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Abstract

We consider the problem of comparison-sorting an n-permutation S that avoids some k-permutation 7.
Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak [CGK™ 15b| prove that when S is sorted by inserting
the elements into the GREEDYFUTURE |[DHIT 09| binary search tree, the running time is linear in the extremal
function Ex(Pr ® ()711) This is the maximum number of 1s in an n X n 0—1 matrix avoiding P, ® (),
where P is the k x k permutation matrix of 7, and Pr ® () is the 2k x 3k Kronecker product of P, and
the “hat” pattern (,’,). The same time bound can be achieved by sorting S with Kozma and Saranurak’s
SMOOTHHEAP [KS20].

Applying off-the-shelf results on the extremal functions of 0—1 matrices, it was known that

Q(na(n)),
Ex(Pr® (),n) = { O(n ‘ z(a(n>>3k/2—o(1))

)

where a(n) is the inverse-Ackermann function. In this paper we give nearly tight upper and lower bounds
on the density of Pr ® (,‘,)-free matrices in terms of “n”, and improve the dependence on “k” from doubly
exponential to singly exponential.

Q(n . 20‘(”)) , for most T,

Ex(Pr s),n) =
X(Pr ® (%), n) O(n ) 20(k2)+(1+0(1))a(n)) 7 for all .
As a consequence, sorting m-free sequences can be performed in O(n2(1+°(1))“(")) time. For many corollaries

of the dynamic optimality conjecture, the best analysis uses forbidden 0-1 matrix theory. Our analysis may
be useful in analyzing other classes of access sequences on binary search trees.

1 Introduction

The problem of sorting restricted classes of permutations has been studied for decades. Knuth [Knu73]
observed that the class of permutations sortable by a stack is precisely the set of (2,3, 1)-avoiding permutations;
see [Tar72, BGH* 10, IMSS19, [HIO1, [EG17al [EG17Db, [FP08, [AB15, [AMR02] and Béna’s survey [Bén02] for models
of restricted sorting devices. In general, an n-permutation S avoids a k-permutation 7 if there do not exist indices
11 < --- < iy for which

Vp,q € [k]. S(ip) < S(ig) <= 7(p) < 7(q).

In this paper we consider the algorithmic problem of comparison-sorting a m-avoiding S.
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Decision Tree Complexity. Fredman [Fre76] observed that if S is known to be selected from a permutation
set T', that S can be sorted with O(n + log|I'|) comparisons. The Stanley- Wilf conjecture (see Béna [Bén22|)
states that if I'; is the set of all m-avoiding permutations, that |I';| < (c¢(7))™, for some constant ¢(w). This
conjecture was reduced to the Firedi-Hagnal conjecture [FH92] by Klazar [Kla00] and both conjectures were
proved by Marcus and Tardos [MTO04]. Together with Fredman [Fre76], this implies that the decision-tree
complexity of sorting S is O(nloge(m)) = Ok(n). Subsequent work has attempted to pin down the leading
constant [Kla00, IMT04, [Cib09| [Fox13| [CK17]. Fox [Fox13| proved tha

O(kn) For all k-permutations m,
nloge(m) = 3 Q(kY?n) For some k-permutation T,
Q((k/logk)?n)  For almost all k-permutations 7.

Algorithmic Complexity. There are two natural ways to approach the algorithmic complexity of sorting
a m-free S. The first is to use knowledge of 7 to structure the sorting process. This approach is sufficient
to sort optimally in O(n) time when k£ = 3 [Knu73, [Art07], and has had limited success for some patterns
with & = 4. Arthur [Art07] gave O(n)-time sorting algorithms when 7 € {(1,2,3,4),(1,2,4,3),(2,1,4,3)}, and
O(nlogloglogn)-time sorting algorithms when 7 € {(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2)}. The oblivious
approach to sorting S is to simply use a general-purpose sorting algorithm, but analyze its behavior when
S happens to be m-free. This is the approach taken by Chalermsook, Goswami, Kozma, Mehlhorn, and
Saranurak [CGK™15b|, Kozma and Saranurak [KS20], and by our paper. Consider these two general-purpose
sorting algorithms:

BST Sort. Fix some dynamic binary search tree (BST) algorithm 7. Beginning from an empty BST, insert the
elements S(1),...,S5(n) in that order, reorganizing the tree between inserts as 7 dictates. The number of
comparisons is the sum of depths of (S(i))1<i<n at the time of their insertion; the time is linear in the
number of comparisons and that needed to reorganize the tree via rotations.

Heap Sort. Fix some heap data structure . Insert the elements S(1),...,S(n) into the heap in that order, then
perform n Delete-Min operations, thereby sorting the sequence.

Chalermsook et al. [CGK*15b| analyzed the performance of BST Sort when 7 is GREEDYFUTURE |[DHI*09],
an online BST that is O(1)-competitive with the natural offline GREEDY algorithm [Luc88, Mun00]. Define Ag
to be the n x n 0-1 permutation matrix where Ag (%, S(i)) = 1. If S avoids a k-permutation 7, then Ag is P,-free,
where Pr(i,7(i)) = 1. Define Agreeny(s)(4,7) = 1 iff the element with rank j is touched by the insertion of S(7).
Chalermsook et al. [CGK*15b] proved that any occurrence of the “hat” pattern (..) in Agreeny(s) contains, within
its bounding box, an input point of Ag, and as a consequence, Agrgrpy(s) avoids @ = Pr ® (..), where ® is the
Kronecker product, i.e., each 1 of Py is replaced by (.:.). (Following convention, 0—1 matrices are depicted with
blanks for Os and bullets for 1s. See Section [2| for explicit definitions regarding 0-1 matrices.) For example, if
m = (1,3,2,4), ordering rows from bottom to top:

If X is a fixed 0-1 pattern matrix, define Ex(X,n) be the maximum number of 1s in an n x n matrix that avoids
X. Thus, the running time of [CGK*15b| can be bounded in terms of the quantity Ex(Q,n) without knowing
exactly what it is.

THEOREM 1.1. (CHALERMSOOK, GOSWAMI, MEHLHORN, KOzZMA, AND SARANURAK |[CGKT15B]) If S is 7-
free, BST Sort using GREEDYFUTURE sorts S in O(Ex(Q,n)) time, where Q = Py ® (.".).

IThe manuscript [Fox13] only gives an Q(k'/*n) lower bound on the decision tree complexity of sorting a m-free S. The Q(k'/?n)
lower bound is unpublished.
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Observe that @ is a 2k x 3k light pattern: it contains exactly one 1 per column. There is a well known
connection between light patterns and generalized Davenport-Schinzel sequences [Kla92| [FH92] [Kes09, [Pet11b,
Pet15b]. Applying a simplifying transformation that collapses the first two rows [FH92, Thm. 2.2] and then
[Pet15b, Thm. 1.3], we have the following general upper bound, where «(n) is the inverse-Ackermann function.

2na(n) + O(n) k=2
(1.1) Ex(Q,n) < { n-20to)a’(n)/t kodd, t = (3k —5)/2
n - (a(n))dre@)a’ (n)/it k even, t = (3k — 6)/2

Thus, by Theorem GREEDYFUTURE sorts S in O(n - 2“(”)3}9/270(1)) time. On the lower bound side, we know
that Ex(Q,n) = Q(na(n)) as every @ contains one of the two patterns shown below, which are associated with
order-3 Davenport-Schinzel sequences [HS86, [FH92].

() )

The GREEDY algorithm is theoretically attractive, but cumbersome to implement online as GREEDYFU-
TURE [DHIT09]. Kozma and Saranurak [KS20] introduced a new heap data structure called a SMOOTHHEAP,
and proved Heap Sort with SMOOTHHEAP is equivalent to BST Sort with GREEDY. Moreover, SMOOTHHEAP is
“naturally” an online algorithm, and is easier to implement than GREEDYFUTURE. One can define an n x n 0-1
matrix Agyoorutear(s) i the same way, where Agyoorutisar(s) (4, ) = 1 iff the ith Delete-Min touches the element
with rank j. It is proved that Agyoornaeap avoids a matrix equivalent to Q

THEOREM 1.2. (KOZMA AND SARANURAK [KS20Q]) If S is w-free, Heap Sort using GREEDYFUTURE sorts S in
O(Ex(Q,n)) time, where Q = Py ® (.".).

The main outstanding question is whether it is possible to sort in Ok (n) time, and in particular, whether the
GREEDY- or SMOOTHHEAP-based algorithms of |[CGK™15bl [KS20] already sort in time Og(n). It would also be
interesting to give a non-trivial upper bound on the complexity of BST Sort with a SPLAY TREE [ST85], or Heap
Sort with a PAIRING HEAP [FSSTSG].

1.1 New Results

1.1.1 Upper Bounds Our main result is a new upper bound on the extremal function of P,®/(.".)-type matrices
that has a much weaker dependence on k, which immediately gives better upper bounds on the complexity of
sorting 7-free sequences via [CGK*15bl [KS20].

THEOREM 1.3. Let P, be the k x k permutation matriz of m and Q = P, ® (..) be a 2k x 3k light matriz. Then
Bx(Q,n) < n- (200 4+ O(a(n))?2) 2200 = . 200D 1+l

COROLLARY 1.1. Ifé’ is w-free, then BST Sort using GREEDYFUTURE and Heap Sort using the SMOOTHHEAP
will sort S in n - 20 )+Ate)aln) time.

One can view Corollaryas improving on the n20m ™27 1 5und of in two ways. It is an asymptotic
improvement in n as it brings the exponent of a(n) from 3k/2 — O(1) down to 1. However, even if one is tempted
to consider a(n) to be a small constant, it also reduces the dependency on k from doubly exponential to merely
singly exponential.

It is possible to improve the factor 2(") for a specific product pattern. For example,

THEOREM 1.4. If I} is the k x k identity matriz, then
Ex(I; ® (.~.),n) < 2(k — )na(n) + O(kn).

2Strictly speaking the equivalence between GREEDY and SMOOTHHEAP swaps the roles of time and space. Sorting S with GREEDY
is isomorphic to sorting ST with SMOOTHHEAP, where ST is the transpose permutation: S(i) = j < ST (j) = i. Note that ST avoids
7T . Since the extremal functions for Q and QT are identical on square matrices, we infer that the time to sort ST is also O(Ex(Q, n)).
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1.1.2 Lower Bounds When k > 2, all Q = P, ® (.".) patterns contain () or its reflection, which is known to
have extremal function Ex((":),n) = 2na(n) + O(n) [HS8G, [FH92, Niv10, [Pet15al.

We prove that Ex(Py ® (.~.),n) = Q(n2%™) whenever 7 contains (3, 1,2) or (2,1,3), or equivalently, when Py
contains (| - ) or (- ). Thus, Theorem |1.5/implies that the general upper bound of Theorem can only
be improved in the poly(a(n)) factor.

THEOREM 1.5. Ex(W,n) = ©(n2%™), where

W: .

1.2 Pattern-avoidance and the Dynamic Optimality Conjecture The original dyanamic optimality
congjecture [ST85] states that the (online) SPLAY BST is O(1)-competitive with the optimum offline BST, for
any sequence with length Q(n). Today dynamic optimality usually refers to the conjecture that there exists an
O(1)-competitive BST, with GREEDY / GREEDYFUTURE [Luc88, [Mun00, DHI*(09] and SPLAY being the foremost
candidates.

It is an open problem to prove o(log n)-competitiveness for SPLAY or GREEDY, though some corollaries of
dynamic optimality have been proved [ST85| [Tar85, [Col00), [CMSS00, IL16] ICG.J* 23, [LT19]. Many corollaries of
dynamic optimality can be characterized by forbidden patterns. For example, the offline optimum BST executes
all of these sequences in linear time. The last item is the class of input sequences we consider in this paper.
It subsumes all previous items, and was only recently shown to require Og(n) time by the optimum offline
BST [BKO23].

Sequential. The sequential access sequence S = (1,2,...,n) avoids (2,1).

Deque. In a deletion-only deque sequence, S(i) is either the minimum or maximum of {S(7), S(i +1),...,S(n)}.
Deque sequences avoid {(213), (312)}. (In a deque, the accessed elements are also typically deleted from the
tree [Sun92l [Pet08].)

Preorder and Postorder. Let R be any BST over {1,...,n} and S be a preorder (or postorder) traversal of R.
Then S avoids (231) (or (312)). (The Traversal Conjecture of Sleator and Tarjan [ST85] concerned preorder
sequences. If the accessed elements in a preorder sequence are moved to the root and deleted, yielding two
trees, this corresponds with Lucas’s definition of Split-sequences [Luc91].)

k-Increasing. S can be decomposed into (k — 1) increasing subsequences, or equivalently, S avoids (k,...,2,1).

k-Recursively Decomposable. A permutation S is k-recursively decomposable if (i) the 1s of the corresponding
permutation matrix Ag can be partitioned into k non-overlapping rectangles, and (ii) those rectangles
are themselves k-recursively decomposable, where in the base case, any 1 x 1 matrix is k-recursively
decomposable. These sequences avoid all simple (k + 1)—permutations

k-Permutation Avoiding. The access sequence is a permutation .S, which avoids some k-permutation 7.

Figure [1| shows the relationship between the classes of permutations, and Table [1| gives some known upper
bounds on the performance of SPLAY and GREEDY. In particular, our new upper bound on Ex(P; ® (.".),n)
improves on the bounds for k-recursively decomposable sequences (when preprocessing is not allowed), and k-
permutation avoiding sequences.

1.3 Organization In Section 2] we review forbidden 0-1 matrix terminology, and some key results. In Section 3]
we prove Theorem , establishing the n2(1+o(1)a() ypper bound on P®(.".)-type matrices. In Sectionwe prove
Theorem s Q(n2« ”)) lower bound on W-free matrices. Section |5 presents some additional upper bounds, on
I, ® (.-.)-free matrices (Theorem and matrices avoiding W and its reflection. We conclude with some open
problems in Section [6}

3A (k + 1)-permutation 7 is simple if there is no interval T < {1,...,k + 1} with |I| € [2, k] such that 7(T) def {m(5) |jel} =1
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k-permutation [CGKMS 2015]

avoiding

7

k-recursively

/ \ [Sleator, Tarjan 1985]

preorder postorder
traversal traversal

L\

Figure 1: Relation between classes of search sequences. The upper class contains the lower ones.

decomposable

Search Sequence Forbidden Pattern Splay Greedy Citation
Sequential (21)-free O(n) O(n) [Tar85)

Deque {(213), (231)}-free O(na*(n)) | O(na(n)) [Pet08] ICGJ 23]
Preorder (231)-free — O(n240)) [CGI23]
Postorder (312)-free — O(n) [CGI*+23]
k-Increasing (k,...,2,1)-free — O(min{nk?, nka(n)}) | [CGJF23]
k-Recursively avoids all simple O(nlogk)

decomposable (k + 1)-permutations | (prepr. initial tree) [GG19]
:;Eiegirﬁgtamon m-free — O(Ex(Pr ® (..),m)) [CGK*15b]

Table 1: Upper Bounds on Structured Search Sequences
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2 Preliminaries

Let A€ {0,1}"*™ and P € {0,1}**!. The weight of A, denoted as |A[;, is the number of 1’s in A. We say P is
contained in A, written P < A if there are row indices r; < --- < 7} and column indices ¢; < --- < ¢; such that
P(i,j) =1 — A(ri,¢;) = 1. In other words, you can obtain P from A by deleting rows and columns, and flipping
some 1s to 0. The extremal functions are defined as follows.

Ex(P,n,m) = max{|A|; | A€ {0,1}"*™ P « A},
Ex(P,n) = Ex(P,n,n).

If P is a k x k permutation matrix, it is known that both Ex(P,n) and Ex(P® (), n) are Oy (n), but we will
be interested in the leading constants as well.

THEOREM 2.1. ([MT04], [GEN09], Fox [Fox13], [CK17], [GEN15], [GTIT]) Let P be any permutation ma-
triz. Then there exists constants Cy,, Cy < 2(4+0()E sych that

Ex(P,n,m)
Ex(P® (3),n,m)

C
C

(n+m),

(n +m).

>~

NN
~2

3 The Upper Bound

3.1 Establishing the General Recurrence Let P be a k x k permutation matrix and Q = P ® (.".) be the
2k x 3k forbidden pattern. Define Qg 5 to be the 2k x (3k — (a+ b)) matrix derived from @ by removing the first a
and last b columns. For reasons that will become clear later, we must redefine the contains relation < differently
for the @, matrices.

DEFINITION 3.1. We will say that Qqup < A if there are 2k rows 1 < -+ < rop and 3k —a — b columns
1 <+ < C3k—a—b Such that

® Qup(i,j) =1 implies A(ri,c;) =1

o IfVYj. Quu(%,5) =0 then 35'. A(r;,j') # 0. In other words, an all-0 row Qg (3, ) cannot match an all-0 row
of A. (Note that j' need not be in {c1,...,C35—a—b}-)

Let A be an n x m Qg p-free matrix with weight Ex(Qg 5,7, m). We will classify all 1s in A according to the
following taxonomy, and bound the number of 1s in each class directly or inductively.

All 1s
Local Global
First Middle Last
Light Heavy

SN

Light-first Light-middle Light-last

Partition A into slabs of B consecutive columns. A row is called local if it has a non-zero intersection with
exactly one slab and global otherwise. The 1s in local/global rows are themselves local/global. Let n; be the
number of rows local to slab i and n* be the number of global rows, so n = n* + 3. n;.

Suppose A(r,c) = 1is a 1 appearing in a global row r and slab s = [¢/B]. We classify this 1 as first if the
intersection of row 7 and slabs 1,...,s — 1 are zero, last if the intersection of row r and slabs s+ 1,...,[m/B] is
zero, and middle otherwise.
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Figure 2: Vertical lines mark the boundary of some slab. If Q9 1 appears in one slab of Agyg, then there must be
an occurrence of Q) = Qo in A.

Since each slab is itself @, ,-free, the total number of local 1s is at most

[m/B]
(32) 2 EX(Qa,b7ni7mi)7

i=1
where m; is the number of columns in slab ¢, which is exactly B except perhaps the last slab. Similarly, if Agst
and Ajag are the matrices of first 1s and last 1s, then each slab of Ag,st is Qg 41 free, and each slab of Ajag is

Qa+1,p-free; see Figure 2| Letting n{ (n!) be the number of rows with first (last) 1s in slab i, we can upper bound
first and last 1s as follows.

[m/B]
[sssily + [ Asly <Y (Bx(Qapinnd,me) + Ex(Qusr,nhymi) )
i=1
(3-3) < Ex(Qap+1,7",m — mppypy) + Ex(Qat1,p,n™,m — my).

In Eqn. we use the superadditivity of Ex to simplify the expression. For any R, Ex(R,ni,mp) +
Ex(R,n2,m2) < Ex(R,n1 +na, mi +ms). Note that >, nf = > nl = n* and that the first and last slabs contain
no last 1s and first 1s, respectively.

Let A* be the n* x m matrix formed by the global rows and containing only the middle 1s. We partition the
rows of A* into horizontal slabs of G rows each, so the intersections of the horizontal and vertical slabs induce
G x B blocks. Call a G x B block in A* heavy if it contains a (.".), and light otherwise. The middle 1s inside
heavy/light blocks are themselves called heavy/light. Let Aneavy and Ajigne be the n* x m matrices containing
heavy and light 1s, respectively. In a light block, the first 1 and last 1 of each row are called light-first and
light-last, and all other 1s in the row are light-middle.

Define Aj.,,, to be the n*/G x m/B matrix obtained by contracting each block in Apeavy to a single entry,
i.e., non-zero blocks become 1 and all-zero blocks become 0. Because each heavy block contains a (.-.), Aﬁeavy is
P-free, implying |Af,,, [l1 (the number of heavy blocks) is at most Ex(P,n*/G,m/B). Since each heavy block

consists solely of middle 1s, each is Qg+ 1,+1-free; see Figure |3l Thus,

(3.4) | Aneavy |1 < Ex(P,n* /G, m/B) - Ex(Qut 1511, G, B).

Let Af,,, be obtained by contracting the B columns in each slab of Ajign¢ to a single column. Af,,, inherits
the Qg p-freeness of Ajgny and A, so the contribution of light 1s in the light-first and light-last categories is at
most

(3.5) 2| Afigne 1 < 2Ex(Qq,p,n*, m/B).

What remains is to bound the light 1s in the light-middle category. Construct an n*/G x m/B matrix Ajghtmid
by the following procedure, which is similar to that of [Gen09]. Assume the rows of Ajightmia are numbered from
bottom to top. For each i independently, scan the blocks in slab ¢ that contain light-middle 1s from bottom to
top, setting Alightmid (0,%) = Alightmid(¢1,%) = --- = 1 according to the following rules. See Figure

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

139



Downloaded 07/09/24 to 80.235.24.99 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Figure 3: If an instance of ()22 is contained in a single slab of middle 1s (e.g., Ancavy Or Alight), then @11 must
also appear in A. This inference relies on how contains is defined for @, , matrices in Deﬁnition In particular,
it is critical that all-zero rows of Q2 2 must not be all-zero in the instance of middle 1s.

Figure 4: Vertical and horizontal lines mark block boundaries. Underlined 1s are light-middle 1s.

1. (£p,1) is the first block in slab i containing a light-middle 1.

2. ¢; > ¢;_; is the first index such that some column in blocks (¢;_1,%),...,(¥;,) contains two light-middle
1s.

Call the interval of blocks (¢;_1,1%),...,(£; —1,1) in Ajigns (i-e., excluding (¢;,4)) a chunk. By construction, the
intersection of a column and a chunk can contain at most one light-middle 1. (Note that no light block contains
two light-middle 1s in the same column, for otherwise it would contain a (.*.) pattern and be classified as heavy.)
We claim Ajightmia is P ® (:)-free, and therefore the number of light-middle 1s in Ajjgy is, by superadditivity, at
most

(36) B - HAlightmidHl <B- EX(P@ (:),n*/G,m/B) < EX(P@ (:),Bn*/G7m)

Consider an occurrence of (,) in Alightmid, 58Y Alightmid(¢5,%) = Alightmia({j7,%) = 1. By construction they lie
in different chunks, thus there must be a column in slab ¢ of Ajgne that contains two light-middle 1s in blocks
(¢5,4),...,(£,1) inclusive. Together with a light-first and light-last 1, this forms a () pattern. Thus, any
occurrence of P® () in Alightmia implies an occurrence of Q = P® (.".) in Ajjgns, contradicting the fact that Ajgns
is Qg p-free.
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Combining Eqns. (3.2[13.3]13.4/[3.5[13.6]), we arrive at a recursive upper bound on Ex(Qq ., n,m).

[m/B]
Ex(Qap,n,m) < D Bx(Qap, i, mi) local 1s
i=1
+ Ex(Qa,p+1,n*,m — M p)) + Ex(Qat1,,n*,m —my) first and last 1s
+ Ex(P,n*/G,m/B) - Ex(Qu+1.b+1,G, B) heavy middle 1s
+ 2Ex(Qqp,n*, m/B) light-first /-last 1s
(3.7) +Ex(P® (3), Bn*/G,m). light-middle 1s

3.2 Analysis of The Recurrence
LEMMA 3.1. Lett = 3k — (a+b) be the number of 1s in Qqp. If t = 3 then Ex(Qqp,n,m) < 2n+ (2k—1)(m—2)
and if t = 2 then Ex(Qqp,n,m) <n+ (2k —1)(m — 1).

Proof. First consider ¢ = 3. @, contains only three 1s and either 2k — 2 or 2k — 3 all-zero rows. Those three
1s are equivalent to (.-, (), or () Suppose A is @, p-free. Remove the first and last 1 in each row of A, then
remove the first 2k — 1 1s in each of m — 2 columns, excluding the first and last, which are now all zero. If any 1
remains, then there must have been an occurrence of Q, in A. The ¢ = 2 case is proved similarly. 0

LEMMA 3.2. Ifm < 27, Ex(Qap,n,m) < 20720 + (2k — 1)7ma{01=3} (i — 2) where t = 3k — (a +b).

Proof. The cases t € {2,3} follow from Lemma so we may assume t > 3. We consider a simplified version of
(3.7) in which B = [m/2], i.e., my = [m/2] and my = |m/2]. There are only two slabs, all 1s are classified as
local, first, or last, and we have

Ex(Qapnm) < Y Ex(Qaprnismi) + Ex(Qapr1,n*,m1) + Ex(Qayr1,,n*,ma).
ie{1,2}

Applying the inductive hypothesis to each term, this is at most
<272 (ng +no) + 2k — 1)(G — D)3 (Jm/2] — 2 + |m/2] — 2)
+2-23n* 4+ 2k —1)(j — D) (Im/2] — 2 + [m/2] — 2)
=22+ k-1 (G —-D"?+ (G -1 (m—4)
<27 4 (2k —1)5173(m — 2).
0

We use the following version of Ackermann’s function and its inverses.

ay; =2’ for j > 1,
a1 =2 for i = 2,
Qi =W Qi—1,w, Where w = a; j_1. for i,j5 > 2,

a(n,m) = min{i : a; ; = m, where j = max{3, [n/m]}}

a(n) = a(n,n)

Observe that in the table of Ackermann values, the 1st column is constant (a;1 = 2) and the second merely
exponential (a; 2 = 2!71) so we have to look to the third column to see Ackermann-type growth, which is why we
set j as j = max{3, [n/m]}.

LEMMA 3.3. Fiz a constant ¢ = 3k. Suppose m < (a;;)°. Then
Ex(Qap,n,m) < g (n + (cj)™@04=3} 2k — 1) (m — 2)),
where t = 3k — (a +b) and p;; = (2°F0) + O(i)t2)2%,
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Proof. The proof is by induction on 4, j, and ¢. The cases t € {2,3} were already handled, so assume ¢ > 4. Let

A be a Qq p-free n x m matrix, where m < (a; ;)¢. We apply Eqn. (3.7) with B, G set as follows:
B=a$

3, —19

G = (c(j — 1)) 2k — 1)(B - 2).
Observe that

m/B < (aij/aij-1)" = (@Gi-1,4,; ,)°

We apply the induction hypothesis at (i,j — 1,t) to local 1s at (i,4,t — 1) to first/last 1s, at (i,5 — 1, — 2) to
heavy middle 1s, and at (i — 1,a;-1,t) to light-first/light-last 1s. Plugging these bounds into Eqn. (3.7) and
applying Theorem [2.1] yields the following upper bound.

Ex(Qqp,n,m)
< pie(n —n*) + pi(e(j — 1)) 732k — 1)(m — 2m/B) local
+ 25 41 + 251 (cj) T2k — 1) (m — 2) first/last
+ Cy(n*/G + m/B) (ﬂi,t,QG + piga(c(f — 1))m04=5} 2k — 1)(B — 2)) heavy
+ 2pi—1 4n* + 211 4(c(a; j—1)) 2k — 1)(m/B — 2) light-first /last
+ C}(Bn*/G 4+ m) light-middle

Note that by choice of G, the line for heavy 1s is exactly 2Cjp; —2(n* + Gm/B). Continuing,

(3:8) < prip(n + (cj)'~*(2k = 1)(m — 2)
(3.9) + [—pis + 2001 + 2Ckpig—2 + 2014 + Cp| n*
(3.10) + [ — piac(ch) ™+ 2pi -1 (cf) T + 20k -2 (c(j — 1)) 0I5

+ 2 a4 0,;] 2k — 1)(m — 2)

(3.11) < pig(n+ (ef) 32k — 1) (m — 2)).
Lines (3.8/{3.10) follow from the fact that (c(j—1))* "2 < (¢j)! 3 —c(cj)*~*. Line (3.11)) completes the induction

so long as the bracketed terms in Lines (3.93.10) are non-positive. These will hold whenever Eqns. (3.12]3.13))
hold.

(3.12) fig = 2H50—1 + 2Cfti 2 + 21 + Cp,
2pi 01 2Ckpip—2 | 21 C,
(3.13) Hig = . + - 93k—1 ' 9t—4.-3"

Eqn. (3.13) was obtained by dividing through by c¢(cj)!~* and noting that j > 2 and aj j—1 = 2. Clearly any
values (p;¢)i=1,¢>0 that satisfy Eqn. (3.12)) also satisfy (3.13) so we may focus solely on the former. We argue
that the lemma is satisfied for y; ; defined as follows. Let C' = C}, = C}.
(3.14) pie = (2C + 3i)'"72(2" — 1).
When ¢t € {2,3} the claim follows from Lemma since p;3 = 2 and p;2 = 1. When ¢ = 1 and ¢ > 4,
m < (al’j)c =ay.cj = 2¢9 and the claim follows from Lemma [3.2| since Wit = 2t=2. Now suppose i = 2, t > 4.
20 4—1 + 2Ck -2 + 2pi—14 + C,
<2(2C +30)173(28 — 1) +20(20 + 3i)4(2" — 1) +2(2C + 3(i — 1)) 22" = 1) + C
2 2C 3
-+ — +1— -
2C+3i  (2C + 3i)? 2C + 3i

< (20 +30)72(20 - 1) (

. 2 1 3
< (20 +3i)2(2 — 1 - >
(20 + 307 )<20+3i+20+3i+ 2C’+3i>

< (2C +3)72(2 = 1) = iy
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The first inequality is from the inductive hypothesis and C; < C} < C. The second inequality follows from
(2C +3(i — 1))72 < (2C + 3i)'72 — 3(2C + 34)!~3. This completes the induction. 0

Proof. [Proof of Theorem Let A be a Q-free n x m matrix and ¢ = ¢ = 3k. Take i to be minimal such that for
j = max{3, [n/m]"*}, m < (a; ;)°. It is tedious, but straightforward, to show that i = a(n, m)+O(1). Lemma
bounds the number of 1s in A by

pie(n 4 (ch) 732k — 1)m) = piq (n + 20(klos k)n) (cf)t3 < 2018 k) (i /i)
=n- QO(kIOg k') . (20 + 3i)t—22i
=n- (20(’“2) + O(i)Bk_Q) 2! C =290 see Theorem

— 1. 90U+ (1+o(1)a(n,m)

|

4 Lower Bounds on 0-1 Matrices via Sequences

Blocked Sequences and 0-1 Matrices. If S is a sequence, let |S| be its length and | S| the size of its
alphabet |3(S)|. A block is a contiguous sequence of distinct symbols. If S is understood to be partitioned
into blocks, [S] is the number of blocks. Regardless of 3(S), we can always write S in canonical form over the
alphabet {1,...,[S5]}, where the symbols are sorted according to their first appearance in S. If S is in canonical
form, its canonical matrix Ag is the |S| x [S] symbol-block incidence matrix, i.e., Ag(4,j) = 1 if symbol ¢ appears
in block j, and 0 otherwise. One cannot quite recover S from Ag since Ag does not encode the order of symbols
within a block. Nonetheless, the transformation is useful inasmuch as subsequences avoided by S often become
0-1 patterns avoided by Ag.

Composition and Shuffling. We consider sequences S partitioned into live and dead blocks satisfying extra
constraints:

e All live blocks have the same length. Dead blocks have variable lengths, and the number of dead blocks
between consecutive live blocks is also variable.

e The first occurrence of every symbol appears in a dead block, and dead blocks contain only first occurrences.
Let (S) be the number of live blocks in S.

Composition. Suppose Uiy, is a sequence in which all live blocks have length j and Upniq is a sequence with
[Umial = j. The composition Usyp, = Utop © Umia is obtained by replacing each live block L of Uy, with a copy
Umia(L) over the alphabet of L, whereas dead blocks of Uy, are inherited by Usy, verbatim. In general Upia(L)
can contain both live and dead blocks [Pet15b], but in our particular construction Umiq(L) contains only live
blocks.

Shuffling. Now suppose Ugyp is a sequence whose live blocks have length j and Uyt is a sequence with
(Upot ) = j. The left-shuffle Usyp © Upo, is obtained as follows. Let Ugy, = DoL1D1LaDs - - - Li Dy, where L; is
the ith live block, Dj is zero or more dead blocks, and k = (Usyp |). Let U, = Ué}))t .. U™ e the concatenation of

bot
k copies of Uyt over disjoint alphabets. The left-shuffle is obtained by taking, for all ¢, the block L; = (ajasz - - - a;)

and inserting ag, for £ € [1, j], at the left end of the ¢th live block of U,gf))t, then inserting dead blocks D; between
U, and UGV

ot
Sequence Construction. U(j) and U(i,j) are blocked sequences, where square brackets indicate dead
blocks and parentheses indicate live blocks. U(i, j) is a variation on order-4 Davenport-Schinzel sequences [ASS89],

adapted specifically to exclude a small pattern that arises from P ® (.".)-type patterns.

4The right shuffle Usup © Upot is defined in the same way, except that ay is inserted at the right end of the ¢th live block of Ut(,f))t.
We only use left-shuffles but there are cases where it is desirable to use both [Pet11bl [Pet15b).
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UG)=0GG—-1 - 1)12--7) 2 live blocks
Ul j)=1[12---5](12---75) first block dead, second live
U(4,0) = ()* 2 empty live blocks
U(i,7) = (Utop © Unmia) © Unot
where Uiop = Ui —1,(U(i,5 — 1)),

Umia = U((U (4,5 —1))),
and Ut = Uiy j — 1)

Let N(i,7) = |U(¢,7)| be the alphabet size and L(i,5) = (U(4, 7)) be the number of live blocks. N, L obey
the following recurrence:

L(1,j) =1

L(i,0) =2

L(i,j)=L(i,j—1)-2- L —1,L(i,5 — 1))

N(Lj)=j

N(i,j)=N(,j—1)-2-L(i —1,L(i,j— 1)) + N(i — 1, L(i, 5 — 1))

LEMMA 4.1. Fiz any U =U(i,j).

1. All live blocks in U have length j. Each symbol appears 2°=1 + 1 times in U, its first occurrence appearing
in a dead block, and the remaining 2'~1 times in live blocks.

2. As a consequence of part 1, N(i,j) = (5/2°~1) - L(i, j).
3. The number of dead blocks is at most L(i,j) — 1.

4. If n = N(i,7) is the number of symbols in U and m < 2L(i,j) the number of blocks, i = a(n,m) + O(1),
and |U| = ©(n22(mm)),

Proof. Part 1. The claim holds in the base cases U(1,j) and U(4,0). All live blocks in Upoy = U(i,j7 — 1) have
length j —1 by induction, and each receive one symbol in the shuffling operation (Usop © Umid) © Upot. All symbols
in Upot = U(i,j— 1) appear in 2°~1 live blocks. Those in Uy, = U (i —1, (U(i,j — 1)) appear in 2¢2 live blocks,
and therefore in 2¢1 live blocks in Uy, = Utop © Umia since Upiq doubles the number of live occurrences. The
property that first occurrences appear in dead blocks is preserved by composition and shuffling. Part 2. Note
that both j - L(i,5) and 2¢=1 - N (i, j) both count the total length of all live blocks. Part 3. The claim holds in all
base cases. By induction, the number of dead blocks in Uy, is at most L(i — 1, L(i,j — 1)) — 1. U, consists of
2L(i—1,L(i,j — 1)) copies of Upey = U(i,j — 1), so U, has 2L(i — 1, L(4,5 — 1)) (L(i,j — 1) — 1) dead blocks. In
total there are L(i — 1, L(¢,j —1))(2L(4,j —1) —1) — 1 < L(i,7) — 1 dead blocks. Part 4. Proving Ackermann-like
functions are equivalent inasmuch as their inverses differ by +0O(1) is tedious, but straightforward. See [Pet06
Lemma 3.10] for an example of such a proof. ]

LEMMA 4.2. Let U = U(3, j) be obtained from Usop, Umid, Ubot- Suppose a < b are two symbols in X(U) appearing
i a common live block.

1. The restriction of U to letters {a,b} is of the form a*b*(ab)b*a*.
2. If a € ¥(Usop), be X(U,), then a < c for every symbol ¢ appearing in b’s copy of Upo.

Proof. The claim is true in the base cases U(1, j) and U(i,0). Consider the moment that a is shuffled into b’s live
block, where a € ¥(Usop) and b e (U ). All occurrences of b appear in one copy of Upo in U, and exactly
one occurrence of a is shuffled into this copy. It follows that the restriction of U to letters {a, b} is of the form
a®|b* (ab)b*|a*, where the bars mark the boundary of b’s copy of Upet. Furthermore, since the first occurrence of
a is in a dead block, which is inserted between two copies of Uy in Ug‘ot, a < c for every c in b’s copy of Upeg.
0
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LEMMA 4.3. U =U(i,j) does not contain any subsequences order-isomorphic to 41213.

Proof. Since U is in canonical form, the existence of 41213 implies the existence of a subsequence order-isomorphic
to
o= 31213

Suppose that o first appears in U (4, j) = Usub © Ubot = (Utop © Umia) © Unot. If o already appears in Uy, but did
not appear in Us,p, then Upop must have contained o.

o' =31(12)3

Note that {2,3} cannot share a live block in Uy, without also including 1, and if {1,2, 3} shared a live block in
Utop, the restriction of Usep to {1,2,3} would, by Lemma 1), be:

1#2%3%(123)3%2% 1%
and the restriction of Ugyp, to {1,2,3} would be:
1%2%3% (321)(123)3%2* 1,

which does not contain o. We therefore need to argue that neither o nor ¢’ can arise in U (7, ) in the shuffling
operation.

If o or ¢’ arose during shuffling, then Lemma implies that for any a,b € {1,2,3} with a € X(Uy,p) and
be X(UE,), that a < b. It cannot be that {1} or {1,2} < X(Uiop) while {2,3} or {3} < X(U},,) since 3’s copy of
Upot only receives one copy of any symbol during shuffling, but both o, ¢’ have two 1s between the first and last
3. d

REMARK 4.1. The distinction between live and dead blocks is critical for constructing order-3 (ababa-
free) Davenport-Schinzel sequences [HS86, [Niwl0, [Petlbd], and generalized DS sequences with length
O(npoly(a(n))) [Petild, [Peti5l]. However, all constructions of DS sequences at order-4 and above [ASS89,
Nivi0, [Peti5d] (having length Q(n2°(™)) only use live blocks. In Lemma @, it is very important that first
occurrences lie exclusively in dead blocks, and are never shuffled into the middle of a copy of Upot. If the first
block in U(1,j) were redefined to be live, then we would see instances of 41213 in U(i,7). It could be that 12121
appears in a copy of Upot, and the first occurrences of {3,4} lie in a common live block in Uyp. The restriction of
Uiop to {3,4} contains (34)3. After shuffling the block (34) into the Upor, containing 1,2 we can see 12341213.
Lemma @( 2) rules out this possibility when first occurrences appear in dead blocks.

THEOREM 4.1. Ex(W,n,m) = ©(m + n2*™™)  where

()

Proof. By Lemma the sequence U = U(i,j) has n = N(¢,7) symbols, m < 2L(i,7) blocks, and length
|U| = ©(n2%) = ©(n2°(™™). We convert U to an n x m 0-1 matrix Ayy. Number the rows of Ay from bottom-to-
top, and the columns from left-to-right, and let Ay (7, 5) = 1 iff symbol ¢ appears in block j. U does not contain
subsequences order-isomorphic to 41213, which implies that Ay is W-free, and hence Ex(W,n, m) = Q(n2%™m).
The matching upper bound is obtained as in [Pet11b, Thm. 3.4]. |

5 Additional Upper Bounds

5.1 Proof of Theorem Recall that I, is the k x k identity matrix. For example, when k = 3, we have
the following.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

145



Downloaded 07/09/24 to 80.235.24.99 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Theorem follows from Keszegh’s [Kes09] joining operation and and Pettie’s upper bound on order-3
Davenport-Schinzel sequences [Pet15al; cf. [HS86l Niv10]. Keszegh [Kes09] proved that if R has a 1 in its southeast
corner and S has a 1 in its northwest corner, that Ex(R@® S,n,m) < Ex(R,n,m) + Ex(S,n,m), where R® S is
formed by joining R, S at their corners.

RS = °

Observe that Iy ® () = (k-1 ® (") @ (), so we can apply Keszegh’s operation k& — 2 times to reduce to the

base case I> ® (). We claim Ex(I> ® (), n,m) < Ex(("-),n,m) + 2n +m. Suppose A is I> ® (..)-free, and let

A’ be obtained by removing the top 1 in each column, and then the first two 1s in each row. Then A’ is clearly

(" )-free. Putting it all together, we have,
EX(Ik ® (), 1, m) < EX(IQ (), m, m) + (k - 2) EX((‘.'.)’ n, m)

< (k=1Ex((:),nm)+2n+m

< (k= 1)2na(n,m) + O(k(n +m)),

where the last inequality follows from the bound Ex((" - ),n,m) = 2na(n,m) + O(n + m) on order-3 Davenport-

Schinzel sequences [Pet15al.

5.2 Avoding W and Its Reflection By symmetry, Theorem also applies to Ex(W’, n, m), where W' is
the reflection of W along the y-axis. However, the density of {W, W’'}-free matrices is asymptotically smaller.

THEOREM 5.1. Ex({W, W'}, n,m) < 4dna(n,m) + O(n + m), where W' is the reflection of W along the y-azis.

.

Proof. Let A be a {W,W'}-free matrix. Remove the top 1 in each column, yielding A’. It follows that A’ is
{W, W' W"}-free, where
W — ( . . . )

We prove that Ex({W, W' W"} n,m) < 2EX((°_--),n,m). Call a 1 in A’ bottom-right if it appears as the
bottom-right 1 in a copy of (".), and bottom-left if it appears as the bottom-left 1 in a copy of (.7). If
|Aln = 2Ex(("+),n,m) + 1 then some A’(i,j) = 1 must be classified as both bottom-left and bottom-right.
Let (ir,jr) and (ig,jr) be the positions of the top-left 1 in a copy of () containing A’(%, j) and top-right 1 in
a copy of () containing A’(i, 7), respectively. Numbering the rows from bottom to top, we have a copy of W”

if i, = 1R, a copy of W' if i;, < iR, and a copy of W if i;, > ig. For example, when ij < ip,

(ir,Jr)

(ir,jL)

(4,7)

It is known [Petl5al Niv10] that Ex((*-),n,m) = 2na(n,m) £ O(n +m). 0
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6 Concluding Remarks

Derryberry et al. [DSW05], Demaine et al. [DHIT09|, and Pettie [Pet10] developed the idea of representing the
behavior of a data structure as a point-set in [m] x [n], or equivalently, a 0-1 matrix in {0,1}™*", in which the
axes correspond to time and space. Applying results on forbidden 0-1 matrices in this context is very natural,
and has led to sharp or nearly sharp bounds on certain path compression schemes [Pet10], structured inputs to
binary search trees [CGK™15bl [(CGK™15a, ICG.J*23| [Pet10], and heaps [KS20).

Although the forbidden 0—1 matrix framework is perfectly suited to proving that sorting m-free sequences
takes near-linear time, it might be inadequate to establishing an optimal Og(n) time bound. As we have shown,
any o(n2%(")-time analysis must use some property beyond Py ® (..)-freeness. Here it may be useful to consider
different ways to decompose a 0—1 matrix; see Guillemot and Marx [GM14] and Chalermsook, Gupta, Jiamjitrak,
Acosta, Pareek, and Yinghcareonthawornchai [CGJ*23].

The literature on forbidden 0—1 matrices is rich [FH92| [Tar05, [PT06, [Pet11b, [Pet11c, Pet1lal [Pet15b] [Kes09,
Gen09, [Ful09l KTTW19, [CK12, [CK17, [Fox13| [MT04, [K1a92, [PT24] but there are many outstanding open
problems. In the context of data structure analysis, the most interesting open problems are to characterize
the set of linear forbidden patterns—those P with Ex(P,n) = O(n)—and in particular, to characterize
linear light patterns. It is known that there are infinitely many minimal (with respect to <) non-linear
patterns [Kes09, [Gen09l [Pet11a], but there may be other ways to characterize this set in a finite representation.
On the other hand, we know of only two minimally non-linear light patterns (with respect to < and reflections),

namely ( to. ) and ( Lt ) It is quite possible that these are the only sources of non-linearity in light patterns.
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