l‘)

Check for
updates

Limits on Revocable Proof Systems,
With Implications for Stateless
Blockchains

Miranda Christ!3®)@ and Joseph Bonneau?3

! Columbia University, New York, USA
mchrist@cs.columbia.edu
2 New York University, New York, USA
jcs@cs.nyu.edu
3 al6z Crypto Research, San Francisco, USA

Abstract. Motivated by the goal of building a cryptocurrency with
succinct global state, we introduce the abstract notion of a revocable
proof system. We prove an information-theoretic result on the relation
between global state size and the required number of local proof updates
as statements are revoked (e.g., coins are spent). We apply our result to
conclude that there is no useful trade-off point when building a stateless
cryptocurrency: the system must either have a linear-sized global state
(in the number of accounts in the system) or require a near-linear rate
of local proof updates. The notion of a revocable proof system is quite
general and also provides new lower bounds for set commitments, vector
commitments and authenticated dictionaries.

Keywords: Stateless Blockchains - Authenticated Data Structures

1 Introduction

Modern cryptocurrencies prevent double-spending attacks using a public,
append-only log called a blockchain. Classically, a blockchain records all transac-
tions, and validating a new transaction requires checking that it doesn’t conflict
with any prior transaction. This approach was first successfully deployed by
Bitcoin [22] though it was proposed earlier [14].

A challenge of the blockchain paradigm is that each validator traditionally
must store the entire state of the system. In Bitcoin, this consists of a set of
unspent transaction outputs (UTXOs), which has consistently grown and now
contains 80 million elements, requiring several GB to store. Ethereum’s state is
even larger [31], requiring roughly 35 GB to represent 200 million accounts.

The requirement that validators store this large (and growing) state raises
concerns about centralization if the state grows so large that only well-funded
organizations can afford to store it. As a result, most blockchain systems
impose strict limits on state growth, which in turn limit transaction through-
put. Famously, Bitcoin originally imposed a maximum size of 1 MB per block,
limiting throughput to about three transactions per second.

© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13951, pp. 54-71, 2024.
https://doi.org/10.1007/978-3-031-47751-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47751-5_4&domain=pdf
http://orcid.org/0009-0003-9914-6391
http://orcid.org/0000-0002-6349-0145
https://doi.org/10.1007/978-3-031-47751-5_4

Limits on Stateless Blockchains 55

The tension between throughput and state growth leads to a natural question:
can we achieve high throughput with a small (perhaps even constant-sized) global
state? This led to the proposal of stateless blockchain designs [27], although
this term is a misnomer: they typically assume validators store a store a small
commitment to the global state of the system (e.g., a Merkle root committing
to the set of unspent coins). Users wishing to make a transaction must publish a
witness that their transaction is valid given the current state commitment (e.g.,
a Merkle proof that a coin is included in the valid set). Validators can then
accept transactions without knowing the full state of the system. Since Todd’s
original proposal using Merkle trees, several other designs have been proposed
using Merkle-tree-based accumulators [6,16], RSA accumulators [4], and vector
commitments [12,18,26,28,30]. Stateless blockchains are distinct from succinct
blockchains [1,11,20] such as the Mina protocol [5]. Succinct blockchains use
verifiable computation to achieve O(1) storage and verification costs for light
clients, but still require validators to store the entire system state in order to
process new transactions and build (and prove correct) new blocks.

Unfortunately, all known stateless blockchain designs introduce a new prob-
lem: users’ witnesses can become invalid as other (unrelated) transactions update
the global state, requiring users to monitor the network and periodically refresh
their witnesses. This is a departure from the traditional blockchain model, in
which users can stay offline for long periods of time and then successfully create
and broadcast a transaction. This is not simply a matter of convenience; there
are important security benefits of supporting offline participation, as private keys
can be kept in air-gapped machines such as hardware wallets.

In this work we show that, regrettably, the trade-off between a large global
state and requiring frequent witness changes is fundamental. More specifically,
in Theorem 1 we show a lower bound on the global state size as a function of
the number of revoked statements and the desired maximum number of witness
changes. In Corollary 1, we show that there is no trade-off which does not require
either an (asymptotically) linear-sized global state or an (asymptotically) near-
linear number of witness updates as a constant fraction of coins are spent.

Model. To analyze the efficiency of stateless blockchains and similar authen-
ticated data structures, we introduce a new cryptographic notion: a revocable
proof system (RPS, Sect.2). An RPS is a simple abstraction capturing a class of
schemes that involve a global state V' encapsulating a set S of valid statements.
Correctness ensures that each valid statement s; € S has a corresponding proof
7; which can be efficiently verified given s;, the public parameters, and the global
state. A subset T' C S of the initial set of valid statements may later be revoked,
yielding an updated global state V’. Security requires that these revoked state-
ments’ proofs no longer verify. This functionality is quite natural and captures
a wide range of useful cryptographic notions, including accumulators and vector
commitments. We discuss these connections in Sect. 4.

Contributions. Using our revocable proof system definition we prove a trade-off
between the size of the global state and the frequency with which proofs must

56 M. Christ and J. Bonneau

be updated (Theorem 1). We do so using a compression argument: if the global
state is small and with constant probability there are few (<k) proof updates, an
adversary can use the global state and a small amount of additional information
to encode the revoked set. We apply Shannon’s Coding Theorem to show a lower
bound on the size of the global state given the number of proof updates k.

As a corollary, we observe that there is no useful asymptotic trade-off between
the size of the global state and the number of proof changes: either the state
size is linear, or a (nearly) linear number of proofs must change (Sect.3.1). As a
second corollary, we show that a useful notion of persistence (proofs of certain
statements never change) requires linear storage for these persistent statements.
In Sect. 4, we show that accumulators, vector commitments, and authenticated
dictionaries fit the framework of a revocable proof system and thus our lower
bound applies to them, giving results of independent interest.

Implications. Finally, we discuss the implications of our results on stateless
blockchain proposals (Sect. 5). We plot the minimum number of required witness
changes per day for blockchains with practical transaction rates and global state
sizes. For a blockchain with a transaction rate on the scale of Visa, the number
of witness changes is infeasibly large for any meaningfully compressed global
state. We discuss three ideas for mitigating the witness update issue and analyze
them in light of our impossibility result. The first idea is a versioning system,
which stores explicitly all transactions occurring during the current epoch and
consequently requires no witness updates within this epoch. The second is a
scheme where users lock up their coins for a period of time in exchange for
a guarantee that their witnesses will remain unchanged during that time. The
third and most promising is the introduction of new state-storing third parties,
which are neither users nor validators, called proof-serving nodes.

2 Model

Notation. We use A to denote the security parameter. We use lg to denote a
logarithm with the base 2. Right — and left < arrows denote the output of a
(possibly randomized) algorithm.

A revocable proof system (RPS) maintains a global state V', a wvalid set S,
and a set of proofs m; for each element s; € S which we’ll also call a statement.
The global state commits to the valid set, such that proofs of elements s; in .S
can be verified. More formally, a revocable proof system is a tuple of algorithms
(Setup, ComputeState, Revoke, Verify) where:

Setup(1*) — pp is a randomized algorithm that takes as input 1%, where \ is
the security parameter, and outputs public parameters pp.

ComputeState(pp, S) — V, (71,72, ..., 7,) is a deterministic algorithm that
takes as input the public parameters pp and a valid set .S of size n. It outputs
the corresponding global state V' and a list of proofs (w1, ms,...,m,) where
m; is the proof for s; € S.

Limits on Stateless Blockchains 57

Revoke(pp, S, T, V, (71, 72y ..., 7)) — V' (7l 7h, ... 7))
is a deterministic algorithm that takes as input the public parameters pp,
the initial valid set .S, a revoked set 7' C S, an initial global state V', and a
list of proofs for elements in S. It outputs an updated global state V' and
updated proofs.!

Verify(pp, V, s;, m;) — {true, false} is a deterministic algorithm that takes as
input the public parameters pp, a global state V', a statement s;, and a proof

;. It outputs true or false.

A revocable proof system must be correct and secure. By correct, we mean
that genuine proofs for valid elements should verify against the corresponding
global state. By secure, we mean that it should be difficult to find a proof for
a revoked element; that is, it should be computationally hard for an adversary
to produce a revoked set such that a proof for a revoked element still verifies
against the updated global state. More formally, correctness and security are
defined as follows:

Definition 1 (Correctness?). A revocable proof system is correct if for every
set S, every set T C S, and every s; € S\ T,

pp « Setup(1*)
V, (71, 2, .. 7rn) «— ComputeState(pp, S)
Pr| V' (x},7),...,7) < Revoke(pp, S, T, V, (71, 72,...,m)) | =1
Verify(pp, V, sl,m) = true
Verify(pp, V', s;, ™) = true

Definition 2 (Security). A revocable proof system is secure if for every p.p.t.
adversary A,

pp — Setup(1*)
S,T,s*, 7 «— A(1*,pp)
V, (71,2, ...,m) < ComputeState(pp,.S)
<
Pr V' (my,7h, ...,) < Revoke(pp,S,T,V, (71,72, ..., 7p)) < negl
s*eT

Verify(pp, V', s*,7*) = true

3 Main Result

Our main result is an inequality describing the relationship between the size of
the global state and the number of proofs of valid statements which must be

1 Although for ease of notation the output includes n proofs, security dictates that
proofs for elements in 7" should not verify.

2 While correctness with probability 1 is standard for the schemes we consider, our
main result (Theorem 1) still holds for a relaxed notion of correctness which holds
with overwhelming probability. In fact, it does not rely on correctness at all and
rather on the prevalence of a notion of a k-good revoked set. A revocable proof
system that is secure, correct with overwhelming probability, and has few witness
changes should have many k-good revoked sets.

58 M. Christ and J. Bonneau

updated. We first introduce the notion of a k-good revoked set; that is, a set of
statements such that when these statements are revoked, none of their proofs
still verify, and at most k still-valid statements’ proofs must be changed.

Definition 3 (k-good revoked set). We say a revoked set T is k-good given
a revocable proof system RPS, an initial valid set S, size parameter n = |S|,
and public parameters pp if, for V, (71, 7a,...,m,) < ComputeState(pp, S) and
V', (ny,wh, ..., 7)) < Revoke(pp, V,T) if:

1. For every revoked statement s; € T', Verify(pp, V', s;, m;) = false
2. There are at most k non-revoked statements s; € (S \ T) such that
Verify(pp, V', s;, ;) = false

Condition (1), that the original proof of a revoked statement no longer ver-
ifies, is a consequence of the security requirement that should hold for most
revoked sets. Condition (2) is that few (<k) proofs of non-revoked statements
no longer verify (i.e., need to be updated). Suppose that we want to have a secure
revocable proof system such that most of the time, at most k£ non-revoked state-
ments change when a set of size m is revoked. This is equivalent to having many
k-good revoked sets of size m. By security (regardless of |V]), an overwhelming
fraction of sets of size m must satisfy condition (1); otherwise an adversary could
choose a set of size m at random, revoke it, and succeed in finding a proof for
a revoked element. Condition (2) is exactly the other property we want: that at
most k non-revoked statements change when our set is revoked. Therefore, our
desired revocable proof system must have many k-good revoked sets of size m.

We now show that if any public parameters yield many k-good revoked sets,
the size of the global state must be large. In other words, if the size of the global
state is small, many proofs of non-revoked statements must change when an
average set is revoked.

Theorem 1. Let RPS = (Setup, ComputeState, Revoke, Verify) be a revocable
proof system satisfying correctness, and let pp be any public parameters occur-
ring with nonzero probability over Setup(1*). Let S be a set of size n, and let
X denote the set of subsets T C S that are k-good given RPS,S, and public
parameters pp. Then |V|, the size of the global state in bits, satisfies

VI = lg| x| - [klgn]

Proof. We show that if |V| is any smaller, there exists an efficient encoding
of X} using fewer than lg |X}¥| bits, contradicting Shannon’s Coding Theorem
[25]. Note that X} can be computed by trying every revoked set 7' C S and
determining whether it fits the conditions of a k-good revoked set. While this
algorithm is not efficient, it does not need to be as the contradiction we derive is
compression beyond information theoretic limits, which poses no computational
bounds on the communicating parties.

Consider two parties A and B interacting with a challenger in a game given as
input S and pp. The goal is for A to succinctly encode a uniformly chosen revoked

Limits on Stateless Blockchains 59

set T C S for B to decode. The challenger computes the initial global state
and proofs Vp, (71,72, ..., m,) < ComputeState(pp,.S). The challenger passes
Vo, (m1, ™2, ..., my) to both A and B. A chooses T uniformly at random from A}
and computes the updated global state V' <« Revoke(pp, Vi, T). Then, for each
s; € (S\T), A checks whether its proof verifies; i.e., whether Verify(pp, V, s;, m;) =
true. If not, A adds s; to a list L of still-valid statements with changed proofs. A
sends V and L to B.

We now show that given V' and L, B can decode T exactly. Let B’s decoding
be the set T" consisting of all statements s; such that Verify(pp, V, s;, m;) = false
and s; ¢ L. First, any statement s; € T must be in 7", since by definition of a
k-good revoked set?, no proofs for revoked statements verify. Therefore, T C T".
Next, B’s decoding algorithm ensures any statement s; € T’ is not in L, and
Verify(pp, V, s;, m;) = false. All elements s; that were not revoked (i.e., not in T')
and whose proofs no longer verify (Verify(pp,V,s;,m;) = false) are included in
L. Since s; is not in L, it must in fact have been revoked, so s; € T'. Therefore,
T’ C T, which implies that 7" = T.

Finally, we observe that A can encode L by listing a (lgn)-bit representation
of each of its elements. Since |L| < k by definition of &}, this encoding takes at
most [k1gn] bits, and A sends |V'|4[k1gn] bits in total after choosing T'. Since T'
was chosen uniformly from &)}, and the entropy of the uniform distribution over
X} is 1g | x|, we have by Shannon’s Coding Theorem that |V |+[klgn]| > 1g|X}|.

O

3.1 No Useful Trade-Offs for Sublinear State Size

We show that under certain regimes (when |X}| includes at least a constant

fraction of subsets of size m for lgn < m < %)7 there is no useful trade-off

between the global state size and the frequency of proof changes when m elements
are deleted. That is, the global state size is either linear in the size of the stored

set, or {2 (ﬁ) proofs must be updated.

Corollary 1 (No useful trade-offs). Let n be the size of the initial valid set

S and m < % be the number of deleted elements.* If |X}| includes at least

a constant fraction of subsets T C S of size m, and the global state size is
V| = o(lg (7)), then k = 2 (lgﬂn)

Proof. This holds by a straightforward application of Theorem 1. First, observe

m

that the number of possible T' C S of size m is (:1) > Lo > 2™ &) includes at

mm =

least a constant fraction of these subsets T of size m, so Ig |X;| = 2(1g (")) =

n
m

3 Tt is tempting to instead cite security of a revocable proof system here, but security
guarantees only that for most revoked sets T, proofs of revoked statements do not
verify. Our definition of k-good gives us exactly what we need.

4 If more than 5 elements are deleted in sequence, as in stateless blockchains, we can
set m = 5 since there must be an intermediate point where 7 elements were deleted,
and this bound still applies.

60 M. Christ and J. Bonneau

£2(m). In order for the inequality from Theorem 1 to hold, we must have klgn >
n n (g (1 m
20g (7)) = o(lg (7)), or k = % _ 0 (@)

This bound on k holds for any global state size |V| that is sublinear in 1g (TZ)
Once the global state size becomes (2(lg (:L)), we can (asymptotically) store
the full list of deleted elements and require no witness updates. One especially
interesting regime for this bound is when m = ©(n) and |V| = o(n). Then

Corollary 1 implies that &k = (2 (Igin> In other words, if we want to avoid a
near-constant fraction of proof updates, we need a linear global state size, at
which point we can (asymptotically) store the full state naively and require no
witness updates. This suggests that there is no asymptotically useful trade-off
between global state size and number of proof changes in this regime; at least

one of the two must be (nearly) linear.

3.2 Persistence Requires Linear Storage

We now show that another desirable property, which we call persistence, is also
not possible without linear global state. Suppose that we want proofs of certain
statements to always verify as long as those statements remain true. This guar-
antee would be very useful in cryptocurrencies, allowing a user to stay offline
until she is ready to make a transaction, without fear of her proof becoming
stale. We call this notion persistence and formalize it below.

Definition 4 (Persistence). A statement s, € S is persistent given initial
valid set S of size n and public parameters pp if for all T C S such that s; ¢ T,

— V, (71, ma,...,7,) < ComputeState(pp, S)
- V/v (’/Tll,ﬂ'é, s 77(-;7,) — ReVOke(ppa Sa Ta ‘/a (71—1)7727 s 77Tn))
— Verify(pp, V', s;, ;) = true

A corollary of Theorem 1 shows that there can be very few persistent state-
ments:

Corollary 2 (Persistence requires linear storage). Let RPS be a secure
and correct revocable proof system such that there exists an initial set S and a
set S* C S such that

1
Pr [every s € S* is persistent] > —
pp—Setup(1*) 2

Then the the global state of RPS has size at least |S*| — 1.

Proof. Let S be any initial set and S* be any subset of S. We wish to show that
with high probability, Aj is large, where A{ is the family of revoked sets that
require no witness changes and for which proofs of revoked statements do not
verify. We first argue that by security, few revoked sets T C S* yield proofs of
revoked statements that still verify. Then it follows that X contains all other

Limits on Stateless Blockchains 61

revoked subsets of S*, since by definition of persistence they require no witness
changes.

Suppose for the sake of contradiction that for all parameters pp < Setup(1*)
that occur with nonzero probability and for which every s € S* is persis-
tent, more than half of the revoked sets T C S* yield a global state such
that the proof of a revoked statement verifies. Then the following adversary A
forges a proof with non-negligible probability, breaking security. Let A compute
pp < Setup(1?) and V, (7,72, ...,m,) < ComputeState(pp,.S). A then chooses
T C S* uniformly at random, computes V', (7], 7, ...,) < Revoke(pp, V,T),
and checks whether Verify(pp, V', s;, m;) for each s; € T. If A finds such an s;, it
outputs S, T, s;, m;. Independently, A chooses pp such that all of S* is persistent
with probability at least % and T such that the proof of a revoked statement
verifies with probability at least % Thus, A is efficient and succeeds with prob-
ability i, contradicting security. Therefore, there must be some parameters pp
occurring with nonzero probability such that all of S* is persistent and at least
half of the revoked sets T' C S* have no revoked statements whose original proofs
verify. The family of these sets is exactly A}, whose size is at least % 21871,

Thus, there exist public parameters pp occurring with nonzero probability
such that || > % - 21571 Applying Theorem 1 for k = 0, we have that the size
of the global state is at least lg | X} | = |S*| — 1.

4 Implications for Authenticated Data Structures

We show that cryptographic accumulators, vector commitments, and authen-
ticated dictionaries, are instances of revocable proof systems. Thus, our lower
bound from Theorem 1 applies. This result is of interest since these data struc-
tures are frequently used in distributed settings, in which users maintain proofs
of portions of the committed data that are verified against a global state. Our
bound dictates that these users must update their proofs frequently as the global
state changes.

4.1 Cryptographic Accumulators

A cryptographic accumulator [3,9], also called a set commitment, commits to
an accumulated set X via a succinct digest A. Different accumulator schemes
support efficiently proving various properties about the accumulated set X, such
as membership or non-membership of elements. Some schemes may also allow
X to be modified and the corresponding proofs updated. A typical accumulator
supports additions, deletions, and membership proofs. That is, given a set X
there is a function computing a digest A and a membership proof (also called
a witness) w; for each x; € X, corresponding to the ComputeState function of
a revocable proof system. When a new element x is added to X, a new global
state A’ can be computed using x and A. Furthermore, each membership proof
w; can be updated given x and A. When an element x; € X is deleted, a new
global state A’ can be computed using z;, A, and the membership proof w; for

62 M. Christ and J. Bonneau

x;. The membership proofs of the other elements of X can be updated using the
same information. Some accumulator schemes also allow batch updates, where
multiple elements can be efficiently added and/or deleted at once [4].

Constructing a Revocable Proof System Using an Accumulator. We show how
an RPS can be constructed using an accumulator scheme Acc supporting addi-
tion, deletion, and membership proofs. Addition is only necessary for the initial
set S. The Setup function for our RPS calls the Setup function for Acc. The
ComputeState function for our RPS, given public parameters pp and a valid set
S, adds S to our accumulator given pp to obtain a digest A and a membership
witness w; for each s; € S. We let the proof 7; for s; be this membership witness
w;. We implement Revoke for our RPS by, given a set T' C S, removing T' from
the accumulated set and updating all witnesses according to the accumulator
scheme. The resulting global state is the resulting accumulator value A’, and the
resulting proofs 7, are the updated witnesses w;. We let the Verify function for
our RPS be the same as the Verify function for the accumulator scheme.

Accumulator schemes have correctness and security definitions that are anal-
ogous to those of a revocable proof system; full definitions can be found in [8].
By correctness of the accumulator, membership witnesses for elements of the
accumulated set (equivalently, valid statements) verify. By security of the accu-
mulator, it is hard for an adversary to find verifying membership witnesses for
elements not in the accumulated set (equivalently, revoked or invalid statements).
Thus, this construction is indeed a revocable proof system, and our lower bound
from Theorem 1 applies.

We note that we can also construct a revocable proof system using an accu-
mulator that supports only addition and non-membership witnesses (but not
deletion). Given a finite data universe U and a set X CU, a delete/membership
accumulator storing X can be implemented using an add /non-membership accu-
mulator storing U \ X.

Camacho-Hevia Result. Our accumulator lower bound is reminiscent of a
lower bound proved by Camacho and Hevia [8]. They consider a dynamic accu-
mulator supporting addition, deletion, and membership proofs. Their model
allows batch updates: if wq, ..., w, are witnesses for an initial accumulated set
X, after deletion of a set 1" the state-update function outputs a string Upd x x\7
that can be used to update all witnesses to wi,...,w/, to reflect the updated
state. They show that if there are |T| = m deletions, Updx, x\r must have
length 2(m). Baldimtsi et al. show an analogous result for a universal accu-
mulator supporting addition, deletion, and non-membership proofs, using the
same proof style [2]. While these results are similar in spirit to ours, they do
not address how this string Updx x\r is incorporated into the new witnesses or
how many witnesses must change. It is possible in this model that some elements
require very long witness changes, while nearly all other witnesses can remain the
same. Our result addresses the separate question of how many witness changes
are required.

Limits on Stateless Blockchains 63

We note a small gap in the Camacho-Hevia proof (and similarly in the
Baldimtsi et al. proof) in the appendix of the full version of this paper. In
our proof, we address this issue by defining the notion of a k-good revoked set.

4.2 Vector Commitments

A wector commitment (VC) [10] stores a vector v = [vy,...,v;] in the form of a
succinct digest C. For each index ¢ and corresponding component v;, the scheme
produces a proof m; that can be used alongside C to verify that v; = v;. When
a component is changed, the digest and proofs of some or all components may
change. Correctness dictates that properly generated proofs of true components
verify with their corresponding digests. Security dictates that it is hard to find a
proof for an incorrect component. Recently several vector commitment schemes
have been constructed with cryptocurrency applications in mind; see [12,18, 26,
28,30].

Constructing a Revocable Proof System Using a Vector Commitment Scheme.
Our construction commits to a vector storing valid statements. In describing our
construction, we use the syntax for a VC scheme from [26]. Let ¢ be an upper
bound on the total number of valid statements. Let L be some special value used
to denote that there is no statement stored at that vector position. The Setup
function for our RPS calls the KeyGen function of the VC scheme with security
parameter A and vector length n (the size of our initial valid set) to obtain public
parameters pp. The ComputeState function, given pp and an initial valid set .S
of size n, first calls the commitment function of the VC scheme on the vector
[$1,82,..,8n,L,..., 1] (using some arbitrary ordering of S). This outputs a
commitment C that is the global state, along with auxiliary information aux. To
generate the proof w; for each s;, ComputeState then calls the Open function of
the VC given i, s;, and aux. It outputs the commitment C' and a proof w; for
each s;. The Revoke function of our RPS, given T' C S, revokes each statement
s; € T by setting the corresponding position of the committed vector to L.
We describe how to do so assuming no batch updates, updating the state and
all proofs for each revocation before moving onto the next. More precisely, for
each s; € T, it calls VC.Update(C, s;, L,4) to obtain an updated state C’ and
update information U. It then updates the proof w; for each other component
s; using VC.ProofUpdate given C,wj, s;, 4, U. After all updates have been made,
it outputs all proofs and the resulting commitment. Finally, the Verify function
of our RPS, given C, s;, w;, calls VC.Ver(C, s;, j, w;) for each vector component
j. Verify outputs true if and only if there exists a j such that VC.Ver outputs
true.

We give an overview of how correctness and security for a VC scheme relate
to the corresponding definitions for a revocable proof system; full definitions of
correctness and security for a VC scheme are given in [10]. VC schemes offer cor-
rectness with overwhelming probability, ensuring that properly generated proofs
for committed components verify. See footnote 2 for a discussion of how this
compares to correctness with probability 1 for a revocable proof system. The

64 M. Christ and J. Bonneau

security definition for a VC guarantees that it’s hard for an adversary to find
two valid proofs for different values s; and s, of the i*® component. This implies
security of our constructed revocable proof system: if an adversary finds a proof
w* of a statement s* that is not in the valid set, it has succeeded in finding a
proof that the value of the vector at some index ¢ is s*. Since s* is not in the
valid set, the actual value at ¢ must be L or some other s’. The proof w of this
other value yields a pair of proofs that verify for different values at index ¢. Thus,
our constructed scheme is an RPS.

4.3 Authenticated Dictionary

A related notion is an authenticated dictionary [17,23], which produces a commit-
ment to a set of key-value pairs, such that proofs of these stored pairs can be gen-
erated and verified against the commitment. Throughout time, more key-value
pairs can be added, and existing pairs can be modified. When the dictionary
is updated, a new shared commitment is generated, potentially invalidating old
proofs. The existence of these proofs both for the original data and the updated
data corresponds to correctness for a revocable proof system. Security of an
authenticated dictionary guarantees that it is difficult to generate proofs of a
key-value pair that is not in the stored set. The argument that we can construct
a revocable proof system from an authenticated dictionary is along the same
lines as the arguments from vector commitments and accumulators. One way to
see this is to observe that we can construct a vector commitment scheme using
an authenticated dictionary, by storing the vector index-value pairs as key-value
pairs in the dictionary. Authenticated dictionaries therefore fit the framework of
a revocable proof system, and thus our lower bound holds, implying that proofs
must be updated often.

Aardvark [21], a recently proposed distributed authenticated dictionary with
applications to stateless blockchains, proposes an interesting versioning scheme
to overcome the need to change witnesses enough to accommodate many users
making transactions concurrently. We discuss this idea further in Sect. 5.2.

5 Implications for Blockchains

Blockchains typically operate in one of two models: the unspent transaction out-
put (UTXO) model or the account-based model. A stateless blockchain functions
slightly differently in each of these models. We describe the models below and
argue that each requires the functionality of a revocable proof system, meaning
that our lower bound from Theorem 1 holds.

UTXO Model. In the UTXO model, the global state stores the set of unspent
coins. When a user wants to make a transaction, they must specify the coin(s)
(UTXOs) they wish to spend and submit a proof that these coins are unspent.
A stateless blockchain needs to satisfy correctness: a proof for an unspent coin

Limits on Stateless Blockchains 65

should verify against the corresponding global state. If the transaction is suc-
cessful, the global state is updated, and the spent coins’ proofs should no longer
verify. In order to prevent users from double spending, it should be compu-
tationally hard to produce a proof for a spent coin—this is equivalent to the
definition of security for a revocable proof system. A stateless blockchain in the
UTXO model is commonly constructed using a dynamic accumulator, where
the accumulated set is the set of valid UTXOs. Such accumulators include RSA
accumulators [4], Merkle-tree-based accumulators [7,16], and Verkle trees [6].

Account-Based Model. In the account-based model, the global state stores a
list of account-balance pairs. Each account owner, or user, maintains a proof of
their account balance. When a user v wants to make a transaction, they submit
a proof m that their account-balance pair is included in the global state. The
validator verifies the user’s account balance using this proof, and they check
that the balance is high enough to make the desired transaction. The amount
spent is then deducted from the user’s balance, and the global state is updated
accordingly.

In the context of a revocable proof system, the valid set is the set of account-
balance pairs. An account-balance pair is revoked when the corresponding user
makes a transaction, changing their account balance. Security ensures that it
is hard to generate a proof for an incorrect account-balance pair. Correctness
ensures that every user can prove that their true account balance is valid. An
account-based blockchain is often constructed using a vector commitment or
authenticated dictionary, where each index of the vector represents an account
and the value is that account’s balance (e.g., [26]).

5.1 Interpreting Our Bound in Practice

An interesting question is exactly what implications Theorem 1 has for practical
stateless blockchains. Toward answering this, we graph the number of witness
(or proof) changes for various parameter values.

We first apply Theorem 1 to obtain a lower bound on the number of witness
changes required after some number m deletions, given an initial valid set of size
n. The number of possible deleted sets of size m is (') > 7%: (by, e.g., [13]).
Ideally, we would like at least half of these sets to (1) require few (< k for some
k) witness changes, and (2) allow no deleted elements to be double spent. These
are exactly the conditions for a k-good revoked set; thus, in our application of
Theorem 1 we can set |X})| = %(") > 2" Our next step is to obtain a lower

m 2m™
bound for k, showing that many witnesses must change.
Rearranging, we have [klgn]| > lg 5= — [V|. Simplifying further,

klgn > mlgn —mlgm — |V| —2

[V|+mlgm 2

k> —
=m lgn lgn

66 M. Christ and J. Bonneau

RN # witness changes for a data universe of size n = 233 and global state size |V|

— V] =256

V] =2~16
— |V|=2"18
— V] =220
— V|=2"22
800000

600000

witness changes

400000

200000

0 200000 400000 600000 800000 1000000
deleted elements

Fig. 1. Number of witness changes f(m,n, [V|) given 0 < m < 10° deleted elements, a
data universe of size n = 2%%, and varying global state size |V|.

Let f(m,n,|V]) denote the right hand side of Eq.1. We graph f, showing that
if at least half of the sets of size m are k-good revoked sets, & must be at
least f(m,n,|V|). In our graphs, we use two natural values of n. The first is
233 approximately the world’s current human population. The second is 226,
approximately the current number of UTXOs in Bitcoin [15]; these graphs are
included in the appendix of the full version of this paper.

In Fig. 1, we can see that the relationship between f and m is approximately
linear, with the ml;g”’” term having little impact since m is small relative to n
in our ranges. Furthermore, increasing the size of the global state V results in a
horizontal shift of the curve and has little benefit until it becomes very large.

Like Fig.1 and Fig. 2 shows that there is not a useful trade-off between the
global state size and the number of witness changes per day. The global state size
must become very large, at least 222 for most throughput values, before there is
much impact on the number of witness changes. This concrete effect mirrors the
asymptotic relation of by Corollary 1.

While the number of witness changes may seem small in comparison to the
number of UTXOs or accounts in the system, without some additional recovery
mechanism, the consequences of a user missing their witness update are severe
as they will no longer be able to make transactions. Furthermore, if the system
has enough throughput to adequately serve the data universe, there will be
many more witness changes: for 24,000 transactions per second (the maximum
throughput supported by Visa [29]) the number of witness changes per day for
n = 233 becomes roughly 1.25 x 108. Our graphs show that if most users are
not willing to refresh their witnesses continually, hundreds of thousands of these
users will lose their coins per day. As a result, most stateless blockchain proposals

Limits on Stateless Blockchains 67

witness changes per day for a data universe of size n = 2733
3000000

—— 7 tps (btc)
20 tps (eth)
— 1tps
— S5tps
2500000 — 10tps
—— 40 tps
100 tps

2000000

1500000

witness changes per day

1000000

500000

0 5 10 15 20 3)
log2(global state size)
Fig.2. Number of witness changes per day for a data universe of size n = 2% and

varying global state size, for blockchains with various throughput. In particular, Bitcoin
and Ethereum support roughly 7 and 20 transactions per second respectively.

have included a way for lazy users to obtain updated proofs, at the cost of more
storage for certain parties; the most prominent such solution uses proof-serving
nodes (PSNs). Below, we discuss two more limited solutions (a versioning model
and a partially persistent model), then conclude with a discussion of PSNs and
potential future work relating to them.

5.2 Versioning Model

An issue arises when at some time ¢, many users simultaneously provide a proof
of their account balance (an element in the authenticated dictionary) and a
transaction that they wish to make (an update of their element in the dictionary).
If the transactions are executed in sequence, each user’s transaction requires
updating the dictionary, invalidating the other users’ proofs. One solution is
to store this set of transactions temporarily, so we can verify each user’s proof
against the global state at time ¢ and then check manually that none of the
subsequent transactions changed that user’s account balance. We call this a
versioning system.

Aardvark [21], an authenticated dictionary designed with cryptocurrency
applications in mind, does essentially this: it stores all transactions that hap-
pen in the next 7 time, for some tunable time parameter 7. The current state
commitment at time ¢ is also stored. At a future time up to ¢t + 7, any proof
at least as recent as time ¢ can still be verified by checking it against the state
commitment at time ¢, then naively checking that it does not conflict with the
cached transactions. This approach essentially ensures that proofs do not need to

68 M. Christ and J. Bonneau

change for k transactions by storing k additional state, where k is the number of
transactions happening in time 7. This matches our lower bound from Corollary
2 (up to constants), which when translated to this setting says that if we want
no proof changes when deleting k elements, we must store at least k state. Thus,
this versioning scheme is essentially the best one can hope to achieve without
introducing parties such as PSNs storing more state (see, e.g., [24,26,28]).

5.3 Partially Persistent Model

A desirable feature of a stateless blockchain is that users know in advance when
their proofs will need to change, so they can go online only at that time. Perhaps
users could pay a fee for the guarantee that their proofs will remain valid for
some number of transactions in the future. A natural question is how much
additional state is necessary to accommodate these special requests.

This property is exactly our notion of persistence: the persistent set S* cor-
responds to the set of proofs that are guaranteed to remain valid. Unfortunately,
Corollary 2 says that any secure and correct revocable proof system with a per-
sistent set S* must have global state size at least |S*| — 1. If any significant
portion of the user base wants persistent proofs, the stateless blockchain model
does essentially no better than storing the full state.

We can achieve persistence if users are willing to lock up their coins for a set
period of time. That is, a user wanting their proof to remain valid for at least a
day would sacrifice their ability to spend their coin during that day. We could
then separate the blockchain into two state commitments: one state S; storing
the set of locked coins and another state Sy storing all other (liquid) coins. Since
locked coins can only be spent at the end of the day, S; remains the same and no
proofs of locked coins change throughout the day. At the end of the day, users
may unlock their coins and move them from S; to S3. We could extend this
scheme to support other time ranges, incurring the cost of extra storage as more
time ranges are supported.

While potentially helpful in limited settings, this model has serious drawbacks
for general use. The most obvious is the fact that users cannot spend their locked
coins. Furthermore, the benefits are all-or-nothing in the following way: If a user
wants to maintain any liquid coins, they must continually update these liquid
coins’ witnesses, at which point updating their locked coins’ witnesses would
require minimal additional effort.

5.4 Proof-Serving Node Model

Prior work proposes offloading witness updates to a proof-serving node (PSN)
[24,26,28]. Instead of maintaining its proof itself, a user can delegate this task
to a PSN and come online only when it wishes to make a transaction. In any
revocable proof system, the PSN can update a user’s proof simply by using the
Revoke algorithm. The storage required for this simple approach scales with the
number of users: the PSN can serve k users by storing only these users’ proofs
and constantly checking for updates. This property that PSNs can use storage

Limits on Stateless Blockchains 69

proportional to the number of proofs they maintain somewhat mitigates the
centralization issues posed by requiring storing a large state, allowing anyone
to operate a small PSN. PSNs also interact nicely with hybrid nodes, a newly
introduced [19] type of node that stores much less state than full nodes yet
can perform nearly all full node functionalities. The PSN model is especially
promising in light of our result that there is no holy grail revocable proof system
achieving few witness updates on its own.

However, centralization is still a major concern with PSNs, and the PSN
model raises interesting questions regarding incentives. PSNs must be incen-
tivized in some way to do this work. Hyperproofs [26] suggests a PSN model
where users pay PSNs to maintain their proofs for them. This payment model
seems to have an interesting relationship with batch updates, which hyperproofs
also allow. That is, while it takes a user time ¢ to update a single proof, a PSN
can update the proofs of all n users in the system in time ¢ - f(n) (for some
sublinear function f). PSNs that serve enough users to take advantage of batch
updates can offer much cheaper prices than small PSNs. There can only be a
few PSNs that serve this many users. The resulting system will have a few PSNs
storing the full state, and the users they serve will store nothing. This is a sig-
nificant risk: an adversary that attacks these PSNs can compromise the entire
blockchain, preventing many users from spending their coins.

Acknowledgments. This research was conducted primarily at al6z crypto research.
Miranda Christ was also supported in part by NSF Award CCF-2107187, by JPMorgan
Chase & Co, by LexisNexis Risk Solutions, and by the Algorand Centres of Excellence
programme managed by Algorand Foundation. Joseph Bonneau was also supported
by NSF Award CNS-1940679 and DARPA Award HR00112020022, and served as a
technical advisor to Mina. Any opinions, findings, and conclusions or recommendations
expressed in this material are solely those of the authors.

References

1. Abusalah, H., Fuchsbauer, G., Gazi, P., Klein, K.: SNACKs: leveraging proofs
of sequential work for blockchain light clients. Cryptology ePrint Archive, Paper
2022/240 (2022)

2. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: IEEE Euro S&P (2017)

3. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274-285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

4. Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561-586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7_20

5. Bonneau, J., Meckler, 1., Rao, V., Shapiro, E.: Mina: decentralized cryptocurrency
at scale (2020). https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.
pdf. Accessed 9 Aug 2022

6. Buterin, V.: A state expiry and statelessness roadmap. https://notes.ethereum.
org/@vbuterin/verkle_and_state_expiry_proposal

https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal

70

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

M. Christ and J. Bonneau

. Buterin, V.: The stateless client concept (2017). https://ethresear.ch/t/the-
stateless-client-concept /172

. Camacho, P., Hevia, A.: On the impossibility of batch update for cryptographic
accumulators. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 178-188. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14712-8_11

. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient

revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,

vol. 2442, pp. 61-76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-

45708-9_5

Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,

K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55—72. Springer, Heidelberg

(2013). https://doi.org/10.1007/978-3-642-36362-7_5

Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs

via incremental verification for ledger systems. Cryptology ePrint Archive, Paper

2020/1522 (2020). https://eprint.iacr.org/2020,/1522

Chepurnoy, A., Papamanthou, C., Srinivasan, S., Zhang, Y.: EDRAX: a cryp-

tocurrency with stateless transaction validation. Cryptology ePrint Archive, Paper

2018/968 (2018)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

MIT Press, Cambridge (2022)

Dai, W.: b-money (1998). https://www.weidai.com/bmoney.txt

Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomarti, J.:

Analysis of the Bitcoin UTXO set. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol.

10958, pp. 78-91. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-

58820-8_-6

Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the Bitcoin

UTXO set. Cryptology ePrint Archive, Paper 2019/611 (2019)

Goodrich, M.T., Shin, M., Tamassia, R., Winsborough, W.H.: Authenticated dic-

tionaries for fresh attribute credentials. In: Nixon, P., Terzis, S. (eds.) iTrust 2003.

LNCS, vol. 2692, pp. 332-347. Springer, Heidelberg (2003). https://doi.org/10.

1007/3-540-44875-6-24

Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating proofs for

multiple vector commitments. In: ACCM CCS (2020)

Hegde, P., Streit, R., Georghiades, Y., Ganesh, C., Vishwanath, S.: Achieving

almost all blockchain functionalities with polylogarithmic storage. In: Eyal, I.,

Garay, J. (eds.) Financial Cryptography and Data Security: 26th International

Conference, FC 2022, Grenada, 2-6 May 2022, Revised Selected Papers, pp. 642—

660. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18283-9_32

Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with

fairness guarantees. In: Financial Crypto (2023). https://eprint.iacr.org/2020/190.

pdf

Leung, D., Gilad, Y., Gorbunov, S., Reyzin, L., Zeldovich, N.: Aardvark: an asyn-

chronous authenticated dictionary with applications to account-based cryptocur-

rencies. In: USENIX Security (2022)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party

authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.

LNCS, vol. 4861, pp. 1-15. Springer, Heidelberg (2007). https://doi.org/10.1007/

978-3-540-77048-0_1

https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://doi.org/10.1007/978-3-642-14712-8_11
https://doi.org/10.1007/978-3-642-14712-8_11
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2020/1522
https://www.weidai.com/bmoney.txt
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/3-540-44875-6_24
https://doi.org/10.1007/3-540-44875-6_24
https://doi.org/10.1007/978-3-031-18283-9_32
https://eprint.iacr.org/2020/190.pdf
https://eprint.iacr.org/2020/190.pdf
https://doi.org/10.1007/978-3-540-77048-0_1
https://doi.org/10.1007/978-3-540-77048-0_1

24.

25.

26.

27.

28.

29.

30.

31.

Limits on Stateless Blockchains 71

Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenticated
dynamic dictionaries, with applications to cryptocurrencies. Cryptology ePrint
Archive, Paper 2016,/994 (2016)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379-423 (1948)

Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., Zhang, Y.: Hyper-
proofs: aggregating and maintaining proofs in vector commitments. ITACR Cryptol.
ePrint Arch. 2021, 599 (2021)

Todd, P.: Making UTXO Set Growth Irrelevant with Low-Latency Delayed TXO
Commitments (2016). https://petertodd.org/2016/delayed-txo-commitments
Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. Cryptology
ePrint Archive, Paper 2020/527 (2020)

Visa: Visa acceptance for retailers. https://usa.visa.com/run-your-business/small-
business-tools/retail.html

Wang, W., Ulichney, A., Papamanthou, C.: BalanceProofs: maintainable vector
commitments with fast aggregation. Cryptology ePrint Archive, Paper 2022/864
(2022)

Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger
(2014)

https://petertodd.org/2016/delayed-txo-commitments
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html

