylogenetic inference. | think the authors need to
clarify in which situation the problem was solved.

Section 3.2, adding a figure might be helpful to illustrate the posterior space. “when
calculating the prior probability of the phylogeny...”, should it be “posterior probability”?
Also, what is a diversification model? Maybe add some reference here.

Figure 4 is good to illustrate different types of trace plot, but the authors could add more
explanations on Figure 4. What are the problems of the first two trace plots?

Section 5.1.1 tuning step size is very important in MCMC. The author could provide a table
or list to summarize pros and cons of large/small step size and tuning step size.

Pg 16, posterior predictive simulations is very useful and it would be helpful if the authors
can provide a toy example of it. “If the model is adequate to describe/analyse the variation

in the data,...”, is it a typo? Should it be “inadequate”?

Pg 17, any reference for ABC?
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Bayesian statistics, phylogenetics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Joélle Barido-Sottani

Thank you very much for the review and the comments! Please find our response to
the other issues below (in bold). In general, | think it would be more helpful to include

more examples and figures to illustrate issues and troubleshooting techniques, and/or an
example illustrating the

entire process from model design, MCMC convergence diagnostics and model selection or
update.

We feel that specific examples of the troubleshooting process will be too software-
dependent to be helpful in the manuscript, however we have written a RevBayes
tutorial illustrating many of the issues and techniques outlined here. The tutorial is
now mentioned in section 6. Besides, there are a few minor issues in the article: page 4,
“between the new and parent scores”, “current” is more commonly used than “parent” to
indicate the current state in the Markov chain. Fixed. Figure 1, the cartoon illustration for
phylogeny and alignment etc. is interesting but too small to read. Also, summation sign

instead of integral could be used for summing over discrete variables, i.e. phylogenetic

trees.

We have reorganised Figure 1 to make everything larger, added a legend, and added
colour to distinguish the data vs. the model (+ tree). We have also expanded the
legend to include more information. We opted not to add the summation for discrete
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variables, since the tree is also comprised of continuous

branch lengths. We believe the main point we are trying to make here - that the
marginal probability of the data must take into account all possible parameter values

and trees - is accurately conveyed without making this expression more complicated.
Page 7, “a minimum of 10,000 posterior samples”, | think choosing the number of MCMC
samples should depend on how correlated samples are or ESS.

We have edited this section to make it clearer that the number of recorded samples is
due to space and memory constraints, and that a higher number of samples is not
indicative of the convergence of the chain, since as you note samples are correlated.
Section 2.2.3, “Scaling move the components”, is it a typo?

It was indeed a typo, thank you for pointing this out. Pg 9, section 3.1, the author
mentioned that traversing tree space was largely solved in the 1990s but later mentioned
challenges in phylogenetic inference. | think the authors need to clarify in which situation

the problem was solved.

This was unclear indeed. This has been clarified to "Algorithms for efficiently sampling
phylogenetic tree space became available in the late 1990s” Section 3.2, adding a figure
might be helpful to illustrate the posterior space.

We believe that adding a figure would make this section too long. However, we have
added in the introduction links to several online tools which allow users to gain a
better intuition for posterior spaces and how the MCMC algorithm works. “when
calculating the prior probability of the phylogeny. . . ", should it be “posterior probability”?

We have removed the word “prior” as the probability of the phylogeny can be part of
the prior or the likelihood depending on the analysis. Also, what is a diversification
model? Maybe add some reference here.

Following a suggestion by Reviewer 1, we now briefly introduce diversification models
in section 2.1.1 and give a reference. We hope that this clarifies the text here. Figure 4
is good to illustrate different types of trace plot, but the authors could add more

explanations on Figure 4. What are the problems of the first two trace plots?

We have added clarifying comments to the caption of this, pointing to diagnostic
features of the problems shown. Section 5.1.1 tuning step size is very important in MCMC.
The author could provide a table or list to summarize pros and cons of large/small step size

and tuning step size.

We agree that these are important elements of running an MCMC, but feel that our
treatment of the pros and cons of them in this section would be sufficient. We thought
that adding an extra table only to summarize this information again would not add all
that much clarity. Instead, since we are already demonstrating the outcomes of
different stepsizes and tuning parameters in Figure 4, we have added a reference to
the figure in the respective parts of this section. Pg 16, posterior predictive simulations

is very useful and it would be helpful if the authors can provide a toy example of it.

We agree that toy examples would be helpful, but we believe that this would be
covered better by software-specific tutorials. We now link to such a tutorial on the
RevBayes website. “If the model is adequate to describe/analyse the variation in the data,. .

.7, is it a typo? Should it be “inadequate”?

This was indeed a typo and we have changed it to “inadequate”. Pg 17, any reference
for ABC? Added.
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o

Daniel Casali
Universidade de Sdo Paulo, Sdo Paulo, Brazil

Dear editor and authors,

The manuscript prepared by Barido-Sottani et al., entitled “Practical guidelines for Bayesian
phylogenetic inference using Markov Chain Monte Carlo (MCMC)”, begins providing a concise, but
also detailed, review of Markov Chain Monte Carlo (MCMC) sampling procedure, widely used in
Bayesian phylogenetic inferences. The main focus of the text then moves to assessing the practical
performance of this tool, particularly with respect to convergence issues commonly encountered

by researchers.

Despite being a common problem, failing to achieve convergence in Bayesian analyses is anything
but a trivial matter, and, until now, to the best of my knowledge, there has been no study that
delves so exhaustively and directly into this issue. The manuscript, therefore, constitutes an
invaluable contribution to the field of study, useful not only to undergraduate and graduate
students embarking on these analyses for the first time, but also to more experienced users.

The article spans from more technical issues, such as improving the operators/movements used
to propose new values during the MCMC sampling progression, to other practical aspects, such as
defining well-behaved priors, selecting and critically evaluating models applied in inferences, and
understanding dataset characteristics that can lead to performance issues. Useful guidelines are
provided on how to initiate an analysis with good chances to converge, as well as how to address
common issues like sampling from multiple optima, chain mixing problems, among others. In
addition, it provides directions for asking for help in cases where all other solutions have failed. In
sum, this article constitutes a very useful source of information for all those interested in the
practical aspects of running phylogenetic Bayesian analyses.

Below, | make a few minor suggestions that | believe could enhance the article's utility for its
target audience. However, | emphasize that these are only small changes, and | leave it to the
authors' discretion to incorporate all or any of them.
1. Page 4. “...this ensures that we explore the entire parameter space and do not stay stuck in
alocal optimum.” A somewhat pedantic observation here: The entire parameter space
cannot be ensured to be explored. Perhaps replace by something like: "we broadly
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10.

11.

12.

13.

14.

15.

explore the parameter space"?

. Page 4. “Invented in the early 1950’s, MCMC was originally used in physics to describe

equilibrium between the liquid and gas phases of a chemical.” I recommend a citation
here, for readers interested in the history of the method itself.

. Page 5. “...a substitution model, which describes the relative rate of change from one

character to another, and...”. Isuggest to add also: “...and the relative rate of change
among character states.

. Page 5. “Under this prior, a rate that is very high is believed to be less likely than one that is

very [- short] low.

. Page 6. “Different estimation methods have been developed to approximate the marginal

likelihood, such as path sampling (Baele et al., 2012)[Ref-7] or nested sampling (Russel et al.,
2018), but they remain expensive”. Even though, technically, stepping stones sampling is
a kind of path sampling procedure, I would specifically mention stepping stones
separately here as well, since is the most widely used method for estimate marginal
likelihoods. Also, in the same sentence, I consider that it would be informative to
indicate the term “marginal likelihood” is synonymous with the other term more
consistently used in the paper, marginal probability.

. Page 7. “...We typically record the state of the chain with a frequency that results in a

minimum of 10,000 posterior samples.”.  But probably less than that, if we perform many
moves per generation, as in RevBayes?

. Page 7. “Another important feature of phylogenies is whether they are dated, i.e., whether

their branch lengths are expressed in units of genetic/ morphological distance or in units of
time.” and “Thus we mainly target this article at analyses which include a molecular
/morphological clock...”.

. Page 7. Estimating a dated phylogeny requires a model for the molecular or morphological

clock, a model of lineage diversification, as well as time information to calibrate the tree.

. Page 7. Thus, Scaling moves the components designed to advance the chain  and are a core

part of any MCMC inference software.

Page 10. “In practice, however, character data is not available or limited for most groups...”

As an alternative here, continuous morphological characters could be used in total-
evidence analyses (e.g., Alvarez-Carretero et al. (2019)[Ref-1], Zhang et al. (2021)[Ref-
2]in press). These could be more readily available for some taxonomic groups,
although the performance of including these characters need to be carefully
considered (Varén-Gonzalez et al. (2020)[Ref-3].

Page 12. 5.1 Inference technical setup. Here I missed some mentioning of MCMCMC and
the use of heated chains or adjusting chain temperature values to try to improve
convergence. I guess this is a central topic in the current subject, that should be
briefly mentioned by the authors.

Page 12.” If an operator is missing...”. Maybe the authors could emphasize here that this
is a more relevant issue (as far as I can see) in RevBayes, in which we are "freer" to
customize the inclusion of operators (or anything else, basically!).

Page 14. “..and with added constraints such as [ - monophyletic] subclades.”. Clades (or
subclades) are monophyletic by definition.

Page 15. 5.2.1 Priors. Here I missed some advice on avoiding the use of improper priors,
as in some of the Beast2 default settings. These improper priors can also lead to
convergence issues sometimes.

Page 18. " ...partition morphological character data”.  Although only weakly related to the
main theme of the paper, I think other methods of morphological data partitioning
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and what we know about their performances (which is little, if compared to dna...)
could be briefly mentioned here, to give a broader picture to the reader (e.g., Clarke &
Middleton (2008)[Ref-4], Rosa et al. (2019)[Ref-5], Casali et al. (2023)[Ref-6]).

My best regards,
Daniel Casali

P.S. The first three questions presented in the peer review form (all answered “YES”), actually do
not apply to this study, because no new method is proposed. The paper, although a methods
paper, is more of a review and a practical guide for troubleshooting problems in Bayesian
phylogenetic analyses.
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Joélle Barido-Sottani

Thank you very much for the review and the comments! Please find our detailed response
(bold text) below. 1. Page 4. “. . . this ensures that we explore the entire parameter space
and do not stay stuck in a local optimum.” A somewhat pedantic observation here: The

entire parameter space cannot be ensured to be explored. Perhaps replace by something
like: "we broadly explore the parameter space”?  Fixed. 2. Page 4. “Invented in the early
1950's, MCMC was originally used in physics to describe equilibrium between the liquid and
gas phases of a chemical.” | recommend a citation here, for readers interested in the history
of the method itself.

Good point, we are now citing Metropolis et al. (1953). 3. Page 5. “. . . a substitution
model, which describes the relative rate of change from one character to another, and. . . ”. |
suggest to add also: “...and the relative rate of change among character states.

We have clarified this to: “substitution model, which describes the relative rate of
change from one character state to another as well as the frequencies of each
character state”, as in most substitution models, the relative rate is based on
equilibrium frequencies. 4. Page 5. “Under this prior, a rate that is very high is believed to
be less likely than one that is very [- short] low.  Fixed. 5. Page 6. “Different estimation
methods have been developed to approximate the marginal likelihood, such as path
sampling (Baele et al., 2012)[Ref-7] or nested sampling (Russel et al., 2018), but they remain
expensive”. Even though, technically, stepping stones sampling is a kind of path sampling
procedure, | would specifically

mention stepping stones separately here as well, since is the most widely used method for
estimate marginal likelihoods. Also, in the same sentence, | consider that it would be
informative to indicate the term “marginal likelihood” is synonymous with the other term

more consistently used in the paper, marginal probability.

Thanks, we have changed the wording to now mention stepping stone sampling as a
popular type of path sampling, and clarify that marginal probability and marginal
likelihood are synonymous when introducing the concepts. 6. Page 7. “. . . We typically
record the state of the chain with a frequency that results in a minimum of 10,000 posterior
samples.”. But probably less than that, if we perform many moves per generation, as in
RevBayes?

We have edited this section to make it clearer that the number of recorded samples is
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due to space and memory constraints, and that the sampling frequency will indeed be
dependent on the specific software used. 7. Page 7. “Another important feature of
phylogenies is whether they are dated, i.e., whether their branch lengths are expressed in

units of genetic/morphological distance or in units of time.” and “Thus we mainly target this
article at analyses which include a molecular/morphological clock. . . ”. Fixed. 8. Page 7.
Estimating a dated phylogeny requires a model for the molecular or morphological clock, a
model of lineage diversification, as well as time information to calibrate the tree.

We have edited this section to mention diversification models, but note that dated
phylogenies can also be estimated without such a model (e.g. assuming a uniform
prior on topologies and some continuous distribution on the branch lengths). 9. Page
7. Thus, Scaling moves the components designed to advance the chain and are a core part

of any MCMC inference software. Fixed. 10. Page 10. “In practice, however, character data is
not available or limited for most groups. . . ” As an alternative here, continuous

morphological characters could be used in total-evidence analyses (e.g., Alvarez-Carretero

et al. (2019)[Ref-1], Zhang et al. (2021)[Ref-2]in press). These could be more readily available
for some taxonomic groups, although the performance of including these characters need

to be carefully considered (Varén-Gonzalez et al. (2020)[Ref-3]. Added. 11. Page 12. 5.1
Inference technical setup. Here | missed some mentioning of MCMCMC and the use of

heated chains or adjusting chain temperature values to try to improve convergence. | guess

this is a central topic in the current subject, that should be briefly mentioned by the authors.
Thank you for pointing out this missing topic. We have now added a section on
MCMCMLC. 12. Page 12.” If an operator is missing. . . . Maybe the authors could emphasize
here that this is a more relevant issue (as far as | can see) in RevBayes, in which we are

"freer” to customize the inclusion of operators (or anything else, basically?!).

We now mention that this issue is particularly relevant for users of RevBayes. 13. Page
14. “..and with added constraints such as [ - monophyletic] subclades.”. Clades (or

subclades) are monophyletic by definition.

We have clarified this sentence. 14. Page 15. 5.2.1 Priors. Here | missed some advice on
avoiding the use of improper priors, as in some of the Beast2 default settings. These

improper priors can also lead to convergence issues sometimes.

We have added advice on improper priors. 15. Page 18. " . . . partition morphological
character data”. Although only weakly related to the main theme of the paper, | think other
methods of morphological data partitioning and what we know about their performances

(which is little, if compared to dna. . . ) could be briefly mentioned here, to give a broader

picture to the reader (e.g., Clarke & Middleton (2008)[Ref-4], Rosa et al. (2019)[Ref-5], Casali
et al. (2023)[Ref-6]). Added.
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