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Abstract—FPGA-based hardware accelerators are becoming
increasingly popular due to their versatility, customizability,
energy efficiency, constant latency, and scalability. FPGAs can
be tailored to specific algorithms, enabling efficient hardware
implementations that effectively leverage algorithm parallelism.
This can lead to significant performance improvements over
CPUs and GPUs, particularly for highly parallel applications.
For example, a recent study found that Stratix 10 FPGAs can
achieve up to 90% of the performance of a TitanX Pascal
GPU while consuming less than 50% of the power. This makes
FPGAs an attractive choice for accelerating machine learning
(ML) workloads. However, our research finds privacy and se-
curity vulnerabilities in existing Xilinx FPGA-based hardware
acceleration solutions. These vulnerabilities arise from the lack
of memory initialization and insufficient process isolation, which
creates potential avenues for unauthorized access to private
data used by processes. To illustrate this issue, we conducted
experiments using a Xilinx ZCU104 board running the PetaLinux
tool from Xilinx. We found that PetaLinux does not effectively
clear memory locations associated with a terminated process,
leaving them vulnerable to memory scraping attack (MSA). This
paper makes two main contributions. The first contribution is an
attack methodology of using the Xilinx debugger from a different
user space. We find that we are able to access process IDs, virtual
address spaces, and pagemaps of one user from a different user
space because of lack of adequate process isolation. The second
contribution is a methodology for characterizing terminated
processes and accessing their private data. We illustrate this on
Xilinx ML application library.

Index Terms—FPGA, PetaLinux, FPGA debugger, Memory
Scraping Attack (MSA), Memory Residue

I. INTRODUCTION

FPGAs have become increasingly popular as hardware
accelerators in heterogeneous computing systems, especially
in host-based environments such as data centers [1] and cloud
computing systems [2]. Their adoption is driven by their
reconfigurable nature [3], lower power consumption [4], high
performance [5], scalability [6], low cost [7] and their ability to
offload computationally intensive tasks from host CPUs [8],
thereby reducing the overall load on the host CPUs whilst
providing better quality of service to the customers. Figure 1
provides a general overview of the host-based system.

Multiple semiconductor companies are actively develop-
ing high-performance FPGAs to meet growing demand in
heterogeneous computing systems, notably in data centers
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Fig. 1. A general host-based system.

and for cloud service providers. AMD’s Xilinx introduces
Adaptive SOC FPGA [9] and Zynq system-on-a-chip (SoC).
Microsoft’s Project Brainwave leverages FPGAs for real-time
Al inference acceleration [10], prioritizing low latency and
high performance in both cloud and edge environments. IBM
incorporates cloud-FPGA [11] solutions into its infrastructure
as a service (IaaS), focusing on neural network modeling.
Leading cloud providers, including AWS with Amazon EC2
F1 instances [12], leverage Xilinx and Altera FPGAs to offer
FPGA acceleration services [13] commonly referring it as
"FPGA-as-a-Service” (FaaS) or ”Acceleration-as-a-Service”
(AaaS) [14].

The integration of an FPGA into a host-based system in-
troduces security concerns described earlier in [14]. However,
the following risks were not considered earlier.

A. Security Risks with Using Local Memory

When offloading compute intensive tasks from host pro-
cessing unit (PU) to FPGA for acceleration, the FPGA’s local
DRAM is used to temporarily store [15] and reuse data before
returning results to the host. However, this poses a security
risk, as a subsequent guest accessing the FPGA DRAM after
the first guest’s process has ended may be able to retrieve
memory residue from the first user. We demonstrate this in
this paper by scraping memory residue in FPGA DRAM from
a terminated computer vision machine learning application.

In CPU, a memory management unit (MMU) enforces
memory isolation between multiple processes [16]. Similarly,
in Xilinx FPGAs, a hypervisor like Xen manages isolation
between multiple processes running on the FPGA [17]. How-
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ever, in CPUs, page tables are only accessible to the operating
system (OS), not to any user process, including any program
debugger a user may be running. We find that, unlike in CPUs,
a Xilinx debugger has access to memory page tables. This
is because Xen is not managed by the host OS, but rather
configured by the user using PetaLinux (see Section I-C).
We find this to be a gaping security hole that affects not
only Xilinx FPGAs but also other embedded systems. For the
purpose of this paper, we limit our focus to FPGAs.

Local Memory Scraping as an Attack Vector: In this work,
we show that (i) Xilinx FPGAs do not perform automatic
memory sanitization leaving memory residue, (i7) Xilinx de-
bugger can be invoked from a second user space (even for
a single tenant FPGA), and (iii) page tables are accessible
from the debugger. We present a memory scraping technique
that uses the above exploits to show how sensitive information
about previous programs can be reconstructed.

Main Scientific Finding: Our main scientific finding is
that many accelerators, including FPGAs, GPUs and various
embedded systems, have their own private memory that is not
under direct host OS control. For performance reasons, it is
not practical to have the host OS mediate every local memory
access. This creates a general security problem, and in this
paper, we demonstrate a targeted attack on Xilinx FPGAs to
highlight this problem.

B. Related Work

Zhou et al., [18] and Maurice et al., [19] previously attacked
NVIDIA’s heterogeneous memory systems in cloud-based
systems, allowing adversaries to access and reconstruct data
from terminated processes. A similar issue affects ARM Mali
GPUs, where a new process can access a terminated process’s
pages due to inadvertent reuse of freed pages [20].

Memory Initialization Solutions: A number of studies have
investigated rapid DRAM initialization techniques. Seshadri
et al., proposed RowClone, a technique for initializing con-
tiguous DRAM sections with zeros [21]. Seol et al., pro-
posed a RowReset, a hardware-efficient memory initialization
solution that manipulates VDD and VSS to DRAM banks
[22]. However, these methods are best suited for continuous
memory locations. In virtual environments, Address Space
Layout Randomization (ASLR) [23] is employed to enhance
security by randomizing DRAM memory locations, providing
defense against memory corruption attacks. However, in multi-
tenant FPGA settings with non-contiguous memory addresses
[24], the aforementioned memory initialization solutions may
inadvertently erase active guest user data. These solutions
typically clear continuous memory locations when initializing
memory for a terminated user, which can include active guest
user data. Therefore, there is a need for more efficient solu-
tions to initialize non-contiguous memory locations without
jeopardizing active user data in local DRAM.

C. Target Platform

Leading cloud service providers, such as Amazon EC2 F1
[25] and Alibaba Cloud [26], have adopted AMD’s Virtex
Ultrascale+ FPGA family. Baidu’s Apollo platform employs
Zynq Ultrascale+ MPSoC FPGAs for self-driving vehicles
[27]. All Ultrascale+ FPGAs [28] have onboard (local) mem-
ory for use by offloaded processes onto the FPGA board.

For our attack demonstration, we target the Zynq Ultra-
scale+ MPSoC ZCU104 board because it is more afford-
able than high-end Ultrascale+ Virtex boards. The ZCU104
has an architectural design similar to other Ultrascale+ FP-
GAs, making our attack scenario credible and relevant. The
ZCU104 incorporates essential components like quad-core
ARM Cortex-A53 APU, dual-core Cortex-R5 RPU, Mali-400
MP2 GPU, a high-definition video codec, and programmable
logic component fabricated using 16nm FinFET+ technology.
For generalizability studies we have reverified the attack on
Zynq Ultrascale+ MPSoC ZCU102 board.

Petalinux is the chosen software platform for ZCU104’s
system development [29]. It offers tools like command-line in-
terfaces, generators, templates, and system configuration tools,
including the Xen hypervisor as a selectable component [30].
Petalinux’s shell manager oversees hardware and software
components for managing and functionality. Figure 2 provides
an architectural overview with PetaLinux running on the APU.

D. Contributions

The main contributions of this paper are as follows:
1) We identify a security risk with using local memory.

2) We present a novel attack methodology that uses the
Xilinx system debugger to mount a system-channel
attack. A debugger is typically used to inspect the
values of variables and optimize code by identifying
performance bottlenecks and memory leaks. It can also
track and monitor specific memory locations. We exploit
this feature, coupled with the fact that local memory is
not controlled by the host OS, bypassing access control
to mount our attack. Our attack works on both single-
tenant and multi-tenant FPGAs.

3) We use our novel attack methodology to scrape memory
of a terminated process.

4) We present a novel data analysis technique involving
offline profiling to learn high-value memory locations,
then reading data from these locations in the scraped
memory to reconstruct information about the target
process.

5) We demonstrate our data analysis technique on Xil-
inx machine-learning model library identifying specific
models used in terminated processes and revealing sen-
sitive information such as input images and weights.

II. ADVERSARY MODEL

This section outlines the adversary’s goal, privileges, and
capabilities.
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Fig. 2. A high level block diagram of Zynq Ultrascale+ MPSoC.

Adversary’s goal: The adversary’s goal is to (i) access data
from local memory used previously by a terminated process
and (ii) to perform analysis to reconstruct information from the
terminated program. The adversary uses this information for
compromising the privacy and security of the previous process
entity.

Adversary’s privileges: Adversaries can use a system de-
bugger provided by the manufacturer, resulting in having
unrestricted access to critical process details, including process
IDs (pids), virtual address spaces, and pagemaps. Normally,
such privileges are not available under a CPU OS. However,
Xilinx System Debugger permits these privileges from user
space giving adversaries access to data stored in the FPGA’s
DRAM at physical locations associated with a specific process
(pid).

Adversary’s access: The adversary has access to FPGA
libraries and IPs used provided by Xilinx that are used by
the user. By profiling the FPGA libraries and IPs provided by
Xilinx, the adversary can, for instance, gain an understanding
of the physical memory layout of machine learning models
running on the board. This allows the adversary to identify
where critical data, such as weights, vectors, and images, are
stored. During the attack, the adversary uses this profiling
data to identify the model and locate critical data in the
FPGA’s DRAM. The adversary can then attempt to reconstruct
the associated image, compromising the previous user’s data
confidentiality.

III. PROPOSED ATTACK METHODOLOGY

The adversary follows a four-step sequence to extract and
analyze data from FPGA’s DRAM, enabling them to identify
the executed model and potentially reconstruct the image,
highlighting their capabilities outlined in II. The adversary’s
five steps are as follows:

1) Polling for pid: The adversary continuously monitors
the system to identify the relevant process of interest,
utilizing commands like “’ps -ef” in Unix to extract the
process ID (PID) associated with the targeted execution.

2) Fetching virtual addresses and converting them to
physical addresses: Using the process ID, the adversary

retrieves the virtual address locations of the targeted
process from the heap mapping in the associated maps
file. They then convert these virtual addresses into
corresponding physical addresses within the FPGA’s
DRAM using information from the process’s specific
pagemaps file.

3) Data extraction from physical addresses: Once the
targeted process is terminated or disconnected, the ad-
versary proceeds to access and read the contents of the
previously derived physical address locations within the
FPGA’s DRAM. By doing so, they gain access to the
data stored by the terminated process.

4) Analysis of extracted data: Once the data is extracted
the adversary now proceeds to analyze the data.

a) Identifying models from strings: The adversary
analyzes the FPGA DRAM data for distinct pat-
terns or signatures of different models. Using cri-
teria like keywords or known model names (e.g.
“resnet50”, ’squeezenet”), they identify the model
run by the targeted process based on the presence
of similarly named libraries and data structures in
memory.

b) Reconstructing image: Depending on the model
and whether it accepts an image as input, the
adversary might attempt to reconstruct this input
image. This is achievable due to the adversary’s
possession of knowledge about the physical mem-
ory layout of the identified model, which was
acquired through offline profiling. Leveraging this
information, the adversary can pinpoint the exact
location where the image is stored and make an
attempt at reconstruction.

IV. EXPERIMENTAL SETUP

Setting up Target board: To conduct the experiments with
the Xilinx ZCU104 FPGA board, we followed Xilinx’s step-
by-step instructions outlined in [31]. Figure 3 illustrates the
target board.
1) The Xilinx-provided OS image for the ZCU104 board is
flashed to an SD card. This image contains the Petalinux
embedded OS and necessary software tools. The SD card
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is then inserted into the ZCU104 board and powered on
to boot the system.

2) After booting the board, we established a remote con-
nection via the Ethernet interface to communicate and
interact with it.

3) Finally, we installed the Vitis Al runtime on the tar-
get board, which provides various pre-built machine
learning models from different vendors for testing and
experimentation.

Fig. 3. Target Board (Xilinx’s Zynq ZCU104)

Victim model: The selected victim model for our experimen-
tation is "resnet50_pt” (RESidual NETwork using PyTorch
Framework), sourced from Xilinx’s examples. We chose this
model because of its widespread use in image recognition
tasks. Additionally, Xilinx has supplied a dedicated image
designed for use with the resnet50_pt model, which we
employed in our experiments.

Corrupting the image: We intentionally corrupted the exam-
ple image by replacing its pixel values with OXFFFFFF. When
the adversary reads data from the FPGA’s DRAM and encoun-
ters a sequence of OxFFFFFF values, it signifies the corrupted
image used as input for the resnet50_pt model (as shown in
Figure 4). This indicates that the corrupted image was not
cleared from the FPGA’s DRAM after the process terminated,
underscoring the absence of proper memory management.

Implementing steps described in Section III: The attack uses
two terminals: one for the attacker and one for the victim.
The victim runs the resnet50_pt model while the attacker
runs Steps 1 and 2. After the victim’s process ID disappears,
confirming it has ended, the attacker proceeds with Steps 3 and
4 in the attacker terminal to read the data from the FPGA’s
DRAM and identify the executed model and try to reconstruct
images. Our code written in python automates the full attack
process.

V. RESULTS

In this section, we provide results with illustrations from
each step described in Section III. These results also illustrate
the implementation aspects of the attack.

Step 1. Polling for pids: Figures 5 and 6 illustrates the running
processes (pids) obtained from the attacker’s terminal by

Original_image

IS

(a) Original image

= Corrupted_image [ _ |[O][ x|

(b) Computed image

Fig. 4. The top image (a) represents an example input for the resnet50_pt
model, provided by Xilinx. The bottom image (b) shows a corrupted version
achieved by altering specific pixel locations within the original image. About
20% of the image has been intentionally omitted to highlight the original
image is modified.

executing the ps -ef command. Figure 5 shows the processes
before running the resnet50_pt model, while Figure 6 shows
the processes after its execution.

1389 2 0 03:517? 00:00:00 [kworker/3:0-events]
1390 843 0 03:52 pts/0 00:00:00 ps -ef
Fig. 5. (Step 1) Process list before victim model was run.

1369 20057 00:00:00 [kworker/3:0-gvents]

1390 2430 18 12:33 pts/I 00:00:00 . /resnet50_pt
Just/share/vitis_ai_library/models/resnet 50 pt /resnet (_pt.xmodel
../mages/001. 7pg

13921875 012:33 pts/0 00:00:00 ps -ef

Fig. 6. (Step 1) Process list after Victim model was run. Victim’s pid is

observed to be 1391.

Step 2. Fetching virtual addresses and converting them
to physical addresses: We access the process’s memory
map using the command vim /proc/1391/maps for PID
1391, revealing the virtual address range of the heap, from
Oxaaaaee775000 to Oxaaaaefd8a000 as shown in Figure
7. To convert these heap virtual addresses to physical addresses
in the FPGA’s DRAM, we have created C code based on our
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offline training knowledge, as explained in Section II. This
code maps the virtual addresses to a physical range, visible in
Figure 8, from 0x61¢c6d730 to 0x61ec5e220.

aaaaee75000-aaaaefd8a000 rw-p 00000000 00:00 0
fEfbI3b5000-f£££b6c1£000 rw-p 00000000 00:00 0

[heap]
/dev/dri/renderD128

Fig. 7. (Step 2) Virtual address of the target process ranges from
Oxaaaaee775000 to Oxaaaaefd8a000 in the heap.

xilinx-zcul04-20222:"# ./virtual_to_physical.out 1391 Oxaaaaee775000
0x61c6d730
x1linx-zcul04-20222:7# ./virtual_to_physical.out 1391 Oxaaaaefd8a000
0x6lec5e220

Fig. 8. (Step 2) Physical address values of the virtual addresses.

Step 3. Data extraction from physical addresses: To con-
tinuously monitor the termination of the specified process ID
(PID), we repeatedly execute step 2. If the PID has been
terminated successfully, it will no longer appear in the list
of running processes. Figure 9 illustrates the absence of the
PID from the process running list after its termination.

1389 2 0 03:51 2 00:00:00 [kworker/3:0-events]
1401 1875 0 12:33 pts/0 00:00:00 ps -ef
Fig. 9. (Step 3) The figure shows that the PID 1391 absent in the process

running list after it was terminated

xilinx-zcul04-20222:"# grep "resnet50" 1391_hexdump.log
6c73 272 6573 6e65 7435 305f 7074 2f72 1ls/resnet50_pt/r
6876 6973 696f 6e2f 7265 736e 6574 3530 hvision/resnet50

Fig. 11. (Step 4.a) The figure shows that the model resnet50_pt is found in
the read out from the FPGA memory.

which signifies the corrupted image used by the identified
model. Figure 12 demonstrates the hexdump file created in
Step 4.a and the observation of the image identifier in this
file. This highlights that the data associated with pid 1391 is
not cleared from the DRAM even after termination.

In practical experiments, we varied the pixel values of the
input image. To precisely locate the image’s starting point
within the hexdump, we conducted offline profiling by chang-
ing pixel values to ”0x555555.” We then ran the “resnet50_pt”
model offline with this modified image, repeating Steps 1 to
3. By analyzing the hexadecimal dump, we found the offset
between the first occurrence of 75555 5555 and the hexdump
file’s start, specifically at row number "646768.” As we only
modified the image, preserving the underlying model’s in-
tegrity, the image’s offset within the heap remained consistent
for any image used with this model. Utilizing this profiled
information, we successfully retrieved and reconstructed the
victim’s input image from the data at the identified offset
position within the victim’s heap file, which was previously
saved. This streamlined process enabled the reconstruction
of the input image, leveraging insights gained from profiling
various existing models.

xilinx—zcul04—-20222: " # devmem O0x61c6d730
0x00000000
xilinx—zcul04—-20222: " # devmem Ox6lec5e220
OxF 7F5F8FD

Fig. 10. (Step 3) The figure provides an example of how “devmem” is utilized
to read the data.

We proceeded by executing the command "devmem (phys-
ical_address)” to retrieve data from the physical address
locations of the FPGA’s DRAM obtained in Step 3. Figure
10 shows an example of how devmem command is used to
read the data. However, since these steps are automated, the
devmem command is executed for all the physical address
locations specified in Step 2.

Step 4.a Analysis of extracted data (Identifying models
from strings): After entire data is extracted in Step 4, we
now format this data it into a file, arranging the data into
rows of eight nibbles each. Subsequently, we create a hex
dump of this file by running "hexdump” on it to inspect
if any meaningful, readable words emerge. By analyzing the
snippet displayed in Figure 11, we discern that the converted
string representation of the hex data reveals the presence of
the model name resnet50_pt in the data readout.

Step 4.b Analysis of extracted data (Reconstructing image):
Once it is established that the executed model corresponds
to “resnet50_pt,” we proceed with image reconstruction by
searching for the identifier "FFFF FFFF” in the hexdump log,

0000 0000 0000 0000 9102 0000 0000 0000
8007 71f1 aaaa 0000 7012 71f1 aaaa 0000 ..g..... P

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

uuuuuuuuuuuuuuuU
uuuuuuuuuuuuuuuU
uuuuuuuuuuuuuuuU
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuU

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

uuuuuuuuuuuuuuuU
uuuuuuuuuuuuuuuU
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuU
uuuuuuuuuuuuuuuU

Fig. 12. (Step 4.b) The figure shows the occurrence of "FFFF FFFF” the
identifier of corrupted image used as an input by the model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we identified a security gap with using local
memory that is not under host OS control. Typically, FPGA
(or similar accelerator) manufacturers like to manage their
own local memory for performance and efficiency. However,
they must also equip their users to debug their program giving
them access to local memory content from the debugger. Since
the debugger accesses the local accelerator memory without
host OS mediation, it falls on the FPGA manufacturer to
restrict debugger access privileges. In this context, we find
that the PetaLinux tool used by Xilinx to manage an FPGA
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has major security holes. First, it allows unrestricted access
to the page map tables. This enables an attacker process to
scrape memory from a terminated victim process. Second,
when a process terminates, it does not sanitize the physical
memory used by the terminated process. Thus, an attacker
can access the memory pages used by a terminated process.
Third, it does not use any kind of randomization in physical
page layout. This allows an attacker to learn about input
or output data offsets, simply by learning from running the
same program with its own input data. Petalinux is a Xilinx
supported tool to manage its FPGA cards. We conducted
experiments on the Xilinx ZCU104 board using the Xilinx
SDK to execute a machine learning program (referred to as
the victim process). Through a systematic and step-by-step
approach, we successfully showcased how an attacker can
gain access to memory pages from the process, allowing them
to deduce the specific program that was running and discern
the input used. To enhance reproducibility and enable further
exploration, we have automated the attack process and plan to
release our code on GitHub.

VII. ETHICAL DISCLOSURE

In line with responsible disclosure and ethical practices
within the computer security research community, we reported
these findings to AMD/Xilinx on July 14, 2023, along with
all relevant details. AMD, the parent company of Xilinx
acknowledged the validity of the attack on August 23, 2023.
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