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Abstract. Training recurrent neural network controllers in closed-loop
control systems with combined Levenberg-Marquardt and Forward Accu-
mulation Through Time algorithm advances the research in a grid-
connected converter for solar integration to a power system. However, an
effective training algorithm is needed for a large number of trajectories
with a high sampling frequency. Thus, we propose a new effective training
mechanism based on parallel computing and weight dropout techniques
for recurrent neural network controllers in this paper. Experimental
results on both the Amazon Web Services (AWS) cloud and the Graphi-
cal Processing Unit (GPU) show that our proposed training mechanism
runs at a more promising acceleration rate than the existing algorithms.
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1 Introduction

Recurrent Neural Networks (RNNs) have become a capstone in the field of
sequential data processing and control systems due to their ability to maintain a
memory of previous inputs through internal state dynamics. However, the train-
ing of RNNs for control tasks can be challenging due to the complexity of their
error surfaces and the need for efficient computation of the training algorithm.
The Levenberg-Marquardt (LM) algorithm, a powerful optimization technique
that combines the rapid convergence of Newton’s method with the stability of
gradient descent, has shown promise in training feed-forward networks but is less
explored in the context of RNNs. Recent advancements propose the integration
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of the LM algorithm with a novel Forward Accumulation Through Time (FATT)
method to efficiently compute the Jacobian matrix required for RNN training
[1]. This approach aims to accelerate the training process by leveraging the
strengths of LM in handling non-linear optimization problems while addressing
the computational demands of backpropagation through time (BPTT) in RNNs.

Novel computational approaches have contributed to recent improvements in
the training efficiency of recurrent neural network (RNN) controllers in closed-
loop systems. To improve the training process, this research combines weight
dropout techniques with parallel trajectory training, utilizing the Levenberg-
Marquardt (LM) and Forward Accumulation Through Time (FATT) algorithms.
Previous research, most notably the study by [7], which presented a weight
dropout technique to optimize neural network controllers for solar inverters and
greatly reduced the computational burden on FPGA implementations, served as
an inspiration for our strategy.

Further foundational to this research is the study by Ranga Suri, Deodhare,
and Nagabhushan [1], which explores “Parallel Levenberg-Marquardt-based Neu-
ral Network Training on Linux Clusters,” offering early insights into the effec-
tiveness of parallel computing for neural network training in a case study con-
text [1]. Similarly, Cao et al. present “A Parallel Levenberg-Marquardt Algo-
rithm,” detailing an algorithmic approach that underscores the potential of par-
allel processing to significantly accelerate the computational aspects of neural
network training [2]. This body of work and the suggested improvements together
highlight the value of novel algorithmic techniques and parallel computing in
enhancing the effectiveness of RNN controller training procedures essential for
their use in demanding real-world scenarios requiring strong control capabilities
and high computational efficiency.

Taking this work further, this research extends the use of weight dropout in a
parallel trajectory training framework to greatly accelerate the training of RNN
controllers. This methodology shows a significant improvement in training time
over conventional methods, as demonstrated by tests conducted on platforms
like GPU clusters and Amazon EC2.

The structure of the paper unfolds as follows: In Sect. 2, we delve into the
experiment, offering insights into the RNN controllers’ parallel trajectory train-
ing algorithm, with and without the implementation of dropout techniques.
Section 3 elaborates on the detailed training results and trajectory performance.
Finally, the paper concludes with a summary of key points in Sect. 4, including
the notable findings and contributions.

2 RNN Controllers in a Closed Loop Control System

2.1 A Solar Microinverter

Solar inverters have emerged as pivotal components in photovoltaic systems,
revolutionizing solar energy technology by enabling individual panel optimiza-
tion, and enhancing energy production and system performance as compared to
traditional string inverters [4]. Essential components of a solar inverter are the
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DC-DC converter and the DC-AC inverter as illustrated in Fig. 1 [5]. The Pho-
toVoltaic (PV) solar panels are connected to the DC-DC converters for voltage
optimization. Pulse Width Modulation (PWM) controls a signal generator that
adjusts the duty cycle of the output waveform to regulate the power delivered
to the load. DC-AC inverters maintain DC Bus voltage and supply controlled
AC current to the main power grid. This process ensures efficient conversion of
solar energy for grid integration.

Fig. 1. Microinverter Block Diagram [5]

2.2 NN Controller in a Closed-Loop

A Neural Network Controller will be implemented in the Piccolo real-time digital
controller in Fig. 1. This is intended to regulate the currents following the refer-
ence trajectories in a closed-loop control system. The structure of the proposed
NN Controller is shown in Fig. 2. Two hidden layers, each with six neurons, and
an additional layer with two neurons controlling the outputs make up the neural
network (NN).

Fig. 2. The NN Controller with special tracking error integrals [6]
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The tracking error input signals −→edq and their particular error integral values
−→sdq are sent into the NN’s input block. In order to prevent input saturation, −→edq
and −→sdq are normalized using the hyperbolic tangent function, whose values are
restricted to the interval [-1, 1], and divided by constant gain values, Gain and
Gain2, respectively. For step references [9], the special error integral terms −→sdq
will ensure that there is no steady-state error.

Through several trial and error trials, the number of neurons in each hidden
layer was determined. It was found that using six nodes in each hidden layer
produced good real-time control results. The process involved several iterations
of experimentation to determine the optimal number of neurons in each hid-
den layer of the neural network. Different configurations of hidden layer neuron
counts were tested, and their performance in achieving real-time control results
was evaluated. After conducting multiple trials, it was observed that utilizing
six nodes in each hidden layer consistently yielded satisfactory real-time con-
trol outcomes. Additionally, the dropout technique makes it possible to reduce
the number of neurons or weights, which improves compatibility with embedded
real-time computing systems [7].

3 Parallel Trajectory Training with Weight Dropout
Technique

Recurrent neural networks (RNNs) for closed-loop control systems can be bet-
ter trained by parallelizing trajectory training using dropout regularization and
parallel computing resources. Adaptive dynamic programming (ADP) method-
ologies, according to [10], integrate incremental optimization techniques with
parametric structures to estimate the optimal cost for system control. Specifi-
cally, a discrete-time ADP method is based on Bellman’s optimality principle [11]
and employs a discrete-time system model in conjunction with a cost or perfor-
mance index [12]. The cost function associated with training recurrent neural
networks (RNNs) is called Dynamic Programming (DP).

The Dynamic programming (DP) cost function associated with the RNN
training is defined as:

Cdp =
∞∑

k=j

γk−jU(edq(k)) =
∞∑

k=j

γk−j
√

(id(k) − idref(k))2 + (iq(k) − iqref(k))2

(1)
where j > 0 is the starting point, 0 < γ ≤ 1 is a discount factor, and U is the
local cost or utility function. Depending on the initial time j and the initial state
idq(j), the function Cdp is referred to as the cost-to-go of state idq(j) of the
DP problem.
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3.1 LM + FATT Algorithm

The Levenberg-Marquardt (LM) algorithm is a versatile optimization technique
that minimizes least squares objective functions in nonlinear regression and
curve-fitting problems by combining the advantages of the Gauss-Newton algo-
rithm and the steepest descent approach as discussed in [14]. In this context, if
−→w represents a parameter vector of a model and f(xi,

−→w ) denotes the loss func-
tion for the ith sample, the sum of squared errors, denoted as J(−→w ), is given by
the following expression:

J(−→w ) =
1
2

n∑

i=1

(yi − f(xi,
−→w ))2 (2)

where n is the number of data points, yi is the observed value, f(xi, θ) is the
predicted value by the model, and θ represents the parameters being optimized.
The LM algorithm adjusts the parameters using the following update equation:

−→w k+1 = −→w k + (JTJ+ λI)−1JTe (3)

where −→w k and −→w k+1 represent the parameter vectors at iteration k and k + 1,
respectively, J is the Jacobian matrix, e is the error vector, λ is the damping
parameter, and I is the identity matrix. The Jacobian matrix J and the error
vector e are defined as:

J =
∂f(xi, θ)

∂θ
(4)

Hence, the change in weight of the LM for an RNN controller can be expressed
as:

∆w = − [Jv(w) (Jv(w) + µI)]Jv(w)V (5)

The integration of the Forward Accumulation Through Time (FATT) algo-
rithm, as discussed in [15], significantly enhances the training process of the NN
Controller by efficiently computing crucial elements such as the cost function
(C1 = S(−→w )), the Jacobian matrix (J), and the training pattern (P ), which
encapsulates the deviation between target trajectories (y) and the NN Con-
troller’s output (f(−→w )) across all time steps. Leveraging the Jacobian (J) and
training pattern (P ), we calculate $−→w to gauge the cost of the updated estimate
(C2 = S(−→w + $−→w )). The comparison between these costs (C1 and C2) enables
the adjustment of the damping factor λ according to the Levenberg-Marquardt
(LM) algorithm, ensuring optimal training.

3.2 Adding Weight Dropout

The implementation of a strategic weight dropout method [7] is implemented in
this research, which significantly boosts neural network efficiency and general-
ization. The weight dropout approach used in this research sets a chosen weight
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to zero, making it inactive and making sure that it does not affect the neu-
ral network’s output. This method is especially important since the Levenberg-
Marquardt (LM) algorithm updates the weight vector iteratively by solving a
system of linear equations. The algorithm closely monitors the lowered weight
indices to preserve the integrity of the weight deactivation during the training
cycles. This makes sure that once a weight is deactivated, it stays that way across
all iterations, avoiding any unintentional changes that may cause it to become
active again.

The least significant weights are those with the lowest absolute values, which
are dropped first. Every non-diagonal element in the weight matrices is eligible
to be dropped, but diagonal elements cannot be dropped because they have a big
effect on the system’s eigenvalues and, by extension, its stability and convergence.
To ensure that the dropout process does not negatively impact the system’s
overall behavior, this distinction is essential to maintaining the structural and
functional integrity of the network.

After identifying the weight, it is determined to be dropped. The algorithm
updates the set of candidate weights and records the dropped weights. Through
this dynamic modification, the architecture of the network can be adaptively
refined during the training process, possibly leading to the discovery of new
local minima that could provide better performance.

The training procedure involves applying the Forward Accumulation
Through Time (FATT) and LM algorithms until a predefined condition is satis-
fied, like achieving the maximum lambda value (λmax). The dropout algorithm
steps in at this point and removes the smallest weight from the list of possi-
ble weights. To enable retraining with the modified weight configuration, the
algorithm resets the lambda value (λ) to its initial value (λstart) after removing
a weight. Until the algorithm achieves the predetermined maximum number of
dropped weights (20 weights in this case) or the maximum number of epochs,
this cycle is repeated. The training algorithm converges until 18 weights are
dropped and after that, the cost is increased.

The adoption of weight dropout has notably enhanced the parallel trajectory
training process, making it more efficient by reducing computational complexity
and facilitating faster convergence. This is particularly effective in environments
utilizing LM and Forward Accumulation Through Time (FATT) algorithms,
where the network iterates until reaching a predetermined threshold, continually
optimizing by dropping insignificant weights. This method has not only increased
the speed of the training process but also significantly improved the network’s
ability to generalize, which is crucial for RNN controllers deployed in diverse,
real-world scenarios.

3.3 Parallel Algorithm

The purpose of a parallel algorithm is to use many processing units, such as
Central Processing Unit (CPU) cores or Graphics Processing Units (GPUs), to
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accomplish multiple computational tasks at once. This is mainly done through
the division of jobs into smaller sub-tasks that may be performed concurrently
across multiple processing units such as distributing computing nodes. This goes
a long way to increase computing efficiency and decrease computing time. To
achieve parallelization, all training trajectories are divided into N groups, each
with a size from 1 to a number smaller than the total number of trajectories. The
calculation of each group of trajectories is allocated to one worker or Central
Processing Unit core. Each core independently computes the trajectory for a
subset of training data and the results are aggregated to update the network
parameters.

In accelerating Recurrent Neural Network (RNN) Controllers, paralleliza-
tion of the Levenberg-Marquardt (LM) algorithm and Forward Accumula-
tion Through Time (FATT) algorithm is crucial. LM algorithm parallelization
involves distributing the computation of parameter updates across multiple pro-
cessing units while ensuring consistency and convergence properties [1]. This is
achieved by partitioning the training data and implementing synchronization
mechanisms to coordinate parameter updates. Similarly, FATT algorithm paral-
lelization entails distributing the computation of gradients through time across
multiple processing units, with each unit computing gradient contributions for a
subset of time steps or data samples independently [8]. Synchronization mecha-
nisms are essential to ensure accurate gradient computation and prevent incon-
sistencies between parallel tasks.

It’s crucial to remember that while parallel algorithms can result in shorter
execution times, they often come with additional complexity related to synchro-
nization and communication across parallel threads or processes. Furthermore,
not all neural network calculations can be parallelized efficiently, and the amount
of parallelism that can be achieved varies depending on the hardware infrastruc-
ture, data dependencies, and network architecture. Therefore, in order to opti-
mize performance improvements while avoiding overhead, these aspects must be
carefully considered while building efficient parallel algorithms for neural net-
works (Fig. 3).
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Fig. 3. The algorithm for training a parallel LM+FATT trajectory with weight dropout
for an RNN controller. Maximum µ is denoted by µmax, while the decreasing and rising
components are represented by βde and βin, respectively.
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4 Performance and Training Results

4.1 Cloud Platform and C + + Implementation

In the deployment, the Amazon EC2 instance was specifically set up in the US
East (N. Virginia) region. For the worker nodes, we opted for general-purpose
instances of the m5.24×large type, each boasting a robust 48-core architecture,
capable of accommodating up to 48 workers per machine. Conversely, the head
node was provisioned with a Standard instance of the c5d.×large type, featuring
2 cores and 1×100NVMe storage capacity. Notably, the m5.24×large instances
are powered by an Intel Xeon Platinum Processor, delivering clock speeds of up
to 3.1GHz. While Amazon does not disclose the specific CPU processor number,
the performance is optimized for our computational needs.

The training program was developed using the C++17 standard and the
g++ compiler. A key component of the program is the Armadillo C++ library,
renowned for its swift execution of linear algebra computations. Armadillo relies
on two fundamental packages: BLAS (Basic Linear Algebra Subprograms) and
LAPACK (Linear Algebra Package). For our implementation, OpenBLAS, an
open-source Fortran-based version of BLAS, was employed. The optimization
of BLAS implementation is critical for enhancing performance across different
architectures. LAPACK, also written in Fortran, offers a rich collection of com-
plex linear algebra operations.

To distribute the workload across multiple worker nodes, we leveraged the
OpenMPI implementation of the Message Passing Interface (MPI) standard [16].
The scalability of the Open MPI framework allows seamless scaling to larger and
more potent clusters. The MPI program comprises both sequential and parallel
sections, with the master process orchestrating the sequential tasks and dispatch-
ing messages to individual worker processes to handle parallel computations.

4.2 Speedup Performance

By carefully incorporating dropout into the neural network architecture, we were
able to reduce the model’s complexity and keep it from learning to recognize
noise or outliers in the training set. This regularization accelerated the training
process’s convergence while also improving the network’s capacity to generalize
to previously unknown material.

Consequently, there was a significant reduction in the runtime per trajectory,
which resulted in quicker training times and enhanced overall efficiency. The
dropout strategy was essential in maximizing the effectiveness of our training
program and ultimately resulting in better outcomes seen in the comparison
study by reducing overfitting and speeding up convergence.

In the performance comparison across various worker configurations, as
shown in Fig. 4(a) where dropout is implemented, the horizontal axis denotes the
number of CPU cores or workers, while the vertical axis represents the average
running time. Figure 4 (b) further elucidates the comparison without dropout,
where the number of CPU cores/workers is depicted on the horizontal axis, and
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the average running time is also depicted on the vertical axis. It is evident the
implementation of dropout technique reduces the time computational complex-
ity which essentially demonstrates a speedup in performance as compared to
without dropout. Figure 5 shows the speedup time comparison across different
numbers of workers with and without the implementation of dropout. The hori-
zontal axis represents the number of CPU cores/workers, while the vertical axis
stands for the speedup time.

Notably, the integration of dropout into the parallelized C++ version sig-
nificantly enhances its performance compared to the version without dropout
integration. From Fig. 7, the results further indicate the efficiency and scalabil-
ity of the proposed parallel mechanism with outstanding speed-up performance,
which greatly decreases the training time for a large number of trajectories with
high sampling frequency as compared to with and without the implementation
of dropout (Fig. 6).

Fig. 4. Average running time across workers with (a) and without (b) on AWS

Fig. 5. Speedup across workers with (a) and without (b) on AWS
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Fig. 6. Average running time across workers with (a) and without (b) on GPU

Fig. 7. Speedup across workers with (a) and without (b) on GPU

5 Conclusion

This paper demonstrates how to speed up training an RNN controller in a closed-
loop control system by combining weight dropout techniques with parallel tra-
jectory training. The LM and FATT algorithms are integrated into the sug-
gested parallel trajectory training technique. The C++ programming language
was used to implement the training courses. Two computer platforms were used
to evaluate the generated program: an Amazon EC2 instance and a GPU cluster.
When the weight dropout technique is used, performance comparison findings
demonstrate that the parallel training algorithm can significantly outperform its
non-parallelized equivalents in terms of speed. The proposed training mechanism
is appropriate for training RNN controllers with a large number of trajectories
and long-duration trajectories due to the notable speedup performance.
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