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Abstract

We consider the problem of comparison-sorting an n-permutation S that avoids some k-permutation ⇡.
Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak [CGK`15b] prove that when S is sorted by inserting
the elements into the GreedyFuture [DHI`09] binary search tree, the running time is linear in the extremal
function ExpP⇡ b ´

‚
‚ ‚

¯
, nq. This is the maximum number of 1s in an n ˆ n 0–1 matrix avoiding P⇡ b ´

‚
‚ ‚

¯
,

where P⇡ is the k ˆ k permutation matrix of ⇡, and P⇡ b ´
‚

‚ ‚

¯
is the 2k ˆ 3k Kronecker product of P⇡ and

the “hat” pattern
´

‚
‚ ‚

¯
. The same time bound can be achieved by sorting S with Kozma and Saranurak’s

SmoothHeap [KS20].
Applying o↵-the-shelf results on the extremal functions of 0–1 matrices, it was known that

ExpP⇡ b ´
‚

‚ ‚

¯
, nq “

#
⌦pn↵pnqq,
O

´
n ¨ 2p↵pnqq3k{2´Op1q ¯

,

where ↵pnq is the inverse-Ackermann function. In this paper we give nearly tight upper and lower bounds
on the density of P⇡ b ´

‚
‚ ‚

¯
-free matrices in terms of “n”, and improve the dependence on “k” from doubly

exponential to singly exponential.

ExpP⇡ b ´
‚

‚ ‚

¯
, nq “

$
&

%
⌦

´
n ¨ 2↵pnq

¯
, for most ⇡,

O

´
n ¨ 2Opk2q`p1`op1qq↵pnq

¯
, for all ⇡.

As a consequence, sorting ⇡-free sequences can be performed in Opn2p1`op1qq↵pnqq time. For many corollaries
of the dynamic optimality conjecture, the best analysis uses forbidden 0–1 matrix theory. Our analysis may
be useful in analyzing other classes of access sequences on binary search trees.

1 Introduction

The problem of sorting restricted classes of permutations has been studied for decades. Knuth [Knu73]
observed that the class of permutations sortable by a stack is precisely the set of p2, 3, 1q-avoiding permutations;
see [Tar72, BGH`10, MSS19, HI01, EG17a, EG17b, FP08, AB15, AMR02] and Bóna’s survey [Bón02] for models
of restricted sorting devices. In general, an n-permutation S avoids a k-permutation ⇡ if there do not exist indices
i1 † ¨ ¨ ¨ † ik for which

@p, q P rks. Spipq † Spiqq ñ ⇡ppq † ⇡pqq.
In this paper we consider the algorithmic problem of comparison-sorting a ⇡-avoiding S.
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Decision Tree Complexity. Fredman [Fre76] observed that if S is known to be selected from a permutation
set �, that S can be sorted with Opn ` log |�|q comparisons. The Stanley-Wilf conjecture (see Bóna [Bón22])
states that if �⇡ is the set of all ⇡-avoiding permutations, that |�⇡| § pcp⇡qqn, for some constant cp⇡q. This
conjecture was reduced to the Füredi-Hajnal conjecture [FH92] by Klazar [Kla00] and both conjectures were
proved by Marcus and Tardos [MT04]. Together with Fredman [Fre76], this implies that the decision-tree
complexity of sorting S is Opn log cp⇡qq “ Okpnq. Subsequent work has attempted to pin down the leading
constant [Kla00, MT04, Cib09, Fox13, CK17]. Fox [Fox13] proved that1

n log cp⇡q “

$
&

%

Opknq For all k-permutations ⇡,
⌦pk1{2

nq For some k-permutation ⇡,
⌦ppk{ log kq1{2

nq For almost all k-permutations ⇡.

Algorithmic Complexity. There are two natural ways to approach the algorithmic complexity of sorting
a ⇡-free S. The first is to use knowledge of ⇡ to structure the sorting process. This approach is su�cient
to sort optimally in Opnq time when k “ 3 [Knu73, Art07], and has had limited success for some patterns
with k “ 4. Arthur [Art07] gave Opnq-time sorting algorithms when ⇡ P tp1, 2, 3, 4q, p1, 2, 4, 3q, p2, 1, 4, 3qu, and
Opn log log log nq-time sorting algorithms when ⇡ P tp1, 3, 2, 4q, p1, 3, 4, 2q, p1, 4, 2, 3q, p1, 4, 3, 2qu. The oblivious

approach to sorting S is to simply use a general-purpose sorting algorithm, but analyze its behavior when
S happens to be ⇡-free. This is the approach taken by Chalermsook, Goswami, Kozma, Mehlhorn, and
Saranurak [CGK`15b], Kozma and Saranurak [KS20], and by our paper. Consider these two general-purpose
sorting algorithms:

BST Sort. Fix some dynamic binary search tree (BST) algorithm T . Beginning from an empty BST, insert the
elements Sp1q, . . . , Spnq in that order, reorganizing the tree between inserts as T dictates. The number of
comparisons is the sum of depths of pSpiqq1§i§n at the time of their insertion; the time is linear in the
number of comparisons and that needed to reorganize the tree via rotations.

Heap Sort. Fix some heap data structure H. Insert the elements Sp1q, . . . , Spnq into the heap in that order, then
perform n Delete-Min operations, thereby sorting the sequence.

Chalermsook et al. [CGK`15b] analyzed the performance of BST Sort when T is GreedyFuture [DHI`09],
an online BST that is Op1q-competitive with the natural o✏ine Greedy algorithm [Luc88, Mun00]. Define AS

to be the nˆn 0–1 permutation matrix where ASpi, Spiqq “ 1. If S avoids a k-permutation ⇡, then AS is P⇡-free,
where P⇡pi,⇡piqq “ 1. Define AGreedypSqpi, jq “ 1 i↵ the element with rank j is touched by the insertion of Spiq.
Chalermsook et al. [CGK`15b] proved that any occurrence of the “hat” pattern

` ‚
‚ ‚

˘
in AGreedypSq contains, within

its bounding box, an input point of AS , and as a consequence, AGreedypSq avoids Q “ P⇡ b ` ‚
‚ ‚

˘
, where b is the

Kronecker product, i.e., each 1 of P⇡ is replaced by
` ‚

‚ ‚
˘
. (Following convention, 0–1 matrices are depicted with

blanks for 0s and bullets for 1s. See Section 2 for explicit definitions regarding 0–1 matrices.) For example, if
⇡ “ p1, 3, 2, 4q, ordering rows from bottom to top:

P⇡ “

¨

˚̊
˝

‚
‚

‚
‚

˛

‹‹‚ Q “ P⇡ b ` ‚
‚ ‚

˘ “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

˛

‹‹‹‹‹‹‹‹‹‹‚

If X is a fixed 0–1 pattern matrix, define ExpX,nq be the maximum number of 1s in an nˆ n matrix that avoids
X. Thus, the running time of [CGK`15b] can be bounded in terms of the quantity ExpQ,nq without knowing
exactly what it is.

Theorem 1.1. (Chalermsook, Goswami, Mehlhorn, Kozma, and Saranurak [CGK
`
15b]) If S is ⇡-

free, BST Sort using GreedyFuture sorts S in OpExpQ,nqq time, where Q “ P⇡ b ` ‚
‚ ‚

˘
.

1
The manuscript [Fox13] only gives an ⌦pk1{4

nq lower bound on the decision tree complexity of sorting a ⇡-free S. The ⌦pk1{2
nq

lower bound is unpublished.
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Observe that Q is a 2k ˆ 3k light pattern: it contains exactly one 1 per column. There is a well known
connection between light patterns and generalized Davenport-Schinzel sequences [Kla92, FH92, Kes09, Pet11b,
Pet15b]. Applying a simplifying transformation that collapses the first two rows [FH92, Thm. 2.2] and then
[Pet15b, Thm. 1.3], we have the following general upper bound, where ↵pnq is the inverse-Ackermann function.

(1.1) ExpQ,nq §

$
&

%

2n↵pnq ` Opnq k “ 2

n ¨ 2p1`op1qq↵tpnq{t!
k odd, t “ p3k ´ 5q{2

n ¨ p↵pnqqp1`op1qq↵tpnq{t!
k even, t “ p3k ´ 6q{2

Thus, by Theorem 1.1, GreedyFuture sorts S in Opn ¨ 2↵pnq3k{2´Op1q q time. On the lower bound side, we know
that ExpQ,nq “ ⌦pn↵pnqq as every Q contains one of the two patterns shown below, which are associated with
order-3 Davenport-Schinzel sequences [HS86, FH92].

¨

˝
‚

‚
‚ ‚

˛

‚

¨

˝
‚

‚
‚ ‚

˛

‚

The Greedy algorithm is theoretically attractive, but cumbersome to implement online as GreedyFu-

ture [DHI`09]. Kozma and Saranurak [KS20] introduced a new heap data structure called a SmoothHeap,
and proved Heap Sort with SmoothHeap is equivalent to BST Sort with Greedy. Moreover, SmoothHeap is
“naturally” an online algorithm, and is easier to implement than GreedyFuture. One can define an n ˆ n 0–1
matrix ASmoothHeappSq in the same way, where ASmoothHeappSqpi, jq “ 1 i↵ the ith Delete-Min touches the element
with rank j. It is proved that ASmoothHeap avoids a matrix equivalent to Q.2

Theorem 1.2. (Kozma and Saranurak [KS20]) If S is ⇡-free, Heap Sort using GreedyFuture sorts S in

OpExpQ,nqq time, where Q “ P⇡ b ` ‚
‚ ‚

˘
.

The main outstanding question is whether it is possible to sort in Okpnq time, and in particular, whether the
Greedy- or SmoothHeap-based algorithms of [CGK`15b, KS20] already sort in time Okpnq. It would also be
interesting to give a non-trivial upper bound on the complexity of BST Sort with a Splay Tree [ST85], or Heap
Sort with a Pairing Heap [FSST86].

1.1 New Results

1.1.1 Upper Bounds Our main result is a new upper bound on the extremal function of P⇡b` ‚
‚ ‚

˘
-type matrices

that has a much weaker dependence on k, which immediately gives better upper bounds on the complexity of
sorting ⇡-free sequences via [CGK`15b, KS20].

Theorem 1.3. Let P⇡ be the k ˆ k permutation matrix of ⇡ and Q “ P⇡ b ` ‚
‚ ‚

˘
be a 2k ˆ 3k light matrix. Then

ExpQ,nq § n ¨
´
2Opk2q ` Op↵pnqq3k´2

¯
2↵pnq “ n ¨ 2Opk2q`p1`op1qq↵pnq

.

Corollary 1.1. If S is ⇡-free, then BST Sort using GreedyFuture and Heap Sort using the SmoothHeap

will sort S in n ¨ 2Opk2q`p1`op1qq↵pnq
time.

One can view Corollary 1.1 as improving on the n2↵pnq3k{2´Op1q
bound of (1.1) in two ways. It is an asymptotic

improvement in n as it brings the exponent of ↵pnq from 3k{2´Op1q down to 1. However, even if one is tempted
to consider ↵pnq to be a small constant, it also reduces the dependency on k from doubly exponential to merely
singly exponential.

It is possible to improve the factor 2↵pnq for a specific product pattern. For example,

Theorem 1.4. If Ik is the k ˆ k identity matrix, then

ExpIk b ` ‚
‚ ‚

˘
, nq § 2pk ´ 1qn↵pnq ` Opknq.

2
Strictly speaking the equivalence between Greedy and SmoothHeap swaps the roles of time and space. Sorting S with Greedy

is isomorphic to sorting S
T

with SmoothHeap, where S
T

is the transpose permutation: Spiq “ j ô S
T pjq “ i. Note that S

T
avoids

⇡
T
. Since the extremal functions for Q and Q

T
are identical on square matrices, we infer that the time to sort S

T
is also OpExpQ,nqq.
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1.1.2 Lower Bounds When k • 2, all Q “ P⇡ b ` ‚
‚ ‚

˘
patterns contain

´‚
‚

‚ ‚

¯
or its reflection, which is known to

have extremal function Exp´‚
‚

‚ ‚

¯
, nq “ 2n↵pnq ˘ Opnq [HS86, FH92, Niv10, Pet15a].

We prove that ExpP⇡ b ` ‚
‚ ‚

˘
, nq “ ⌦pn2↵pnqq whenever ⇡ contains p3, 1, 2q or p2, 1, 3q, or equivalently, when P⇡

contains
´ ‚

‚
‚

¯
or

´ ‚
‚

‚

¯
. Thus, Theorem 1.5 implies that the general upper bound of Theorem 1.3 can only

be improved in the polyp↵pnqq factor.

Theorem 1.5. ExpW,nq “ ⇥pn2↵pnqq, where

W “
¨

˚̊
˝

‚
‚

‚
‚ ‚

˛

‹‹‚.

1.2 Pattern-avoidance and the Dynamic Optimality Conjecture The original dyanamic optimality

conjecture [ST85] states that the (online) Splay BST is Op1q-competitive with the optimum o✏ine BST, for
any sequence with length ⌦pnq. Today dynamic optimality usually refers to the conjecture that there exists an
Op1q-competitive BST, with Greedy / GreedyFuture [Luc88, Mun00, DHI`09] and Splay being the foremost
candidates.

It is an open problem to prove oplog nq-competitiveness for Splay or Greedy, though some corollaries of
dynamic optimality have been proved [ST85, Tar85, Col00, CMSS00, IL16, CGJ`23, LT19]. Many corollaries of
dynamic optimality can be characterized by forbidden patterns. For example, the o✏ine optimum BST executes
all of these sequences in linear time. The last item is the class of input sequences we consider in this paper.
It subsumes all previous items, and was only recently shown to require Okpnq time by the optimum o✏ine

BST [BKO23].

Sequential. The sequential access sequence S “ p1, 2, . . . , nq avoids p2, 1q.
Deque. In a deletion-only deque sequence, Spiq is either the minimum or maximum of tSpiq, Spi` 1q, . . . , Spnqu.

Deque sequences avoid tp213q, p312qu. (In a deque, the accessed elements are also typically deleted from the
tree [Sun92, Pet08].)

Preorder and Postorder. Let R be any BST over t1, . . . , nu and S be a preorder (or postorder) traversal of R.
Then S avoids p231q (or p312q). (The Traversal Conjecture of Sleator and Tarjan [ST85] concerned preorder
sequences. If the accessed elements in a preorder sequence are moved to the root and deleted, yielding two
trees, this corresponds with Lucas’s definition of Split-sequences [Luc91].)

k-Increasing. S can be decomposed into pk ´ 1q increasing subsequences, or equivalently, S avoids pk, . . . , 2, 1q.
k-Recursively Decomposable. A permutation S is k-recursively decomposable if (i) the 1s of the corresponding

permutation matrix AS can be partitioned into k non-overlapping rectangles, and (ii) those rectangles
are themselves k-recursively decomposable, where in the base case, any 1 ˆ 1 matrix is k-recursively
decomposable. These sequences avoid all simple pk ` 1q-permutations.3

k-Permutation Avoiding. The access sequence is a permutation S, which avoids some k-permutation ⇡.

Figure 1 shows the relationship between the classes of permutations, and Table 1 gives some known upper
bounds on the performance of Splay and Greedy. In particular, our new upper bound on ExpP⇡ b ` ‚

‚ ‚
˘
, nq

improves on the bounds for k-recursively decomposable sequences (when preprocessing is not allowed), and k-
permutation avoiding sequences.

1.3 Organization In Section 2 we review forbidden 0–1 matrix terminology, and some key results. In Section 3
we prove Theorem 1.3, establishing the n2p1`op1qq↵pnq upper bound on P b` ‚

‚ ‚
˘
-type matrices. In Section 4 we prove

Theorem 4.1’s ⌦pn2↵pnqq lower bound on W -free matrices. Section 5 presents some additional upper bounds, on
Ik b ` ‚

‚ ‚
˘
-free matrices (Theorem 1.4) and matrices avoiding W and its reflection. We conclude with some open

problems in Section 6.

3
A pk ` 1q-permutation ⇡ is simple if there is no interval I Ä t1, . . . , k ` 1u with |I| P r2, ks such that ⇡pIq def“ t⇡pjq | j P Iu “ I.
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k-permutation

avoiding

k-recursively

decomposable
k-increasing

preorder

traversal
postorder

traversal

deque

sequential

[CGKMS 2015]

[Sleator, Tarjan 1985]

Figure 1: Relation between classes of search sequences. The upper class contains the lower ones.

Search Sequence Forbidden Pattern Splay Greedy Citation

Sequential p21q-free Opnq Opnq [Tar85]
Deque tp213q, p231qu-free Opn↵˚pnqq Opn↵pnqq [Pet08, CGJ`23]
Preorder p231q-free — Opn2↵pnqq [CGJ`23]
Postorder p312q-free — Opnq [CGJ`23]
k-Increasing pk, . . . , 2, 1q-free — Opmintnk2, nk↵pnquq [CGJ`23]
k-Recursively avoids all simple Opn log kq
decomposable pk ` 1q-permutations — (prepr. initial tree) [GG19]

k-Permutation
avoiding ⇡-free — OpExpP⇡ b ` ‚

‚ ‚
˘
, nqq [CGK`15b]

Table 1: Upper Bounds on Structured Search Sequences
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2 Preliminaries

Let A P t0, 1unˆm and P P t0, 1ukˆl. The weight of A, denoted as }A}1, is the number of 1’s in A. We say P is
contained in A, written P † A if there are row indices r1 † ¨ ¨ ¨ † rk and column indices c1 † ¨ ¨ ¨ † cl such that
P pi, jq “ 1 Ñ Apri, cjq “ 1. In other words, you can obtain P from A by deleting rows and columns, and flipping
some 1s to 0. The extremal functions are defined as follows.

ExpP, n,mq “ maxt}A}1 | A P t0, 1unˆm
, P ¢ Au,

ExpP, nq “ ExpP, n, nq.

If P is a k ˆ k permutation matrix, it is known that both ExpP, nq and ExpP b
`‚

‚
˘
, nq are Okpnq, but we will

be interested in the leading constants as well.

Theorem 2.1. ([MT04], [Gen09], Fox [Fox13], [CK17], [Gen15], [GT17]) Let P be any permutation ma-

trix. Then there exists constants Ck, C
1
k

§ 2p4`op1qqk
such that

ExpP, n,mq § Ckpn ` mq,
ExpP b

`‚
‚
˘
, n,mq § C

1
k
pn ` mq.

3 The Upper Bound

3.1 Establishing the General Recurrence Let P be a k ˆ k permutation matrix and Q “ P b ` ‚
‚ ‚

˘
be the

2kˆ3k forbidden pattern. Define Qa,b to be the 2kˆ p3k´ pa` bqq matrix derived from Q by removing the first a
and last b columns. For reasons that will become clear later, we must redefine the contains relation † di↵erently
for the Qa,b matrices.

Definition 3.1. We will say that Qa,b † A if there are 2k rows r1 † ¨ ¨ ¨ † r2k and 3k ´ a ´ b columns

c1 † ¨ ¨ ¨ † c3k´a´b such that

• Qa,bpi, jq “ 1 implies Apri, cjq “ 1

• If @j. Qa,bpi, jq “ 0 then Dj1
. Apri, j1q ‰ 0. In other words, an all-0 row Qa,bpi, ¨q cannot match an all-0 row

of A. (Note that j
1
need not be in tc1, . . . , c3k´a´bu.)

Let A be an n ˆ m Qa,b-free matrix with weight ExpQa,b, n,mq. We will classify all 1s in A according to the
following taxonomy, and bound the number of 1s in each class directly or inductively.

All 1s

Local Global

First Middle Last

Light Heavy

Light-first Light-middle Light-last

Partition A into slabs of B consecutive columns. A row is called local if it has a non-zero intersection with
exactly one slab and global otherwise. The 1s in local/global rows are themselves local/global. Let ni be the
number of rows local to slab i and n

˚ be the number of global rows, so n “ n
˚ ` ∞

i
ni.

Suppose Apr, cq “ 1 is a 1 appearing in a global row r and slab s “ rc{Bs. We classify this 1 as first if the
intersection of row r and slabs 1, . . . , s ´ 1 are zero, last if the intersection of row r and slabs s ` 1, . . . , rm{Bs is
zero, and middle otherwise.
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¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

‚
‚ ›››››Ñ ‚

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

˛

‹‹‹‹‹‹‹‹‹‹‚

Figure 2: Vertical lines mark the boundary of some slab. If Q0,1 appears in one slab of Afirst, then there must be
an occurrence of Q “ Q0,0 in A.

Since each slab is itself Qa,b-free, the total number of local 1s is at most

(3.2)
rm{Bsÿ

i“1

ExpQa,b, ni,miq,

where mi is the number of columns in slab i, which is exactly B except perhaps the last slab. Similarly, if Afirst

and Alast are the matrices of first 1s and last 1s, then each slab of Afirst is Qa,b`1 free, and each slab of Alast is

Qa`1,b-free; see Figure 2. Letting n
f

i
(nl

i
) be the number of rows with first (last) 1s in slab i, we can upper bound

first and last 1s as follows.

}Afirst}1 ` }Alast}1 §
rm{Bsÿ

i“1

´
ExpQa,b`1, n

f

i
,miq ` ExpQa`1,b, n

l

i
,miq

¯

§ ExpQa,b`1, n
˚
,m ´ mrm{Bsq ` ExpQa`1,b, n

˚
,m ´ m1q.(3.3)

In Eqn. (3.3) we use the superadditivity of Ex to simplify the expression. For any R, ExpR,n1,m1q `
ExpR,n2,m2q § ExpR,n1 `n2,m1 `m2q. Note that

∞
i
n
f

i
“ ∞

i
n
l

i
“ n

˚ and that the first and last slabs contain
no last 1s and first 1s, respectively.

Let A˚ be the n
˚ ˆm matrix formed by the global rows and containing only the middle 1s. We partition the

rows of A˚ into horizontal slabs of G rows each, so the intersections of the horizontal and vertical slabs induce
G ˆ B blocks. Call a G ˆ B block in A

˚
heavy if it contains a

` ‚
‚ ‚

˘
, and light otherwise. The middle 1s inside

heavy/light blocks are themselves called heavy/light. Let Aheavy and Alight be the n
˚ ˆ m matrices containing

heavy and light 1s, respectively. In a light block, the first 1 and last 1 of each row are called light-first and
light-last, and all other 1s in the row are light-middle.

Define A
c
heavy to be the n

˚{G ˆ m{B matrix obtained by contracting each block in Aheavy to a single entry,
i.e., non-zero blocks become 1 and all-zero blocks become 0. Because each heavy block contains a

` ‚
‚ ‚

˘
, Ac

heavy is
P -free, implying }Ac

heavy}1 (the number of heavy blocks) is at most ExpP, n˚{G,m{Bq. Since each heavy block
consists solely of middle 1s, each is Qa`1,b`1-free; see Figure 3. Thus,

}Aheavy}1 § ExpP, n˚{G,m{Bq ¨ ExpQa`1,b`1, G,Bq.(3.4)

Let Ac
light be obtained by contracting the B columns in each slab of Alight to a single column. Ac

light inherits
the Qa,b-freeness of Alight and A, so the contribution of light 1s in the light-first and light-last categories is at
most

2}Ac
light}1 § 2ExpQa,b, n

˚
,m{Bq.(3.5)

What remains is to bound the light 1s in the light-middle category. Construct an n
˚{G ˆ m{B matrix Alightmid

by the following procedure, which is similar to that of [Gen09]. Assume the rows of Alightmid are numbered from
bottom to top. For each i independently, scan the blocks in slab i that contain light-middle 1s from bottom to
top, setting Alightmidp`0, iq “ Alightmidp`1, iq “ ¨ ¨ ¨ “ 1 according to the following rules. See Figure 4.
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¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

››››››››››Ñ ‚
‚

‚
‚ ‚

‚
‚ ‚

‚ –››››››››››
‚

˛

‹‹‹‹‹‹‹‹‹‹‚

Figure 3: If an instance of Q2,2 is contained in a single slab of middle 1s (e.g., Aheavy or Alight), then Q1,1 must
also appear in A. This inference relies on how contains is defined for Qa,b matrices in Definition 3.1. In particular,
it is critical that all-zero rows of Q2,2 must not be all-zero in the instance of middle 1s.

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

`j : ‚ ‚ ‚

‚ ‚ ‚

‚ ‚

§§§§§§§§§û
‚

`j´1 : ‚ ‚ ‚

i

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

Figure 4: Vertical and horizontal lines mark block boundaries. Underlined 1s are light-middle 1s.

1. p`0, iq is the first block in slab i containing a light-middle 1.

2. `j ° `j´1 is the first index such that some column in blocks p`j´1, iq, . . . , p`j , iq contains two light-middle
1s.

Call the interval of blocks p`j´1, iq, . . . , p`j ´1, iq in Alight (i.e., excluding p`j , iq) a chunk. By construction, the
intersection of a column and a chunk can contain at most one light-middle 1. (Note that no light block contains
two light-middle 1s in the same column, for otherwise it would contain a

` ‚
‚ ‚

˘
pattern and be classified as heavy.)

We claim Alightmid is P b
`‚

‚
˘
-free, and therefore the number of light-middle 1s in Alight is, by superadditivity, at

most

B ¨ }Alightmid}1 § B ¨ ExpP b
`‚

‚
˘
, n

˚{G,m{Bq § ExpP b
`‚

‚
˘
, Bn

˚{G,mq.(3.6)

Consider an occurrence of
`‚

‚
˘
in Alightmid, say Alightmidp`j , iq “ Alightmidp`j1 , iq “ 1. By construction they lie

in di↵erent chunks, thus there must be a column in slab i of Alight that contains two light-middle 1s in blocks
p`j , iq, . . . , p`j1 , iq inclusive. Together with a light-first and light-last 1, this forms a

` ‚
‚ ‚

˘
pattern. Thus, any

occurrence of P b
`‚

‚
˘
in Alightmid implies an occurrence of Q “ P b ` ‚

‚ ‚
˘
in Alight, contradicting the fact that Alight

is Qa,b-free.
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Combining Eqns. (3.2,3.3,3.4,3.5,3.6), we arrive at a recursive upper bound on ExpQa,b, n,mq.

ExpQa,b, n,mq §
rm{Bsÿ

i“1

ExpQa,b, ni,miq local 1s

` ExpQa,b`1, n
˚
,m ´ mrm{Bsq ` ExpQa`1,b, n

˚
,m ´ m1q first and last 1s

` ExpP, n˚{G,m{Bq ¨ ExpQa`1,b`1, G,Bq heavy middle 1s

` 2ExpQa,b, n
˚
,m{Bq light-first/-last 1s

` ExpP b
`‚

‚
˘
, Bn

˚{G,mq. light-middle 1s(3.7)

3.2 Analysis of The Recurrence

Lemma 3.1. Let t “ 3k´ pa` bq be the number of 1s in Qa,b. If t “ 3 then ExpQa,b, n,mq § 2n` p2k´1qpm´2q
and if t “ 2 then ExpQa,b, n,mq § n ` p2k ´ 1qpm ´ 1q.
Proof. First consider t “ 3. Qa,b contains only three 1s and either 2k ´ 2 or 2k ´ 3 all-zero rows. Those three
1s are equivalent to

` ‚
‚ ‚

˘
,

´ ‚
‚

‚

¯
, or

´‚
‚

‚

¯
. Suppose A is Qa,b-free. Remove the first and last 1 in each row of A, then

remove the first 2k ´ 1 1s in each of m ´ 2 columns, excluding the first and last, which are now all zero. If any 1
remains, then there must have been an occurrence of Qa,b in A. The t “ 2 case is proved similarly.

Lemma 3.2. If m § 2j, ExpQa,b, n,mq § 2t´2
n ` p2k ´ 1qjmaxt0,t´3upm ´ 2q, where t “ 3k ´ pa ` bq.

Proof. The cases t P t2, 3u follow from Lemma 3.1, so we may assume t ° 3. We consider a simplified version of
(3.7) in which B “ rm{2s, i.e., m1 “ rm{2s and m2 “ tm{2u. There are only two slabs, all 1s are classified as
local, first, or last, and we have

ExpQa,b, n,mq §
ÿ

iPt1,2u
ExpQa,b, ni,miq ` ExpQa,b`1, n

˚
,m1q ` ExpQa`1,b, n

˚
,m2q.

Applying the inductive hypothesis to each term, this is at most

§ 2t´2pn1 ` n2q ` p2k ´ 1qpj ´ 1qt´3 prm{2s ´ 2 ` tm{2u ´ 2q
` 2 ¨ 2t´3

n
˚ ` p2k ´ 1qpj ´ 1qt´4 prm{2s ´ 2 ` tm{2u ´ 2q

“ 2t´2
n ` p2k ´ 1q

`
pj ´ 1qt´3 ` pj ´ 1qt´4

˘
pm ´ 4q

§ 2t´2
n ` p2k ´ 1qjt´3pm ´ 2q.

We use the following version of Ackermann’s function and its inverses.

a1,j “ 2j for j • 1,

ai,1 “ 2 for i • 2,

ai,j “ w ¨ ai´1,w, where w “ ai,j´1. for i, j • 2,

↵pn,mq “ minti : ai,j • m,where j “ maxt3, rn{msuu
↵pnq “ ↵pn, nq

Observe that in the table of Ackermann values, the 1st column is constant (ai,1 “ 2) and the second merely
exponential (ai,2 “ 2i`1) so we have to look to the third column to see Ackermann-type growth, which is why we
set j as j “ maxt3, rn{msu.
Lemma 3.3. Fix a constant c “ 3k. Suppose m § pai,jqc. Then

ExpQa,b, n,mq § µi,tpn ` pcjqmaxt0,t´3up2k ´ 1qpm ´ 2qq,
where t “ 3k ´ pa ` bq and µi,t “ p2Opktq ` Opiqt´2q2i.
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Proof. The proof is by induction on i, j, and t. The cases t P t2, 3u were already handled, so assume t • 4. Let
A be a Qa,b-free n ˆ m matrix, where m § pai,jqc. We apply Eqn. (3.7) with B,G set as follows:

B “ a
c

i,j´1,

G “ pcpj ´ 1qqmaxt0,t´5up2k ´ 1qpB ´ 2q.
Observe that

m{B § pai,j{ai,j´1qc “ pai´1,ai,j´1qc.
We apply the induction hypothesis at pi, j ´ 1, tq to local 1s at pi, j, t ´ 1q to first/last 1s, at pi, j ´ 1, t ´ 2q to
heavy middle 1s, and at pi ´ 1, ai,j´1, tq to light-first/light-last 1s. Plugging these bounds into Eqn. (3.7) and
applying Theorem 2.1 yields the following upper bound.

ExpQa,b, n,mq
§ µi,tpn ´ n

˚q ` µi,tpcpj ´ 1qqt´3p2k ´ 1qpm ´ 2m{Bq local

` 2µi,t´1n
˚ ` 2µi,t´1pcjqt´4p2k ´ 1qpm ´ 2q first/last

` Ckpn˚{G ` m{Bq
´
µi,t´2G ` µi,t´2pcpj ´ 1qqmaxt0,t´5up2k ´ 1qpB ´ 2q

¯
heavy

` 2µi´1,tn
˚ ` 2µi´1,tpcpai,j´1qqt´3p2k ´ 1qpm{B ´ 2q light-first/last

` C
1
k
pBn

˚{G ` mq light-middle

Note that by choice of G, the line for heavy 1s is exactly 2Ckµi,t´2pn˚ ` Gm{Bq. Continuing,
§ µi,tpn ` pcjqt´3p2k ´ 1qpm ´ 2qq(3.8)

`
“
´µi,t ` 2µi,t´1 ` 2Ckµi,t´2 ` 2µi´1,t ` C

1
k

‰
n

˚(3.9)

`
”

´ µi,tcpcjqt´4 ` 2µi,t´1pcjqt´4 ` 2Ckµi,t´2pcpj ´ 1qqmaxt0,t´5u(3.10)

` 2µi´1,tc
t´3

a
pt´3q´c

i,j´1 ` C
1
k

ı
p2k ´ 1qpm ´ 2q

§ µi,tpn ` pcjqt´3p2k ´ 1qpm ´ 2qq.(3.11)

Lines (3.8–3.10) follow from the fact that pcpj´1qqt´3 § pcjqt´3´cpcjqt´4. Line (3.11) completes the induction
so long as the bracketed terms in Lines (3.9,3.10) are non-positive. These will hold whenever Eqns. (3.12,3.13)
hold.

µi,t • 2µi,t´1 ` 2Ckµi,t´2 ` 2µi´1,t ` C
1
k
,(3.12)

µi,t • 2µi,t´1

c
` 2Ckµi,t´2

c
` 2µi´1,t

23k´1
` C

1
k

2t´4ct´3
.(3.13)

Eqn. (3.13) was obtained by dividing through by cpcjqt´4 and noting that j • 2 and ai,j´1 • 2. Clearly any
values pµi,tqi•1,t•0 that satisfy Eqn. (3.12) also satisfy (3.13) so we may focus solely on the former. We argue
that the lemma is satisfied for µi,t defined as follows. Let C “ C

1
k

• Ck.

µi,t “ p2C ` 3iqt´2p2i ´ 1q.(3.14)

When t P t2, 3u the claim follows from Lemma 3.1 since µi,3 • 2 and µi,2 • 1. When i “ 1 and t • 4,
m § pa1,jqc “ a1,cj “ 2cj and the claim follows from Lemma 3.2 since µi,t • 2t´2. Now suppose i • 2, t • 4.

2µi,t´1 ` 2Ckµi,t´2 ` 2µi´1,t ` C
1
k

§ 2p2C ` 3iqt´3p2i ´ 1q ` 2Cp2C ` 3iqt´4p2i ´ 1q ` 2p2C ` 3pi ´ 1qqt´2p2i´1 ´ 1q ` C

§ p2C ` 3iqt´2p2i ´ 1q
ˆ

2

2C ` 3i
` 2C

p2C ` 3iq2 ` 1 ´ 3

2C ` 3i

˙

§ p2C ` 3iqt´2p2i ´ 1q
ˆ

2

2C ` 3i
` 1

2C ` 3i
` 1 ´ 3

2C ` 3i

˙

§ p2C ` 3iqt´2p2i ´ 1q “ µi,t.
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The first inequality is from the inductive hypothesis and Ck § C
1
k

§ C. The second inequality follows from
p2C ` 3pi ´ 1qqt´2 § p2C ` 3iqt´2 ´ 3p2C ` 3iqt´3. This completes the induction.

Proof. [Proof of Theorem 1.3] Let A be a Q-free nˆm matrix and t “ c “ 3k. Take i to be minimal such that for
j “ maxt3, rn{ms1{tu, m § pai,jqc. It is tedious, but straightforward, to show that i “ ↵pn,mq˘Op1q. Lemma 3.3
bounds the number of 1s in A by

µi,tpn ` pcjqt´3p2k ´ 1qmq “ µi,t

´
n ` 2Opk log kq

n

¯
pcjqt´3 † 2Opk log kqpn{mq

“ n ¨ 2Opk log kq ¨ p2C ` 3iqt´22i

“ n ¨
´
2Opk2q ` Opiq3k´2

¯
2i C “ 2Opkq; see Theorem 2.1

“ n ¨ 2Opk2q`p1`op1qq↵pn,mq
.

4 Lower Bounds on 0–1 Matrices via Sequences

Blocked Sequences and 0–1 Matrices. If S is a sequence, let |S| be its length and }S} the size of its
alphabet |⌃pSq|. A block is a contiguous sequence of distinct symbols. If S is understood to be partitioned
into blocks, JSK is the number of blocks. Regardless of ⌃pSq, we can always write S in canonical form over the
alphabet t1, . . . , }S}u, where the symbols are sorted according to their first appearance in S. If S is in canonical
form, its canonical matrix AS is the }S}ˆJSK symbol-block incidence matrix, i.e., ASpi, jq “ 1 if symbol i appears
in block j, and 0 otherwise. One cannot quite recover S from AS since AS does not encode the order of symbols
within a block. Nonetheless, the transformation is useful inasmuch as subsequences avoided by S often become
0–1 patterns avoided by AS .

Composition and Shu✏ing. We consider sequences S partitioned into live and dead blocks satisfying extra
constraints:

• All live blocks have the same length. Dead blocks have variable lengths, and the number of dead blocks
between consecutive live blocks is also variable.

• The first occurrence of every symbol appears in a dead block, and dead blocks contain only first occurrences.
Let LS M be the number of live blocks in S.

Composition. Suppose Utop is a sequence in which all live blocks have length j and Umid is a sequence with
}Umid} “ j. The composition Usub “ Utop ˝Umid is obtained by replacing each live block L of Utop with a copy
UmidpLq over the alphabet of L, whereas dead blocks of Utop are inherited by Usub verbatim. In general UmidpLq
can contain both live and dead blocks [Pet15b], but in our particular construction UmidpLq contains only live
blocks.

Shu✏ing. Now suppose Usub is a sequence whose live blocks have length j and Ubot is a sequence with
LUbot M “ j. The left-shu✏e Usub 4 Ubot is obtained as follows. Let Usub “ D0L1D1L2D2 ¨ ¨ ¨LkDk, where Li is

the ith live block, Di is zero or more dead blocks, and k “ LUsub M. Let U˚
bot “ U

p1q
bot ¨ ¨ ¨U pkq

bot be the concatenation of
k copies of Ubot over disjoint alphabets. The left-shu✏e is obtained by taking, for all i, the block Li “ pa1a2 ¨ ¨ ¨ ajq
and inserting a`, for ` P r1, js, at the left end of the `th live block of U piq

bot, then inserting dead blocks Di between

U
piq
bot and U

pi`1q
bot .4

Sequence Construction. Upjq and Upi, jq are blocked sequences, where square brackets indicate dead
blocks and parentheses indicate live blocks. Upi, jq is a variation on order-4 Davenport-Schinzel sequences [ASS89],
adapted specifically to exclude a small pattern that arises from P b ` ‚

‚ ‚
˘
-type patterns.

4
The right shu✏e Usub 5Ubot is defined in the same way, except that a` is inserted at the right end of the `th live block of U

piq
bot.

We only use left-shu✏es but there are cases where it is desirable to use both [Pet11b, Pet15b].
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Upjq “ pj pj ´ 1q ¨ ¨ ¨ 1qp1 2 ¨ ¨ ¨ jq 2 live blocks

Up1, jq “ r1 2 ¨ ¨ ¨ jsp1 2 ¨ ¨ ¨ jq first block dead, second live

Upi, 0q “ p q2 2 empty live blocks

Upi, jq “ pUtop ˝Umidq 4 Ubot

where Utop “ Upi ´ 1, LUpi, j ´ 1q Mq,
Umid “ UpLUpi, j ´ 1q Mq,

and Ubot “ Upi, j ´ 1q
Let Npi, jq “ }Upi, jq} be the alphabet size and Lpi, jq “ LUpi, jq M be the number of live blocks. N,L obey

the following recurrence:

Lp1, jq “ 1

Lpi, 0q “ 2

Lpi, jq “ Lpi, j ´ 1q ¨ 2 ¨ Lpi ´ 1, Lpi, j ´ 1qq
Np1, jq “ j

Npi, jq “ Npi, j ´ 1q ¨ 2 ¨ Lpi ´ 1, Lpi, j ´ 1qq ` Npi ´ 1, Lpi, j ´ 1qq
Lemma 4.1. Fix any U “ Upi, jq.

1. All live blocks in U have length j. Each symbol appears 2i´1 ` 1 times in U , its first occurrence appearing

in a dead block, and the remaining 2i´1
times in live blocks.

2. As a consequence of part 1, Npi, jq “ pj{2i´1q ¨ Lpi, jq.
3. The number of dead blocks is at most Lpi, jq ´ 1.

4. If n “ Npi, jq is the number of symbols in U and m † 2Lpi, jq the number of blocks, i “ ↵pn,mq ˘ Op1q,
and |U | “ ⇥pn2↵pn,mqq.

Proof. Part 1. The claim holds in the base cases Up1, jq and Upi, 0q. All live blocks in Ubot “ Upi, j ´ 1q have
length j´1 by induction, and each receive one symbol in the shu✏ing operation pUtop ˝Umidq4Ubot. All symbols
in Ubot “ Upi, j ´1q appear in 2i´1 live blocks. Those in Utop “ Upi´1, LUpi, j ´ 1q Mq appear in 2i´2 live blocks,
and therefore in 2i´1 live blocks in Usub “ Utop ˝Umid since Umid doubles the number of live occurrences. The
property that first occurrences appear in dead blocks is preserved by composition and shu✏ing. Part 2. Note
that both j ¨ Lpi, jq and 2i´1 ¨ Npi, jq both count the total length of all live blocks. Part 3. The claim holds in all
base cases. By induction, the number of dead blocks in Utop is at most Lpi ´ 1, Lpi, j ´ 1qq ´ 1. U˚

bot consists of
2Lpi´ 1, Lpi, j ´ 1qq copies of Ubot “ Upi, j ´ 1q, so U

˚
bot has 2Lpi´ 1, Lpi, j ´ 1qqpLpi, j ´ 1q ´ 1q dead blocks. In

total there are Lpi´ 1, Lpi, j ´ 1qqp2Lpi, j ´ 1q ´ 1q ´ 1 § Lpi, jq ´ 1 dead blocks. Part 4. Proving Ackermann-like
functions are equivalent inasmuch as their inverses di↵er by ˘Op1q is tedious, but straightforward. See [Pet06,
Lemma 3.10] for an example of such a proof.

Lemma 4.2. Let U “ Upi, jq be obtained from Utop, Umid, Ubot. Suppose a † b are two symbols in ⌃pUq appearing

in a common live block.

1. The restriction of U to letters ta, bu is of the form a
˚
b

˚pabqb˚
a

˚
.

2. If a P ⌃pUtopq, b P ⌃pU˚
botq, then a † c for every symbol c appearing in b’s copy of Ubot.

Proof. The claim is true in the base cases Up1, jq and Upi, 0q. Consider the moment that a is shu✏ed into b’s live
block, where a P ⌃pUtopq and b P ⌃pU˚

botq. All occurrences of b appear in one copy of Ubot in U
˚
bot, and exactly

one occurrence of a is shu✏ed into this copy. It follows that the restriction of U to letters ta, bu is of the form
a

˚|b˚pabqb˚|a˚, where the bars mark the boundary of b’s copy of Ubot. Furthermore, since the first occurrence of
a is in a dead block, which is inserted between two copies of Ubot in U

˚
bot, a † c for every c in b’s copy of Ubot.
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Lemma 4.3. U “ Upi, jq does not contain any subsequences order-isomorphic to 41213.

Proof. Since U is in canonical form, the existence of 41213 implies the existence of a subsequence order-isomorphic
to

� “ 31213

Suppose that � first appears in Upi, jq “ Usub 4Ubot “ pUtop ˝Umidq 4Ubot. If � already appears in Usub but did
not appear in Utop, then Utop must have contained �

1.

�
1 “ 31p12q3

Note that t2, 3u cannot share a live block in Utop without also including 1, and if t1, 2, 3u shared a live block in
Utop, the restriction of Utop to t1, 2, 3u would, by Lemma 4.2(1), be:

1˚2˚3˚p123q3˚2˚1˚

and the restriction of Usub to t1, 2, 3u would be:

1˚2˚3˚p321qp123q3˚2˚1˚
,

which does not contain �. We therefore need to argue that neither � nor �
1 can arise in Upi, jq in the shu✏ing

operation.
If � or �

1 arose during shu✏ing, then Lemma 4.2 implies that for any a, b P t1, 2, 3u with a P ⌃pUtopq and
b P ⌃pU˚

botq, that a † b. It cannot be that t1u or t1, 2u Ä ⌃pUtopq while t2, 3u or t3u Ä ⌃pU˚
botq since 3’s copy of

Ubot only receives one copy of any symbol during shu✏ing, but both �,�
1 have two 1s between the first and last

3.

Remark 4.1. The distinction between live and dead blocks is critical for constructing order-3 (ababa-

free) Davenport-Schinzel sequences [HS86, Niv10, Pet15a], and generalized DS sequences with length

Opn polyp↵pnqqq [Pet11b, Pet15b]. However, all constructions of DS sequences at order-4 and above [ASS89,

Niv10, Pet15a] (having length ⌦pn2↵pnqq) only use live blocks. In Lemma 4.3, it is very important that first
occurrences lie exclusively in dead blocks, and are never shu✏ed into the middle of a copy of Ubot. If the first

block in Up1, jq were redefined to be live, then we would see instances of 41213 in Upi, jq. It could be that 1 2 1 2 1
appears in a copy of Ubot, and the first occurrences of t3, 4u lie in a common live block in Utop. The restriction of

Utop to t3, 4u contains p34q3. After shu✏ing the block p34q into the Ubot containing 1, 2 we can see 1 2 3 4 1 2 1 3.
Lemma 4.2(2) rules out this possibility when first occurrences appear in dead blocks.

Theorem 4.1. ExpW,n,mq “ ⇥pm ` n2↵pn,mqq, where

W “
¨

˚̊
˝

‚
‚

‚
‚ ‚

˛

‹‹‚

Proof. By Lemma 4.1, the sequence U “ Upi, jq has n “ Npi, jq symbols, m † 2Lpi, jq blocks, and length
|U | “ ⇥pn2iq “ ⇥pn2↵pn,mqq. We convert U to an nˆm 0–1 matrix AU . Number the rows of AU from bottom-to-
top, and the columns from left-to-right, and let AU pi, jq “ 1 i↵ symbol i appears in block j. U does not contain
subsequences order-isomorphic to 41213, which implies that AU is W -free, and hence ExpW,n,mq “ ⌦pn2↵pn,mqq.
The matching upper bound is obtained as in [Pet11b, Thm. 3.4].

5 Additional Upper Bounds

5.1 Proof of Theorem 1.4 Recall that Ik is the k ˆ k identity matrix. For example, when k “ 3, we have
the following.

Ik “
¨

˝
‚

‚
‚

˛

‚ Ik b ` ‚
‚ ‚

˘ “

¨

˚̊
˚̊
˚̊
˝

‚
‚ ‚

‚
‚ ‚

‚
‚ ‚

˛

‹‹‹‹‹‹‚
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Theorem 1.4 follows from Keszegh’s [Kes09] joining operation and and Pettie’s upper bound on order-3
Davenport-Schinzel sequences [Pet15a]; cf. [HS86, Niv10]. Keszegh [Kes09] proved that if R has a 1 in its southeast
corner and S has a 1 in its northwest corner, that ExpR ‘ S, n,mq § ExpR,n,mq ` ExpS, n,mq, where R ‘ S is
formed by joining R,S at their corners.

R ‘ S “

¨

˚̊
˚̊
˝

R

‚
S

˛

‹‹‹‹‚
.

Observe that Ik b ` ‚
‚ ‚

˘ “ pIk´1 b ` ‚
‚ ‚

˘q ‘ ´‚
‚

‚ ‚

¯
, so we can apply Keszegh’s operation k ´ 2 times to reduce to the

base case I2 b ` ‚
‚ ‚

˘
. We claim ExpI2 b ` ‚

‚ ‚
˘
, n,mq † Exp´‚

‚
‚ ‚

¯
, n,mq ` 2n ` m. Suppose A is I2 b ` ‚

‚ ‚
˘
-free, and let

A
1 be obtained by removing the top 1 in each column, and then the first two 1s in each row. Then A

1 is clearly´‚
‚

‚ ‚

¯
-free. Putting it all together, we have,

ExpIk b ` ‚
‚ ‚

˘
, n,mq § ExpI2 b ` ‚

‚ ‚
˘
, n,mq ` pk ´ 2qExp´‚

‚
‚ ‚

¯
, n,mq

§ pk ´ 1qExp´‚
‚

‚ ‚

¯
, n,mq ` 2n ` m

§ pk ´ 1q2n↵pn,mq ` Opkpn ` mqq,

where the last inequality follows from the bound Exp´‚
‚

‚ ‚

¯
, n,mq “ 2n↵pn,mq ` Opn ` mq on order-3 Davenport-

Schinzel sequences [Pet15a].

5.2 Avoding W and Its Reflection By symmetry, Theorem 4.1 also applies to ExpW 1
, n,mq, where W

1 is
the reflection of W along the y-axis. However, the density of tW,W

1u-free matrices is asymptotically smaller.

Theorem 5.1. ExptW,W
1u, n,mq § 4n↵pn,mq ` Opn ` mq, where W

1
is the reflection of W along the y-axis.

W
1 “

¨

˚̊
˝

‚
‚

‚
‚ ‚

˛

‹‹‚

Proof. Let A be a tW,W
1u-free matrix. Remove the top 1 in each column, yielding A

1. It follows that A
1 is

tW,W
1
,W

2u-free, where

W
2 “

¨

˝
‚ ‚

‚
‚ ‚

˛

‚

We prove that ExptW,W
1
,W

2u, n,mq § 2Exp´‚
‚

‚ ‚

¯
, n,mq. Call a 1 in A

1
bottom-right if it appears as the

bottom-right 1 in a copy of
´‚

‚
‚ ‚

¯
, and bottom-left if it appears as the bottom-left 1 in a copy of

´ ‚
‚

‚ ‚

¯
. If

}A1}1 • 2Exp´‚
‚

‚ ‚

¯
, n,mq ` 1 then some A

1pi, jq “ 1 must be classified as both bottom-left and bottom-right.

Let piL, jLq and piR, jRq be the positions of the top-left 1 in a copy of
´‚

‚
‚ ‚

¯
containing A

1pi, jq and top-right 1 in

a copy of
´ ‚

‚
‚ ‚

¯
containing A

1pi, jq, respectively. Numbering the rows from bottom to top, we have a copy of W 2

if iL “ iR, a copy of W 1 if iL † iR, and a copy of W if iL ° iR. For example, when iL † iR,

W
2 “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

‚
piR, jRq

‚
‚

piL, jLq
‚

‚ ‚ ‚
pi, jq

˛

‹‹‹‹‹‹‹‹‹‹‚

It is known [Pet15a, Niv10] that Exp´‚
‚

‚ ‚

¯
, n,mq “ 2n↵pn,mq ˘ Opn ` mq.
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6 Concluding Remarks

Derryberry et al. [DSW05], Demaine et al. [DHI`09], and Pettie [Pet10] developed the idea of representing the
behavior of a data structure as a point-set in rms ˆ rns, or equivalently, a 0–1 matrix in t0, 1umˆn, in which the
axes correspond to time and space. Applying results on forbidden 0–1 matrices in this context is very natural,
and has led to sharp or nearly sharp bounds on certain path compression schemes [Pet10], structured inputs to
binary search trees [CGK`15b, CGK`15a, CGJ`23, Pet10], and heaps [KS20].

Although the forbidden 0–1 matrix framework is perfectly suited to proving that sorting ⇡-free sequences
takes near-linear time, it might be inadequate to establishing an optimal Okpnq time bound. As we have shown,
any opn2↵pnqq-time analysis must use some property beyond P⇡ b ` ‚

‚ ‚
˘
-freeness. Here it may be useful to consider

di↵erent ways to decompose a 0–1 matrix; see Guillemot and Marx [GM14] and Chalermsook, Gupta, Jiamjitrak,
Acosta, Pareek, and Yinghcareonthawornchai [CGJ`23].

The literature on forbidden 0–1 matrices is rich [FH92, Tar05, PT06, Pet11b, Pet11c, Pet11a, Pet15b, Kes09,
Gen09, Ful09, KTTW19, CK12, CK17, Fox13, MT04, Kla92, PT24] but there are many outstanding open
problems. In the context of data structure analysis, the most interesting open problems are to characterize
the set of linear forbidden patterns—those P with ExpP, nq “ Opnq—and in particular, to characterize
linear light patterns. It is known that there are infinitely many minimal (with respect to †) non-linear
patterns [Kes09, Gen09, Pet11a], but there may be other ways to characterize this set in a finite representation.
On the other hand, we know of only two minimally non-linear light patterns (with respect to † and reflections),

namely
¨

˝
‚

‚
‚ ‚

˛

‚ and
ˆ ‚ ‚

‚ ‚
˙
. It is quite possible that these are the only sources of non-linearity in light patterns.
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[Tar05] Gábor Tardos. On 0–1 matrices and small excluded submatrices. J. Combin. Theory Ser. A, 111(2):266–288, 2005.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited149

D
ow

nl
oa

de
d 

07
/0

9/
24

 to
 8

0.
23

5.
24

.9
9 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	New Results
	Upper Bounds
	Lower Bounds

	Pattern-avoidance and the Dynamic Optimality Conjecture
	Organization

	Preliminaries
	The Upper Bound
	Establishing the General Recurrence
	Analysis of The Recurrence

	Lower Bounds on 0–1 Matrices via Sequences
	Additional Upper Bounds
	Proof of Theorem 1.4
	Avoding W and Its Reflection

	Concluding Remarks

