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Abstract

Phylogenetic trees establish a historical context for the study of organismal form and1

function. Most phylogenetic trees are estimated using a model of evolution. For molecular2

data, modeling evolution is often based on biochemical observations about changes3

between character states. For example, there are four nucleotides, and we can make4

assumptions about the probability of transitions between them. By contrast, for5

morphological characters, we may not know a priorihow many characters states there are6

per character, as both extant sampling and the fossil record may be highly incomplete,7

which leads to an observer bias. For a given character, the state space may be larger than8

what has been observed in the sample of taxa collected by the researcher. In this case, how9

many evolutionary rates are needed to even describe transitions between morphological10

character states may not be clear, potentially leading to model misspecification. To explore11

the impact of this model misspecification, we simulated character data with varying12

numbers of character states per character. We then used the data to estimate phylogenetic13

trees using models of evolution with the correct number of character states and an14
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incorrect number of character states. The results of this study indicate that this observer15

bias may lead to phylogenetic error, particularly in the branch lengths of trees. If the state16

space is wrongly assumed to be too large, then we underestimate the branch lengths, and17

the opposite occurs when the state space is wrongly assumed to be too small.18

Key words:19
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Bayesian phylogenetics, RevBayes21

Molecular phylogenetics relies on known state spaces (DNA [ACGT], RNA [ACGU]22

or amino acids). In this case, the researcher knows all molecular character states that are23

possible at a character. As we will discuss below, the ability to know the number of24

character states per character enables researchers to make a variety of assumptions about25

how these states relate to each other, character change rates, and character change26

probabilities. Morphological data cannot necessarily rely on this knowledge (Brazeau,27

2011). Much data are recovered from fossils, where the density of our sampling affects our28

ability to correctly identify how many states are present for a character. For example, we29

simply may not observe certain character states if we have few complete samples recovered30

from the fossil’s range. Or, perhaps a character state occurs in a clade that has not been31

sampled, or sampled from ‘complete enough’ specimens to find the character (Fig. 1). This32

can lead to misleading estimates of phylogeny and diversification metrics from trees in the33

fossil record (Wagner, 2000; Ciampaglio et al., 2001; Flannery Sutherland et al., 2019).34

Additionally, observer bias, a phenomenon when the limitations or prior expectations of35

the observer (i.e., an individual coding morphological characters) colors the observations36

produced, may obscure the correct number of character states. This may occur, for37

example, if a character is somewhat cryptic to human eyes, such as infrared coloration in38

butterflies (Stavenga and Arikawa, 2006), resulting in under-reporting of variation.39

Alternatively, over-splitting of variation that is more recognizable to us as human40
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observers has also been documented (Keating, 1985). In this study, we aim to understand41

the effects of incomplete sampling of character state spaces on phylogenetic inference and42

demonstrate that making appropriate assumptions about the range of possible character43

states is crucial for constructing accurate trees.44

While much has been written about the role of the model of character evolution in45

morphological phylogenetics (Wright and Hillis, 2014; Wright et al., 2016; Bapst et al.,46

2018; Klopfstein et al., 2019; Mulvey et al., 2024), character coding plays a role in which47

character models are plausible for a dataset. The number of possible state transitions a48

character can make is determined by how many states are present for that character. For49

example, a change from a ‘0’ state for a character to a ‘2’ state is simply impossible if the50

‘2’ character state does not exist (Fig. 2). In a likelihood-based model, possible changes51

between character states will be codified in the Q-matrix, which encodes the rates of52

different character-to-character changes (Fig. 2). The size of the Q-matrix corresponds to53

the number of states. It is assumed in most models that the number of states (often called54

k ) is known without error. This has been explored in non-model based approaches by55

Cuthill (2015), where the author demonstrated that character incompatibility and inferred56

homoplasy can increase when the state space is larger, even if homoplasy actually declined.57

Assumptions about character states determine whether the transition rates between58

the character states are similar or different, whether different rates of evolution are59

required for different characters, and whether a character state is conserved or not. For60

example, if a character state is lost on a branch, then observed in the descendants of that61

branch and coded as the same character state, it will be assumed to be a reversal or regain62

of that character state (Cuthill, 2015). If the researcher codes the reversal as a new state,63

as one might do for a Dollo process, this is no longer a regain of the character state, but64

the innovation of a new character state (Gould, 1970; Goldberg and Igi´c, 2008). In this65

case, the state space of the phylogenetic model must be larger, implying a model with66

more possible changes between characters (Fig. 2). In this way, choices made about the67
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homology statements of a character implicitly make a statement about the process of68

evolution. How characters are coded changes the models that may be considered for the69

data, even before a model of evolution is chosen in an analysis.70

As an example of this, imagine a character, such as egg-laying in reptiles. This71

character is often coded as a 2-state character (oviparity and viviparity), with the root of72

the tree generally assumed to be oviparous (Wright et al., 2015). Therefore, any regain of73

oviparity in a clade that is viviparous is considered a re-evolution of the oviparity74

character state, rather than a potentially new character state. In this case, the number of75

transitions possible will be that of a binary character, as opposed to a multistate character.76

However, if the researcher has chosen to code the character as a multistate, polar character77

(Stevens, 1980), in which states are expected to be ordered, or a Dollo character, which is78

expected not to reverse, then a simple binary model of substitution is no longer adequate.79

In these cases, the reappearance of oviparity in a viviparous clade must be coded as a new80

character state, necessitating a Q-matrix with a larger state space. This can be visualized81

on Figure 2. As shown on Figure 3, misspecification of the state space can lead to82

mis-estimation of branch lengths.83

Models of evolution then make further assumptions about character evolution. In84

most modern molecular and morphological analyses, a transition rate matrix —also called85

Q-matrix— is set up to model changes between the different character states (Felsenstein,86

1981; Lewis, 2001). This Q-matrix, at minimum, specifies the exchangeability rates87

between character states. A Q-matrix can range from making very simple assumptions88

about the process of evolution, such as assuming equal rates of change between all states,89

to incorporating complex models that account for variable rates of change and unequal90

base frequencies (Felsenstein, 1981; Hasegawa et al., 1985). For example, the Jukes-Cantor91

(JC) model of sequence evolution (Jukes and Cantor, 1969) is the simplest model assuming92

equal rates of transitions between any character state, and is used for both molecular93

sequence data and morphological data. Let us focus on molecular data first. In a nucleotide94
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dataset, the JC model assumes that all the bases (A, T, G, C) have the same frequency95

and the rates for their transition is the same. That is, there are the same number of each96

base type, and each base is equally likely to change to any other base type. When this was97

applied to morphological data (Lewis, 2001), these assumptions were retained: that the98

equilibrium frequencies of all characters are the same, and that all changes between99

character states are equally likely. More complex models, such as the Felsenstein 81 model100

(Felsenstein, 1981) have been applied to morphological data (Nylander et al., 2004; Wright101

et al., 2016), and assume characters may have differential transition rates as a function of102

their frequencies. Models such as the General Time Reversible model (GTR) (Tavar´e,103

1986), which is among the more complex models, have not been applied to morphological104

data. This is because coding by human interpretation of state is inherently arbitrary, and105

likelihoods of the morphology models must be invariant to how the states are coded (i.e.,106

which state is denoted as ‘0’ and which as ‘1’; Lewis (2001)). Note that the invariance107

principle is also violated for the Felsenstein 81 model, and special extensions such as108

symmetric mixture models are needed (Nylander et al., 2004; Wright et al., 2016).109

The Q-matrix is a core component of the phylogenetic model, specifying the110

transition rates of different types of evolutionary changes in the observed dataset.111

Therefore, we might expect that error in correctly-sizing the Q-matrix could lead to112

problems in estimating the phylogeny correctly. There are several ways this error could113

arise. As covered above, sampling error could lead to misunderstanding of the state space.114

Additionally, for molecular data, the state space can be assumed to be constant across115

sites. It is generally assumed that any specific nucleotide can occur at any site, whether or116

not it is observed to do so. For amino acids, mixture models such as the CAT model117

(Lartillot and Philippe, 2004) can be used to virtually reduce the state space for sites if118

certain amino acids are not present/permitted at particular sites. This is not the case in119

morphological data, where different characters, by their nature will have different numbers120

of states. Some may be presence/absence, others may be multistate. Therefore, the121
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Q-matrix cannot be treated as invariant across characters, and the dataset may need to be122

split up according to the state space of the character. Without doing so, this may lead to123

characters being modeled under incorrect Q-matrices.124

In this study, we used simulations to assess two issues: The first simulation assuming125

an inappropriately-small Q-matrix. This simulates the effect in Fig. 1, observer bias in the126

number of character states. The second simulation is failing to account for Q-matrix127

heterogeneity by not breaking up data matrices by character state space. This will lead to128

the assumption that all characters evolved using the largest state space (see Figure 3). For129

many characters, this will mean the state space is overly-large. For example, if a character130

is binary, but the largest number of character states in the matrix is ‘7’, the model will131

assume there are additional 5 character states for the binary characters that simply have132

not been observed. This would imply far more evolutionary transitions are possible than133

truly are. On the other hand, if we have a too-small state space, we can end up134

underestimating the number of evolutionary transitions. We might expect to see this affect135

branch lengths or topology. Finally, we looked at a set of simulations under conditions136

consistent with long-branch attraction (LBA, Felsenstein (1978)). In this manuscript, we137

have highlighted the consequences of the observer bias in phylogenetic tree inference.138

Methods139

State Space Partitioning140

As mentioned in the previous section, the number of states can vary between characters in141

a morphological matrix which can lead to difficulties modeling the evolution of142

morphological characters. We approached this issue in two ways in our inferences. In the143

first approach, we treated all the characters as evolving under the same model. In this case144

we specified the dimension of the Q-matrix to be equal to the maximum state observed in145

the data matrix. For example, if a data matrix contained 3-state, 4-state and 5-state146

characters, the Q-matrix dimension was set up to be 5. The 3-state and 4-state characters147
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in this approach would also be modeled with a Q-matrix with state space 5. In the second148

approach, we separated the characters based on the maximum number of states and apply149

a Q-matrix sized by the maximum state value to the set of characters with the same150

maximum state. Under this approach the data simulated under a Q-matrix with a state151

space 4 would be partitioned to three state spaces. This is because while simulating under152

state space 4, it would be possible to have 2-state, 3-state and 4-state characters. We refer153

to the first approach as ‘Unpartitioned model’ and the second approach as the154

‘Partitioning by state model’.155

In previous generation software, such as MrBayes (Ronquist and Huelsenbeck, 2003;156

Ronquist et al., 2012), character matrices are automatically split up by user-reported157

character state number. Even though this was done, its effectiveness in representing the158

true model was never tested. Here, we use the software RevBayes (H¨ohna et al., 2014;159

Höhna et al., 2016) where the researcher has more control in designing the model. To160

automate the splitting up of a phylogenetic data matrix by maximum state number, we161

have implemented a method in RevBayes, setNumStatesPartition(). This implementation162

helps reduce researcher burden by automatically setting up the partitions according to the163

state space.164

An example with these approaches can be found in the online supplementary165

material.166

Simulations167

We simulated datasets with different numbers of character states possible per character.168

The datasets were simulated using an empirical tree. This tree comes from a paleontological169

dataset of 41 taxa and 42 characters (Barden and Grimaldi, 2016). We chose this dataset170

because small dataset sizes are fairly standard for morphological character matrices171

(Wright et al., 2016; Barido-Sottani et al., 2019). We simulated the characters under the172

Mk model of morphological evolution (Lewis, 2001) using the software RevBayes (H¨ohna173
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et al., 2016). We did not condition on variability; therefore these datasets can contain174

invariable and parsimony-non-informative characters. We simulated two dataset sizes, 42175

characters (the size of the true Barden and Grimaldi dataset) and 100 characters.176

To examine the effect of the base Q-matrix size, we simulated data under177

Q-matrices with either 2, 3, 4 or 5 states, in varying proportions as described in the178

following sections. We simulated 1,000 datasets for each dataset and Q-matrix size. An179

overview of the simulations performed in this study can be seen in Table 1.180

Unpartitioned Simulations— Under the unpartitioned simulation scheme, we181

simulated characters given a specific Q-matrix sized by the maximum character states. We182

set the maximum character state to 2, 3, 4, or 5 to observe the effect of varying data sizes.183

We did not partition the dataset and they were simulated using the same maximum184

character state. For a dataset with a Q-matrix state space 4, it would then be possible to185

have a 2-state, 3-state, and 4-state characters. We then analyzed the resulting datasets186

under an unpartitioned model and an automatic partitioning by maximum state. For the187

unpartitioned model analyses, we specified the state space to be equal to the largest state188

observed in the data matrix. This would mean that, in this model, the number of189

transitions among the character state would be modeled appropriately. For the partitioning190

by state analyses, we split the data matrix according to the maximum character state and191

specified the Q-matrix according to the state space number. This will specify too few192

possible transitions for some of the characters in the matrix, though the exact proportion193

of characters with a lower number of transitions will vary among the simulations.194

In order to examine the effect of unsampled character states, we ran a set of missing195

data simulations in which we replaced the largest character state with missing data (‘?’).196

For example, if the largest state in the matrix was ‘4’, all ‘4’s were replaced with missing197

data (‘?’). This simulated the effect shown in Fig. 1, in which one character is unsampled198

in the focal clade, and therefore unrepresented in the analysis. In this case, the researcher199

is unaware of all the possible character states for a character and cannot specify the200
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Q-matrix correctly. For example, if a character had three possible state, but only two have201

been sampled, the researcher will think that a binary model describes the trait best. For202

these datasets as well, we performed analyses using the unpartitioned and automatic203

partitioning by state models. The partitioning by state model is the same as above where204

the character states are split up and the Q-matrix is specified according to the character205

state value. For the unpartitioned model, the size of the Q-matrix is decremented by one206

(i.e., reflecting only the observed state space). Thus, none of the two inference models207

corresponds to the true model under which the data were simulated.208

Partitioned Simulations — Under the partitioned simulation scheme, we specified209

the state space for certain proportion of the data during the simulation. For each dataset,210

either 50% or 75% of the dataset was binary. The remaining proportion of the data211

consisted of with 3, 4, or 5 character states. Note that in this simulation scheme, it is212

possible to have characters with states 3 or 4 when the matrix is specified to be 5.213

In order to ensure that all the characters have maximal state we also implemented a214

rejection sampling in the partitioned simulations. We did rejection sampling because when215

simulating under a Q-matrix with size 4, it is also possible to simulate a 3-state character.216

Under this simulation scheme, we would remove this character and re-simulate in order to217

maintain the inclusion of maximal state character.218

We then analyzed the datasets obtained under this simulation scheme under three219

different models – the unpartitioned model, the automatic state space partitioning model,220

and the pre-specified partitioning model. In the unpartitioned model analyses, we would221

then have a mix of binary and other states analyzed under the larger state space implying222

a greater number of transitions for the binary characters as well. This model223

misspecification would vary in different datasets but we are guaranteed to have some224

proportion of the dataset with a misspecified model. For datasets with binary and trinary225

characters, this misspecification may be small. But for datasets split between binary and226

five-state characters, it will be larger. In the automatic state space partitioning, we split227
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the data matrix into separate subsets based on the character state and specified the228

Q-matrix with the state space equal to the value of the maximum character state. In229

principle, the automatic partitioned scheme should obtain a close match to the true data230

partitioning, however, it is possible that some characters will be assigned into a subset231

with a too small Q-matrix. In addition to these inference models, we also specified the232

model that we simulated under for the analyses, i.e., specifying the correct partitions and233

Q-matrices. This would help us compare the effectiveness of partitioning by state.234

Long-Branch Attraction Simulations— We also produced a set of simulations that235

approximate long-branch attraction. In this set of simulations, we tested partitioning by236

state under varying long branch conditions.237

In these simulations, we used a four-taxon tree in which the branches leading to tips238

B and C are long compared to the branches leading to A and D. We specified the internal239

branch length to be 0.07 because this value represents a fairly strong LBA. For the long240

branches (i.e., branches leading to B and C), we specified branch length values of 0.5 and 1241

to check for different strength of LBA. The two shorter branches were set to be 0.15,242

approximately 3 times shorter than the smaller value of the long branches. This would give243

us a chance to explore the effectiveness of partitioning by state in different LBA conditions244

compared to the unpartitioned analyses.245

As described in Unpartitioned Simulations, we simulated 1,000 datasets for different246

values of maximum state. We simulated datasets using maximum state of 2, 3, 4, and 5 as247

in the previous simulations.248

Phylogenetic Estimation249

Estimations were performed in RevBayes (H¨ohna et al., 2016), under a standard250

phylogenetic inference model, except for the Q-matrix as described above. The prior for251

the branch length was set to an exponential distribution with a hyperparameter from a252
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hyper-prior with a log-uniform distribution between 0.001 and 1000. We also explored253

additional branch length priors, including exponential prior and hyper-prior distributions254

with various means. We ran 2 replicate Markov chain Monte Carlo simulations for each255

dataset for up to 100,000 generations and assessed for convergence using the R package256

Convenience (Fabreti and Höhna, 2022), which checks for convergence based on split257

frequencies. This is an objective, automatic and reproducible convergence assessment258

diagnostic. The simulations were performed on the Louisiana Optical Network Initiative259

(LONI) High Performance Computing managed by Louisiana State University at Baton260

Rouge, LA, and our own in-house palmuc HPC from LMU Munich.261

Phylogeny Processing262

We used the symmetric difference (Robinson and Foulds, 1979, 1981) and tree length263

measures to compare the empirical tree (tree under which the data were simulated) with264

the trees estimated from this study. For the tree length measure, we used the median of265

the posterior distribution of the tree length from each analyses, and to obtain the266

symmetric difference measure, we used the R packages ape (Paradis and Schliep, 2019) and267

phangorn (Schliep, 2011). The symmetric difference compares the tree in topology,268

providing a whole-number measure of the number of differences between two or more trees269

under comparison. We summarized the posterior distribution of trees from our analyses270

into a maximum a posteriori (MAP) tree (Cranston and Rannala, 2007) and used the271

MAP tree to calculate the symmetric difference. We use this number, divided by the272

number of tips in the tree to get a 0 (no error) to 1 (tree completely different) measure of273

error. Finally, tree length is the sum of branch lengths on a tree, providing a measure of274

total number of expected substitutions across the tree. Results were visualized with the275

ggplot2 (Wickham, 2011) and ggridges (Wilke, 2022) R packages.276
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Results277

Unpartitioned Simulations278

For datasets simulated under unpartitioned model, there was not a strong signal of279

topological difference between partitioning by state and unpartitioned models (Fig. S7) for280

both complete character sampling and missing maximum state. In these datasets, the281

symmetric difference scores are distributed roughly the same for both the unpartitioned282

and partitioned models. Branch lengths for the trees analyzed under unpartitioned and283

partitioning by state models also have a similar distribution (Fig. 4). Nevertheless,284

partitioning by state has a small impact on branch length estimates and are generally285

estimated to be longer (see also Fig. 3). Note that both models seem to be influenced by286

the prior distribution in branch lengths as the branch lengths are slightly overestimated287

(see Brown et al. (2010), Rannala et al. (2012) and Fabreti and H¨ohna (2023) for the288

effects of choice of priors for branch length).289

For the datasets with missing data, it seems that if the largest possible character290

state is incorrect, this can lead to trees that are much shorter than the true tree, regardless291

of whether or not the remaining characters are correctly partitioned. As shown on Fig.  2,292

eliminating one character state greatly reduces the number of possible transitions for a293

data with three character states as per the Q-matrix. This can lead to a greater294

underestimate of the total number of expected changes per site. On the other hand, for295

data with four or five character states, eliminating one character state reduces the number296

of possible transitions relatively less than in the case for three character. This can be seen297

in Fig. 2 as well as our results from Unpartitioned Simulations (Fig. 4).298

Furthermore, we performed simulations to examine the effect of a larger number of299

states missing from the morphological matrix, i.e., more extreme cases of observer bias.300

First, we simulated datasets under 10 state Q-matrix and replaced either 5 states or 8301

states with a ‘?’ indicating missing data. Under these conditions, where a large number of302

states are missing, the branch lengths are underestimated as the number of missing303
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character states increase (Fig. S2). Second, we rendered characters with many states to be304

binary (simulating the effects of large variation being discretized). In these simulations, we305

simulated characters under the unpartitioned model with 4, 10 and 20 states. We then306

rendered the characters binary by changing half of the character states to 0 and the other307

half to 1. Changing the character matrices to binary led the branch lengths to be308

underestimated as the original state space increased. When 4-state matrices are changed to309

binary, the effect of underestimating the branch lengths is lesser than when 20-state310

matrices are changed to binary (Fig. S3).311

Partitioned Simulations312

The effect of partitioning by state during analyses can be more strongly seen in the313

datasets that are simulated under a partitioned model (Figs. 5 and S5). As can be seen in314

Fig. 5, if 75% of the dataset contained binary characters and the remaining 25% contained315

3, 4 or 5 states, analyzing the dataset using the state space of the maximal state value led316

to more phylogenetic error. Meeting our expectation, this effect is lessened in the datasets317

with 50% binary and the remaining 50% being 3, 4, or 5 state. Rejection sampling allowed318

us to confirm that we had characters with maximal state value in our dataset, and these319

datasets also show that partitioning by state is useful in conditions where different320

characters have different state spaces.321

As can be seen in Fig. 5, the tree length distribution obtained under the322

partitioning by state model is similar to the distribution obtained under the pre-specified323

partition. Thus, our automatic partitioning most likely constructed data partitions that324

resembled the pre-specified partitions as almost all characters included the maximum325

state. Here, partitioning by states helps alleviate the issues of model misspecification due326

to an unknown state space.327
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Long-Branch Attraction Simulations328

For the simulations in long-branch attraction conditions, an effect of partitioning by state329

can be seen in Fig. 6. During long branch attraction conditions, the number of true trees330

recovered among the replicates increased as the number of states in the data increased331

both for unpartitioned analyses and partitioning by states analyses. In the first scenario,332

when the long branch was specified to be 0.5, there is a higher percentage of true tree333

recovered than in the second scenario, when the long branch was 1. In both cases, there is334

a higher number of true trees recovered with the unpartitioned analysis than the335

partitioning by state analyses, which is expected as the data were simulated under the336

unpartitioned model.337

During phylogenetic inconsistencies such as LBA, it appears that using a larger338

state space is useful in obtaining more accurate trees. Also, the effect of having more data339

is reflected in our results, having more number of states gradually yielded more correct340

trees than lesser number of states in both LBA conditions.341

Discussion342

General issue of coding in morphologicalcharacters343

Morphological characters have always been an important means of estimating phylogenetic344

trees. This has historically been accomplished via parsimony, and as such many345

fundamental questions remain about how to model morphological characters appropriately.346

Since the inception of including morphological characters in Maximum Likelihood and347

Bayesian analyses (Lewis, 2001), much work has been contributed on modeling348

among-character rate variation (Wagner, 2012; Harrison and Larsson, 2015; Mulvey et al.,349

2024), about exchangeabilities and character frequencies (Nylander et al., 2004; Wright350

et al., 2016; Klopfstein et al., 2019), and how to partition a data matrix (Clarke and351

Middleton, 2008; Tarasov and Genier, 2015; Gavryushkina et al., 2017; Rosa et al., 2019;352

Gon¸calves et al., 2022; Mulvey et al., 2024). All these questions rely on knowledge of the353
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phylogenetic characters being modeled.354

At a more fundamental level, all of the above applications rely on having a matrix355

that describes the rate of changes between sites, a Q-matrix. A Q-matrix must be specified356

at a given size, and that size is determined by the researcher. However, the true number of357

states at a character may be obscured from the researcher. For example, as shown on358

Fig. 1, patchy sampling in the fossil record may lead to some character states not being359

observed, either because the organisms expressing that character state are never sampled,360

or the fossils themselves are incomplete and lack the character (and therefore state).361

Additionally, while coding for both extant and extinct taxa, some character states may not362

be observable by a human observer, or observer bias or error may lead to incorrect coding363

of states. While nucleotide polymorphisms and sequencing error are a problem for364

molecular data, the Q-matrix always remains the same size: 4, the number of nucleotides.365

Morphologists cannot rely on this default assumption. The knowledge of state space has366

been shown to be consequential for parsimony analyses as well (Brazeau, 2011; Cuthill,367

2015).368

In our set of experiments, we examined two sources of Q-matrix error: one in which369

the correct number of character states cannot be known due to missing data, and the370

Q-matrix is therefore too small for some characters. The other treatment is declining to371

partition by character state space, in effect using a Q-matrix that is too large for most372

characters. In our theoretical exploration on a single branch, the first treatment led to373

overestimation of the branch length while the second treatment led to underestimation of374

the branch length (Fig. 3). Both of these treatments introduced phylogenetic error, though375

not always enough to mislead a conclusion from the analysis. In the unpartitioned376

simulations, there is little effect on topology from over-sizing the Q-matrix. This could be377

due to the simulated data almost always displaying the maximum character state, and378

therefore no difference between between automatic partitioned and unpartitioned analyses.379

However, in the partitioned simulations, when all the larger state space characters have380
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exactly the same state space, and are inappropriately parameterized in the exact same381

way, we observe a stronger signal of phylogenetic error (Fig. 5), which would be expected382

given the bias in branch lengths under theoretical model misspecification conditions in383

Fig. 3. Thus, we may conclude that the magnitude of the misspecification error matters384

greatly to the final conclusions. When the underlying tree has long-branch attraction, we385

additionally find the tree search being highly influenced by appropriate model specification386

(Fig. 6). Under LBA conditions, there is a clear tendency for partitioned analyses to387

estimate more nodes of the tree incorrectly. This implies that for difficult problems, such as388

LBA, it is more important to parameterize models appropriately.389

The effect of model misspecification on branch lengths has been known since the390

first inclusion of morphology with likelihood and Bayesian models (Lewis, 2001). When391

describing the Mk model, Lewis noted that failing to account for the fact that392

morphologists typically do not collect invariant characters would lead to an inflation of393

branch lengths. Further, morphologists often do not collect characters that differ at a394

single taxon in the focal clade. This leads to a further reduction in the number of low395

evolutionary rate characters, causing more inflation of branch lengths. As seen on Fig.  4,396

tree lengths of simulation replicates analyzed under the correctly-specified model of397

evolution typically center on the true tree length. When there is an incorrect maximum398

state (too-small Q-matrix), this means that, in the model, there are fewer possible399

transitions that a character can make than in reality (Fig. 2), then inferred trees are too400

short. With too few changes possible, fewer changes are inferred. Therefore, the401

underestimation in this set of simulations is expected (Fig. 3). In unpartitioned models, in402

which the Q-matrix is too large for some characters, we also observe this effect. This is due403

to a larger proportion of characters not displaying changes into larger character state404

spaces, lowering the overall rate of changes observed across the tree. In effect, the model405

conflates the lack of transitions to the 4 and 5 character states in binary and trinary406

characters to a low rate of evolution, and this is consistent with the relatively short branch407
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lengths.408

On the LBA trees, the tree topology itself tends to be misled. As seen on Fig.  6, the409

partitioned by state model recovered lesser number of true trees than the unpartitioned410

model especially when there was lesser number of states in the dataset. For difficult411

problems, such as LBA, therefore, it appears to be very important to use an appropriate412

model of evolution to ensure correctness in topology. But the effect of branch lengths413

cannot be ignored: while likelihood-based models are less prone to LBA artifact414

(Felsenstein, 1978), the likelihood of a tree is still dependent on the likelihood of the415

topology and the branch lengths. Strong LBA can still pose problems for Bayesian416

analyses.417

In this study, we have examined how partitioning by character state space impacts418

phylogenetic estimation. As interest in genuine inclusion of morphological data continues419

to grow, spurred by methods such as the Fossilized Birth-Death process (Heath et al.,420

2014) and growing acknowledgment that fossils are crucial for comparative methods, we421

must ask fundamental questions about morphological character coding. We have422

demonstrated a consistent effect of incorrect character state partitioning on phylogenetic423

estimation. In particular, as the topological question becomes more difficult, such as when424

LBA conditions persist, the effect of choosing a correctly-partitioned model is more425

important. However, this study is not the end. Many more questions about how426

morphological data are modeled in a phylogenetic context and the general applicability of427

molecular methods for estimation remain, and we encourage researchers to think carefully428

and thoroughly about the choices they make when modeling morphological characters.429
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Table569

Table 1. A short overview of the different simulation schemes presented in this study.

Simulation Scenarios Correct model
Unpartitioned Simulations (correct maximum state) un-partitioned model
Unpartitioned Simulations & replacing max state with
‘?’ (Missing maximum state)

none available

Partitioned Simulations with 75% binary partitioned model
Partitioned Simulations with 50% binary partitioned model
Rejection Sampling with 75% binary partitioned with additional ascertainment bias

correction (not implemented)
Rejection Sampling with 50% binary partitioned with additional ascertainment bias

correction (not implemented)
LBA with unpartitioned model un-partitioned model
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Figures570

Fig. 1. This figure displays a fundamental difficulty with characterizing a morphological state space. Unsampled
lineages are indicated with dotted edges. In this case, there is a single character with three states (triangle, circles,
and squares). As the lineage containing squares is unsampled, one may assume that the state space only includes
two states, and thus any Q-matrix generated by a researcher from the sampled data will not appropriately
represent the character state space.

Fig. 2. At left is a multistate character for which only two character states are included in the model. This is how
we would construct a Q-matrix for the trait in Fig. 1. In the case of an unordered model, it is assumed that
backwards and forwards transitions are allowed between all states. In the case where one state is not observed, in
this case state 3, transitions to and from that character are not considered under the model. In this case, over half
of the possible character state changes are removed by failing to sample the third state. In the case of the four-state
character, when a state is missing, only 50% of the possible transitions are removed.

Fig. 3. Likelihoods of branch lengths given a number of mismatches between the state space and the Q-matrix. We
assumed that in all experiments the ancestral states are ‘0’. In graphic a), there are 75 characters for which there
are no observed transition (observed state being ‘0’) and 25 for which there is an observed transition (observed
state being ‘1’), thus at least one actual transition. In graphic b), there are 50 characters for which there are no
observed transitions (i.e. state ‘0’ is observed) and 50 characters for which there is an observed transition (i.e. state
‘1’ is observed). We computed the (normalized) likelihood for the length of this branch under an Mk model with
k = 2, k = 5, k = 10 and k = 20. If we assume a too large state space (true k = 2 but assumed k < 2), then the
branch lengths are underestimated. Reversely, if we assume a too small state space (true k = 5 but assumed k = 2),
then the branch lengths are overestimated.

Fig. 4. This figure shows the distribution of tree-lengths for each set of simulation conditions for the large dataset.
In the complete character sampling simulations, all character states are sampled. In the missing maximum state
simulations, the maximum state is replaced with missing data (‘?’) in the data matrix; analogous to the right-hand
panel of Fig. 2). The true tree length (6.21) is indicated by the dashed line. The dotted line indicates the prior
mean for the tree length. See Fig. S4 for the results from small dataset.

Fig. 5. On the top panel of this figure is shown simulations in which 25% of characters come from a state space
larger than binary, and 75% come from a binary matrix. The dashed line indicates the tree length of the true tree
and the dotted line is the prior mean for the tree length. Across the top the state spaces are labeled - Three-Two,
for example corresponds to 25% or 50% of characters having three states. In this case, not partitioning means most
characters are being analyzed under a misspecified model. On the bottom row are datasets in which 50% of
characters will have a misspecified model.

Fig. 6. Percentage of true tree recovered (RF = 0) among the 1000 replicates. Dashed line indicates unpartitioned
analyses and the solid line indicates analyses using partitioning by maximum state.
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