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Abstract

The extremal theory of forbidden 0-1 matrices studies the asymptotic growth of the function Ex(P,n),
which is the maximum weight of a matrix A € {0,1}"*™ whose submatrices avoid a fixed pattern P e {0, 1}**".
This theory has been wildly successful at resolving problems in combinatorics [Kla00, IMT04, [CK12], discrete
and computational geometry [Fiir90l [Aggl5, [ES96) [PS91) Mit92] [BGI1|, structural graph theory [GM14]
BGK*21,[BKTW22] and the analysis of data structures [Pet10} [KS20], particularly corollaries of the dynamic
optimality conjecture [CGK™15b, ICGK™15al ICGJ1 23] [CPY24].

All these applications use acyclic patterns, meaning that when P is regarded as the adjacency matrix of a
bipartite graph, the graph is acyclic. The biggest open problem in this area is to bound Ex(P,n) for acyclic
P. Prior results [Petlla, [PS13] have only ruled out the strict O(nlogn) bound conjectured by Fiiredi and
Hajnal [FH92]. At the two extremes, it is consistent with prior results that VP. Ex(P,n) < nlog! ™" n, and
also consistent that Ve > 0.3P.Ex(P,n) = n*"°.

In this paper we establish a stronger lower bound on the extremal functions of acyclic P. Specifically, for
any t > 1 we give a new construction of relatively dense 0—1 matrices with ©(n(logn/loglogn)’) 1s that avoid
a certain acyclic pattern X;. Pach and Tardos [PT06] have conjectured that this type of result is the best
possible, i.e., no acyclic P exists for which Ex(P,n) = n(log n)“’(l).

1 Introduction

The theory of forbidden 0-1 matrices subsumes or generalizes many problems in extremal combinatorics,
such as Davenport-Schinzel sequences [HS86, [ASS89] [Niv10, [Pet15al WPI8|] and their generalizations [Petllb,
Pet15bl [FH92], Zarankiewicz’s problem [KST54], and bipartite Turdn-type subgraph avoidance. Forbidden 0-
1 matrices have been applied to problems in discrete and computational geometry, the amortized analysis of
data structures, and in other areas of extremal combinatorics. Some highlights in geometry include bounding
the number of unit-distances in a convex point set [Fiir90, [Aggl5], the number of critical placements of an
n-gon in a hippodrome [ES96], an analysis of the Bentley-Ottman line sweeping algorithm [PS91], and an
analysis of Mitchel’s algorithm for obstacle-avoiding shortest paths in the plane [Mit92, BG91]. In data
structures, forbidden 0-1 matrices have been used to analyze data structures based on binary search trees
and path-compression [Pet10], and more recently, to several corollaries of Sleator and Tarjan’s [ST85] dynamic
optimality conjecture [CGKT15b, ICGK™15a, ICGJIT23| [KS20, [CPY24]. The most well-known application of
forbidden 0-1 matrices is probably Marcus and Tardos’s proof [MT04] of the Stanley-Wilf conjecture, via Klazar’s
reduction [Kla00] to a Fiiredi-Hajnal conjecture [FH92]. They have also been used to bound Stanley-Wilf
limits [Cib09| [Fox13] [CK17], and to bound the size of sets of permutations with some fixed VC-dimension [CK12].
Most recently, results on searching for forbidden patterns [GM14] inspired the definition of twin-width for graphs
and other binary structures [BKTW22, BGK™21].

If Pe{0,1}** and A € {0,1}"*", we say A contains P, written P < A, if there are rows r; < --- < r}, and
columns ¢; < --- < ¢ such that P(i,j) =1 — A(r;,¢c;) = 1. If P < A then A avoids P or is P-free. The basic
extremal function is defined as follows

Ex(P,n) = max{|A|; | A€ {0,1}"*" and P « A},
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and may be generalized in various ways, e.g., to avoid sets of forbidden patterns [Tar05] or rectangular
A [FH92| [Pet1Ibl|, or to d-dimensional matrices/patterns [KMO06, [MP17l [Gen19]. Observe that P and A can
be viewed as incidence matrices of bipartite graphs, where the two vertex sets are implicitly ordered; let G(P) be
the unordered undirected graph corresponding to P.

Fiiredi and Hajnal [FH92] attempted to systematically classify small forbidden patterns by their extremal
functions, and managed to do this for most weight-4 patterns with the last holdouts being classified by
Tardos [Tar05]. For any pattern P, the extremal function Ex(P,n) is at least as large as the unordered (Turdn)
extremal function for G(P). A natural question is to determine when they are the same, asymptotically, and the
maximum factor by which they can differ.

Fiiredi and Hajnal [FH92] concluded their article with several influential conjectures. They first conjectured
that when P is a k x k permutation matrix, that Ex(P,n) < ¢gn, i.e., it is asymptotically the same as the Turdn
number of G(P). Klazar [Kla00] proved that this conjecture implies the Stanley-Wilf conjecture, and Marcus
and Tardos [MT04] proved both conjectures. See [Gen09l [Cib09] [CK17, [Fox13, IKMO06] for generalizations and
sharper analyses of the leading constants. Fiiredi and Hajnal next conjectured that Ex(P,n) would never be more
than a logn-factor larger than the (unordered) Turdn number of G(P). Perhaps doubting this conjecture, they
immediately asked whether it held for acyclic patterns P, i.e., if G(P) is a forest, is Ex(P,n) = O(nlogn)?

Pach and Tardos [PT06] refuted the second Fiiredi-Hajnal conjecture, by exhibiting arbitrarily large P for
which G(P) = Cyy, is a 2k-cycle but Ex(P,n) = Q(n*/3). This implies the gap between the ordered and unordered
extremal functions is n'/3~¢, where ¢ = 1 /k can be made arbitrarily small. However, this refutation did not imply
anything about the gap for acyclic matrices. Understanding acyclic patterns is important, as every application
to geometry, data structures, and combinatorics mentioned in the first paragraph uses only acyclic patterns.
Pettie [Petlla] disproved the last Fiiredi-Hajnal conjecture by exhibiting a specific acyclic pattern X for which
Ex(X,n) = Q(nlognloglogn). An unpublished manuscript of Park and Shi [PS13] extended this lower bound to
a set of patterns {X,,} for which Ex(X,,,n) = Q(nlognloglognlogloglogn - - log™ n).

The constructions of [Petllal [PS13] refuted the letter of Fiiredi and Hajnal’s conjecture, but certainly not
its spirit. Consider several non-trivial possibilities for the extremal function of an acyclic P.

Absolute Polylog(n). There is an absolute constant ¢ > 1 such that for any acyclic P, Ex(P,n) < nlog® oM n.

Variable Polylog(n). For any acyclic P, there is a constant ¢ = ¢(P) such that Ex(P,n) < nlog®n.
Subpolynomial. For every acyclic P, there is some ¢(n) = o(1) depending on P such that Ex(P,n) < n'*+<(™),
Polynomial. For some ¢ < 2, every acyclic P has Ex(P,n) < O(n°).

None of these upper bounds have been established or ruled out. In particular, prior work [Petllal [PS13] does not
preclude the possibility that Absolute Polylog(n) holds even with ¢ = 1, and it is also possible the Polynomial
fails, i.e., for every € > 0, there exists an acyclic P for which Ex(P,n) = Q(n?>7¢). Pach and Tardos [PT06]
conjectured broadly that the Variable Polylog(n) upper bound is true, and conjectured more specifically that

Ex(P,n) = O(nlog! "' =3 p).

The biggest open problem in the theory of forbidden 0-1 matrices is to understand acyclic patterns. On
the upper bound side, we have a perfect classification of all patterns with four 1s [FH92 [Tar05], and a good
classification for those with five 1s [PT06], up to a logn factor. For example, Ex(R;,n) and Ex(R2,n) are known
to be Q(nlogn) and O(nlog®n) [PTO6).

[ ] [ ]
[ ] [ ] [ ]
(7 ()
[ ] [ ]
Korandi, Tardos, Tomon, and Weidert [KTTW19] defined a pattern P to be class-s degenerate if it can be written

/
r-(p

P//
(s — 1) degenerate. (In the diagrams of Sp, Sa, a valid row partition cuts at most one edge.) Any P with a single

, where at most one column has a non-zero intersection with both P’ and P”, and P’, P” are class-

TThe weight of A is |A|1, i.e., the number of 1s in A.
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row is class-0 degenerate. They proved that every class-s degenerate P has
EX(P, n) <n- 20(10g1_$ n) _ TL1+0(1).

For example, Ex(S1,n), Ex(Se,n) <n- 90(10g™* n) ag S1, 59 are class-2 degenerate.

S1 = LA— Sy =

Clearly, a pattern and its transpose have the same extremal function. The smallest non-degenerate acyclic pattern
whose transpose is also non-degenerate is the “pretzel” T'; we have no non-trivial upper bounds on Ex(T,n).

1.1 New Result Our main result is a proper refutation of the Fiiredi-Hajnal conjecture for acyclic matrices
that rules out the Absolute Polylog(n) world. For any ¢ > 2, we give a new construction of 0-1 matrices
containing Q(n(logn/loglogn)t) 1s, and prove that they avoid a particular 2t x (2t + 1) acyclic pattern X; with
4t 1s.

Xy

THEOREM 1.1. For every t = 2, there exists a 2t x (2t + 1) acyclic pattern X; such that

Q(n(logn/loglogn)t),
Ex(X¢,n) = { O((n(logg4t_/3ng). gn)’)

1.2 Organization Section [2] presents the construction of 0—1 matrices and some of its properties unrelated to
forbidden substructures. Section [3| analyzes the forbidden substructures, culminating in a proof of Theorem
We conclude in Section 4] with a concise survey of open problems in 0—-1 matrices and related problems in ordered
graphs.

2 A Construction of 0—1 Matrices
For any positive integer k, let [k] = {1,...,k}. Fix a constant integer ¢ > 2. The rows and columns of A; are
indexed by length-(¢k) strings in the set

T = [k

An element of Z is partitioned into ¢ blocks, each of length k. If a € Z, let a(p) € [k']* be its pth block, and
a(p,q) € [k*] be the qth coordinate in block p. We use angular brackets to denote any injective mapping from
[k]” to [k"], e.g., (j1,J2,73) = (j1 — 1)k + (j2 — 1)k + j3. For (j1,...,5¢) € [k]?, define v = v[j1,...,5:] € T to be
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the vector that is 0 in all coordinates except:

v(r,jr) = (1, gro1)

V(tvjt) = <j17 s ajt71> .
Define S to be the set of eligible vectors,
§= {v[j17 s 7jt] | (.j17 s 7.jt) € [k]t}

Letting n = |Z|, A; is an n x n 0-1 matrix whose row and column sets are both indexed by Z, ordered
lexicographically. It is defined as follows:

At(a,b)z{l ifb—acS,

0 otherwise.
LEMMA 2.1. [|4:]; = ©(n(logn/loglogn)?).

Proof. A; is an n x n 0—1 matrix, where n = Ktk = |Z|. Pick a uniformly random row a € Z, and a uniformly
random vector v = v[i1,...,4:] € S. The probability that a + v € Z is legal is the probability that for all r € [t],
a(r,iy) + (i1, ..., ip—1) < k*, which is at least 1 — k=*+("=1 since (iy,...,i,_1) < k"~. We have

t t
Prla+vel) > [[A-k""0) =1 Y k" >1—(k—1)""
r=1 r=1

Therefore the number of 1s in A, is at least (1 — (k — 1)~!)nk? = O(n(logn/loglogn)?). O

3 Forbidden Substructures
If a,b € T are distinct vectors, their type is the first block where they differ, i.e.,

type(a,b) = min{r | a(r) # b(r)}.
LEMMA 3.1. 1. Fora<b<c, a,b,ceZ, type(a,c) < type(b,c).

2. Suppose Ai(a,c) = Ai(b,c) = 1, witha < b. Let ¢ —a = Vv[i1,...,i] and ¢ — b = v[j1,...,J]. If
type(a,b) = r, then iy = j, for g <r, i, < j., and the first coordinate where a and b differ is (r,i,).

c
a .
b °
3. Suppose Ai(a,c) = Ai(a,d) = 1, with ¢ < d. Let ¢ —a = V[i,...,i] and d —a = v[j1,...,jt]. If
type(c,d) = r, then iy = jq for ¢ <r, i, > j., and the first coordinate where ¢ and d differ is (r, j,).
c d
[ ]

a(o

)

4. Suppose Ai(b,c1) = At(a,ca) = Ai(b,d) = Ai(a,d) =1, where a < b and ¢1 < cg < d. Then it is not possible
that type(a, b) = type(ci,d) = type(cz, d).

C1 C2 d

a o o

b ° °
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5. Suppose Ai(a,co) = Ai(b,c1) = Ai(a,c2) = Ae(b,d) = Ai(a,d) =1, where a < b and ¢y < ¢1 < cg < d. If
type(a, b) < type(co, d), then type(co,d) < type(ca, d).

Coclcgd
a ° o o

b . .

Proof. Part 1 holds because Z is ordered lexicographically.

Part 2. Let s be the first index where i; # js. Clearly, the first two coordinates where v[iy,...,i;] and
v[j1,...,j:] differ is (s,45) and (s, js). This makes a = ¢ — v[i1,...,4:] and b = ¢ — v[j1,...,j:] also differ first
at the same two coordinates, making type(a,b) = s, so we have r = s. At coordinate (s,7js), V[Jj1,-..,J¢] is
{1y ey js—1y > 0 but v[iy, ..., 4] is zero there, so we have a(s,js) > b(s, js). As a <b, (s,js) cannot be the first
coordinate where a and b differ, so we conclude that is; < js and (s,is) = (r,4,) is the coordinate of first difference
between a and b.

Part 3 can be proved the same way as Part 2.

Part 4. Suppose, for the purpose of obtaining a contradiction, that type(a,b) = type(c1,d) = type(ce,d) = r.
Both vectors d —a and d — b are in S, so let

d—a=v[i,..., ],

d*bZV[jl,...,jt].
Applying Part 3 to row b, we know ¢; and d first differ at coordinate (r,j,), and applying Part 3 to row a, we
know c¢o and d first differ at coordinate (r,i,). Applying Part 2 to column d, we have i, < j,.. However, since
o < d we have
c1(ryiy) = d(r, i) > ca(r, i),
implying ¢; > co, contradicting the originally defined order ¢; < cs.

Part 5. We have type(co, d) < type(cq,d) by Part 1. Suppose, for the purpose of obtaining a contradiction,
that type(co,d) = type(ca,d) = r, which implies, again by Part 1, that type(cq,d) = r as well. We have assumed
type(a,b) < r and type(a, b) = r would contradict Part 4, so we have type(a, b) < r. With the notation introduced
in Part 4, both pairs (cg, d) and (cq, d) first differ at coordinate (r, i,), while (¢1,d) first differ at coordinate (r, j;).
We have ¢y < ¢1 < ¢o < d lexicographically, so we must also have i,. = j,.. We further know that

d(ryip) — co(ryip) = d(ryiy) — ca(ryip) = Vi, ..., 0] (r,6r) = {1y oy po1),
d(?", jr) - Cl(ra jr) = V[j17 e 7jt](r7j7‘) = <j1a cee 7jr71>~

This implies

CO(Ta 27”) = CQ(Ta ZT) 7 Cl(’f‘, Z’F)

since Part 2 and type(a, b) < r implies that {i1,...,i.—1) # {J1,-..,Jr—1y. Now (r,4,) is the first coordinate where
¢ differs from either ¢y or co, but ¢ and ¢y agree on this coordinate, which contradicts the ordering ¢y < ¢ < ¢s.
The confirms Part 5 of the lemma. a

Define the alternating patterns P; and @, where @; is a reflection of P; across the minor diagonal.

2t — 1 alternating 1s

Pt_(-.°....°:> Qi -

When ¢t > 2, P, and @, appear in A;, and in fact Py, Qy appear in A; for every constant ¢’ > t. Lemmas
and give useful constraints on how Pj, Q¢ can be embedded in A;.
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LEMMA 3.2. Consider an occurrence of P; in A¢, where a,b € T are the indices of the two rows and c¢,d € T are
the indices of the first and last columns.

If type(a, b) < type(c,d), then type(a,b) = type(c,d) = 1.

Proof. For i€ [t], let ¢; € T be the index of the (2i — 1)*" column in this occurrence of A;, soc=c¢; <cp < --- <
¢t < d. We have type(a, b) < type(ci,d) < -+ < type(et, d), where the first inequality is assumed and rest follow
from Lemma 1). Part 5 of Lemma applies and implies that these latter inequalities are strict, i.e.,

type(a,b) < type(c1,d) < type(cz,d) < --- < type(cs, d).
All types are from [t], therefore both type(a,b) and type(c, d) = type(cy, d) must be 1. O

LEMMA 3.3. Consider an occurrence of Qi in Az, where a,b € T are the indices of the first and last rows and
¢,d € T are the indices of the two columns. If type(a,b) = type(c,d), then type(a,b) = type(c,d) = 1.

Proof. First one has to establish the analogues of Lemma 4,5) for patterns that are reflected across the minor
diagonal, depicted below, then follow the proof of Lemma [3.2

For both parts, the original proofs work mutatis mutandis. 0

Define X; to be the following 2t x (2t + 1) pattern.

X =

Alternatively, X; is defined to be the 0-1 matrix whose first and last rows with the first column removed
form P;, while its second and last column form @; and has a single 1 entry outside these submatrices in the first
column and last row.

LEMMA 3.4. A; avoids X;.

Proof. Suppose there is an occurrence of X; in A;. Let a,b e Z be the indices of the first and last rows of the X;
instance, and let ¢, ¢, d € T be the indices of its first, second and last columns. We either have type(a, b) < type(c, d)
or type(a,b) > type(c,d). We must have type(a,b) = type(c,d) = 1 in both cases by Lemmas and
respectively. But then type(c/, d) is also 1 by Lemma 1) and then the rows a,b and columns ¢, ¢, d contradict
Lemma 4). The contradiction proves our lemma. O

Lemma lets us obtain a lower bound on Ex(X;,n). We use a Lemma of Pach and Tardos [PT06] to get a
nearly matching upper bound.
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LEMMA 3.5. (LEMMAS 3 OF [PT06]) Let P be a 0-1 pattern with rows i, 11 and a column j such that P(ig,j) =
1 is the only 1 in column j, and P(ip,j + 1) = P(i1,j — 1) = P(i1,j +1) = 1.

7—1 5 5+1
i0 o o
P =
i1 . .

Let P’ be P with column j removed. Then Ex(P,n) = O(Ex(P’',n)-logn).

Since the extremal function of a pattern is invariant under rotations and reflections, Lemma [3.5| also applies
with the roles of rows and columns reversed, and the the roles of 7 — 1 and j + 1 reversed.

Proof. [Proof of Theorem By Lemmas and Ay has weight ©(n(logn/loglogn)t) and avoids X;, giving
the lower bound. For the upper bound, we can apply Lemma [3.5]iteratively to remove rows 2,3, ..., 2t—1 followed
by columns 2¢,2t —1,...,2, leaving a linear pattern with three 1s. Each application of Lemma [3.5] introduces a
log n factor, so Ex(X;,n) = O(nlogl®*h=3n) = O(nlog®=>n). |

4 Conclusion and Open Problems

The following broad classification of 0-1 patterns comes out of the last 304 years of forbidden 0-1 matrix

theory [BGII, [FH92| [K1a92] [KV94, MT04; [Tar05, [PT06, Kes09, Ful09, [Gen09, [Pet1lal [Pet1ib} Petllc, Tim12,

Linear Patterns. Let P;, be the set of all P such that Ex(P,n) = O(n). Py, contains several well-
structured classes of patterns such as permutations [MT04], “double” permutations [Gen09], and monotone
patterns [Petiic, [Kes09, KV94]. Examples of the last two classes are

There are only a handful of known linear patterns outside these classes. The first two examples below are
proved via ad hoc arguments [Ful09) [PetT1h], and the last is an example of the “grafting” operation [PetTlc]

applied to a linear pattern [Tar05].

A difficult open problem is to characterize the class Py,. It is known that there are infinitely many minima
nonlinear patterns [Kes09,/Gen09, [Pet1la]. On the other hand, every known P for which P ¢ Py, is witnessed
by one of two constructions [HS86, with weight ©(na(n)) and ©(nlogn) (where a(n) is the inverse-
Ackermann function), and every P with Ex(P,n) = Q(nlogn) is witnessed by one of two closely related
constructions [FH92| [Tar05]. It may be that a finite number of witness constructions characterize the set
of patterns outside of Pyy,.

Although characterizing linear patterns seems to be beyond reach, a nice and simple characterization of
linear connected patterns is given in [FKMV20|. Here we call P connected if the corresponding bipartite
graph G(P) is connected.

Quasilinear Patterns. Let P, be the set of all P for which Ex(P,n) < n2”Y where a(n) is the inverse-
Ackermann function. Functions of this type are called quasilinear and show up in the analysis of (generalized)

Davenport-Schinzel sequences [HS86] [ASS89] [K1a92! [Niv10] [Pet15al [Pet11bl [Pet15b] and other combinatorial

Zwith respect to < containment
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problems |[AKN*08]. A pattern is light if it contains exactly one 1 per column. All light patterns are in
Pqin [Kla92| INiv10| [Pet15b] and all patterns known to be in Pgin\Piin are either light, or composed of
light or linear patterns via Keszegh’s [Kes09] joining operation)’| It is an open question whether there
are infinitely many minimal non-linear patterns in Pqin. It is consistent with known results that if P is
light, then P € Py, iff it avoids the following patterns (or their reflections), which correspond to order-3
Davenport-Schinzel sequences.

(")

It would also be of interest to characterize, for each t > 1, (light) patterns P € Pqun for which
Ex(P,n) = n22@ (n),

Acyclic Patterns. All acyclic P for which the bound Ex(P,n) < n(logn)®® is known can be proved via the
Pach-Tardos reductions [PT06, Lemmas 2, 3, and 4] (see Lemma/3.5|for one), together with Keszegh’s [Kes09)
joining operation If P is degenerate then Ex(P,n) < n'*t°() [KTTWI19]. Upper bounding Ex(P,n) by
n(log n)oP(l), nttoM or even n?=¢ for all acyclic patterns P is the main open problem in this area. A
more subtle problem is to determine which extremal functions are possible. Tardos [Tar05] gave examples
of pairs of patterns with Ex({P, P'},n) = ©(nloglogn) and Ex({P”, P”},n) = ©(nlogn/loglogn), but it
is unknown whether these extremal functions can be achieved by a single forbidden pattern.

Arbitrary Patterns. The Kévari-Sés-Turdn theorem [KST54] implies that if P € {0,1}**! then Ex(P,n) =
0 (nzfmin%k-r” ) Pach and Tardos [PT06] constructed ©(n?/?)-weight matrices that avoid some arbitrarily

long ordered cycles. See Timmons [Tim12] and Gy6ri et al. [GKM™18| for more results on ordered cycles.
Methuku and Tomon [MT22] defined a matrix P to be row t-partite if it can be cut along rows into ¢ light
matrices, and ¢ x t-partite if both P and PT are row t-partite. They proved that if P is row t-partite and
t x t-partite, that Ex(P,n) is at most n2~1/t+1/t*+0(1) and p2-1/t+0()  regpectively.

A 0-1 matrix can be viewed as an ordered bipartite graph, where the two parts of the bipartition are given
independent linear orders. Forbidden 0-1 matrix theory has been extended to other types of ordered subgraph
containment.

Vertex-ordered graphs It is natural to drop the requirement that the forbidden graph and host graph be
bipartite and just consider the extremal theory of arbitrary vertez-ordered graphs: these are simple graphs
with a linear order on their vertices. Containment between vertex-ordered graphs must preserve the ordering.
The extremal function of such a (forbidden) graph H was introduced in [PT06]: Ex(H,n) is the maximum
number of edges of an n-vertex vertex-ordered graph that does not contain H. The connection to the
extremal theory is 0-1 patterns is very close. A vertex-ordered graphs H is called ordered bipartite (or
of interval chromatic number 2) if it is a bipartite graph with one partite class of vertices preceding the
other in the vertex-order. If H is not ordered bipartite, then Ex(H,n) = ©(n?). If H is ordered bipartite,

SKeszegh [Kes09] observed that if A has a 1 in its southeast corner and B has a 1 in its notherwest corner, that by joining them
at their corners, the resulting pattern A @ B has extremal function Ex(A ® B, n) < Ex(A,n) + Ex(B,n).

A
A®B= .

B

If A is light, and B is the transpose of a light pattern, then A@® B € Pgjin, but neither it nor its transpose is light.
4For example, the following pattern has extremal function O(nlog® n), but it is not subject to any of the Pach-Tardos reductions.

It must first be decomposed into two patterns via Keszegh [Kes09], each of which has extremal function O(nlog®n) by [PT06].
L] L]
[ ] L]
L]
L] L]
° L)
L] L]
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let P(H) be its bipartite 0-1 adjacency matrix (ordering the rows and columns consistent with the given
vertex-order) and we have

Ex(P(H),n/2) < Ex(H,n) = O(Ex(P(H),n) - logn).

This implies that the vertex-ordered graph H for which P(H) = X, is an example of an ordered bipartite
tree whose extremal function is Q(n(logn/loglogn)t). Previously no ordered bipartite tree was known

whose extremal function was not n logHO(l) n.

Although the connection between the 0—1 matrices and vertex-ordered graphs is not close enough to directly
translate questions about the the linearity of extremal functions, the situation was similar in the two theories:
although characterization of forbidden vertex-ordered graphs H with Ex(H,n) = O(n) is currently beyond
reach, the paper [FKMV2(] provides such a characterization for connected H.

Edge-ordered graphs Rather than extend Turdn-type extremal graph theory by adding a total order on
vertices, we could instead add a total order on edges. This yields the extremal theory of edge-ordered
graphs as introduced by [GMNT23]. A rich theory starts to form but it is not as closely related to the
extremal theory of 0—1 patterns as the vertex-ordered variant is. Nevertheless, many results and problems
have analogues in the two theories. The analogue of the interval chromatic number is the order chromatic
number: an edge-ordered graph has order chromatic number 2 if it is contained in the lexicographically
ordered complete bipartite graph. The extremal function of an edge-ordered graph is ©(n?) if and only if
its order chromatic number is not 2. While the characterization of edge-ordered graphs with linear extremal
functions seems to also be beyond reach in general, such a characterization is given for connected edge-
ordered graphs [KT23b]. The extremal function of acyclic edge-ordered graphs of order-chromatic number
2 was conjectured to be n'*°(M) in [GMNT23] and this has recently been established in [KT23a], where
the stronger (and still open) conjecture was formulated that these extremal functions are all of the form
O(nlog®n), where ¢ may depend on the forbidden edge-ordered graph. In contrast to the main result of
this paper, it is still possible that the above bound holds with ¢ = 1 for all acyclic edge-ordered graphs of
order chromatic number 2.
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