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Abstract

In this work we study adversarial examples in
deep neural networks through the lens of a prede-
fined data manifold. By forcing certain geometric
properties of this manifold, we are able to analyze
the behavior of the learned decision boundaries. It
has been shown previously that training to be ro-
bust against adversarial attacks produces models
with gradients aligned to a small set of principal
variations in the data. We demonstrate the con-
verse of this statement; aligning model gradients
with a select set of principal variations improves
robustness against gradient based adversarial at-
tacks. Our analysis shows that this also makes
data more orthogonal to decision boundaries. We
conclude that robust training methods make the
problem better posed by focusing the model on
more important dimensions of variation.

1. Introduction

The concept that robust models have the property of gra-
dients aligned with human perception has been an area of
recent research interest in the community (Ganz et al., 2022;
Kaur et al., 2019; Shah et al., 2021). We hypothesize that
the gradients of a perceptually aligned model are following
a continuous manifold of valid images. In this work we are
primarily interested in whether this property of manifold
alignment implies adversarial robustness. The question of
the converse, whether being robust implies manifold align-
ment, has been studied previously (Kaur et al., 2019; Ilyas
et al., 2019). It has been demonstrated that models which
are considered robust share the property that their input
gradients are aligned with human perception, and thus the
valid image manifold. If there exists a method of training
which optimizes for manifold alignment and also provides
robustness, it may lead to more explainable or more efficient
ways of training robust models.
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We study this question by projecting a training set onto
a well-known low dimensional manifold. This simplifies
the problem of understanding the relationship between data
manifolds and a models decision boundary. By forcing this
structure, we are able to provide an empirical measure of
how aligned a model’s gradients are to this manifold.

For our purposes, Manifold Aligned Gradients (MAG) will
refer to the property that the gradients of a model with
respect to model inputs follow a given data manifold M.
This manifold could be known based on the dataset or could
be approximated using the tangent space of a generative
model. Other works have defined a similar relationship
(Shamir et al., 2021), but we choose to take the simplest
case by using Principal Component Analysis (PCA). We
study this problem on MNIST, as it provides a simple test
case while still being non-trivial. This allows us to define a
low dimensional structure which is linear.

In this paper we present the following contributions:

1. We apply existing metrics for alignment to a well
known data manifold, allowing for empirical measure-
ment.

2. We demonstrate that adversarial training inherently
serves to improve our defined metric for manifold align-
ment.

3. We show that directly optimizing this metric improves
robustness against linear attacks.

4. We conclude that while adversarial robustness implies
perceptually aligned gradients, the converse is not true
for non-linear adversaries.

This is a preliminary work in which we show proof of con-
cept on a simple dataset and technique. It is important to
note that these results do not preclude the existence of an
optimization method for manifold alignment which provides
robustness against arbitrary attacks.

2. Related Work

There is a large body of work attempting to understand
the phenomenon of adversarial examples (Akhtar & Mian,
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2018). Modeling the relationship between adversarial ro-
bustness and perceptual alignment is a step towards improv-
ing this understanding. This section discusses the prior work
that motivates our research direction.

The sensitivity of convolutional neural networks to imper-
ceptible changes in input has thrown into question the true
generalization of these models. Jo & Bengio study the
generalization performance of CNNs by transforming nat-
ural image statistics (Jo & Bengio, 2017). Similarly to our
approach, they create a new dataset with well-known proper-
ties to allow the testing of their hypothesis. They show that
CNNs focus on high level image statistics rather than human
perceptible features. This problem is made worse by the fact
that many saliency methods fail basic sanity checks (Ade-
bayo et al., 2018; Kindermans et al., 2019). Until recently,
it was unclear whether robustness and manifold alignment
were directly linked, as the only method to achieve man-
ifold alignment was adversarial training. Along with the
discovery that smoothed classifiers are perceptually aligned,
comes the hypothesis that robust models in general share
this property (Kaur et al., 2019). This discovery raises the
question of whether this relationship is bidirectional.

Khoury & Hadfield-Menell study the geometry of natural
images, and create a lower bound for the number of data
points required to cover the manifold Khoury & Hadfield-
Menell (2018). Unfortunately, they demonstrate that this
lower bound is so large as to be intractable. Shamir et al
propose using the tangent space of a generative model as an
estimation of this manifold (Shamir et al., 2021).

3. Method

In order to provide an empirical measure of alignment, we
first require a well defined image manifold. The task of
discovering the true structure of k-dimensional manifolds
in R? given a set of points sampled on the manifold has
been studied previously (Khoury & Hadfield-Menell, 2018).
Many algorithms produce solutions which are provably ac-
curate under data density constraints. Unfortunately, these
algorithms have difficulty extending to domains with large d
due to the curse of dimensionality. Our solution to this fun-
damental problem is to sidestep it entirely by redefining our
dataset. We begin by projecting our data onto a well known
low dimensional manifold, which we can then measure with
certainty.

3.1. Data

To define our data, we first fit a PCA model on all training
data, using k£ components for each class, where k << d.
Given the original dataset X, we create a new dataset
Xpo = {zx WI x W @z € X}. We will refer to
this set of component vectors as W. Because the rank of the
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Figure 1. Comparison of on-manifold components between base-
line network, robust trained models, and manifold optimized mod-
els. Large values indicate higher similarity to the manifold. Both
robust and manifold optimized models are more ’on-manifold’
than the baseline, with adversarial training being slightly less so.

linear transformation matrix, k, is defined lower than the
dimension of the input space, d, this creates a dataset which
lies on a linear subspace of R?. This subspace is defined by
the span of X x W and any vector in R? can be projected
onto it. Any data point drawn from {z x wWo:z e RF}
is considered a valid datapoint. This gives us a continuous
linear subspace which can be used as a data manifold.

Given that it our goal to study the simplest possible case,
we chose MNIST as the dataset to be projected and selected
k = 28 components. We refer to this new dataset as Pro-
jected MNIST (PMNIST). The true rank of PMNIST is
lower than that of the original MNIST data, meaning there
was information lost in this projection. The remaining infor-
mation we found is sufficient to achieve 92% accuracy using
a baseline Multylayer Perceptron (MLP), and the resulting
images retain their semantic properties as shown in Figure
4.

3.2. Measuring the On-Manifold Component

Component vectors extracted from the original dataset are
used to project gradient examples onto our pre-defined im-
age manifold. Given a gradient example V, = W

where fy represents a neural network parameterized by
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Figure 2. Plot demonstrating the angles at which a linear path
interpolation crosses a decision boundary. The output class term is
argmaxed, which results in a step functions. Black lines indicate
the angle between the interpolation vector and the plane defined by
the decision boundary. Crossing askew is a weak support for the
dimpled manifold hypothesis presented by (Shamir et al., 2021).

weights 6. V, is transformed using the coefficient vectors
W.
ps=Vix W x W (1)

The projection of the original vector onto this new trans-
formed vector we will refer to as Pyq. The norm of this
projection gives a metric of manifold alignment.

Al
1P (V)|

This gives us a way of measuring the ratio between on-
manifold and off-manifold components of the gradient. Ad-
ditionally, both cosine similarity and the vector rejection
were also tested but the norm ratio we found to be the most
stable in training. We use this measure as both a metric and
a loss, allowing us to optimize the following objective.
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Where L(6, x, y) represents our classification loss term and
o is a hyper parameter determining the weight of the mani-
fold loss term.

4. Experiments

All models were two layer MLPs with 1568 nodes in each
hidden layer. The hidden layer size was chosen as twice the
input size. This arrangement was chosen to maintain the
simplest possible case.
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Figure 3. Comparison of adversarial robustness for PMNIST mod-
els under various training conditions. For both FGSM and PGD, we
see a slight increase in robustness from using manifold optimiza-
tion. Adversarial training still improves performance significantly
more than manifold optimization. Another observation to note is
that when both the manifold, and adversarial objective were opti-
mized, increased robustness against FGSM attacks was observed.
All robust models were trained using the [~ norm at epsilon = 0.1.

Two types of attacks were leveraged in this study: fast
gradient sign method (FGSM) (Goodfellow et al., 2014) and
projected gradient descent (PGD) (Madry et al., 2017). A
total of four models were trained and evaluated on these
attacks: Baseline, Robust, Manifold and Manifold Robust.
All models, including the baseline, were trained on PMNIST.
“Robust” in our case refers to adversarial training. All robust
models were trained using the [, norm at ¢ = 0.1. Manifold
Robust refers to both optimizing our manifold objective and
robust training simultaneously.

Figure 1 shows the cosine similarity on the testing set of
PMNIST for both the Manifold model and Robust model.
Higher values indicate the model is more aligned with the
manifold. Both models here are shown to be more on man-
ifold than the Baseline. This demonstrates that our metric
for alignment is being optimized as a consequence of adver-
sarial training.

Figure 3 shows the adversarial robustness of each model.
In both cases, aligning the model to the manifold shows
an increase in robustness over the baseline. However, we
do not consider the performance boost against PGD to be
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Figure 4. Visual example of manifold optimized model transforming 2 into 3. Original PMNIST image on left, center image is center
point between original and attacked, on right is the attacked image. Transformation performed using PGD using the /o, norm. Visual
evidence of manifold alignment is often subjective and difficult to quantify. This example is provided as a baseline to substantiate our

claim that our empirical measurements of alignment are valid.

significant enough to call these models robust against PGD
attacks. Another point of interest that while using both our
manifold alignment metric and adversarial training, we see
an even greater improvement against FGSM attacks. The
fact that this performance increase is not shared by PGD
training may indicate a relationship between these methods.
Our current hypothesis is that a linear representation of
the image manifold is sufficient to defend against linear
attacks such as FGSM, but cannot defend against a non-
linear adversary.

5. Conclusions

Here we present the simplest possible case of our hypothe-
sis that manifold alignment implies adversarial robustness.
Extending this to show results on more complex models and
datasets is left to future work. In this early work, we only
test against a linear manifold and show that it provides ro-
bustness against FGSM. We conclude that training a model
to be aligned with a low dimensional manifold on which
your data lies is related to robust training. While this model
shows some properties of adversarial robustness, it is still
vulnerable to PGD attacks. Additionally, a model trained to
be robust using adversarial training shows manifold align-
ment under our definition.
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