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Abstract 
Phylogenetic estimation is, and has always been, a complex endeavor. 

Estimating a phylogenetic tree involves evaluating many possible 

solutions and possible evolutionary histories that could explain a set 

of observed data, typically by using a model of evolution. Modern 

statistical methods involve not just the estimation of a tree, but also 

solutions to more complex models involving fossil record information 

and other data sources. Markov Chain Monte Carlo (MCMC) is a 

leading method for approximating the posterior distribution of 

parameters in a mathematical model. It is deployed in all Bayesian 

phylogenetic tree estimation software. While many researchers use 

MCMC in phylogenetic analyses, interpreting results and diagnosing 

problems with MCMC remain vexing issues to many biologists. In this 

manuscript, we will offer an overview of how MCMC is used in 

Bayesian phylogenetic inference, with a particular emphasis on 

complex hierarchical models, such as the fossilized birth-death (FBD) 

model. We will discuss strategies to diagnose common MCMC 

problems and troubleshoot difficult analyses, in particular 

convergence issues. We will show how the study design, the choice of 

models and priors, but also technical features of the inference tools 

themselves can all be adjusted to obtain the best results. Finally, we 

will also discuss the unique challenges created by the incorporation of 
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fossil information in phylogenetic inference, and present tips to 

address them.

Plain language summary  
Phylogenetic trees provide important information on the evolutionary 
relationships between organisms, as well as their diversification 
dynamics. Phylogenies are commonly built using Bayesian inference 
with MCMC, a powerful but also complex algorithm. This inference is 
implemented in software frameworks which propose a wide range of 
models and customization options. The amount of choices offered by 
these tools can be confusing for users, especially as many of these 
choices will affect the performance of the inference. This work is 
intended as a practical guide for preparing and troubleshooting a 
phylogenetic inference using the Bayesian MCMC method. First, we 
introduce the different components of this inference method, and 
how they are implemented in practice. We present the important 
factors which should be accounted for when designing a study using 
Bayesian phylogenetic inference with real data. We also list multiple 
issues which are frequently encountered by users when running the 
inference, and we provide advice on how to resolve these problems.
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1 Introduction to MCMC
Phylogenetics  has  always  had  a  fundamental  problem.  For  any 
reasonable  number  of  taxa,  the  number  of  possible  topologies 
that  could  connect  them  quickly  scales  to  be  larger  than  the 
number  of  stars  in  the  sky.  It  is  intractable  to  evaluate  all  of 
them. And yet, increased taxon sampling is crucial to phy-
logenetic accuracy (Heath et al., 2008; Hillis et al., 2003;  
Rannala et al., 1998). One computational technique revolu-
tionized  our  ability  to  enumerate  and  evaluate  solutions  in  a  
Bayesian  framework.  That  technique  is  Markov  Chain  Monte  
Carlo (MCMC).

To understand MCMC, we must first take a step back and under-
stand mathematical models. In a model, parameters describe 
what  the  researcher  views  as  important  facets  of  the  process 
that  generated  our  observed  data.  For  example,  in  a  phyloge-
netic  model  of  molecular  evolution,  there  may  be  a  parameter 
governing the rate at which transitions have occurred and a 
different one governing the rate at which transversions have  
occurred to generate an observed multiple sequence align-
ment. In most models, parameters are usually random (also 
called  stochastic)  variables,  meaning  the  value  of  a  parameter  is 
derived  from  an  event  with  some  element  of  randomness,  such 
as  a  draw  from  a  probability  distribution  or  a  coin  flip.  In  the  
models we consider, most of the parameters are continuous,  
meaning  they  can  take  any  value  within  their  reasonable  ranges.  
The  uncertainty  of  a  continuous  parameter  is  described  by  a 
probability  density  function  (e.g.,  a  uniform  or  an  exponential  
distribution), and the probability within a range of values is 
the  area  under  the  curve  of  the  probability  density  function.  For  
discrete parameters, such as the tree topology, each possible 
value  of  the  parameter  has  a  probability.  We  collectively  use  
“probability distribution” for both discrete and continuous  
parameters.

In  a  maximum  likelihood  (ML)  estimation,  we  try  to  find  the 
values for all our parameters that maximize the likelihood of the 
parameters  given  our  data.  ML  solutions  can  be  efficiently  esti-
mated through a number of mathematical techniques. In a Baye-
sian estimation, we estimate a distribution of the parameters 
that  are  plausible  under  our  model  given  the  data.  In  addition,  
Bayesian inferences integrate prior distributions, which 
describe our prior knowledge and understanding about the 
model  and  parameters,  before  having  looked  at  the  data.  Baye-
sian inference thus offers a more complete picture of the 
results,  integrating  uncertainty  in  the  results  as  well  as  existing  
information from previous studies. However, it is also more 
complex, because for many real world scenarios, the true  
distribution of plausible parameters cannot be calculated directly.

MCMC algorithms allow us to find the set of plausible  
solutions of a Bayesian inference, that is, an estimation of the pos-
terior  distribution  of  the  parameters.  The  algorithm  for  MCMC 
sampling most frequently employed in phylogenetic studies 
is  known  as  the  Metropolis-Hastings  (MH)  algorithm,  though  
others  exist.  The  general  way  it  works  is  that  a  starting  set  of  
values  is  proposed  for  the  parameters.  This  set  is  then  scored 
according  to  some  criterion.  Then,  one  or  more  model  param-
eters  are  perturbed,  or  changed.  This  could  be  a  simple  change, 

like  making  a  number  a  little  bigger.  In  the  case  of  phyloge-
netics,  we  often  need  to  use  more  complex  moves  to  propose 
new values for non-numeric objects like clades and trees 
(this will be described in Moves/Operators). “Monte Carlo”  
is the operative term here.  The city Monte Carlo is famous 
for  its  casinos  and  games  of  chance.  This  means  that  we  per-
turb the parameters pseudorandomly (at random within some 
set  of  conditions). The  new  value  or  set  of  values  proposed  will 
be  re-scored  according  to  the  evaluation  criterion.  If  it  is  better, 
this  solution  becomes  the  new  parent  solution  from  which  new 
moves  will  be  performed.  If  the  score  of  the  proposed  value  is 
worse  than  the  parent,  we  still  have  a  chance  to  accept  it  −  this  
ensures that we explore the entire parameter space and do 
not  stay  stuck  in  a  local  optimum.  The  probability  of  accept-
ing  the  proposal  depends  on  the  difference  of  evaluation  values 
between  the  new  and  parent  scores,  so  that  much  worse  propos-
als  mostly  will  be  discarded.  The  “Markov”  chain  part  of  the 
name comes from this being a Markov process, meaning a mem-
oryless  process.  That  is,  the  new  state  proposed  depends  only 
on  the  current  state,  not  on  the  previous  states.  If  a  parameter  
value  (or  a  region  of  values)  has  a  high  score,  it  will  be  vis-
ited many times in an analysis. In Bayesian phylogenetics, 
MCMC  samples  parameter  values  proportional  to  their  posterior 
probability. Therefore, if a set of values for model param-
eters give a good solution according to the evaluation crite-
rion,  the  MCMC  will  tend  to  sample  those  values  and  other  
similar values often. Finally, MCMC is sometimes referred to as a  
“simulation” algorithm, which can be confusing. The reason 
for  this  is  that  we  are  not  changing  the  underlying  data,  but  
proposing  new  values  for  model  parameters  to  try  and  improve  
the  fit  of  the  model  to  the  data.  Often,  this  involves  drawing  
parameter  values  out  of  a  distribution,  or  scaling  parameters  in  
our model − both of these are forms of simulating new values.

Much  like  Bayesian  analysis  itself,  MCMC  was  not  developed 
to deal with phylogenetics, or even biological data directly. 
Those applications came later. Invented in the early 1950’s, 
MCMC was originally used in physics to describe equilib-
rium  between  the  liquid  and  gas  phases  of  a  chemical.  In  this 
case,  all  the  values  being  perturbed  in  the  model  are  numerical, 
which is not always the case with phylogenetics. From a  
humble  beginning  of  trying  to  model  a  simple  physical  system, 
the  MH  MCMC  algorithm  drew  the  attention  of  statisticians, 
who popularized its use across nearly every quantitative  
discipline. In the following sections, we will discuss how 
MCMC  works  for  phylogenetic  inferences,  how  to  troubleshoot 
an MCMC inference, and some tips and tricks for MCMC  
success.

2 MCMC inference applied to phylogenetics
2.1 The Bayesics
Before  we  can  understand  MCMC  in-depth,  we  need  to  dis-
cuss  some  basic  information  about  Bayesian  inference.  Baye-
sian  inference  refers  to  a  statistical  framework  for  evaluating 
the  fit  of  models  and  parameters  to  the  observed  data,  based  on  
a quantity called the posterior distribution. The posterior  
distribution  is  calculated  from  three  quantities:  the  prior  dis-
tribution, the likelihood, and the marginal probability of 
the  data.  Bayes’  Theorem  is  shown  in  Figure  1  and  shows  the  
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relationship between these three quantities. We will first describe  
them and how they fit together, then move on to how MCMC is  
used in their calculation.

2.1.1  The  likelihood.  The  likelihood  of  the  models  and  param-
eter values describes how probable the observed data is 
given  those  models  and  values,  i.e.,  how  likely  it  is  that  those  
models  and  values  represent  the  true  generating  process.  If  we 
are  only  concerned  with  the  highest  likelihood  given  the  data, 
we  usually  do  not  need  MCMC  inference.  Many  phylogenetic  
tools can perform maximum likelihood (ML) inference,  
which finds a set of values for the model parameters that maximize 
the probability of observing the data.

In  a  phylogenetic  context,  the  data  will  usually  be  our  observed 
molecular sequence alignment and/or morphological charac-
ter matrix. The model will typically describe the process of 
evolution that generated these data. In a Bayesian phyloge-
netic  inference,  the  calculation  of  the  likelihood  will  include  a 
substitution  model,  which  describes  the  relative  rate  of  change 
from one character to another, and a clock model, which  
describes  the  overall  rate  of  change  through  time  and  across 
the  tree.  For  example,  the  simplest  substitution  models  are  the 
Jukes-Cantor  model  (molecular  data;  Jukes  and  Cantor,  1969) 
and  the  Mk  model  (morphological  data;  Lewis,  2001).  These 
models assume that one parameter describes the process of 
sequence  evolution  generating  the  data,  and  as  a  result  these 
models  are  often  referred  to  as  ‘all-rates-equal  models’.  This  
one  parameter  is  a  rate  of  change  between  different  molecu-
lar  or  morphological  character  states.  Many  substitution  mod-
els (such as the Kimura 2-parameter model (Kimura, 1980), 

the  Felsenstein  1981  model  (Felsenstein,  1981),  the  Hasegawa- 
Kishino-Yano  model  (Hasegawa  et  al.,  1985),  and  the  General 
Time-Reversible model (Tavaré, 1986)) are more complex, 
and reflect different assumptions regarding the hypothesized  
process of sequence change and evolution.

In  a  Bayesian  analysis,  the  likelihood  is  one  component  of  the 
three  parts  of  Bayes’  Theorem  (Figure  1).  It  is  calculated  at 
each  step  in  the  MCMC  analysis  and  is  an  important  part  used 
to  estimate  the  posterior  probability  distribution  given  the  data.  
The other important part is the prior.

2.1.2 The prior. A crucial analytical difference between a 
maximum  likelihood  method  and  a  Bayesian  one  is  the  pres-
ence of a prior. The term prior means that the distribution 
of the parameters reflects one’s belief before observing the 
data.  Each  parameter  in  a  Bayesian  analysis  has  a  prior  prob-
ability distribution. For instance, we can set an exponential 
distribution  on  a  given  rate  parameter.  Under  this  prior,  a  rate 
that  is  very  high  is  believed  to  be  less  likely  than  one  that  is  
very  short.  This  means  that  rates  are  expected  to  be  fairly  low,  
but we still allow the possibility that they could be higher.

In Bayes’ Theorem, the prior and the likelihood are multi-
plied together, thus proposed parameter values are evaluated 
based  on  both  the  likelihood  and  the  prior  distribution.  There-
fore,  if  we  expected  a  solution  to  be  unlikely  and  thus  speci-
fied  a  low  prior  probability  for  it,  that  low  prior  will  lower  the 
posterior when being multiplied with the likelihood. Impor-
tantly however, if against our expectations, this solution is 
strongly supported by the data, the resulting high likelihood may  

Figure 1. The top panel shows Bayes’ theorem and the relationship between the posterior, likelihood, priors and the marginal 
probability of the data. The right-hand side shows an alternative way of writing the marginal probability, which illustrates more explicitly 
why  the  marginal  probability  is  difficult  to  calculate.  During  MCMC  we  sample  new  parameter  values  at  each  step  and  compare  their 
posterior probability to the previous set of values using the Hastings or posterior odds ratio. The second panel shows the Hastings ratio, 
and illustrates that since the marginal probability cancels out, we avoid having to calculate it during MCMC.
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overcome  the  effect  of  the  low  prior  and  still  lead  to  high  pos-
terior  support.  This  is  how  we  can  still  find  solutions  which 
are  different  from  our  initial  expectations,  if  the  data  suggest 
them.  But  this  also  highlights  why  we  have  to  be  careful  not 
to  specify  priors  that  are  too  strict  (i.e.,  that  specify  the  prior 
probability of reasonable solutions to be 0), and prevent the 
MCMC from exploring the parameter space the data would  
favour.

2.1.3 The marginal probability. The marginal probability of 
the  data  is  the  probability  of  the  data  without  considering  any 
particular model parameters, but conditioned on the mod-
els  themselves  and  the  constraints  of  the  prior. Thus  it  gives  the 
overall  likelihood  of  the  chosen  model  over  all  possible  param-
eter  values.  This  is  usually  the  most  challenging  part  of  the  
calculation, as calculating the absolute probability of the 
data averaging over all possible values of the model param-
eters  is  not  computationally  feasible  in  many  cases.  In  a  typi-
cal Bayesian phylogenetic inference, we avoid calculating 
the marginal probability using the MH algorithm (Figure 1, 
explained below). However, if we can calculate the marginal  
probability, it allows us to perform model selection. The  
marginal  probability  is  typically  computed  by  sampling  many 
different solutions and averaging them for their probability.  
Different  estimation  methods  have  been  developed  to  approxi-
mate the marginal likelihood, such as path sampling (Baele  
et al., 2012) or nested sampling (Russel et al., 2018), but 
they  remain  expensive.  Note  that  prior  specificity  matters  for  
model  selection,  and  overly-vague  priors  can  cause  issues  for  
model selection and parameter estimation, even if the true  
parameter is included (Zwickl & Holder, 2004).

2.1.4 The posterior. The posterior distribution (posterior for 
short) is the probability distribution of the model parameters 
given the data. The posterior can change if the underlying  
data, model, or prior distributions change.

As explained in the previous section, the theoretical poste-
rior  (i.e.,  the  exact,  ‘true’  solution)  is  almost  always  impossible 
to  calculate  directly.  Hence  we  use  MCMC  to  sample  a  set  of 
parameter values that can approximate the posterior distribu-
tion  of  the  parameters  (usually  called  the  posterior  sample  or 
MCMC sample), using the machinery introduced in section  
Implementation of MCMC in phylogenetic inference soft-
ware.  MCMC  is  key  in  Bayesian  computation,  as  it  allows  us 
to sample from the posterior distribution. MCMC can even 
evaluate  different  potential  model  solutions  through  reversible-
jump  MCMC,  which  allows  the  chain  to  move  between  differ-
ent  models  (and  their  associated  parameter  spaces)  during  the  
inference.  It  is  important  to  note  that  the  result  of  an  MCMC  
inference is the full posterior sample and the distribution of  
solutions. The individual points in the posterior sample are 
meaningless  without  the  rest  of  the  distribution,  and  cannot  be  
analyzed separately.

2.1.5  The  Metropolis-Hastings  algorithm.  The  MH  algorithm 
enables  us  to  sample  from  the  posterior  without  having  to  cal-
culate  the  marginal  probability  of  the  data.  The  trick  is  that 
we  use  the  posterior  odds  ratio  or  Hastings  ratio  (R)  to  evalu-
ate  how  the  chain  proceeds,  i.e.,  whether  we  accept  the  newly 
proposed  values  at  each  iteration.  More  specifically,  this  is  the 
ratio of the posterior probabilities for the new values versus 
the  current  (parent)  values.  Since  the  marginal  probability  is  the  
same  in  both  cases,  it  cancels  out  when  we  calculate  the  ratio, 
meaning  we  only  need  to  calculate  the  likelihood  and  the  prior  
probability for each set of values, shown in Figure 1.

Figure 2 shows the main steps in the MH algorithm. As described 
in  the  Introduction,  we  first  propose  an  initial  set  of  values 
for all model parameters, including the topology (if estimat-
ing), and record the likelihood and prior probability associ-
ated  with  these.  In  each  subsequent  step,  at  least  one  model 
parameter  is  perturbed,  and  again  we  record  the  likelihood  and 

Figure  2.  Flowchart  and  pseudocode  showing  the  main  steps  in  the  Metropolis-Hastings  algorithm.    See  Figure  1  for  a  full 
description of the Hastings ratio.
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prior  probability.  We  evaluate  the  new  values  using  the  Hast-
ings  ratio.  If  R  >  1,  i.e.,  the  new  values  improve  the  posterior,  
these  are  always  accepted  and  become  the  updated  parent  val-
ues  from  which  the  chain  proceeds.  If  R  <  1,  the  new  values 
are  only  accepted  with  probability  =  R.  This  means,  if  the  pos-
terior  associated  with  the  new  values  is  much  lower,  there  is 
only  a  small  chance  of  them  being  accepted.  If  the  new  values 
are  not  accepted,  then  the  parent  values  remain  unchanged.  By 
following these rules, the algorithm spends most of its time  
in regions of the parameter space with the highest posterior 
probability.  We repeat the process of perturbation and evalu-
ation  until  we  have  a  sufficient  number  of  MCMC  samples  to  
approximate  the  posterior. We  do  not  need  to  store  the  values  at 
every  iteration,  but  we  typically  record  the  state  of  the  chain 
with  a  frequency  that  results  in  a  minimum  of  10,000  posterior  
samples.

2.1.6  The  posterior  sample.  The  posterior  sample  is  a  set  of 
plausible  solutions  for  a  given  dataset,  derived  through  MCMC 
analysis. The posterior sample is composed of all recorded 
steps,  which  is  a  subsample  of  the  steps  visited  by  the  infer-
ence.  The  distribution  of  solutions  in  the  posterior  sample  is, 
itself, meaningful. Each entry sample in our posterior sam-
ple will have a posterior probability, and solutions will be  
sampled  proportional  to  their  posterior.  A  solution  with  a  good 
posterior probability will be visited many times, whereas a solu-
tion  with  a  poor  one  will  be  seldom  seen  in  the  posterior  sam-
ple.  How  often  a  solution  is  sampled  out  of  the  total  number  of 
samples  is  often  considered  a  measure  of  support.  For  example, 
a  common  measure  of  support  for  clades  on  a  tree  is  the  poste-
rior  probability,  which  corresponds  to  the  proportion  of  trees 
in the posterior sample which contain that specific subclade. 
A nice property of the posterior sample is that it not only  
provides the joint estimation of all the parameters, but also 
individual estimations for all the parameters. Indeed, taking  
only  the  sampled  values  for  a  specific  parameter  provides  the  
marginal  posterior  distribution  of  this  parameter,  which  allows 
us  to  estimate  values  for  that  parameter  while  integrating  over 
all  possible  values  of  the  other  parameters.  This  means  that  all  
parameters of the inference can be analyzed independently.

2.2 Implementation of MCMC in phylogenetic inference 
software
2.2.1 Unrooted versus rooted trees. Phylogenetic trees exist 
in multiple forms. The first important distinction is between 
unrooted trees, which simply describe the evolutionary rela-
tionships  of  all  the  samples,  and  rooted  trees,  which  include 
an  explicit  origin  or  starting  point  for  the  evolutionary  process.  
Another  important  feature  of  phylogenies  is  whether  they  are 
dated,  i.e.,  whether  their  branch  lengths  are  expressed  in  units 
of  genetic  distance  or  in  units  of  time.  Estimating  a  dated  phyl-
ogeny requires a model for the molecular or morphological  
clock,  as  well  as  time  information  to  calibrate  the  tree.  This 
information  can  be  provided  directly  through  the  data,  if  the 
dataset includes samples from multiple points in time, such  
as  fossil  specimens.  Alternatively,  the  information  can  be  pro-
vided  as  node  calibrations,  which  provide  information  directly  
on the ages of specific nodes of the phylogeny.

Dated  trees  are  naturally  rooted,  as  the  earliest  time  point  of 
the  tree  is  obviously  the  origin  of  the  process.  Undated  trees 
can  also  be  rooted,  by  using  one  or  more  outgroup  samples.  In 
this  case,  the  root  is  placed  at  the  point  in  the  tree  where  these  
outgroups diverge from the main clade of study.

A  much  wider  array  of  biological  questions  can  be  addressed 
using dated phylogenetic trees (e.g., diversification rate esti-
mation or the application of phylogenetic comparative meth-
ods), but inferring dated trees increases the complexity of 
the analysis, making MCMC inference more challenging. 
Thus  we  mainly  target  this  article  at  analyses  which  include  a  
molecular clock as well as time information, although many 
of the tips detailed here are equally applicable to undated  
phylogenies.

2.2.2 General frameworks. Bayesian phylogenetic infer-
ence is often implemented in large software frameworks 
which  group  together  many  different  models.  In  this  paper,  we 
chose  to  focus  on  BEAST2  (Bouckaert  et  al.,  2014),  MrBayes 
(Huelsenbeck  &  Ronquist,  2001)  and  RevBayes  (Höhna  et  al., 
2016) as our examples. These frameworks are generally 
designed  to  be  modular,  with  each  component  of  the  analysis  
operating independently from the others. This means that 
any  component,  e.g.,  the  substitution  model,  can  be  modified  
easily  or  extended  without  having  to  change  anything  else.  It 
also  means  that  core  parts  of  the  MCMC  inference,  for  instance 
the  MCMC  algorithm  itself,  do  not  have  to  be  reimplemented  
when a new model or a new type of data is introduced.

2.2.3  Moves/operators.  As  introduced  earlier,  MCMC  inference 
relies on moving step by step through the parameter 
space and recording the state of the model parameters  
periodically. The recorded parameter states are the MCMC  
sample. Thus, Scaling move the components designed to 
advance the chain are a core part of any MCMC inference  
software.  In  phylogenetic  inference  tools,  these  components  can 
be  called  proposals,  moves,  or  operators,  but  they  all  perform 
the  same  function  in  the  inference.  Examples  of  some  of  these  
moves are shown in Figure 3.

Moves  are  composed  of  three  elements:  first  is  the  parameter  or 
parameters  they  act  on,  meaning  the  parameters  they  change. 
Some  moves  only  operate  on  one  parameter  at  a  time,  while 
more complex moves can act on several (correlated) param-
eters  at  the  same  time.  For  instance,  the  up-down  operator  in 
BEAST2  will  scale  both  the  branch  lengths  of  the  tree,  and  the  
clock rate simultaneously.  The second component of a move 
is  the  algorithm  used  to  change  the  value  of  the  parameter(s). 
These  range  from  basic  operations,  such  as  proposing  a  new 
value using a sliding window centered on the current value, 
or  scaling  the  current  value  of  the  parameter  by  a  given  fac-
tor,  to  much  more  complex  ones  such  as  those  used  to  modify 
the  tree.  Finally,  the  third  component  of  a  move  is  its  weight,  
which determines the frequency with which it will be used  
during  the  actual  inference.  A  move  with  higher  weight  will 
be used more often, which should in principle lead to the  
corresponding parameters moving more often, and in turn  
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provide  more  accurate  estimates  for  these  parameters.  It  should 
be  noted  that  MCMC  implementations  differ  in  how  weight  is 
applied.  Some  attempt  one  move  per  step  in  the  MCMC  chain  
(e.g., BEAST2 and MrBayes), meaning only one parameter 
changes  at  a  time  and  the  weights  represent  the  probability  for 
any  particular  one  to  be  chosen.  Others  move  a  whole  set  of  
parameters at each step (e.g., RevBayes), with the weights  
representing how many times a move is attempted for a particular 
parameter during each step. This is also the reason why the number 
of  generations  that  were  run  for  a  given  analysis  cannot  always  
be compared directly between implementations, as one ‘iteration’ 
or ‘generation’ of the chain may actually imply different  
numbers of actual parameter moves (or attempted moves).

However,  the  efficiency  of  the  MCMC  inference  also  depends 
on  the  acceptance  proportion  of  each  move,  i.e.,  the  percent-
age of times that the move is accepted during the MCMC 
run.  A  move  with  a  very  low  acceptance  rate  will  have  little 
impact  on  the  overall  inference,  even  if  its  weight  is  high.  On 
the  other  hand,  a  very  high  acceptance  rate  can  indicate  that  the  
move  is  proposing  new  values  that  are  too  close  to  the  origi-
nal  values,  which  slows  down  the  inference  and  increases  the 
number of steps needed to properly explore the parameter 
space.  For  MCMC  moves  operating  on  a  continuous  numerical 
parameter, such as a branch length or evolutionary rate, the 
highest efficiency is typically achieved when the acceptance  
proportion  is  around  0.2  to  0.4  (Yang,  2014,  section  7.3–7.4). 

Software implementations such as MrBayes, BEAST2, and 
RevBayes, typically provide an automatic tuning mechanism, 
which  is  enabled  by  default  and  adjusts  each  operator’s  con-
figuration  to  reach  the  target  acceptance  proportion,  say  0.3.  For  
topological moves or moves which jump between different 
models,  the  efficiency  is  different  from  that  of  the  more  simple  
moves,  and  essentially  depends  on  the  specific  design  of  the  
proposal algorithm. As a result, general users cannot easily  
optimize these moves. Good tree proposals are still under 
development,  there  is  no  perfect  one  to  rule  them  all.  In  prac-
tice,  using  a  collection  of  moves  that  make  both  big  and  small 
topological changes is advised. For example, MrBayes com-
bines  a  Nearest  Neighbour  Interchange  move  (NNI,  a  narrower 
implementation  of  STX)  and  two  SPR  variants  (see  Figure  3)  
to update the tree. Tree moves should usually have much 
higher weights than the simple moves, as the tree space is  
tremendous.

The array of available moves in phylogenetic inference can 
be daunting for users. Luckily, most inference software pro-
poses a default setup for standard analyses, which includes 
reasonable moves covering all parameters of the analysis. 
The default selection of moves usually leads to satisfying  
results for most standard analyses, however, they certainly  
cannot fit all circumstances. We will see in later sections how to 
diagnose  and  adjust  the  move  setup  to  help  with  misbehaving  
analyses.

Figure 3. Examples of some common moves used in Bayesian phylogenetic inference. Scaling and sliding moves operate on a 
numerical parameter (X), such as the molecular clock rate, the speciation rate or the age of a fossil. Subtree exchange (STX) and subtree 
pruning and regrafting (SPR) moves operate on the tree topology.
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3 Challenges of phylogenetic MCMC inference
As  mentioned  in  the  section  Introduction  to  MCMC,  MCMC 
was  not  developed  for  use  in  phylogenetics.  It  was  developed 
for  use  with  physics  models,  which  usually  have  solely  numeri-
cal  components,  often  with  many  observations  relative  to  the 
number of parameters.  The use of MCMC for phylogenetics  
raises  a  new  set  of  issues.  In  a  phylogenetic  analysis,  we  are 
often principally concerned with estimating a non-numeric 
parameter: the phylogeny itself! We also often have high-dimen-
sionality  models,  which  contain  a  large  number  of  parameters. 
Biology  is  complex,  and  we  expect  the  generating  model  to  be 
complex  as  well.  This  can  raise  serious  performance  issues  for 
our  MCMC  inference,  either  when  exploring  the  tree  space  or 
when  calculating  the  posterior  values.  We  will  now  dive  into  
some of these issues, and how MCMC inference has been  
adapted to work with phylogenetic trees and data.

3.1 Non-numeric data
As explained in the previous section, MCMC relies on per-
turbing our model parameters through moves. For numerical 
parameters,  it  is  often  very  easy  to  perform  a  move.  For  exam-
ple,  slide  moves  simply  change  the  numeric  value  of  a  param-
eter  within  a  window  of  a  given  size.  Scale  moves  make  values 
a  bit  bigger  or  smaller,  while  ensuring  negative  numbers  stay  
negative and positive ones stay positive. For more com-
plex cases, such as simplexes (sets of values that must sum 
to  a  number,  typically  one  −  for  instance  nucleotide  frequen-
cies  in  a  substitution  model)  or  ratios,  moves  can  be  designed  
to ensure the conditions on the parameter are always met.

However, a tree is not a simple number or set of numbers, but a 
complex  structure  describing  the  arrangement  of  all  the  sam-
ples  in  a  topology.  To  explore  the  tree  space,  we  thus  need 
to  change  not  only  the  branch  lengths,  but  also  the  order  and 
the composition of all subclades of the tree. This requires 
a  different  set  of  MCMC  moves,  often  called  tree  moves  or  
topology moves.  These moves propose rearrangements of the 
tree topology, and need to adjust or resample the associated  
branch lengths. Indeed, traversing tree space was a core  
challenge in developing phylogenetic applications of MCMC. 
This was largely solved in the late 1990s (Mau & Newton, 1997; 
Mau  et  al.,  1999),  when  Bayesian  approaches  for  phylogenet-
ics  began  to  appear.  However,  for  more  complex  models,  for  
instance models involving networks or multiple correlated  
trees, designing good tree moves remains an issue.

3.2 High-dimensionality models
Biology is complex, and therefore, models to describe the behav-
ior  of  biological  systems  will  also  tend  to  be  complex.  Think 
for a moment about a phylogenetic substitution model, for 
example,  the  GTR  +  Γ  model.  In  this  model,  each  nucleotide 
(A,C,T,G)  has  a  different  frequency,  and  the  rates  of  substitu-
tion  between  all  pairs  of  nucleotides  are  different.  In  addition 
different sites of the alignment have different overall rates  
of substitution, modelled by a gamma distribution. Applied 
in  a  Bayesian  context,  the  model  has  many  parameters:  a  tree 
topology,  the  branch  lengths  on  the  tree,  exchangeability  rates 
between  nucleotides,  equilibrium  state  frequencies  of  the  nucle-
otides,  the  parameters  of  the  gamma  distribution  representing 

among-site  rate  heterogeneity.  For  even  a  small  tree  with  few 
samples,  this  is  many  parameters.  In  addition,  some  of  these 
parameters  may  be  correlated,  for  instance  the  branch  lengths  
of  a  timed  tree  and  the  average  clock  rate  have  an  inverse  rela-
tionship.  As a result, many posterior spaces in phylogenetic 
inference  are  in  configurations  referred  to  as  “rugged”  (Brown 
& Thomson, 2018), or having mixed areas of high prob-
ability (“peaks”) and areas of low probabilities (“valleys”). 
This  ruggedness  can  make  it  difficult  to  use  MCMC  in  high- 
dimensional  space.  As  shown  on  Figure  2,  MCMC  will  gener-
ally  refuse  to  take  a  step  if  the  proposed  solution  will  be  much 
worse than the current one. Thus the inference can end up  
trapped in local optima. New computational methods are 
required  to  traverse  these  types  of  rugged  spaces.  For  example,  
using proposal algorithms which perturb several correlated  
parameters at the same time can make it easier to find alternative 
peaks in the posterior surface.

In  addition  to  traversal  issues,  more  complex  models  can  also 
suffer from performance issues in the likelihood calculation 
itself.  A  common  problem  for  tree  models  such  as  birth-death 
processes, for instance, is that we do not observe the parts 
of  the  phylogeny  which  have  not  been  sampled.  Thus  we  are 
missing a large part of the true evolutionary process. When  
calculating the prior probability of the phylogeny given the 
diversification model, we have to account for all possible  
histories in the unobserved parts of the tree. In more com-
plex  models,  this  calculation  will  frequently  involve  numerical  
integration, which is computationally very expensive and can  
suffer  from  numerical  instability,  meaning  that  the  probability  
value  cannot  be  estimated  for  some  parameter  configurations. 
Although  this  issue  can  be  improved  by  smart  implementation  
of  the  models  (see  for  instance  the  work  done  by  Scire  et  al.  
(2022) on the BEAST2 package BDMM), it represents a  
fundamental limitations for more complex processes.

3.3 Inferring dated trees and incorporating fossils
Inferring dated trees is substantially more challenging than 
non-time constrained tree inference − it requires the addi-
tion  of  a  clock  model  and  uses  more  complex  tree  models,  usu-
ally  coalescent  or  birth-death  process  models.  It  also  requires 
additional  time  information.  In  macroevolutionary  phylogenies, 
this  time  information  generally  comes  from  the  fossil  record, 
either  in  the  form  of  node  calibrations,  or  by  directly  includ-
ing fossil specimens in the inference (sometimes called tip 
calibrations). Tip-calibrated analyses provide a better repre-
sentation  of  the  uncertainty  associated  with  the  fossil  record,  
and  arguably  involve  less  subjective  user  choices,  such  as  the 
choice  of  the  distribution  used  for  node  calibrations  (Ronquist  
et  al.,  2012).  However,  including  fossils  also  presents  specific  
challenges.

There  are  two  main  sources  of  uncertainty  associated  with  fos-
sils  that  should  be  considered  in  Bayesian  inference:  taxonomic 
or  topological  uncertainty  and  fossil  age  uncertainty.  Inference 
under the fossilized birth-death (FBD) process can incor-
porate both phylogenetic and age information (Heath et al., 
2014; Stadler, 2010). And because the model incorporates 
the  fossil  sampling  process  explicitly,  extinct  samples  can  be  
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recovered  as  tips  or  sampled  ancestors  along  internal  branches. 
This  requires  special  moves  that  propose  changes  to  the  total 
number of nodes in the tree, since each sampled ancestor  
reduces  the  number  of  tips  by  one  (Gavryushkina  et  al.,  2014;  
Heath  et  al.,  2014).  In  terms  of  data,  we  have  two  alternative 
options  for  informing  the  position  of  extinct  samples  within  the 
tree.  First,  fossils  with  no  character  data  can  be  assigned  to  a  
node using topological constraints. Constraints can be based 
on evidence from previous phylogenetic analyses or descrip-
tive taxonomy. Using this strategy, the position of the  
fossil  below  the  constraint  node  is  sampled  using  MCMC.  The  
precise  position  of  the  fossil  cannot  be  inferred  without  char-
acter  data,  but  the  posterior  output  will  reflect  the  uncertainty  
associated with fossil placement below the constraint node.

Alternatively, if morphological character data is available for  
fossil and extant samples, we can use a ‘total-evidence’ approach. 
Using this strategy, fossil placement can be sampled using 
MCMC and the position of taxa with character data can be 
inferred (Barido-Sottani et al., 2022a; Gavryushkina et al., 2017; 
Zhang  et  al.,  2016).  This  approach  is  conceptually  preferable, 
since  it  more  directly  accounts  for  the  phylogenetic  uncertainty 
associated  with  fossils.  In  practice,  however,  character  data  is  
not  available  or  limited  for  most  groups  (many  morphological 
matrices  contain  <100  characters)  and,  unlike  DNA,  character  
states can be subjective and uncertain (Wright, 2019).

Fossil age uncertainty is straightforward to incorporate into 
Bayesian  phylogenetic  inference  using  the  FBD  process.  Fossils 
are dated to within a known geological interval and the 
bounds of this age range (i.e., the minimum and maximum 
ages)  can  be  used  to  inform  priors  on  fossil  ages.  The  age  of  
fossils is then sampled during MCMC, therefore accounting  
for  this  uncertainty.  This  is  preferable  to  fixing  fossil  ages  to  a 
point estimate within the known range of uncertainty, which can  
lead to erroneous parameter estimates (Barido-Sottani et al.,  
2019;  Barido-Sottani  et  al.,  2020).  In  fact,  fossil  ages  can  be 
even be estimated using this approach (Barido-Sottani et al., 
2022b; Drummond & Stadler, 2016). Typically, a uniform  
distribution is used to model the age uncertainty associated 
with  fossils,  between  the  minimum  and  maximum  possible  ages 
based  on  stratigraphic  and  radiometric  evidence.  However,  addi-
tional  information  could  be  used  to  construct  more  informative  
non-uniform priors on fossil ages.

4 Troubleshooting tools and techniques
4.1 How do I know if my MCMC is good?
Before we talk about troubleshooting, we first must figure 
out how we even know if there is anything to troubleshoot. 
We generally consider an MCMC inference to be complete 
when  it  reaches  what  is  termed  convergence.  This  is  typically 
when  a  chain  has  arrived  in  its  stationary  distribution,  that  is,  
when  additional  sampling  no  longer  affects  the  distribution  of 
state  values  estimated.  In  plain  language,  once  you  are  in  the 
stationary distribution, you can do moves and change indi-
vidual parameters, but the overall distribution of values will 
not  change.  The  goal  is  to  find  this  stationary  distribution  for 
all the parameters in your analysis.  At the very least, users  

should ensure that the parameters primary interest to their 
research questions, along with the prior, likelihood and  
posterior, have converged satisfactorily.  The phase before the  
chain  has  converged  is  called  burn-in.  The  samples  collected  
during burn-in should be discarded, usually 10-30% of the  
chain length, only keeping the remaining samples for the  
parameter estimation.

This  sounds  easy  on  the  surface,  but  much  ink  has  been  spilled 
on  appropriate  ways  of  diagnosing  whether  or  not  our  analy-
sis has converged. Assessing convergence is usually done 
with convergence diagnostics. These are summary statistics 
that tell the researcher about how the MCMC inference, or 
chain,  has  performed  and  if  it  has  converged.  By  far,  the  most  
commonly used diagnostic in phylogenetics is the Effective  
Sample Size, or ESS.

When we perform MCMC inference, each time we do a 
move,  we  draw  new  values  for  one  or  more  parameters,  then 
accept  or  reject  these  values  (Figure  2).  This  is  often  called  an 
MCMC step. Different software implementations and models 
will  require  different  numbers  of  steps  to  reach  convergence. 
You might think that the number of steps would be equiva-
lent to the number of samples in the posterior sample. But in an  
MCMC chain, different steps will be correlated with one 
another.  This  is  referred  to  as  autocorrelation,  and  is  the  result 
of the fact that the parameter values present at step i are used to  
propose the parameter values for step i + 1 (Figure 2). The ESS 
is specific to a posterior sample, and describes the number 
of uncorrelated (independent) samples that would be needed 
to  approximate  the  posterior  distribution  of  a  parameter  with  
similar  precision  to  that  posterior  sample.  It  is  usually  defined  
as  ESS  =  N/τ,  in  which  N  is  the  number  of  generations  and  τ  is  
the autocorrelation time. Due to autocorrelation, the ESS is  
typically smaller than the number of steps in the MCMC  
chain,  because  the  difference  between  two  successive  samples 
is usually quite small. If we were drawing completely inde-
pendent  samples,  the  difference  between  sample  i  and  sample 
i  +  1  could  be  quite  large  (i.e.,  an  independent  sample  could  be 
drawn  from  anywhere  in  parameter  space,  so  a  series  of  such 
samples may explore the different areas of that space more  
quickly than when done step by step by an MCMC chain).

An ESS of over 200 has become the de facto standard in  
biological analyses, though reasons for this are largely  
arbitrary  (but  see  section  Convenience). Another  simple  way  to 
check  for  convergence  is  to  run  several  different  chains  for  the 
same  analysis.  MCMC  chains  which  use  the  same  data,  models 
and  priors  are  guaranteed  to  converge  on  the  same  distribution,  
independent of the starting values used.  Thus running multi-
ple chains from different starting values and checking if the 
results  obtained  match  is  a  good  way  to  assess  if  the  analysis 
has converged. Note that posterior samples from all chains 
can  be  combined  together  in  the  final  result,  thus  the  time  spent  
on the different chains is not wasted.

In the next section, we will discuss software and tools for assess-
ing ESS that were developed for Bayesian phylogenetics, as 
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well as other avenues for understanding convergence issues. 
Other  tools  exist  that  were  not  developed  with  phylogenetics  
in mind, but are nonetheless also very useful, e.g., the R package 
coda (Plummer et al., 2006).

4.2 Tools of the trade
4.2.1  Tracer.  Tracer  (Rambaut  et  al.,  2018)  is  one  of  the  most 
commonly used pieces of software for convergence assess-
ment,  due  to  the  ease  with  which  it  can  be  used.  A  log  file  of 
sampled solutions from the MCMC can be read in. In its default 
view,  a  list  of  parameters  in  the  model  and  their  ESS  value 
can  be  seen,  as  well  as  estimates  of  the  value  (mean,  median,  

and spread) for each parameter sampled. Tracer automati-
cally flags ESS values below a threshold of 200. Although 
this  threshold  value  is  somewhat  arbitrary,  it  has  been  widely 
accepted in current practice as offering a good trade-off between  
convergence and computational cost of the inference.

The  trace  panel,  however,  is  most  useful  for  debugging  conver-
gence  issues  (see  the  next  section  for  some  common  issues). 
The  trace  window  shows  the  values  sampled  for  each  param-
eter  over  the  MCMC  run.  An  example  of  different  traces  can 
be seen in Figure 4. Ideally, the trace will appear as what 
is often termed the “hairy caterpillar” (Figure 4, last row).  

Figure 4. The target distribution is a half-half mixture of two normal distributions, one with mean 0 and standard deviation 
0.5, the other with mean 2 and standard deviation 0.5. This distribution is estimated using MCMC with the sliding move (see Figure 3). 
The window size (w) is a turning parameter of the move. For each w value, the left panel shows the trace of the MCMC samples, while the 
right panel shows the histogram of the MCMC samples (discarding the first 20% samples as burn-in). 

Page 11 of 38

Open Research Europe 2023, 3:204 Last updated: 02 JUL 2024



This is a sample that is well-converged. This pattern is  
generated by finding a good solution (or a set of good  
solutions) and sampling around that solution.  Typically when  
this happens, the run has reached its stationary distribution.

4.2.2 RWTY. Tracer remains the most used software for  
convergence,  but  it  does  not  calculate  an  effective  sample  size 
for  the  most  important  model  parameter  −  the  tree  itself.  The 
ESS of the overall posterior or the ESS of parameters tied 
to  the  tree,  such  as  the  tree  height  or  MRCA  ages  of  specific  
clades, can be used as indirect signs of the (lack of)  
convergence  of  the  phylogeny,  however  it  is  preferable  to  have 
a  direct  indicator.  The  R  package  RWTY  (aRe  We  There  Yet; 
Nylander et al., 2008; Warren et al., 2017) calculates an approxi-
mate  ESS  of  the  tree  topology,  which  can  provide  additional 
information  on  the  convergence  of  the  tree.  Additional  graphi-
cal  outputs  can  be  generated  in  RWTY,  such  as  treespace  plots, 
which  allow  the  visualization  of  how  an  MCMC  chain  explored  
parameters during its run.

4.2.3  Convenience.  Convenience  (Guimarães  Fabreti  &  Höhna, 
2022) is an R package that takes a fundamentally different 
approach  to  both  how  to  calculate  and  how  to  assess  ESS  than 
RWTY and Tracer. It can produce visual outputs for convergence 
assessments,  but  also  can  produce  simple  text  outputs  stating  if  
a run has converged or not.

ESS is still calculated in convenience. But rather than using 
an arbitrary threshold, such as an ESS of 200, convenience 
calculates a minimum threshold for a good ESS based on 
the standard error of the mean (SEM). The SEM allows a 
researcher  to  know  how  much  error  there  is  in  the  estimate  of 
the  posterior  mean,  compared  to  the  variance  of  the  posterior  
distribution. For this calculation, the posterior distribution is 
assumed  to  be  shaped  like  a  normal  distribution,  so  the  width 
of  the  95%  probability  interval  of  the  distribution  is  approxi-
mately  equivalent  to  4δ,  with  δ  being  the  standard  deviation.  
This quantity is the reference used to calculate the thresh-
old. By default, the ESS threshold in convenience is set 
to 625, which corresponds to an SEM equal to 1% of the  
interval  width.  By  contrast,  the  threshold  of  200  set  by  Tracer 
corresponds to an SEM of 1.77% of the interval width. 
Although higher ESS values are always better from a con-
vergence point of view, they can also come at considerable  
computational cost, particularly for more complex analyses. 
Thus the choice of threshold should be adapted to each situation, 
for  instance  by  using  larger  thresholds  for  critical  parts  of  the  
inference and lower thresholds for less important estimates.

Convenience  also  allows  the  tree  convergence  to  be  estimated, 
by  calculating  the  ESS  of  splits  in  the  tree.  A  split  represents 
a  particular  subclade  of  the  tree,  which  can  be  either  present 
or absent in each posterior sample. By calculating the ESS 
of all splits, we can thus obtain an estimate of the ESS of 
the tree topology. Finally, the reproducibility of an MCMC  
run is also considered by convenience. Two MCMC runs 
of the same analysis can be compared against each other 
using the Kolmogorov–Smirnov (KS) statistical test, which 
tests if two samples were drawn from the same underlying 

distribution. If your two MCMC chains do not seem to be  
drawn from the same distribution, then this means your 
MCMC simulations are not consistently finding the same  
stationary  distribution.  This  is  likely  due  to  one  or  both  chains 
not having converged yet. It can also be indicative of the  
presence of multiple alternative possible solutions, with each 
chain finding a separate local optimum. Different slices of  
the same MCMC chain can also be compared against one 
another using the KS test to assess if the chain is in the process  
of converging.

5 Common issues and proposed resolutions
As we have seen, MCMC analyses are composed of many  
different  parts,  which  can  make  it  difficult  to  identify  the  cause 
of problems. In this section, we detail some common issues 
which  can  affect  the  convergence  of  an  MCMC  inference,  or 
even  prevent  it  entirely  from  starting.  An  abbreviated  overview 
of  all  the  issues  and  resolutions  described  below  can  be  found  
in Figure 5.

5.1 Inference technical setup
5.1.1  Moves/operators.  If  an  analysis  does  not  converge  well, 
or takes unreasonably long, it is worth checking the opera-
tors.  Each  parameter  that  is  supposed  to  be  estimated  by  the 
analysis  needs  to  have  at  least  one  operator  associated  to  it,  in 
order  to  be  optimised.  If  an  operator  is  missing,  that  parameter  
will  never  change  from  its  initial  value,  which  not  only  means 
it will not converge, but also that other parameters can be  
prevented from converging properly.

Another  possibility  is  that  the  weights  of  the  individual  opera-
tors  may  need  to  be  reconsidered  (i.e.,  how  often  a  new  value 
should be proposed for the corresponding parameter). In 
some cases, some parameters are mixing well, and only a 
few specific ones are causing problems. In this case, it can 
help  to  increase  the  weight  of  the  operators  corresponding  to  
badly-estimated parameters, so that more moves are being  
proposed each generation for them. Similarly, decreas-
ing the weights of operators corresponding to well-estimated 
parameters will decrease the amount of computational time 
spent on proposals for these parameters, without affecting  
convergence too much.

Alternatively, if changing the weight did not fix the chain’s 
behaviour,  we  should  consider  its  proposal  size  (i.e.,  how  far 
from the current parameter value a proposed new value is). 
Many proposals, especially proposals on numerical param-
eters,  include  a  configuration  value  which  affects  this  size.  A 
proposal  size  that  is  too  small  will  make  convergence  of  the  
corresponding parameter very slow, even at high operator 
weights,  and  may  even  trap  the  chain  on  a  local  optimum.  If 
proposal  sizes  are  too  large  instead,  the  chain  may  ‘overshoot’ 
the optimal parameter values or roam too far from them to  
converge properly. The sampling pattern for that parameter 
may  then  also  be  too  ‘coarse’  to  properly  capture  the  peaks  and  
valleys in the likelihood.

A  way  to  catch  issues  related  to  proposal-size  is  to  check  the 
final acceptance ratios for all operators, as well as the final 
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trace. BEAST2 will even offer suggestions for adjusting the pro-
posal  sizes  based  on  acceptance  ratios  at  the  end  of  the  chain. 
Other than that, appropriate proposal sizes are not always 
straightforward for users to determine, but the problem can 
be alleviated in two ways: by letting the inference software  
auto-tune  them,  or  by  using  a  combination  of  proposals  oper-
ating  on  the  same  parameter,  but  with  varying  proposal  sizes. 
The latter is particularly helpful if the likelihood surface is  

very  heterogeneous,  as  the  chain  then  has  a  variety  of  step-sizes 
available,  potentially  increasing  the  likelihood  that  the  appro-
priate one can be proposed. However, auto-tuning should be 
turned  off  if  this  strategy  is  chosen,  so  the  separate  proposal  
sizes will not change throughout the chain.

If  auto-tuning  is  turned  on  (which  is  the  default  in  BEAST2 
and MrBayes, and optional in RevBayes), proposal sizes of 

Figure 5. A flowchart to guide users through the MCMC-debugging process, highlighting key points mentioned in the text, 
with common issues in blue boxes and corresponding resolutions in green. Note that the different types of issues and resolutions 
within the orange box are not meant to be addressed in the order shown, but represent different avenues for investigating an issue. 
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moves  will  periodically  be  adjusted  to  guarantee  a  good  accept-
ance  ratio  (e.g.,  to  match  a  goal  of  0.4).  For  example,  if  too 
many of the recently proposed moves were accepted, this 
might  indicate  that  their  size  was  too  small  (i.e.,  they  may  be  
slowly  trudging  uphill  towards  an  optimum)  and  it  will  thus 
be  increased.  If  too  few  proposals  were  accepted,  this  might 
in turn mean their size was too large (i.e., they shoot past 
optimal values into parts of parameter space with lower  
likelihoods) and will be decreased.

We generally recommend making use of such tuning fea-
tures,  but  urge  users  not  to  mistake  them  for  a  magic  solution 
to  all  proposal-size  problems.  Instead,  one  should  be  cautious 
not  to  ‘mis-tune’  or  ‘over-tune’  the  analysis.  The  main  consid-
erations when setting up auto-tuning are how often, and for how 
long  to  tune.  Depending  on  the  implementation,  users  can  spec-
ify  during  what  portion  of  the  chain  the  parameters  are  tuned  
(i.e., during a dedicated tuning interval or burn-in phase, or 
throughout  the  run),  and  how  often  the  parameters  are  being 
tuned  during  that  interval. Tuning  orients  itself  on  the  behaviour 
of  the  proposals  during  the  chosen  tuning  intervals.  Thus,  these 
intervals need to be representative for the rest of the chain going 
forward, if the tuned values should be useful. In particular  
during  the  early  stages  of  the  MCMC  (i.e.,  the  burn-in  phase),  
larger  proposal  sizes  may  be  favoured  as  the  chain  moves  from 
parameter values with low likelihood towards the optima, 
whereas smaller sizes might be favoured when exploring the 
likelihood surface around the optima. This generally means 
that proposals should possibly be re-tuned multiple times, to 
allow  for  feedback  from  the  new  behaviour  of  the  tuned  opera-
tor,  and  suggests  that  longer  phases  of  tuning  are  needed  for  
chains  initialised  at  naïve  starting  values,  than  for  those  tailored 
to  possibly  start  closer  to  the  optima.  However,  if  tuning  inter-
vals  are  kept  too  short,  the  available  information  might  not  be 
representative  for  the  operator’s  behaviour,  resulting  in  unnec-
essary or inappropriate proposal size changes. Furthermore, 
while continuous tuning throughout the analysis can help 
account for the different requirements far from the optima versus 
close,  there  is  a  danger  to  tune  towards  the  current  location  of 
the  chain,  homing  in  on  smaller  and  smaller  proposal  sizes  and  
thereby ‘trapping’ the chain on a local optimum. We would 
thus prefer to mainly tune during burn-in, and not during 
the  main  part  of  the  analysis  unless  there  is  evidence  that  it 
is necessary. However, using the aforementioned strategy  
of multiple operators with varying, un-tuned proposal sizes 
might  be  a  more  helpful  approach  in  such  a  case.  Note  that 
these  changes  can  be  integrated  when  running  a  new  chain  or  
when  resuming  the  current  one,  as  proposal  configurations  do  
not change the posterior distributions.

It can be difficult to identify which parameters exactly are  
causing the problem, since they can affect the mixing of  
others,  blurring  the  picture.  In  particular,  if  the  tree  estimation 
has  not  converged,  this  can  affect  many  other  parameters.  Often 
it is possible to identify the culprits by revisiting how the param-
eters  are  causally  connected  in  the  model.  If  available,  a  look  at 
a schematic representation of the model might help getting more  
clarity on how different parameters may affect each other’s 

mixing. In BEAST2 or RevBayes, this representation can be 
obtained directly from the software (through BEAUti in the 
case of BEAST2, or by printing the model’s DAG [directed  
acyclic graph] in the case of RevBayes).

5.1.2 Starting values. Another problem is the initialisation 
of  the  MCMC  chain  at  a  ‘bad’  position.  This  means  that  our 
analysis started at a combination of parameter values that is 
either  very  far  from  the  true  values,  or  at  a  combination  of  val-
ues  that  is  implausible  or  hard  to  compute  given  our  data.  As 
a  result,  the  analysis  may  take  much  longer  to  converge  (since 
it  has  to  first  slowly  make  its  way  out  of  the  poorly  fitting  area 
of  parameter  space),  or  may  crash  altogether  (e.g.,  because  no  
likelihood could be calculated for conflicting parameter val-
ues).  Ideally,  users  will  have  thought  well  about  the  possible 
values  of  all  parameters  and  have  set  the  respective  prior  distri-
butions  to  favour  the  most  plausible  parameter  values.  However, 
the  initial  values  are  often  left  as  the  default  (in  BEAST2)  or 
are picked at random from the prior (in RevBayes), so the chain  
can  start  in  an  unfavourable  part  of  parameter  space,  or  at  an 
implausible combination of values. For example, we could 
start with some proposed very short branches along with 
a very low mutation rate, which could never explain the  
observed differences between the sequences of taxa. Or the 
starting  values  for  the  speciation  and  extinction  rates  could  be 
implausibly  high  compared  to  the  root  age  of  the  tree  and  its  
number of taxa.

To  combat  this,  we  usually  have  the  option  to  specify  the  start-
ing  values  for  each  parameter  to  something  we  deem  reason-
able.  It  may  not  always  be  straightforward  to  know  what  those 
values should be for a particular parameter, but beyond trial 
and  error,  a  few  standard  options  have  been  established.  One 
possibility  is  to  start  at  the  expected  mean  of  a  prior  distribu-
tion, which would be expected to work well as long as the prior  
distribution  itself  is  sensible.  Reminding  oneself  of  the  param-
eters’  biological  meaning  can  also  help  to  come  up  with  a  good 
solution.  For  example,  speciation  and  extinction  rates  eventu-
ally  just  determine  how  many  species  we  expect  to  arise  and 
die  out  again  over  a  given  time  period.  Thus,  a  commonly  used 
starting value for speciation rate is λ = ln(nTips/2)/rootAge,  
which  gives  a  simple  estimate  of  net  diversification  (sometimes 
called the Kendall-Moran estimate; Baldwin and Sanderson, 
1998),  while  extinction  is  set  to  µ  =  λ/10.  Starting  values  can 
also be set for non-numerical parameters. Starting trees can 
be  provided  which  may  already  be  closer  to  the  true  solution  
(e.g., a quick maximum likelihood tree or a previously- 
published estimate) than a randomly drawn tree sample.  
However,  attention  has  to  be  paid  to  the  tree  not  being  in  con-
flict  with  other  priors  or  constraints.  For  instance,  the  starting  
tree  needs  to  be  compatible  with  additional  time  information  
such  as  node  calibrations,  and  with  added  constraints  such  as  
monophyletic subclades.

It  is  important  to  remember  that  starting  values  do  not  have  to 
be spot-on estimates of where the actual true values lie, because 
after  all,  the  MCMC  is  expected  to  go  find  those.  The  goal  is 
merely  to  ensure  that  we  have  set  a  feasible  combination  of  
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values  for  the  chain  to  start  from.  Doing  so  does  not  only  pre-
vent  computational  issues  (in  case  of  unfeasible  parameter  com-
binations),  but  can  also  speed  up  the  analysis  (because  we  do 
not force the chain to trudge through parameter space that is far  
from  the  optima  anyways,  and  instead  allow  it  to  start  explor-
ing  feasible  solutions  instead). Also,  it  may  prevent  issues  with 
the auto-tuning performed by the software. Since auto-tuning 
usually  happens  at  the  beginning  of  the  inference,  the  behav-
iour  of  the  moves  may  end  up  being  tuned  to  suit  a  different 
part of parameter space than where the chain eventually  
should spend most of its time exploring, as described above.

5.2 Choice of model and priors
Even with all the technical aspects of the analysis set  
correctly, we can get convergence problems and faulty  
behaviour  of  the  parameters.  Such  issues  can  either  stem  from 
unexpected  interactions  of  priors,  clashing  components  of  the 
model,  or  mismatches  of  the  model  with  the  data.  It  can  at  first 
be  challenging  to  distinguish  those.  If  we  do  not  already  have  a  
suspicion  as  to  what  the  culprit  might  be  (e.g.,  based  on  the 
trace, peculiarities of the data or model), one way to tell 
whether  the  issue  lies  with  the  analysis  setup  per  se  or  with 
the  pairing  of  data  and  model,  is  to  run  the  MCMC  ‘under  the 
prior’.  This  means  removing  the  likelihood  from  the  posterior  
calculation, so that only values from the prior will be sam-
pled and none of the data is involved.  Thus, any remaining 
issues  will  be  due  to  problems  in  the  analysis  setup,  such  as 
conflicting  or  interacting  priors  –  and  vice  versa,  if  there  are 
no  such  remaining  issues,  the  problem  may  lie  with  the  data 
or  the  model.  Running  the  MCMC  inference  under  the  prior 
is useful not only for troubleshooting potential setup issues,  
but also for interpreting the results of the actual analysis. 
The difference between the prior distribution and the full  
posterior  gives  an  estimate  of  how  much  of  the  signal  present 
in  the  posterior  sample  actually  comes  from  the  sequence  or 
character  data,  as  opposed  to  the  prior  distributions.  Note  that  
although  fossil  ages  are  technically  data,  the  probability  of  the 
tree  under  the  FBD  process  given  the  fossil  ages  is  considered  
part  of  the  prior  by  BEAST2  and  RevBayes.  This  can  impact  
model  selection  and  marginal  likelihood  estimators,  as  detailed  
in May and Rothfels (2023).

5.2.1  Priors.  The  choice  of  good  priors  can  make  a  big  dif-
ference  for  the  success  of  the  MCMC.  Of  course,  coming  up 
with  good  priors  is  not  trivial,  and  generally  applicable  advice 
is not always available. One difficulty is that priors should 
be clearly separated from the data. In a Bayesian inference, 
the  probability  of  the  data  is  accounted  for  by  the  likelihood.  
So, if the priors are also informed by the same data, then 
the  information  provided by the  data  ends up  being  counted 
twice by the inference, which will artificially increase its  
contribution  to  the  posterior.  Priors  can  thus  be  based  on  previ-
ous studies or biological knowledge, but not on analyses using the  
current dataset under study.

So how do we set priors? It may be tempting to just follow tuto-
rials  or  use  default  priors  at  first,  however,  we  strongly  encour-
age  users  to  think  more  critically  about  the  implications  of  the 
prior  choice  for  each  individual  analysis.  While  it  is  true  that 

developers  often  design  default  settings  to  be  a  reasonable  start-
ing  point  for  most  analyses,  they  are  by  no  means  meant  to 
be  a  one-fits-all  solution,  and  one  should  not  expect  them  to  
necessarily  be  an  optimal  or  even  good  fit  for  ones  own  prob-
lem. As an example, the default prior on clock rates in BEAST2 
is  set  to  Uniform(0,  +∞),  because  what  constitutes  a  reason-
able  value  for  the  clock  rate  is  extremely  dependent  on  both  the 
organism  and  the  timescale  of  the  dataset.  Thus  it  is  up  to  the 
user to select a reasonable prior distribution for this param-
eter.  In  general,  your  data  or  question  may  be  quite  different  
from what the method developers had anticipated, and often 
the  behaviour  of  a  model  with  different  data  and  under  differ-
ent parameters is something that can only really be started to be  
explored once a new model/use case has been developed.

Thinking more carefully about the priors and their implica-
tions  will  go  hand  in  hand  with  a  deeper  understanding  of  the 
model itself, which should be an additional encouragement 
to  dive  into  it.  The  key  is  to  remember  that  the  prior  distribu-
tion  of  a  parameter  represents  the  probability  of  those  values 
being  proposed  during  the  MCMC,  and  values  outside  of  it  can 
never  be  tried.  In  particular,  this  means  that  long-tailed  prior 
shapes,  such  as  lognormal  or  exponential  distributions,  are  often  
better than uniform distributions, which restrict the range of 
values  which  can  be  tried  by  the  inference.  Note  also  that  pri-
ors  always  influence  the  results  of  the  inference,  and  that  set-
ting  very  vague  priors  is  not  an  optimal  choice  in  most  circum-
stances.  For  instance,  in  the  example  of  the  clock  rate  prior 
presented  earlier,  a  prior  distribution  of  Uniform(0,  +∞)  puts  
a  lot  of  weight  on  very  high  values  for  that  parameter,  and  will 
thus encourage the inference to try these values. If the data is not 
very informative on this particular parameter, this can result in esti-
mated values which are absurdly high from a biological point of 
view. A better prior would use our understanding of evolutionary  
processes to put more weight on biologically plausible values.

When choosing a prior, we thus need to consider what  
particular parameter values would imply for the data. For 
instance,  substitution  rates  describe  how  fast  mutations  happen 
in  the  sequences  and  become  fixed,  and  thus  how  much  the  
sequences of the species under consideration could diverge  
over time.

Overall,  in  order  to  identify  reasonable  priors,  we  can  ask  the  
following questions:

•    Have  the  parameters  used  in  our  analysis  been  estimated  
in other contexts or for similar datasets?

•    What priors have similar studies chosen and how  
comparable  is  their  data  to  ours?  Note  that  these  priors 
still  need  to  be  critically  evaluated,  as  our  understanding 
of  plausible  parameter  values  may  have  changed  since  
the previous study.

•    Does the range of parameter values allowed by the 
prior  make  sense  given  our  data  and  analysis  setup,  for 
instance is it consistent with the expected number of  
substitutions in the alignment or the minimal clade ages?
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•    Can we do rough calculations to calibrate our prior  
expectations  by,  e.g.,  dividing  the  number  of  extant  spe-
cies  by  the  assumed  clade  age,  to  get  a  rough  estimate  
of net diversification?

•    Can we obtain estimates for the parameters from 
sources outside of our dataset, for example using the 
fossil record to get an idea of how much extinction 
our focal clade may have experienced? Note that this 
requires  making  sure  that  the  parameters  chosen  actually  
represent the same quantities between models, which 
is not always the case. For instance, extinction rates 
obtained from the fossil record represent a different param-
eter  than  death  rates  used  in  the  fossilized  birth-death  
process (Silvestro et al., 2018; Stadler et al., 2018).

Although  this  may  sound  like  a  lot  of  work,  it  is  also  impor-
tant to remember that identifying reasonable values for the 
different parameters, finding previous estimates for compari-
son, and evaluating the biological implications of the differ-
ent values will always be needed to interpret the results of 
the analysis. The main difference in a Bayesian inference  
compared  to  other  types  of  inference  is  that  this  work  has  to  be  
performed upfront, rather than after the inference is finished.

It is generally advisable to plot the specified prior distribu-
tions  and  think  about  what  they  imply.  Overall,  the  actual  shape 
of the distribution (lognormal, gamma, etc.) is usually less 
important  than  the  range  of  plausible  values  covered  by  the  dis-
tribution  (the  5%  and  95%  quantiles).  However,  the  shape  of 
the distribution affects the weight given to different parts of 
the  range,  i.e.,  whether  low  values  are  more  likely  under  the  
prior than high values. Comparing the distributions for  
different  values  by  using  the  visualization  tool  in  BEAUti  or 
plotting them in R is a great way to get a better idea of what is 
happening.  It  should  be  noted  that  simply  looking  at  a  curve 
may  be  misleading.  Because  the  area  under  a  certain  section  of 
the  curve  (e.g.,  a  long  tail)  may  still  be  large,  even  if  the  height 
of that section of the curve looks small. Thus, quantifying 
how  much  area  is  covered  by  the  distribution  (such  as  through  
quantiles)  is  still  important.  But  in  the  case  of  node  calibra-
tions, even if each calibration is reasonable by itself, their  
combination can restrict the parameter space in unexpected 
ways  (Warnock  et  al.,  2015).  This  brings  us  back  to  running 
the  analysis  under  the  prior  alone,  as  mentioned  initially.  This  
type  of  analysis  can  help  spot  situations  in  which  the  analy-
sis  is  not  specifying  parameter  distributions  that  the  researcher  
considers reasonable. The effective prior on a node age in an infer-
ence  will  be  the  product  of  the  prior  set  by  the  tree  model,  and  
of all additional calibration times set for the tree.

5.2.2 Model.  When the analysis is set up correctly and pri-
ors are reasonable, the cause for convergence problems may 
lie  with  the  model  itself,  or  how  it  relates  to  the  data.  It  may 
seem daunting to choose between all the different types of 
models  out  there.  There  are  a  few  pieces  of  software  that  can 
help researchers get an idea of plausible models. ClockstaR  
(Duchêne et al., 2014) can be used to choose appropriate 

relaxed clocks for molecular data. EvoPhylo (Simões et al., 
2023)  can  do  a  similar  selection  for  morphological  data  par-
titions. Although model selection can not be used to select 
between alternative birth-death sampling models because fos-
sil  ages  are  technically  considered  as  part  of  the  prior  (May  &  
Rothfels,  2023),  integrated  tools  in  the  Paleobiology  Database 
website  can  also  assist  in  finding  reasonable  starting  parameters 
for FBD analyses. These tools use established paleontologi-
cal methods for estimating parameters for speciation, extinc-
tion  and  fossilization  rates.  Using  these  sorts  of  tools  can  help 
with  setting  priors  that  have  some  support  from  the  established  
literature.

If  different  data  sources  are  being  used  for  joint  analyses,  one 
might  want  to  try  running  the  different  data  separately  in  order 
to confirm whether they might support incompatible solu-
tions.  For  example,  in  a  total-evidence  analysis,  molecular  and  
morphological  data  may  each  support  different  tree  topologies. 
So  when  analysed  jointly,  solutions  which  could  increase  the  
likelihood  of  one  type  of  data  will  decrease  it  for  the  other 
type, and vice versa, thereby making convergence around an  
optimal solution impossible. The same could apply to other 
combinations of data sources, e.g., conflicting molecular  
markers.  Running  the  data  for  each  type/partition  separately  can 
help  a  researcher  determine  if  the  convergence  is  poor  due  to  
methodological issues, or true signal conflict.

Much  more  fundamentally,  the  analysis  might  also  just  struggle 
to  run  or  converge  because  the  chosen  model  is  not  suitable 
for  the  data  at  all.  Carefully  revisiting  the  model’s  assumptions 
and how those should manifest in the data is required to 
judge  this,  e.g.,  are  there  patterns  of  variation  in  our  data,  for 
instance  between  different  groups,  which  the  model  needs  to  be  
able to address?  An approach specifically designed to judge 
such model-data mismatches is model adequacy testing.  This 
is  done  by  simulating  new  data  sets  from  the  inferred  posterior 
distributions, an approach termed posterior predictive simu-
lations (PPS). These simulated data sets are then compared 
to the initial data using summary statistics which capture 
its  relevant  characteristics.  If  the  model  is  adequate  to  describe/
analyse the variation in the data, that should be revealed 
through significant differences in the summary statistics 
between  the  data  and  the  posterior  simulations.  These  types  of  
tests  exist  for  a  variety  of  phylogenetic  models,  including  sub-
stitution models (Bollback, 2002; Brown & ElDabaje, 2009;  
Lewis et al., 2014; Nielsen, 2002), tree inference (Brown,  
2014;  Duchene  et  al.,  2019;  Reid  et  al.,  2014),  continuous  and 
discrete trait evolution (Blackmon & Demuth, 2014; Huelsenbeck 
et al., 2003; Pennell et al., 2015; Slater & Pennell, 2014), 
and diversification models (Schwery & O’Meara, 2020;  
Schwery et al., 2023). However, that approach technically 
would  require  posterior  estimates  from  a  more  or  less  success-
ful  MCMC,  which  would  not  be  available  if  the  analysis  keeps  
crashing, and which would likely be uninformative if the 
MCMC did not converge. A good way to circumvent this 
would  be  to  try  and  simulate  datasets  from  scratch,  based  on 
more  or  less  comparable  parameters  to  the  empirical  data,  and 
then  compare  them  using  the  same  summary  statistics  as  one 
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would  use  in  the  PPS  approach.  This  would  be  akin  to  using  
approximate  Bayesian  computation  (ABC).  Exploring  how  the 
empirical  data  differs  from  what  is  expected  under  the  model  
may allow you to judge the nature of the model-data mismatch.

Finally,  it  might  be  worth  trying  to  reduce  the  complexity  of 
one’s  model.  While  it  is  tempting  to  make  full  use  of  the  lev-
els  of  complexity  modern  approaches  allow  us  to  model,  one 
ought  to  consider  whether  there  is  enough  information  in  the 
data for the model to work with. Just like any statistical test has 
sample  size  requirements  to  have  the  power  to  detect  signifi-
cant  differences,  these  models  need  the  data  to  have  sufficient  
size  and  structure/heterogeneity  to  be  able  to  infer  parameter 
estimates  without  too  much  uncertainty.  For  example,  we  may 
want  to  use  a  relaxed  clock  model  to  account  for  the  possibil-
ity  that  different  parts  of  our  tree  evolve  at  different  rates.  But 
if  we  only  have  one  fossil  to  calibrate  our  node  ages  with,  or 
the sequences are not substantially variable, the model has  
limited  information  on  which  to  base  any  rate  differences  on 
the  tree. As  a  result,  the  different  branch  rates  suggested  by  the  
MCMC will possibly meander around the parameter space  
without any receiving overwhelming support. Using a strict 
clock  instead  might  neglect  possible  rate  heterogeneity,  but  will 
at  least  be  able  to  converge  on  reasonable  estimates  given  the  
limited information available.

5.3 Data quality issues
In general, assembling more data leads to more precise and 
more  accurate  inferences.  For  example,  previous  research  has 
shown that total-evidence studies require ∼ 300 morphologi-
cal  characters  to  obtain  reliable  estimates  of  tree  topology  and 
divergence  times  in  extinct  clades  (Barido-Sottani  et  al.,  2020). 
Purely from a performance perspective however, it is impor-
tant  to  note  that  additional  data  is  not  necessarily  better  for  the  
convergence  of  an  MCMC  inference.  Indeed,  adding  more  data  
comes with added computational costs, and thus can have a net-
negative impact on the performance, especially if the added 
data  is  very  uncertain  or  conflicts  with  the  rest  of  the  data  or 
with  the  chosen  models  and  priors.  For  instance,  Portik  et  al. 
(2023)  built  phylogenies  using  either  a  complete  alignment  of 
nuclear  markers,  a  supersparse  matrix  of ∼ 300  genes  with  large 
amounts of missing data, or the combination of both. They 
found  that  trees  obtained  using  the  combined  dataset  did  not  
significantly  differ  from  the  trees  obtained  using  the  complete 
alignment alone. One possible avenue for resolving conver-
gence issues is thus to remove genes or partitions which contain  
low amounts of information.

Similarly, increasing the number of extant or fossil samples 
in  the  tree  leads  to  an  exponential  increase  in  the  number  of  
possible topologies, and so represents an important drag on  
performance.  We  typically  select  a  subsample  of  the  taxa  to  be 
included in our analyses. We may assume extant taxa are sampled 
uniformly at random; but in many cases, they are sampled 
sparsely by keeping only one living representative per genus  
or subclade. The diversified sampling scheme has been 
implemented in the FBD model (Zhang et al., 2016) to  
accommodate such a case.

As mentioned above, there are two options for incorporating 
fossils  directly  in  the  phylogeny  using  the  FBD  process:  assign-
ing fossils to nodes via constraints or using morphological 
data  in  a  total-evidence  framework.  Both  approaches  to  posi-
tioning  fossils  present  a  challenge  for  MCMC  inference,  since 
even with character data, the topological uncertainty associ-
ated  with  fossils  is  typically  large.  And  when  there  is  a  large  
amount of phylogenetic uncertainty, the posterior can span a 
broader  flatter  area,  taking  more  effort  to  sample  and  making 
it harder to reach convergence. The use of very broad  
constraints (e.g., assigning all fossils to the root) in particu-
lar  can  lead  to  convergence  issues,  since  there  is  insufficient  
information  to  inform  the  topology  or  other  model  parameters.  
To  improve  convergence,  researchers  could  use  the  most  precise 
constraints available, i.e., less inclusive nodes or lower taxonomic 
divisions,  such  as  genera.  In  addition,  it  is  possible  to  set  a 
backbone extant tree, which will fix or strongly restrict the 
position of extant samples in the phylogeny, leaving only 
the positions of the fossils and the branch lengths to be  
estimated.  That  said,  we  emphasise  that  constraints  should  be 
implemented  with  extreme  caution,  as  errors  in  constraints  can 
lead  to  inaccurate  results  (Barido-Sottani  et  al.,  2022a).  Having 
character data for fossils can help improve convergence, as 
it provides direct information about the topology. If conver-
gence  issues  persist,  provided  additional  taxonomic  information 
is available, both approaches to fossil placement (the use of 
character  data  +  constraints)  could  be  combined.  If  additional 
taxonomic information or morphological data is unavailable,  
researchers  might  need  to  reconsider  the  scope  of  their  analyses  
and the application of the FBD process to the data.

If  age  uncertainty  is  substantial  for  many  or  all  fossils  in  your 
analysis,  the  MCMC  might  also  take  longer  to  converge.  How-
ever,  compared  to  analyses  that  used  fixed  fossil  ages,  Barido-
Sottani  et  al.  (2019)  showed  using  simulations,  that  incorporat-
ing  fossil  age  uncertainty  does  not  make  the  MCMC  inference 
less efficient, i.e., more iterations are not always required to reach 
convergence, at least for data sets typical of Cenozoic mammals. 
This  is  probably  because  the  use  of  fixed  fossil  ages  introduces  
conflict into the tree space, leading to less efficient mixing.

In addition to extant taxa, fossils are also usually sampled 
non-uniformly, with abundant fossils in some strata but rare 
in  others.  The  FBD  model  can  also  take  this  into  account  by 
allowing the sampling rate of fossils to vary through time  
(Gavryushkina  et  al.,  2014;  Zhang  et  al.,  2016). To  increase  the  
biological realism of the FBD process, researchers might be 
tempted  to  incorporate  variation  in  the  sampling  or  diversifica-
tion  processes.  This  leads  to  an  increase  in  the  number  of  free 
parameters and another trade-off between model complexity 
and data availability that must be considered. Increasing the 
number of fossils will improve parameter estimation, leading 
to more accurate and precise estimates of the FBD model 
parameters, as well as divergence times and topology  
(provided  the  model  is  not  strongly  violated).  However,  users 
should  bear  in  mind  that  adding  fossils  increases  overall  tree  
size  −  each  fossil  is  a  tip  or  potential  sampled  ancestor,  whose  
position must be sampled using MCMC.
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This means that although fossils do not typically burden the com-
putation  through  the  addition  of  character  data,  which  would 
increase the cost of calculating the likelihood, they increase 
the  tree  space,  which  will  take  longer  to  sample  using  MCMC. 
For many broader clades (e.g., mammals, animals, plants), 
including  all  fossil  occurrences,  while  desirable,  is  not  feasi-
ble.  Presently,  the  maximum  tree  size  that  could  reasonably  be  
inferred using the FBD process is around 500 samples. One 
approach  to  get  around  this  for  large  clades,  or  datasets  with 
large numbers of fossil occurrences, is to randomly subsam-
ple  the  fossil  data  (O’Reilly  &  Donoghue,  2020).  This  allows 
us  to  obtain  a  more  manageable  dataset  without  violating  the  
sampling process assumptions.

5.4 How long should I run my analysis before giving up?
Some analyses take a long time to converge because it is 
hard  to  find  the  optimal  values  in  a  large  parameter  space,  or 
because several local optima exist, and sometimes it takes a 
long  time  because  a  lot  of  uncertainty  exists  around  the  opti-
mal  values.  Visually  inspecting  the  parameter  traces  can  give 
indications for this. Are they stabilising around certain val-
ues,  still  showing  a  trend  into  a  certain  direction,  or  just  wildly  
meandering  around?  Trends  in  the  trace  can  indicate  that  the 
MCMC  is  still  searching  for  optimal  values  and  just  requires 
more time to find them (or perhaps needs to be restarted 
with starting values further in the suggested direction). But  
continuously  rising  or  declining  parameter  values  can  also  be  
pathological behaviour, suggesting misspecified priors or 
overly strict constraints in related parameters. Over-tuning 
of  moves  can  also  lead  to  such  erratic  behaviour,  e.g.,  if  the  
step-size  for  some  parameters  was  tuned  to  be  overly  short  or 
long.  Wildly  meandering  traces  could  again  be  an  indication  of 
the data not containing enough information for those param-
eters  to  be  identifiable,  or  step-sizes  to  be  too  long  to  allow  it  
to settle around the optimal value.

A  behavior  researchers  sometimes  observe  is  that  an  MCMC 
will  appear  to  stabilize  on  a  set  of  values,  then  jump  to  a  com-
pletely  different  likelihood.  This  can  be  either  an  improvement 
(finding  better  values)  or  worse.  This  can  happen  because  the 
analysis  was  previously  stuck  in  a  local  optimum.  That  is,  a 
region  of  parameter  space  that  was  good,  but  not  the  best  in  
treespace. Thus, exploring this new optimum further is warranted. 
Or  it  may  be  that  making  a  change  to  one  parameter,  such  as  
the  tree,  causes  a  jump  to  a  worse  parameter  space  for  other 
model parameters. In either event, running multiple MCMC 
chains is an advisable way to discern between these two  
scenarios.  Many  software  packages  default  to  using  two  MCMC 
chains.  Some,  such  as  RevBayes,  allow  more  to  be  used.  2-4  
MCMC chains are common in published analyses.

Overall,  the  number  of  steps  required  to  achieve  convergence 
is  difficult  to  estimate,  as  it  will  depend  on  all  the  components 
of the analysis, including the specific software used. Search-
ing  the  literature  for  similar  analyses,  both  in  terms  of  data-
set  size  and  of  models  used,  can  provide  a  reasonable  order 
of magnitude for the number of steps needed. The original  
publications of the specific model or package used, if avail-
able,  will  also  provide  estimates  for  what  the  original  authors 

believed  was  a  reasonable  dataset  size.  Importantly,  inference 
software  all  integrate  a  checkpointing  mechanism,  so  analyses 
which have not converged can be resumed without losing 
the  work  already  done.  Thus  it  is  not  an  issue  if  the  initial 
number of steps is too low. Running several different chains with  
the same analysis can also be helpful in assessing how far 
the chain is from convergence. If the posterior distributions 
obtained by the different chains are largely mismatched,  
then convergence is likely still very far.

It  is  not  uncommon  for  users  of  MCMC  inferences  to  be  aghast 
at the required run time. This is particularly the case when 
analyses  are  set  up  to  incorporate  too  many  different  factors. 
Thus,  minimizing  the  complexity  of  the  setup  from  the  start 
is  generally  a  good  idea.  Ideally,  we  would  want  our  analysis 
to  be  simple  enough  to  be  tractable,  but  complex  enough  to  
capture  the  relevant  aspects  of  the  data  to  answer  our  question.  
Unfortunately,  the  complexity  that  strikes  that  balance  is  often 
hard  to  determine  a  priori  (or  may  not  even  exist  for  some 
combinations of question and data). While both gradually 
simplifying an overly complex model or gradually adding  
complexity to an overly simple model should be feasible  
strategies,  we  feel  that  erring  on  the  side  of  simplicity  may  be 
more advisable. A successfully completed analysis that ends 
up  being  overly  simplistic  provides  more  information  on  how  to  
improve  it  than  an  overly  complex  one  that  fails  to  run  in  the 
first place. Preliminary model testing, such as determining  
the  most  suitable  substitution  model  using  jModelTest  (Darriba 
et  al.,  2012;  Posada  &  Crandall,  1998;  Posada,  2008),  can  help  
us narrow down an appropriate range of complexity to start at.

An  important  contributor  to  analysis  complexity  is  the  number 
of partitions, so it is good to consider whether they are all 
needed,  and  if  some  of  them  can  share  substitution  or  clock 
models. In particular, if you notice in the trace that param-
eters  associated  with  some  partitions  are  purely  driven  by  the 
prior,  then  the  data  is  likely  over-partitioned.  Similarly,  using 
uncorrelated relaxed clock models increases the number of  
parameters by a large amount, as each branch of the tree is then 
associated  with  its  own  clock  rate.  If  the  dataset  contains  little 
time information, then there will be little signal in the data 
to  estimate  these  rates,  which  is  likely  to  lead  to  convergence 
issues. Luckily, there exist several tools to help determine  
what  number  of  partitions  may  be  best  for  a  given  dataset.  We 
have  already  mentioned  how  EvoPhylo  (Simões  et  al.,  2023) 
can be used to partition morphological character data. For 
molecular  data,  the  software  package  PartitionFinder  (Lanfear 
et  al.,  2012;  Lanfear  et  al.,  2017)  can  similarly  be  used  to  find 
partitions and test for the best substitution models for them. 
Its output files can be used as input for the aforementioned  
ClockStaR  (Duchêne  et  al.,  2014),  to  further  determine  which  
partitions require different clock models.

Additionally, model adequacy testing (e.g., using posterior 
predictive  simulations,  PPS,  as  previously  described  in  section 
5.2.2)  can  also  tell  us  whether  our  models  are  of  appropriate 
complexity for the data. If the complexity of the model does not 
match  that  of  the  data,  the  differences  in  the  summary  statis-
tics  between  the  data  and  the  posterior  simulations  should  show 
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that.  However,  as  mentioned  above,  unlike  preliminary  model  
testing,  PPS  approaches  come  into  play  after  the  main  analysis, 
as they rely on having the successfully inferred posterior  
distributions. Thus, starting with as much complexity that  
prevents  successful  completion  of  an  MCMC  run  will  prevent  
us from using this approach.

Finally, note that using informative priors helps reduce the 
complexity  of  the  analysis,  by  reducing  the  size  of  the  param-
eter space that needs to be explored by the inference. This 
is especially true for parameters for which there is little  
signal  in  the  data,  such  as  the  clock  rate  in  an  analysis  with  
little  time  calibration  information,  or  the  extinction  rate  in  an  
analysis  with  only  extant  species.  For  these  parameters  many  
different  values  will  result  in  very  similar  posterior  densities,  
so  the  inference  can  spend  a  large  amount  of  time  exploring  a  
very  wide  plausible  range  of  values.  In  this  case  constraining  
the  values using  fairly  strict  priors will  ensure  that the  inference 
converges more quickly.

6 Good places to look for help
In  addition  to  the  guidance  provided  in  this  document,  many 
software-specific resources can help in diagnosing and  
fixing misbehaving phylogenetic inferences. Bayesian infer-
ence  frameworks  are  generally  associated  with  a  manual,  some  
tutorials and help repositories which provide guidance on  
frequently used analyses. Specifically, users can look at the  
built-in help messages in MrBayes, the Taming the BEAST  
website (https://taming-the-beast.org) for BEAST2 or the 
RevBayes website (https://revbayes.github.io/tutorials/) for 
RevBayes.  For  more  detailed  and  targeted  help,  forums  such  as 
the  BEAST  user  group  (https://groups.google.com/g/beast-users) 
or the RevBayes user forum (https://groups.google.com/g/
revbayes-users)  are  also  available.  Making  good  use  of  search 
engines  can  usually  solve  most  common  problems.  If  the  prob-
lem  appears  to  be  due  to  a  bug  in  the  software  (for  instance, 
the inference crashes or returns non-sensical results), filing 
an  issue  on  the  Github  repository  is  the  best  way  to  report  it.  
Reporting an issue automatically alerts all developers, and 

makes  the  problem  visible  to  other  affected  users.  Note  that  for  
BEAST2, each package has a separate repository, so if the  
problem  appears  tied  to  a  specific  package  the  issue  should  be  
filed  on  the  package  repository  rather  than  the  general  BEAST2 
one.  Before  opening  a  new  issue,  you  should  make  sure  that 
the  problem  has  not  been  reported  already  by  looking  through 
the  list  of  open  issues. As  a  last  resort,  developers  can  be  con-
tacted directly, although we recommend exploring the above  
resources first.

Several  rules  should  be  kept  in  mind  when  requesting  help  on 
forums  or  from  tool  developers  and  when  filing  issues.  First, 
it  is  generally  good  to  assume  that  any  would-be  helper  will 
need to run the analysis themselves in order to identify the 
issue. Thus, all data, configuration and code files required 
to reproduce the problem should be included in the help  
request.  The  full  error  message  or  problematic  output  should 
also be included, so helpers can verify that they have cor-
rectly  reproduced  the  issue.  If  possible,  simplifying  the  analysis 
by removing elements which do not trigger the issue, or  
comparing  the  problematic  analysis  to  a  similar  analysis  which 
worked, will also be very helpful to track down a problem.  
Finally, detailed information on the computer configuration 
used (operating system type and version, software version,  
compiler version if the software was compiled manually, 
whether  the  analysis  was  run  on  a  local  machine  or  computer  
cluster) should be provided, particularly when the analysis  
crashes or fails to start.
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Summary: 
The manuscript by Barrido-Sottani et al. offers practical guidelines for biologists conducting 
phylogenetic analysis using softwares that implement Bayesian frameworks, namely MrBayes, 
RevBayes, and BEAST2. The authors focus on Markov chain Monte Carlo (MCMC) that is used in 
Bayesian phylogenetic inference, and present how to diagnose some common problems and how 
to troubleshoot them, how to fine-tune parameters for to achieve convergence, and unique 
challenges when fossil information is incorporated. Overall, the manuscript is in a great shape, 
very well explained without using unnecessary jargons. I believe this manuscript is well-suited for 
introductory read for understanding MCMC in Bayesian phylogenetic inference to general 
audience. Below, I tried to point out any place that can be clarified where a novice to Bayesian 
phylogenetics (or phylogenetics in general) can possibly get confused. 
 
Comments: 
[1] MCMC: Markov Chain Monte Carlo → Markov chain Monte Carlo, unless intended. 
[2] Keywords: May be include RevBayes as well? 
[3] Abstract: (1) It would be more accurate to say that “estimating a phylogenetic tree involves 
evaluating many possible hypotheses”, instead of solutions? If the authors meant parameter 
estimates by the `solutions', it should be clarified. 
[4] Introduction to MCMC Paragraph 1: If possible, providing some numbers to demonstrate the 
vastly large number of possible topologies for given number of taxa n would help readers to 
admit that it is not feasible to evaluate all possible topologies (even when n is not large). For 
example, there are < 34 million topologies when n = 10 (Degnan and Salter, 2005, Evolution, 59(1), 
p.34). 
[5] Introduction to MCMC P3: (1) Try to avoid begin a sentence with an abbreviation (i.e., ML, 
sentence 2). (2) Plus, it would be good idea to provide some references of the mathematical 
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techniques in sentence 2. (3) Also, the concept of prior distribution is briefly introduced here, and 
it would be nice to direct reader that the concept is described in more detail in the coming section 
(i.e., 2.1.2?.) 
[6] Introduction to MCMC P4: (1) Please mention some examples (or references) of MCMC 
sampling algorithms other than MH. (2) The authors mention that the one or more model 
parameters are perturbed, like making a number a little bigger. It would be clearer if stated as “a 
value of the parameter is increased''? (3) The connection between Monte Carlo and pseudorandom 
parameter perturbation is not obvious. (4) The concept of ‘parent solution’ should have been 
introduced, possibly when a ‘starting set of values’ was introduced in the beginning of this 
paragraph? 
[7] Introduction to MCMC P5: Provide reference for the original MCMC in early 1950s? 
[8] Section 2.1: I like “The Bayesics.” Just a suggestion, but unless intended, how about listing the 
three quantities in the order of apparance in the text (i.e., the likelihood, the prior, and the 
marginal probability)? 
[9] Figure 1: The cartoon illustration of Bayes’ theorem looks great. (1) Just make sure to keep the 
capitalization consistent (Bayes’ theorem vs. Bayes Theorem (in text)). (2) It would be more helpful 
if both top and bottom (i.e., not the second panel) are mentioned in the bolded portion of the 
caption. (3) Mention the asterisk ( ) represents new parameter values in the caption. (3) I think 
using either one of Hastings ratio or the posterior odds ratio in the figure itself would remove 
unnecessary confusion, and mention that both refer to the same thing in the caption. 
[10] Section 2.1.1 P1: ML for maximum likelihood is already introduced previously. No need to 
redo it here. 
[11] Section 2.1.2 P1: (1)Use ML since it has been introduced previously. (2) “...than one that is very 
short → low?” 
[12] Section 2.1.4 P2: Provide reference for reversible MCMC. Possibly provide an example for its 
application (e.g., phylogenetic network inference?). 
[13] Section 2.1.5 P2: There is no section called Introduction, but Introduction to MCMC. 
[14] Figure 2: I am not sure it it is necessary to include both flowchart and pseudocode. I feel like 
they are redundant and either one of them should be enough to explain MH. It is up to the 
authors to choose which one. Furthermore, in the flowchart, it would be more clear to say that the 
changes that decrease the posterior is accepted at probability of R, instead of vague ’Occasionally’. 
In pseudocode, possibly add a line somewhere that explains the variable j. 
[15] Section 2.2.1 P1: (1) The definition of unrooted trees should be more explicit by including the 
concept of lack of evolutionary directionality (i.e., unable to identify the ancestor–descent 
relationship between the nodes). (2) It would also be important to specify the trees where branch 
lengths represent genetic distance are dated only if the constant molecular clock assumption is 
met. 
[16] Section 2.2.1 P2: (1) Could you define outgroup samples in simple terms? (2) May be use the 
term ‘ingroup’ instead of “main clade”, because the main clade can be a portion of ingroup taxa. 
[17] Section 2.2.3 P1: (1) Are the terms 'moves' and 'operators' synonyms? They are being used 
interchangeably. If so, it might be a good idea to state that they are the same thing upfront (i.e., 
move the second last sentence to the top) and stick with one of them throughout the section. (2) I 
don’t think “Scaling move” is not explained in the text at this point, or direct readers to Figure 3. 
[18] Section 2.2.3 P2: The last sentence of this paragraph that begins with “This is also the 
reason...” seems to be very important for the readers when comparing results from different 
implementations. Could you add a couple sentences with an example? 
[19] Section 2.2.3 P3: Two abbreviations STX and SPR were never defined in text. Also, it would be 
useful to direct readers to some literature where the details of these tree moves are explained. 
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[20] Section 2.2.3 P4: Please explain what it means by “satisfying” results. This may lead to the 
subjectivity issue. 
[21] Figure 3: (1) Please explicitly define, at least in caption, the notations used in the figure: a, s, d, 
etc., in scaling and sliding moves, for example. U for Uniform distribution? (2) I thought subtree 
exchange moves swaps the two points in two different branches in the tree (Vaughan et al,2014) 
[Ref 1]. Currently, it looks like as if two leaves, blue and orange, are swapped and no branch plays 
a role in this move. Is this what STX really does? Otherwise, the graphical representation may be 
misleading and confusing. Similar issue in SPR move. 
[22] Section 3: “Posterior values” → "posterior probabilities" for a set of parameter values? 
[23] Section 3.1 P1: Refer to Figure 3 when explaining the moves involving numerical change. 
[24] Section 3.1 P2: (1) “networks” → phylogenetic networks; It would be good idea to define 
phylogenetic networks or provide citations where the networks are defined and distinction 
between the trees and networks (e.g., Kong S, Et al, 2022 [Ref2] In the last sentence, it might be 
more accurate to say ‘topology moves’ rather than “tree moves” since the concept of networks is 
introduced. 
[25] Section 3.2 P1: I feel like the first sentence (“Biology is complex...”) is repeating what has been 
said previously. 
[26] Section 3.3: This section is very clear and informative. Beautifully written! 
[27] Section 4.1 P1: While the proportion of burn-in might not (or might) directly influence MCMC 
inference result (particularly if ran long enough), could you elaborate on the consequences of 
setting the proportion of burn-in either too small or large? For starters, setting this value may 
seem arbitrary and difficult to decide. 
[28] Section 4.3 P1: May be I missed, what do you mean by the autocorrelation time τ? How is it 
measured? 
[29] Figure 4: The description of left and right panels are well explained in the caption. However, it 
would be great what the different rows represent is described. (i.e., top row being not coverged 
vs. bottom row being the converged “hairy caterpillar”? 
[30] Section 5.1.1 P4: The term “acceptance ratios” was used. Is this synonymous to “acceptance 
proportion” mentioned in section 2? If so, please mention it or keep these terms consistent. 
[31] Section 5.1.1 P7: The abbreviation “DAG” is introduced, but never used again in the 
manuscript. May be unnecessary. 
[32] Section 5.2.2 P2: “...help a researcher determine” → ‘...help a researcher to determine’? 
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This paper summarises the current knowledge about Bayesian phylogenetic inference with a 
particular focus on numerical methods. The paper is particularly welcome as this problem is 
particularly complex and frequent in numerous applications. No new method is presented, but the 
article offers a nice presentation of the most common method and their implementation. It 
contains also a general workflow for carrying Bayesian Phylogenetical Inference. 
 
Overall, I think some choices are strange (for example the strange notations for parameters and 
observations in Fig. 1). These choices must be explained by the readers having little mathematical 
background. Nevertheless, I think this is not a good idea, as the article should aim at giving the 
mathematical tools needed to the reader, and I don't think ideographic representation gives 
better understanding than proper definitions (I needed some time to understand the images). 
Introducing proper notations would also allow to discuss the notion of ``non informative priors'' 
and more importantly conjugated priors that would help the choice of priors. It can also be 
beneficial to allow the users to communicate with the computational statisticians that developed 
the tools. 
 
For example, in 2.1.6. I think the article would benefit from mentioning the standard results of 
Markov Chain theory (that is ergodicity of the chain). This in return would be of interest when 
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mentioning the different moves that can be used in MCMC algorithm, and could give insight as for 
possible reasons of failures. 
 
The part about the different problems of MCMC methods is well written and contains all the 
important information in my opinion. 
 
I disagree with section 5.1.2, or I think the phrasing is strange: the choice of a fixed initial value 
can be misleading (see later the case of poorly ergodic chains because of multimodality). I think 
the choice of a random initialisation from the prior along with repeated runs should be the correct 
recommendation (along with more careful observation of convergence). 
 
I also have some doubts on the diagnostic section: this problem is one of the most difficult in 
phylogenetics, for the reason that the parameters of the model (that include the topology) cannot 
be all summarised by one ESS. Overall all the existing methods are inefficient (but once again 
that's a review of the numerical methods that exists, and these inefficient methods are the only 
ones implemented). It would be interesting to the reader to see what are the possible issues that 
arises from using the ESS in the phylogenetic case (which itself has to be defined, as the author 
mention). Nevertheless, I am happy to see the part about the trace observation (which should be 
the first check run by any user of an MCMC method). 
 
I am a little surprised the authors do not mention earlier the most simple method to detect 
multimodality: running several chains in parallel. If the chains converge to different trees, that 
indicates that further study is required. In particular the use of standard MCMC such as the ones 
presented in the paper (MrBeast, etc.) will not be able to handle these problems. In my field this is 
a very frequent case of failure of the MCMC. This is mentioned later in the paper but it would be 
beneficial to discuss that earlier. On the question of detecting convergence, the remarks of 5.4 can 
have links with the results on MCMC convergence on trees developed following the works of 
Biswas, N., Jacob, P. E. and Vanetti, P. (2019) Estimating convergence of Markov chains with L-lag 
couplings (NeurIPS 7389–7399). These methods are not implemented in the current software but 
they have the advantage of being theoretically sound, and have been applied to phylogenetics. Of 
course, this is out of the scope of the article if we consider that the users will only make use of the 
already implemented tools. 
 
A problem I can see, is that the article mentions problems that cannot be solved in most of the 
software mentioned unless the user has a good knowledge of them. For example, if there are 
mixing problems for some parameters, this can be a problem of correlation between the 
parameters, and a move in the joint space would be recommended, which is unfortunately not 
possible to implement easily in most cases. 
 
Finally, I am wondering if mentioning more complex but more efficient methods such as SMC for 
trees (for example the works from Bouchard-Côté) can be interesting. My idea is that if there are 
problems with the standard methods, the user should move on to more complex numerical 
methods, although they are not implemented in a user friendly way. 
 
As a conclusion, I would say that the article is good but requires some polishing depending on the 
goals the authors have. It obviously is tailored for non-statisticians that are using Bayesian 
phylogenetics tools. It does a great job at presenting the problems, the tools, and the possible 
solutions (I am happy to see the recommendation to discuss complex problems on the forums) 
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but I still think stronger maths would be beneficial. 
 
Minor comments:

"2.1 The Bayesics" I'm not sure the pun is needed in this kind of article (also, it can be 
difficult to understand for non native english speakers that would pronounce Bayes 
differently). 
 

○

I have philosophical problems with the notion of "choosing" the prior, as the prior is not 
chosen by the user but just exists out of the general knowledge (as is described by the 
paper). I think the author could mention repeated experiments with different priors to 
ensure the prior effect is negligible with respect to the results. 
 

○

I use more often marginal likelihood than marginal probability to designate the integrate of 
the likelihood times the prior, I don't know what are the terms used in the phylogenetics 
community.

○

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational bayesian phylogenetics, computational statistics, numerical 

methods in bayesian statistics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Thank you very much for the review and suggestions! Please find our detailed 
response below (in bold). Overall, I think some choices are strange (for example the 
strange notations for parameters and observations in Fig. 1). These choices must be 
explained by the readers having little mathematical background. Nevertheless, I think this is 
not a good idea, as the article should aim at giving the mathematical tools needed to the 
reader, and I don’t think ideographic representation gives better understanding than 
proper definitions (I needed some time to understand the images). Introducing proper 
notations would also allow to discuss the notion of “non informative priors” and more 
importantly conjugated priors that would help the choice of priors. It can also be beneficial 
to 
allow the users to communicate with the computational statisticians that developed the 
tools. 
We have chosen to retain the pictures used in place of mathematical notation in 
Figure 1 (although, as described in response to reviewer 2, we have made the image 
clearer and we now include a figure legend with descriptions of the components). Our 
reasoning for this is that phylogenetics is perhaps unusual in that it draws a lot of 
users who have no formal training in mathematics, who often have limited practice or 
experience reading equations in any context. Formal notation appears in many 
fundamental textbooks and papers that introduce Bayesian phylogenetics and MCMC 
(e.g., Ziheng Yang’s (2006) Computational Molecular Evolution book or Joseph 
Felsenstein’s (2004) Inferring phylogenies book). These resources can be challenging 
at first for those unfamiliar with mathematical notation and new to phylogenetics. 
Our intention is to provide a reference that is both complementary to these resources 
and more accessible for beginners. This perspective is based on our experience as 
individual researchers 
and our experience teaching Bayesian phylogenetics in a wide range of contexts 
(especially, as part of the RevBayes or BEAST2 workshops which are aimed at empirical 
researchers). 
We have included some discussion on the use of non-informative or improper priors 
and the potential issues these can cause (section 5.2 Choice of model and priors). 
However, we chose not to discuss the use of conjugate priors, as it is not often 
possible to use these in the context of Bayesian phylogenetics. A regular phylogenetic 
software user would rarely (if ever) encounter this term. For example, in 2.1.6. I think 
the article would benefit from mentioning the standard results of Markov Chain theory (that 
is ergodicity of the chain). This in return would be of interest when mentioning the different 
moves that can be used in MCMC algorithm, and could give insight as for possible reasons 
of failures. 
We have added some information on ergodicity and its implications on the MCMC 
moves. The part about the different problems of MCMC methods is well written and 
contains all the important information in my opinion. 
I disagree with section 5.1.2, or I think the phrasing is strange: the choice of a fixed initial 
value can be misleading (see later the case of poorly ergodic chains because of 
multimodality). I think the choice of a random initialisation from the prior along with 
repeated runs should be the correct recommendation (along with more careful observation 
of convergence). 
We have edited this to make it clearer. We aren’t trying to argue for one method of 
doing this over another, simply to state the major classes of solutions found in the 

Open Research Europe

 
Page 28 of 38

Open Research Europe 2023, 3:204 Last updated: 02 JUL 2024



literature. To this section, we’ve added some explanation about how starting point 
may affect the inference, and how to detect sensitivity to starting point. I also have 
some doubts on the diagnostic section: this problem is one of the most difficult in 
phylogenetics, for the reason that the parameters of the model (that include the topology) 
cannot be all summarised by one ESS. Overall all the existing methods are inefficient (but 
once again that’s a review of the numerical methods that exists, and 
these inefficient methods are the only ones implemented). It would be interesting to the 
reader to see what are the possible issues that arises from using the ESS in the phylogenetic 
case (which itself has to be defined, as the author mention). Nevertheless, I am happy to see 
the part about the trace observation (which should be the first check run by any user of an 
MCMC method). 
Standard convergence diagnostics in phylogenetics involve calculating one ESS per 
parameter that is involved in the analysis, rather than one single ESS for the whole 
model, as the initial text might have implied. Some of the confusion may have 
resulted from the later mention of the topology ESS as calculated by Convenience, 
since that comes closest to the idea of one single ESS for the whole analysis. We have 
thus edited the text to make that clearer. We have furthermore added a brief section 
detailing which ESS to check and what to pay attention to. I am a little surprised the 
authors do not mention earlier the most simple method to detect multimodality: running 
several chains in parallel. If the chains converge to different trees, that indicates that further 
study is required. In particular the use of standard MCMC such as the ones presented in the 
paper (MrBeast, etc.) will not be able to handle these problems. In my field this is a very 
frequent case of failure of the MCMC. This is mentioned later in the paper but it would be 
beneficial to discuss that earlier. 
We now mention the use of multiple chains in the convergence assessment section. 
We have edited this part to emphasize that certain issues such as multimodality can 
only be detected through this method. On the question of detecting convergence, the 
remarks of 5.4 can have links with the results on MCMC convergence on trees developed 
following the works of Biswas, N., Jacob, P. E. and Vanetti, P. (2019) Estimating convergence 
of Markov chains with L-lag couplings (NeurIPS 7389–7399). These methods are not 
implemented in the current 
software but they have the advantage of being theoretically sound, and have been applied 
to phylogenetics. Of course, this is out of the scope of the article if we consider that the 
users will only make use of the already implemented tools. 
We agree that while this may be a nascent method, it might be useful for readers to 
be aware of it and explore the possibilities of its use. We have thus added a mention of 
it to the convergence section, along with two papers by Kelly et al, who already apply 
the method of Biswas et al. in a phylogenetic context. A problem I can see, is that the 
article mentions problems that cannot be solved in most of the software mentioned unless 
the user has a good knowledge of them. For example, if there are mixing problems for 
some parameters, this can be a problem of correlation between the parameters, and a 
move in the joint space would be recommended, which is unfortunately not possible to 
implement easily in most cases. 
We have tried to cover as many as possible solutions available in the software that 
users can adjust or fine-tune across appropriate sections. We now clearly state that 
our focus in on solutions which can be implemented by the user without additional 
development, but that many issues do require changes in the software itself. The 
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problem of correlation between parameters is particularly hard to deal with, typically 
requiring the developers to implement efficient MCMC moves to overcome it. 
Nevertheless, we now mention the up-down operator in BEAST2 which will scale both 
the branch lengths of the tree, and the clock rate simultaneously. Finally, I am 
wondering if mentioning more complex but more efficient methods such as SMC for trees 
(for example the works from Bouchard-Côté) can be interesting. My idea is that if there are 
problems with the standard methods, the user should move on to more complex numerical 
methods, although they are not implemented in a user friendly 
way. 
We added references to other algorithms when introducing MCMC. These are very 
interesting and worth discussing, but out-of-scope for us. As a conclusion, I would say 
that the article is good but requires some polishing depending on the goals the authors 
have. It obviously is tailored for non-statisticians that are using Bayesian phylogenetics 
tools. It does a great job at presenting the problems, the tools, and the possible solutions (I 
am happy to see the recommendation to discuss complex problems on the forums) but I 
still think stronger maths would be beneficial. Minor comments: 
“2.1 The Bayesics” I’m not sure the pun is needed in this kind of article (also, it can be 
difficult to understand for non native english speakers that would pronounce Bayes 
differently). 
Thank you for pointing out the valid concern about non-native speakers. In 
consultation with the non-native English speakers among the authors, we opted to 
remove the pun here. I have philosophical problems with the notion of ”choosing” the 
prior, as the prior is not chosen by the user but just exists out of the general knowledge (as 
is described by the paper). I think the author could mention repeated experiments with 
different priors to ensure the prior effect is negligible with respect to the results. 
We disagree with the idea that the prior should be negligible. If the prior is reflecting 
sound empirical information, that information should be incorporated in the analysis. 
But more to the point, any analysis contains many choices. Whether it is a choice of 
methodology, or the choice of null and alternative hypotheses, these choices are often 
consequential. Thus, it’s our feeling that as with any other choice, consequentiality is 
less important than justifiability. We have kept the phrasing of “choice” when 
discussing the priors, but we now mention testing different priors to explore their 
impact on the results and conclusions. We also now emphasise that in some contexts 
in Bayesian phylogenetics the parameters of interest are not fully identifiable (this is 
especially true for divergence time estimation) and that as a result the priors need to 
very carefully considered (sections 2.1.2 and 3.3). I use more often marginal likelihood 
than marginal probability to designate the integrate of the likelihood times the prior, I don’t 
know what are the terms used in the phylogenetics community. 
We edited the first mention of the term to state that both terms are used 
interchangeably.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 March 2024
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© 2024 Hu Z. This is an open access peer review report distributed under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited.

Zhirui Hu  

Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA 

The authors provide a very thorough introduction of Bayesian analysis, MCMC for posterior 
inference in Bayesian phylogenetics, common issues and troubleshooting of model choices and 
running MCMC. The article is well-structured, informative, easy to read and technically sound. In 
general, I think it would be more helpful to include more examples and figures to illustrate issues 
and troubleshooting techniques, and/or an example illustrating the entire process from model 
design, MCMC convergence diagnostics and model selection or update. 
 
Besides, there are a few minor issues in the article:

page 4, “between the new and parent scores”, “current” is more commonly used than 
“parent” to indicate the current state in the Markov chain. 
 

○

Figure 1, the cartoon illustration for phylogeny and alignment etc. is interesting but too 
small to read. Also, summation sign instead of integral could be used for summing over 
discrete variables, i.e. phylogenetic trees. 
 

○

Page 7, “a minimum of 10,000 posterior samples”, I think choosing the number of MCMC 
samples should depend on how correlated samples are or ESS. 
 

○

Section 2.2.3, “Scaling move the components”, is it a typo? 
 

○

Pg 9, section 3.1, the author mentioned that traversing tree space was largely solved in the 
1990s but later mentioned challenges in phylogenetic inference. I think the authors need to 
clarify in which situation the problem was solved. 
 

○

Section 3.2, adding a figure might be helpful to illustrate the posterior space. “when 
calculating the prior probability of the phylogeny…”, should it be “posterior probability”? 
Also, what is a diversification model? Maybe add some reference here. 
 

○

Figure 4 is good to illustrate different types of trace plot, but the authors could add more 
explanations on Figure 4. What are the problems of the first two trace plots? 
 

○

Section 5.1.1 tuning step size is very important in MCMC. The author could provide a table 
or list to summarize pros and cons of large/small step size and tuning step size. 
 

○

Pg 16, posterior predictive simulations is very useful and it would be helpful if the authors 
can provide a toy example of it. “If the model is adequate to describe/analyse the variation 
in the data,…”, is it a typo? Should it be “inadequate”? 
 

○

Pg 17, any reference for ABC?○
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bayesian statistics, phylogenetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 May 2024

Joëlle Barido-Sottani 

Thank you very much for the review and the comments! Please find our response to 
the other issues below (in bold). In general, I think it would be more helpful to include 
more examples and figures to illustrate issues and troubleshooting techniques, and/or an 
example illustrating the 
entire process from model design, MCMC convergence diagnostics and model selection or 
update. 
We feel that specific examples of the troubleshooting process will be too software-
dependent to be helpful in the manuscript, however we have written a RevBayes 
tutorial illustrating many of the issues and techniques outlined here. The tutorial is 
now mentioned in section 6. Besides, there are a few minor issues in the article: page 4, 
“between the new and parent scores”, “current” is more commonly used than “parent” to 
indicate the current state in the Markov chain. Fixed. Figure 1, the cartoon illustration for 
phylogeny and alignment etc. is interesting but too small to read. Also, summation sign 
instead of integral could be used for summing over discrete variables, i.e. phylogenetic 
trees. 
We have reorganised Figure 1 to make everything larger, added a legend, and added 
colour to distinguish the data vs. the model (+ tree). We have also expanded the 
legend to include more information. We opted not to add the summation for discrete 
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variables, since the tree is also comprised of continuous 
branch lengths. We believe the main point we are trying to make here − that the 
marginal probability of the data must take into account all possible parameter values 
and trees − is accurately conveyed without making this expression more complicated. 
Page 7, “a minimum of 10,000 posterior samples”, I think choosing the number of MCMC 
samples should depend on how correlated samples are or ESS. 
We have edited this section to make it clearer that the number of recorded samples is 
due to space and memory constraints, and that a higher number of samples is not 
indicative of the convergence of the chain, since as you note samples are correlated. 
Section 2.2.3, “Scaling move the components”, is it a typo? 
It was indeed a typo, thank you for pointing this out. Pg 9, section 3.1, the author 
mentioned that traversing tree space was largely solved in the 1990s but later mentioned 
challenges in phylogenetic inference. I think the authors need to clarify in which situation 
the problem was solved. 
This was unclear indeed. This has been clarified to ”Algorithms for efficiently sampling 
phylogenetic tree space became available in the late 1990s“ Section 3.2, adding a figure 
might be helpful to illustrate the posterior space. 
We believe that adding a figure would make this section too long. However, we have 
added in the introduction links to several online tools which allow users to gain a 
better intuition for posterior spaces and how the MCMC algorithm works.  “when 
calculating the prior probability of the phylogeny. . . ”, should it be “posterior probability”? 
We have removed the word “prior” as the probability of the phylogeny can be part of 
the prior or the likelihood depending on the analysis. Also, what is a diversification 
model? Maybe add some reference here. 
Following a suggestion by Reviewer 1, we now briefly introduce diversification models 
in section 2.1.1 and give a reference. We hope that this clarifies the text here. Figure 4 
is good to illustrate different types of trace plot, but the authors could add more 
explanations on Figure 4. What are the problems of the first two trace plots? 
We have added clarifying comments to the caption of this, pointing to diagnostic 
features of the problems shown. Section 5.1.1 tuning step size is very important in MCMC. 
The author could provide a table or list to summarize pros and cons of large/small step size 
and tuning step size. 
We agree that these are important elements of running an MCMC, but feel that our 
treatment of the pros and cons of them in this section would be sufficient. We thought 
that adding an extra table only to summarize this information again would not add all 
that much clarity. Instead, since we are already demonstrating the outcomes of 
different stepsizes and tuning parameters in Figure 4, we have added a reference to 
the figure in the respective parts of this section. Pg 16, posterior predictive simulations 
is very useful and it would be helpful if the authors can provide a toy example of it. 
We agree that toy examples would be helpful, but we believe that this would be 
covered better by software-specific tutorials. We now link to such a tutorial on the 
RevBayes website. “If the model is adequate to describe/analyse the variation in the data,. . 
. ”, is it a typo? Should it be “inadequate”? 
This was indeed a typo and we have changed it to “inadequate”. Pg 17, any reference 
for ABC? Added.  
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Daniel Casali   

Universidade de São Paulo, São Paulo, Brazil 

Dear editor and authors, 
 
The manuscript prepared by Barido-Sottani et al., entitled “Practical guidelines for Bayesian 
phylogenetic inference using Markov Chain Monte Carlo (MCMC)”, begins providing a concise, but 
also detailed, review of Markov Chain Monte Carlo (MCMC) sampling procedure, widely used in 
Bayesian phylogenetic inferences. The main focus of the text then moves to assessing the practical 
performance of this tool, particularly with respect to convergence issues commonly encountered 
by researchers. 
 
Despite being a common problem, failing to achieve convergence in Bayesian analyses is anything 
but a trivial matter, and, until now, to the best of my knowledge, there has been no study that 
delves so exhaustively and directly into this issue. The manuscript, therefore, constitutes an 
invaluable contribution to the field of study, useful not only to undergraduate and graduate 
students embarking on these analyses for the first time, but also to more experienced users. 
 
The article spans from more technical issues, such as improving the operators/movements used 
to propose new values during the MCMC sampling progression, to other practical aspects, such as 
defining well-behaved priors, selecting and critically evaluating models applied in inferences, and 
understanding dataset characteristics that can lead to performance issues. Useful guidelines are 
provided on how to initiate an analysis with good chances to converge, as well as how to address 
common issues like sampling from multiple optima, chain mixing problems, among others. In 
addition, it provides directions for asking for help in cases where all other solutions have failed. In 
sum, this article constitutes a very useful source of information for all those interested in the 
practical aspects of running phylogenetic Bayesian analyses. 
 
Below, I make a few minor suggestions that I believe could enhance the article's utility for its 
target audience. However, I emphasize that these are only small changes, and I leave it to the 
authors' discretion to incorporate all or any of them.

Page 4. “…this ensures that we explore the entire parameter space and do not stay stuck in 
a local optimum.”  A somewhat pedantic observation here: The entire parameter space 
cannot be ensured to be explored. Perhaps replace by something like: "we broadly 

1. 
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explore the parameter space"?
Page 4. “Invented in the early 1950’s, MCMC was originally used in physics to describe 
equilibrium between the liquid and gas phases of a chemical.” I recommend a citation 
here, for readers interested in the history of the method itself.

2. 

Page 5. “…a substitution model, which describes the relative rate of change from one 
character to another, and…”. I suggest to add also: “...and the relative rate of change 
among character states.

3. 

Page 5. “Under this prior, a rate that is very high is believed to be less likely than one that is 
very [- short] low.

4. 

Page 6. “Different estimation methods have been developed to approximate the marginal 
likelihood, such as path sampling (Baele et al., 2012)[Ref-7] or nested sampling (Russel et al., 
2018), but they remain expensive”. Even though, technically, stepping stones sampling is 
a kind of path sampling procedure, I would specifically mention stepping stones 
separately here as well, since is the most widely used method for estimate marginal 
likelihoods. Also, in the same sentence, I consider that it would be informative to 
indicate the term “marginal likelihood” is synonymous with the other term more 
consistently used in the paper, marginal probability.

5. 

Page 7. “…We typically record the state of the chain with a frequency that results in a 
minimum of 10,000 posterior samples.”. But probably less than that, if we perform many 
moves per generation, as in RevBayes?

6. 

Page 7. “Another important feature of phylogenies is whether they are dated, i.e., whether 
their branch lengths are expressed in units of genetic/ morphological distance or in units of 
time.” and “Thus we mainly target this article at analyses which include a molecular
/morphological clock…”.

7. 

Page 7. Estimating a dated phylogeny requires a model for the molecular or morphological 
clock, a model of lineage diversification, as well as time information to calibrate the tree.

8. 

Page 7. Thus, Scaling moves the components designed to advance the chain and are a core 
part of any MCMC inference software.

9. 

Page 10. “In practice, however, character data is not available or limited for most groups…” 
As an alternative here, continuous morphological characters could be used in total-
evidence analyses (e.g., Álvarez-Carretero et al. (2019)[Ref-1], Zhang et al. (2021)[Ref-
2]in press). These could be more readily available for some taxonomic groups, 
although the performance of including these characters need to be carefully 
considered (Varón-González et al. (2020)[Ref-3].

10. 

Page 12. 5.1 Inference technical setup. Here I missed some mentioning of MCMCMC and 
the use of heated chains or adjusting chain temperature values to try to improve 
convergence. I guess this is a central topic in the current subject, that should be 
briefly mentioned by the authors.

11. 

Page 12.” If an operator is missing…”. Maybe the authors could emphasize here that this 
is a more relevant issue (as far as I can see) in RevBayes, in which we are "freer" to 
customize the inclusion of operators (or anything else, basically!).

12. 

Page 14. “..and with added constraints such as [ - monophyletic] subclades.”. Clades (or 
subclades) are monophyletic by definition.

13. 

Page 15. 5.2.1 Priors. Here I missed some advice on avoiding the use of improper priors, 
as in some of the Beast2 default settings. These improper priors can also lead to 
convergence issues sometimes.

14. 

Page 18. ” …partition morphological character data”. Although only weakly related to the 
main theme of the paper, I think other methods of morphological data partitioning 

15. 
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and what we know about their performances (which is little, if compared to dna…) 
could be briefly mentioned here, to give a broader picture to the reader (e.g., Clarke & 
Middleton (2008)[Ref-4], Rosa et al. (2019)[Ref-5], Casali et al. (2023)[Ref-6]).

 
My best regards, 
Daniel Casali 
 
P.S. The first three questions presented in the peer review form (all answered “YES”), actually do 
not apply to this study, because no new method is proposed. The paper, although a methods 
paper, is more of a review and a practical guide for troubleshooting problems in Bayesian 
phylogenetic analyses. 
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
No source data required
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Systematics (phylogenetics and taxonomy), morphology, and evolutionary 

biology.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 May 2024

Joëlle Barido-Sottani 

Thank you very much for the review and the comments! Please find our detailed response 
(bold text) below. 1. Page 4. “. . . this ensures that we explore the entire parameter space 
and do not stay stuck in a local optimum.” A somewhat pedantic observation here: The 
entire parameter space cannot be ensured to be explored. Perhaps replace by something 
like: ”we broadly explore the parameter space”? Fixed. 2. Page 4. “Invented in the early 
1950’s, MCMC was originally used in physics to describe equilibrium between the liquid and 
gas phases of a chemical.” I recommend a citation here, for readers interested in the history 
of the method itself. 
Good point, we are now citing Metropolis et al. (1953).  3. Page 5. “. . . a substitution 
model, which describes the relative rate of change from one character to another, and. . . ”. I 
suggest to add also: “...and the relative rate of change among character states. 
We have clarified this to: “substitution model, which describes the relative rate of 
change from one character state to another as well as the frequencies of each 
character state”, as in most substitution models, the relative rate is based on 
equilibrium frequencies. 4. Page 5. “Under this prior, a rate that is very high is believed to 
be less likely than one that is very [- short] low. Fixed. 5. Page 6. “Different estimation 
methods have been developed to approximate the marginal likelihood, such as path 
sampling (Baele et al., 2012)[Ref-7] or nested sampling (Russel et al., 2018), but they remain 
expensive”. Even though, technically, stepping stones sampling is a kind of path sampling 
procedure, I would specifically 
mention stepping stones separately here as well, since is the most widely used method for 
estimate marginal likelihoods. Also, in the same sentence, I consider that it would be 
informative to indicate the term “marginal likelihood” is synonymous with the other term 
more consistently used in the paper, marginal probability. 
Thanks, we have changed the wording to now mention stepping stone sampling as a 
popular type of path sampling, and clarify that marginal probability and marginal 
likelihood are synonymous when introducing the concepts. 6. Page 7. “. . . We typically 
record the state of the chain with a frequency that results in a minimum of 10,000 posterior 
samples.”. But probably less than that, if we perform many moves per generation, as in 
RevBayes? 
We have edited this section to make it clearer that the number of recorded samples is 
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due to space and memory constraints, and that the sampling frequency will indeed be 
dependent on the specific software used. 7. Page 7. “Another important feature of 
phylogenies is whether they are dated, i.e., whether their branch lengths are expressed in 
units of genetic/morphological distance or in units of time.” and “Thus we mainly target this 
article at analyses which include a molecular/morphological clock. . . ”. Fixed. 8. Page 7. 
Estimating a dated phylogeny requires a model for the molecular or morphological clock, a 
model of lineage diversification, as well as time information to calibrate the tree. 
We have edited this section to mention diversification models, but note that dated 
phylogenies can also be estimated without such a model (e.g. assuming a uniform 
prior on topologies and some continuous distribution on the branch lengths). 9. Page 
7. Thus, Scaling moves the components designed to advance the chain and are a core part 
of any MCMC inference software. Fixed. 10. Page 10. “In practice, however, character data is 
not available or limited for most groups. . . ” As an alternative here, continuous 
morphological characters could be used in total-evidence analyses (e.g., Álvarez-Carretero 
et al. (2019)[Ref-1], Zhang et al. (2021)[Ref-2]in press). These could be more readily available 
for some taxonomic groups, although the performance of including these characters need 
to be carefully considered (Varón-González et al. (2020)[Ref-3]. Added. 11. Page 12. 5.1 
Inference technical setup. Here I missed some mentioning of MCMCMC and the use of 
heated chains or adjusting chain temperature values to try to improve convergence. I guess 
this is a central topic in the current subject, that should be briefly mentioned by the authors. 
Thank you for pointing out this missing topic. We have now added a section on 
MCMCMC. 12. Page 12.” If an operator is missing. . . ”. Maybe the authors could emphasize 
here that this is a more relevant issue (as far as I can see) in RevBayes, in which we are 
”freer” to customize the inclusion of operators (or anything else, basically!). 
We now mention that this issue is particularly relevant for users of RevBayes.  13. Page 
14. “..and with added constraints such as [ - monophyletic] subclades.”. Clades (or 
subclades) are monophyletic by definition. 
We have clarified this sentence. 14. Page 15. 5.2.1 Priors. Here I missed some advice on 
avoiding the use of improper priors, as in some of the Beast2 default settings. These 
improper priors can also lead to convergence issues sometimes. 
We have added advice on improper priors. 15. Page 18. ” . . . partition morphological 
character data”. Although only weakly related to the main theme of the paper, I think other 
methods of morphological data partitioning and what we know about their performances 
(which is little, if compared to dna. . . ) could be briefly mentioned here, to give a broader 
picture to the reader (e.g., Clarke & Middleton (2008)[Ref-4], Rosa et al. (2019)[Ref-5], Casali 
et al. (2023)[Ref-6]). Added.  
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