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Abstract—The integration of Field Programmable Gate Arrays
(FPGAs) into cloud computing systems has become common-
place. As the operating systems used to manage these systems
evolve, special consideration must be given to DRAM devices
accessible by FPGAs. These devices may hold sensitive data that
can become inadvertently exposed to adversaries following user
logout. Although addressed in some cloud FPGA environments,
automatic DRAM clearing after process termination is not
automatically included in popular FPGA runtime environments
nor in most proposed cloud FPGA hypervisors. In this paper,
we examine DRAM data persistence in AMD/Xilinx Alveo U280
nodes that are part of the Open Cloud Testbed (OCT). Our results
indicate that DDR4 DRAM is not automatically cleared following
user logout from an allocated node and subsequent node users
can easily obtain recognizable data from the DRAM following
node reallocation over 17 minutes later. This issue is particularly
relevant for systems which support FPGA multi-tenancy.

Index Terms—FPGA, cloud computing, DRAM, security, and
data persistence

I. INTRODUCTION

FPGA use in the cloud is substantial and likely to grow

as the spectrum of cloud applications increases [1]. Cloud

FPGAs generally are attached to substantial DRAM storage

that is either directly attached to the devices or accessible via a

system-level bus [2] (e.g., PCIe). Current cloud FPGA vendors

allocate a single user to an FPGA at a time (single-tenant),

although multi-tenant use in which multiple independent users

share FPGA logic and attached memory at the same time [3]

has been proposed. In both scenarios, FPGAs and attached

DRAM are used by numerous untrusted users. DRAM data

should obviously stay confidential for individual users. How-

ever, unlike cloud CPUs that are often allocated as virtual

machines managed by operating systems with sophisticated

memory management such as Linux, cloud FPGA resources

often are managed at a lower level. As we describe in this

paper, simply clearing an FPGA logic configuration upon

user deallocation does not immediately erase its data in the

attached DRAM. These memory locations must be explicitly

cleared when a user is deallocated memory space. Although

explicit DRAM clearing is used by some existing cloud FPGA

platforms (notably AWS EC2 F1 [2]), it is not universally

deployed in all cloud platforms.

In this paper we comprehensively examine DRAM data

persistence in AMD/Xilinx Alveo U280 platforms found in the

publicly-available Open Cloud Testbed (OCT) [4]. We show

that even though a user’s FPGA configuration information,

including a DRAM controller, is removed from the device

upon system logout, usable DRAM data persists for well

over twenty minutes even if DRAM refresh is not performed.

This data is accessible to subsequent users after the FPGA is

reallocated to another user. The issue is even more significant

in the case of multi-tenancy when DRAM use by one tenant

may lead to refreshes of stale data from previous users that has

not yet been erased. These issues are explored in the context

of OCT and the Xilinx Runtime Library (XRT).

The remainder of the paper is structured as follows. In

Section II, we discuss how bulk memory is typically ac-

cessed by cloud FPGAs, with a focus on DRAM that is

directly attached to the devices. We also discuss OCT and

how runtime management software initiates DRAM access

and manages FPGA resources. In Section III, we describe

several experiments which lead to the retention of data values

written into DRAM following FPGA reconfiguration. We draw

parallels between the cloud FPGA architecture in OCT and

similar cloud FPGA architectures. In Section IV, experimental

results are presented showing data persistence in OCT DRAM

attached to FPGAs. We conclude the paper in Section V.

II. BACKGROUND

A. DRAM data retention

Cloud computing platforms contain a wide variety of com-

puting components such as microprocessors (CPUs), graphics

processing units (GPUs), and FPGAs. CPU-based systems,

including the platforms which serve as computing node hosts

in the cloud, typically use Linux- or Windows-based operating

systems (OSs) to allocate DRAM and other memory attached

to the processor. Individual DRAM pages are explicitly erased

prior to reallocation ensuring that retained data from an earlier

process cannot be snooped by a subsequent process [5]. This

protection is not necessarily present in Linux-based systems-

on-chip that include both CPU and FPGA logic, as a recent

memory-scraping attack showed [6].

GPUs can suffer from memory persistence issues [7], [8].

The application programming interfaces (APIs) associated

with GPUs offer significant sharing but often do not ini-

tialize newly-allocated memory. These weaknesses have been

enumerated and successful attacks have obtained portions of

persistent web pages and other images [8] following user lo-

gout. Suggested remediations include user-initiated scrubbing

of memory following use. Similar issues affect ARM Mali



GPUs, where new processes can access terminated process

pages due to the reuse of freed pages [9].

Several operating systems and hypervisors have been in-

troduced that time multiplex one or more user circuits into

reconfigurable regions in cloud FPGA devices. Each user

circuit (often called a kernel) is generally allocated a logic

region and portions of attached and bus-accessed DRAM. For

example, OPTIMUS [10] allocates FPGA logic and data pages

on demand. Although internal FPGA state is cleared after use,

no discussion of DRAM clearing is provided. In Byma et

al. [11] address space is partitioned across tasks, effectively

creating private pages and in Ruan et al. [12] allocation

is controlled by an ARM processor. Finally, Korolija et al.

[13] restrict inter-kernel access to DRAM using translation

lookaside buffers (TLBs). None of these systems indicate

DRAM clearing upon kernel clearing or DRAM reallocation.

B. Experimental Platform

In this paper, we examine the disposition of FPGA-

connected DRAM following user logout under typical use.

Our experimentation is performed using the publicly-available

OCT, which includes CPUs, GPUs, and FPGA accelerators.

The OCT host processor executes a version of Linux and

supports virtual machines. Only one user is allocated to a node

at a time. The Alveo U280 data center accelerator cards [14] in

OCT use PCIe connections to the host processor and are also

directly connected to a network switch via two independent

100Gbps connections [15]. The configuration of an FPGA

node within the OCT and its internal logical connections are

depicted in Figure 1. It should be noted that similar Alveo

U250 cards are integrated into some Microsoft Azure nodes

[16].

The host processor in OCT interfaces to the XCU280

UltraScale+ FPGA via APIs provided by the Xilinx Runtime

Library. The XRT environment facilitates FPGA configuration

and runtime data transfer between the host and an FPGA

in a variety of cloud and embedded computing systems. As

shown in Figure 1, in OCT, the FPGA’s PCIe connection is

created using a dynamic function exchange (DFX) interface.

This circuitry, which is loaded into the FPGA from flash,

accepts data from the PCIe bus to configure FPGA kernels

(user circuits) via ICAP and transfers data to FPGA memory

(attached DRAM, embedded high bandwidth memory (HBM)

and programmable logic RAM (PLRAM)). FPGA DRAM is

accessed via a DRAM controller. The controller is attached

to an AXI bus connected to the DFX interface and kernel

circuitry. In general, XRT and the similar Open Programmable

Acceleration Engine (OPEA) [17] for Intel FPGA fabrics do

not natively clear DRAM attached to FPGAs following process

termination, leaving it to the user to clear memory resources.

C. DRAM Decay

The DRAM attached to the XCU280 FPGA in Figure 1

is controlled by a DRAM controller fashioned from FPGA

logic that is only present when the associated controller

circuit is instantiated in the device. In addition to write and

Fig. 1: Overview of AMD Alveo U280 integration in OCT

read requests, this controller generates signals to perform

auto refresh for the two 16GB Micron MTA18ASF2G72PZ

DDR4 SDRAM RDIMMs [18] in the U280. If the FPGA is

reset (configuration cleared) or a new FPGA configuration is

programmed into the device that does not contain a DRAM

controller, refresh signals will cease, and stored DRAM values

will decay. For older DDR1 and DDR2 devices [19], [20],

this decay is generally quite rapid (on the order of seconds).

Experiments with more recent DRAM technology measured

extended decay that ranges into minutes [21]. However, these

experiments do not consider cloud FPGA interfacing and more

modern DDR4 technology.

It should be noted that “charged” DRAM cells may be read

as either a logic 1 or a logic 0 depending on DRAM device

architecture. Our research shows that half the initially charged

cells in the DDR4 chips in the U280 will decay from a logic

1 to a logic 0 and half will decay from a logic 0 to a logic

1, similar to observations in [22]. This characterization can

be performed by an attacker prior to performing an attack by

programming the DRAM with all zeros or ones and observing

decay patterns after re-logging into the same node.

III. EXPERIMENTAL APPROACH

The bitstreams used in our experimentation were generated

using AMD Vitis version 2023.1 which produces bitstreams

for the Alveo U280 hardware. The OCT host computer in-

cludes an Intel Xeon Gold 6226R CPU operating at 2.90GHz

with 187GB of memory.

To determine DDR4 DRAM data retention in the byte-

addressed Alveo U280 following the loss of refresh capabili-

ties, a series of experiments were performed to write data into

the DRAM, remove DRAM refresh in auto refresh mode, and

resample the DRAM data following specific time periods. In

all experiments (except where noted), each DRAM cell was

initially charged. As noted in the previous section, half the

cells stored a logic 1 which decayed to 0 and half stored a logic

0 which decayed to a 1. For example, if byte address location

0x00000000 decays to 0x00, we write 0xFF, and vice versa for

addresses with the opposite polarity. The polarity of each cell

was determined prior to experimentation. Our data retention

results were generated using two types of experiments:



Experiment 1 - Session termination: In this experiment,

a user logs into an OCT node and uses an FPGA kernel

and DRAM controller to write 4GB of data to DRAM bank

DDR 0. After these writes are complete, the user logs out of

the node, causing an immediate FPGA warm reset (and cor-

responding configuration and DRAM controller clear). Once

the node is reset and free, any user (including the one that just

logged out) can attempt to reclaim it. After re-login success,

the FPGA is configured with a new user kernel and a DRAM

controller and the contents of DDR 0 are retrieved by the host

via the AXI and PCIe busses. As noted later in this section,

the average time from node release via logout to re-login is

about 17.25 minutes. This experiment mimics a realistic attack

since the second user could be anyone, including an attacker.

Effectively, this value measures the amount of time between

when one user logs out and the next user can log in.

Experiment 2 - DRAM controller removal and sub-
sequent reinsertion: Although Experiment 1 is useful for

examining data persistence for a attack involving multiple

independent node logins, it does not allow for examination of

data persistence for time spans of less than 18 minutes. Thus,

we constructed a second experiment that controls the length

of DRAM decay. Although this experiment does not mimic

an actual attack, it provides information on data persistence

during the time period between logout and re-login. In this

experiment, the user logs into an OCT node and uses an FPGA

kernel and DRAM controller to write 4GB of data to DRAM

bank DDR 0. After these writes are complete, the FPGA

is reconfigured to remove the DRAM controller, effectively

ending DRAM refreshes. After a user-determined period of

time, the FPGA is reconfigured with a new user kernel and a

DRAM controller and the contents of DDR 0 are retrieved by

the host via the AXI and PCIe busses. The original user does

not log out of the node during this experiment. We performed a

series of trials using this approach in which the DRAM values

were sampled with an increasing wait time of one minute per

trial (e.g., one minute, two minutes, three minutes, etc., up to

18 minutes).

For both experiments, it is straightforward for an attacker to

determine which DRAM cells in a node decay. By taking the

XOR of the reference data and the read data after the attacker

logs back into the same node it is possible to find the faulty bit

locations. In a subsequent attack, an attacker can log into the

same node immediately after a victim uses it and access the

DRAM bits that have been previously identified as unlikely to

decay.

It should be noted that DRAM readback from bank DDR 0

cannot be performed directly following FPGA reconfiguration

in Experiments 1 and 2. XRT requires that data be copied from

bank DDR 0 to bank DDR 1 first before being read by the

host via the AXI and PCIe busses. However, this step does

not impact the values read from DDR 0 since DDR 1 simply

serves as an intermediate buffer. The 4GB DRAM readback

required 336 ms on average in our experimentation.

Our experimentation was performed on four separate OCT

FPGA-based nodes. Each node produced similar results for

minimum logout to re-login time for Experiment 1. For

example, across four trials, this time gap ranged from 16

minutes, 58 seconds to 17 minutes, 53 seconds, with an

average of 17 minutes, 24 seconds. Therefore, an attacker

who has been monitoring a victim and waits for the victim

to terminate their connection to an Alveo U280 in OCT can

reconnect to the same U280 in less than 18 minutes and inspect

any leftover DRAM values. This time gap includes time for

the OCT management software to clear the victim’s virtual

machine, create a new virtual machine for the attacker, boot

the new virtual machine, install the XRT tools, and establish

a connection for the attacker.

IV. RESULTS

A. Data Decay Analysis

In this section we examine the decay of DRAM data at

one minute intervals from one minute to 18 minutes (re-login

delay). Experiment 2 was used to generate all data except

the last data point (Experiment 1) in our plots. Our analysis

considers the decay of words (32 bits) and individual bits in

a 4GB portion of bank DDR 0. We consider a 32-bit word to

be decayed if any of the bits have changed from their original

values. Figure 2 shows decay percentages of values over four

sets of trials for OCT Alveo U280 nodes PC151, indicating

consistency across trials. The average decay rates across the

four OCT nodes mentioned in the previous section are shown

in Figure 3.

The decay percentages indicate that a substantial fraction

of the words in the DRAM (between 30 and 50%) remain

unchanged four minutes after refreshes are terminated. How-

ever, by the 18 minute mark (re-login delay) less than 1%

of 32-bit values are unaffected. Despite this small percentage,

more than one million byte address locations are unaffected.

The addresses of the unaffected data remained consistent

across trials. For example, on PC151, 95.45% of the addresses

of unaffected data remained consistent from trial to trail

while the number was 95.79% for PC157. Although there

is a significant decay in word data, the integrity of single-

bit data remains considerably better. After 18 minutes using

Experiment 1, as demonstrated in Figure 4, 86% of bits remain

valid (undecayed).

Table I provides an additional data point regarding valid data

at the 18-minute mark. The table illustrates the percentage of

nibbles that remain undecayed per 32-bit word. The column

sums to 100%. Notably, the table demonstrates a significant

preservation of original data states, with approximately 55%

of words retaining at least half of their nibbles.

In a final experiment, we performed Experiment 1 using a

3,344×5,016 RGB image. Each 32-bit pixel includes eight

bits each of red, green, and blue and eight bits of alpha

(opaqueness). The original image [23] is shown in Figure 5a.

The decayed version, retrieved after 18 minutes on PC151

is shown in Figure 5b. Except for discoloration and some

distortion, the image is still recognizable. It should be noted

that after 18 minutes, 85% of bits remain unchanged in

DRAM, according to Figure 4. Bit retention values varied



Fig. 2: Decay rate of 32-bit words in OCT node PC151. Decay

indicates a change in value of any of the 32 bits of a word.

Total memory size is 4 GB.

Fig. 3: Decay rate of 32-bit words for four OCT nodes

averaged over four trials. Decay indicates a change in value

of any of the 32 bits of a word. Total memory size is 4 GB.

across eight bit channels (red: 83%, green: 80%, blue: 82%,

alpha: 96%) leading to a purplish hue in the recovered picture.

Since alpha values are typically 0xFF rather than random

values, their retention values were higher.

B. Observations

• The DRAM controller in the AMD Alveo series of

accelerators is implemented as a soft IP. When the FPGA

is reset, the DRAM controller is deleted and the DRAM

no longer refreshes.

• Consequently, data in the FPGA’s local DRAM begins to

decay. The decay rate is different for different bits, with

some bits retaining data beyond 18 minutes, allowing

attackers to access these values.

• Additionally, we observe that address locations exhibit

consistent decay rates over time. This implies that specific

address locations within an FPGA’s DRAM decay at the

same rate. For instance, shortly after a warm reset is

applied, certain address locations decay more rapidly than

others, while some decay at a slower pace, and so forth.

• In a multi-tenant environment, the DRAM controller

persists in an active state even after a process termination

to service other ongoing processes. This issue allows a

full read of the previous user’s data from the FPGA’s

Fig. 4: Fraction of valid individual bits in four OCT nodes

over time. Total memory size is 4 GB.

# of Undecayed Nibbles Percentage
8 1.5%
7 7.9%
6 18.8%
5 26.3%
4 23.7%
3 14.3%
2 5.7%
1 1.5%
0 0.1%

TABLE I: Percentage of undecayed nibbles in each 32-bit

value at the 18-minute decay point

DRAM by a subsequent user allocated the previous user’s

address space.

• These findings extend to other FPGAs that use a soft-core

DRAM controller.

C. Other Comments

DRAMs, including the chips used on the Alveo U280, gen-

erally support a self-refresh mode which allows the memory

chips to refresh values even in the absence of an external

refresh signal. This mode could be abused to retain fully

valid data indefinitely if power to the DRAM is maintained

after FPGA reconfiguration. However, the U280 appears to

assert a reset signal to DRAM if the FPGA configuration is

cleared, which draws the DRAM out of self refresh mode. This

prevents the use of self refresh data retention and requires the

use of auto refresh.

V. CONCLUSION

This work investigates security vulnerabilities arising from

FPGA DRAM usage in cloud environments. Experiments

on the Open Cloud Testbed (OCT) platform, incorporating

Alveo U280 boards, were conducted to assess DRAM data

persistence after user access. The results underscore the critical

need for DRAM data erasure following user sessions in cloud

FPGAs, which serves as an effective countermeasure to our

attack. Even with DRAM controller removal during a warm

reset, residual data persists in various DRAM locations that a

new user can access, despite an overhead of nearly 18 minutes

to reconfigure a FPGA virtual machine on the OCT platform.

This vulnerability is particularly concerning in multi-tenant

environments, where auto-refresh can continuously maintain



(a) Initial (b) Readback after 18 minutes

Fig. 5: Contrast between the initial image and the image read

back via Experiment 1 after 18 minutes

data integrity, potentially leading to indefinite data retention.

These observations highlight the necessity for robust data

shredding mechanisms to ensure data privacy and security in

cloud FPGA deployments.
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