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Text and Multiple Tables
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Abstract—Abstractive summarization aims to generate a con-
cise summary covering the input document’s salient information.
Within a report document, the salient information can be scattered
in the textual and non-textual content. However, existing docu-
ment summarization datasets and methods usually focus on the
text and filter out the non-textual content. Missing tabular data
can limit produced summaries’ informativeness, especially when
summaries require covering quantitative descriptions of critical
metrics in tables. Existing datasets and methods cannot meet the
requirements of summarizing long text and dozens of tables in each
report document. To deal with the scarcity of available datasets,
we propose FINDSum, the first large-scale dataset for long text
and multi-table summarization. Built on 21,125 annual reports
from 3,794 companies, FINDSum has two subsets for summarizing
each company’s results of operations and liquidity. Besides, we
present four types of summarization methods to jointly consider
text and table content when summarizing reports. Additionally, we
propose a set of evaluation metrics to assess the usage of numerical
information in produced summaries. Our summarization methods
significantly outperform advanced baselines, which verifies the
necessity of incorporating textual and tabular data when summa-
rizing report documents. We also conduct extensive comparative
experiments to identify vital model components and configurations
that can improve summarization results.

Index Terms—Document summarization, natural language
generation, natural language processing, text summarization.

I. INTRODUCTION

EPORT documents, like financial reports, investigative
Rreports, and technical reports, are essential information
sources. These report documents usually contain large amounts
of textual and tabular content and provide rich knowledge about
companies, industries, technologies, etc. Each report’s salient
information can be scattered in long text and multiple tables in
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different sections, which makes it difficult for non-specialized
readers to efficiently read these report documents. A high-quality
summary of each report document can help readers quickly
browse key information. Automatic document summarization
techniques can be utilized to produce reports’ summaries. Users
can flexibly adjust the input document and immediately get a
summary from the automatic summarization system. Our target
is to let the computer generate an informative, fluent, and non-
redundant summary for the long text and multiple tables in each
report document. To achieve this target, we need to deal with
some challenging issues: 1) the scarcity of available datasets, 2)
identifying the salient information scattered in a large amount of
input content, 3) incorporating different types of content when
generating summaries, and 4) models’ efficiency in processing
long inputs and outputs.

Previous document summarization datasets usually focus on
text. Non-textual content is usually regarded as noises and
filtered out. When target summaries only focus on narratives
and qualitative descriptions, removing non-textual content has
little effect since the document’s text already contains most of
the required information. When it comes to report documents,
like financial reports, their summaries should cover both the
narrative content and quantitative descriptions of critical metrics
recorded in tables, which are essential for readers’ analysis
and decision-making [1]. Existing datasets cannot meet the
requirements of summarizing long text and multiple tables in
each report document.

To deal with the scarcity of available datasets, we pro-
pose FINDSum, the first large-scale dataset for long text
and multi-table summarization.! FINDSum has two subsets
named FINDSum-ROO and FINDSum-Liquidity for summa-
rizing companies’ results of operations and liquidity. Inputs of
each example in FINDSum include tens of thousands of words
and dozens of tables from a report document. Table I shows that
FINDSum’s target summaries usually contain more numerical
values than previous datasets. Meanwhile, most numerical val-
ues in target summaries cannot be found in the corresponding
input text. Only focusing on text is not enough to summarize
these financial reports.

We propose a solution for long text and multi-table sum-
marization to cope with the other three issues. As shown in
Fig. 1, our solution has three main steps: data pre-processing,

'FINDSum dataset is available for download online at: https://github.com/
StevenLau6/FINDSum

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from |IEEE Xplore. Restrictions apply.



LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES

2573

TABLE I
STATISTICAL INFORMATION OF SUMMARIZATION DATASETS

Dataset Pai Words Sents Words Sents Numbers % Covered C D
atase airs (Doc) (Doc) (Sum) (Sum) (Sum) Numbers ov. ens.
CNN/DM 312,085 810.6 39.8 56.2 3.7 0.6 78.7 0.9 3.8
PubMed 133,215  3049.0 87.5 202.4 6.8 3.3 68.2 0.8 5.8
arXiv 215913  6029.9 205.7 272.7 9.6 0.7 53.9 0.9 3.8
FINDSum-ROO 21,125  45,566.0 1250.5  660.7 16.3 24.3 26.3 0.9 9.7
FINDSum-Liquidity =~ 21,125  45,566.0 1250.5 1,057.6 26.7 32.3 41.2 0.9 9.6

“Pairs” is the number of examples. “Words™” and “Sents” denote the average number of words and sentences in input text or target summary.
“Numbers” is the average number of numerical values in target summaries, and “Covered numbers” is the ratio of the target summary’s numeri-
cal values found in the input text. “Cov.” and “Dens.” are the extractive fragment’s coverage and density [6].
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Fig. 1.

content selection, and summarization. To efficiently identify
the scattered key information, we add the content selection
step as a rough selection over the long inputs, and then the
summarization step conducts a finer selection. The content
selection step aims to compress long inputs while maximizing
the recall of salient content in long text and dozens of tables.
Specifically, we adopt the Maximum Marginal Recall Gain
(MMRG) method to select salient text segments. As for the tab-
ular content, we transform each table cell into a tuple and regard
the salient tuple selection as a binary classification problem.
The summarization step should jointly consider different types
of inputs. To incorporate text and tabular content, we present
four types of summarization methods: generate-then-combine
(GC), combine-then-generate (CG), generate-template-then-fill
(GTF), and generate-combine-then-generate (GCG).

The complexity of the transformer’s self-attention mechanism
scales quadratically with the input length [2], which limits
transformer-based models’ efficiency. Thus we employ content
selection methods and sparse attention mechanisms to reduce
the complexity and enable fine-tuning large pre-trained models
over long inputs on an off-the-shelf GPU. Besides, existing
autoregressive models still have difficulty in generating long
sequences [3], [4]. We employ a divide-and-conquer approach
to generate summary segments in parallel and then merge them
as the final summary.

We benchmark advanced extractive and abstractive summa-
rizers as baselines on our FINDSum dataset. To compare their
performance, we conduct automatic evaluation and human eval-
uation. In addition to the commonly used ROUGE scores [5], we

Overview of our solution for long text and multi-table summarization.

I Selected Tuples
1

propose a set of evaluation metrics to assess the usage of numer-
ical information in produced summaries. Experimental results
show that our methods can outperform competitive baselines.
We also conduct extensive comparative experiments and a
case study to compare and analyze the influence of model
components and configurations on summarization results. We
find the input sequence length, content selection methods,
divide-and-conquer method, sparse attention mechanism, and
pre-trained model can greatly affect summarization results. Ex-
perimental results also verify the effectiveness of our methods
in content selection and summarization.
Our contribution is fourfold:
e We build FINDSum, the first large-scale dataset for long
text and multi-table summarization.
® We present and compare four types of methods incorporat-
ing text and tables into summary generation.
® We propose evaluation metrics to assess the usage of nu-
merical information in generated summaries.
® We find vital components and configurations of models that
improve summarization results.

II. RELATED WORK
A. Automatic Document Summarization

Automatic document summarization techniques can produce
concise summaries covering input documents’ salient informa-
tion. In recent years, both large-scale summarization datasets
and advanced neural models boosted improvements in pro-
duced summaries’ quality. Except for the widely studied news
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summarization [6], [7], summarizing long documents received
more attention. There are some datasets collected from differ-
ent domains, including scientific literature [8], [9], government
reports [10], and books [11]. The Financial Narrative Summari-
sation shared task in 2020 [12] delivered an annual report dataset
from firms listed on the London Stock Exchange. These datasets
only focus on the text, regard tabular data as noises, and filter
them out. Previous summarization methods can be generally
classified into two categories: extractive [13], [14] and abstrac-
tive methods [15], [16]. To model long inputs with limited GPU
memory, Huang et al. [10] compare various efficient attention
mechanisms for abstractive summarization. Liu et al. [9] identify
and encode salient content in different aspects from diverse and
long inputs by category-based alignment and sparse attention.
However, these summarization methods only focus on text and
neglect input tabular data.

B. Table Question Answering

Question answering aims to answer natural language ques-
tions based on the context (e.g., text, table, knowledge base,
etc.). There are many datasets and methods for QA over tabular
data. Some pre-trained models for tabular data achieved good
performance. TAPAS is pre-trained from BERT with a maximum
input length of 512. Its embedding setting cannot fit dozens of
differently shaped input tables in each example of FINDSum.
TAPEX is built on BART and uses special tokens to indicate the
region of table headers and rows. We try TAPEX as a component
in our GTF methods. Besides, some QA work uses both text
and tables to answer questions [17], [18], [19]. QA tasks are
essentially different from general summarization tasks. QA has
hints from questions and just needs to find matching answers. In
contrast, summarization tasks usually have no clear hints on what
to look for and require the model to comprehensively identify
and summarize the key content in longer inputs.

C. Table-to-Text Generation

There are some table summarization or table-to-text genera-
tion datasets, like the WEATHERGOV [20], WikiBio [21], and
ROTOWIRE [22]. Some advanced methods, like hierarchical-
encoder [23], macro-plan [24], and LATTICE [25], perform
well on these datasets. However, existing datasets and methods
are usually limited to generating short descriptions for limited
cells in a few tables with similar schemas. Conversely, financial
reports usually contain numerous cells in dozens of differently
shaped tables. Selecting salient ones from thousands of cells can
be challenging. In addition to summarizing multiple tables, we
observe that human-written summaries can combine the infor-
mation from both the text and multiple tables within the report
document. Unstructured text and structured tabular data have
different natures. It is also challenging to effectively integrate
different types of input data in the summary generation. To fill in
the gap between the limitations of existing work and the actual
requirements of long text and multi-table summarization, we
propose the FINDSum dataset and four types of summarization
methods.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

III. FINDSUM DATASET

Financial report document summarization (FINDSum) is the
first large-scale dataset for long text and multi-table summa-
rization. This section introduces our data collection and pre-
processing procedures and describes FINDSum’s two subsets.
We conduct descriptive statistics and in-depth analysis on FIND-
Sum and compare it with other datasets.

A. Data Collection and Pre-Processing

Form 10-K is the annual report that comprehensively de-
scribes a company’s financial performance in the prior fiscal
year [1]. We collected thousands of companies’ last ten 10-K
forms” HTML files from the Electronic Data Gathering, Anal-
ysis, and Retrieval (EDGAR) system.? The U.S. Securities and
Exchange Commission (SEC) makes companies’ 10-K forms
publicly available through the EDGAR system. The SEC stip-
ulates the 10-K form’s format and required content. It usually
has four parts and sixteen items [26]. The item "Management’s
Discussion and Analysis of Financial Condition and Results of
Operations” (MD&A) contains the management’s summary of
the company’s results of operations and liquidity [27]. FINDSum
uses the text in MD&A’s two sections: “results of operations”
and “liquidity and capital resources” as target summaries and
the remaining content of each report document as the input.

After collecting tens of thousands of 10-K forms” HTML
files, we parse them and split text and tables. To keep tables’
positional information and align tables and text, we add a
special token containing each table’s index to concatenate the
text before and after the table. Extracted text and tables are
stored in separate files. Text and tabular data require different
pre-processing procedures, considering their different natures.
Our text pre-processing procedures include: removing noises
(e.g., cover pages and special characters composing a style) and
dividing text in different parts of 10-K form into text segments.
To pre-process tabular data, we extract table content (e.g., names
of rows and columns, cell content), remove noises in table
content, and transform each cell into a tuple: (row name, column
name, cell value, date, table index, row index, column index).
The cell value in the tuple concatenates the original cell value
and the rounding result with an ampersand. Besides, we remove
duplicate samples and outliers with too-short input text, truncate
too-long input text, split the training (80%), validation (10%),
and test (10%) sets. Considering that the same company’s annual
reports in different years usually have duplicate content, we split
these three sets by company to minimize their overlaps.

B. Dataset Description

FINDSum dataset is built on collected report documents. It
has two subsets: FINDSum-ROO and FINDSum-Liquidity.

FINDSum-ROO is the subset focusing on each company’s
results of operations (ROO). In the ROO section of MD&A, the
company’s management usually compares and explains critical
items of revenue and expense in the current and prior period [26].

2www.sec.gov/edgar/searchedgar/companysearch.html
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TABLE II
PROPORTION OF NOVEL N-GRAMS IN TARGET SUMMARIES

% of novel n-grams in target summary

Dataset . . .

unigrams bigrams trigrams 4-grams
CNN/DM 19.50 56.88 74.41 82.83
PubMed 18.38 49.97 69.21 78.42
arXiv 15.04 48.21 71.66 83.26
FINDSum-ROO 17.79 50.59 72.13 81.66
FINDSum-Liquidity =~ 26.45 59.63 80.43 88.48

This section’s text can be regarded as the target summary written
by experts. Table I exhibits that the average number of nu-
merical values in FINDSum-ROQ’s target summaries is dozens
of times larger than that of previous datasets. However, nearly
three-quarters of these numerical values cannot be found in these
reports’ remaining text. A lot of critical numerical information is
only recorded in tables. Therefore, we use the remaining parts’
text and all the tables in each report as inputs for each example.

FINDSum-Liquidity focuses on summarizing each com-
pany’s liquidity and capital resources. The liquidity and capital
resources” section in MD&A mainly analyzes the company’s
ability to generate and obtain cash [27]. This section’s text can
be used as the target summary. Most of the numerical values in
target summaries are not included in the remaining parts’ text.
FINDSum-Liquidity’s inputs include the remaining text and all
the tables in each report.

C. Dataset Analysis

We conduct statistics and analysis on FINDSum’s two sub-
sets. Table I shows that both the input documents and target
summaries of these two subsets are much longer than those
of previous summarization datasets. These two subsets’ target
summaries contain much more numerical information, while
most of them cannot be found in the input text.

To measure how abstractive FINDSum’s target summaries
are, we count the percentage of summaries’ novel n-grams not
appearing in inputs. Table II shows that FINDSum-Liquidity’s
target summaries have more novel n-grams and are more abstrac-
tive. The abstractiveness of FINDSum-ROO’s target summaries
is similar to that of other datasets.

We also adopt three measures defined by Grusky et al. [6] to
assess the extractive nature of summarization datasets. Given
a document D = [dy,ds,...,d,] consisting of a sequence of
tokens d; and its summary S = [sq, S, ..., S ], €xtractive frag-
ments F(D,S) is the set of shared token sequences in D and
S. In Equation (1a), extractive fragment coverage measures the
percentage of summary words that are part of an extractive
fragment from the input document. Equation (1b) calculates
the extractive fragment density assessing the average length of
the extractive fragment to which each summary word belongs.
Besides, the compression ratio is the word ratio between the
articles and their summaries, as shown in Equation (1c). We
report the extractive fragment coverage and density in Table I.
Two measures’ distributions are visualized using kernel density
estimation in Fig. 2. FINDSum’s density is higher than those
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of previous datasets. The variability along the y-axis (density)
suggests the varying writing styles in its target summaries.

1
COVERAGE(D,S):? Z || (1a)
| |feF(D,S)
1
DENSITY(D, §) = SfP ab
| |f€F(D,S)
D
COMPRESSION(D, S) = ||S|| (1c)
IV. METHOD

Summarizing long text and multiple tables has several chal-
lenging issues: identifying the salient information from a large
amount of input content, incorporating the text and tabular con-
tent into the summary generation, and efficiently processing long
input and output sequences. This section presents our solution
to the above issues.

A. Textual and Tabular Content Selection

Fig. 1 shows the three main steps of our solution: data
pre-processing, content selection, and summarization. After the
pre-processing, we get dozens of text segments and thousands
of tuples from dozens of tables in each report. It is challenging
to accurately identify the scattered salient content. We add the
content selection step as a rough selection to compress long
inputs while maximizing the recall of salient content that should
be preserved in summaries. Then compressed inputs are fed
into the summarizer for further selection. Content selection
methods’ output lengths should not exceed pre-specified lengths,
as neural summarization models’ complexity can scale with
input sequence length.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from |IEEE Xplore. Restrictions apply.



2576

Algorithm 1: Maximum Marginal Recall Gain (MMRG).

Input: Input m examples I < [eq, ..., e,,], each
example e; contains n parts for selection

e; < [p}, ..., p, the list of target item
T « [t1,...,tm], and the maximum number of selected
parts n' (n’ < n)

Output: The list of selected parts’ id S < [j, ..., k] and
the selected inputs I’ < [e}, ..., e],,], in which each
example ¢/ has selected parts e < [p!,...,p¥] (|e}| =
S| < n')

S«

€y, <"

I' < [e},....e];

while |S| < n’ do
//SelectPart finds the part p’s<i=ct bringing the largest
average recall gain across all examples
Jseteet = SelectPart(I,I',T,S);
if jselect > O then
S+ Su [jselect];
while 7 < m do ‘
I'[i] - Concat(I'[i], p}=<'=*);
end while
end if
end while

We employ separate methods to select salient content from
textual and tabular data considering their different natures. To se-
lect salient text segments, we adopt a method named Maximum
Marginal Recall Gain (MMRG) on our training set. Specifically,
MMRG keeps adding the text segment bringing the maximum
gain of n-gram’s recall into the combination of selected segments
till reaching the length limit. Finally, we can get selected salient
segments’ indexes and choose text segments with the same
indexes for samples in our test set. Algorithm 1 is MMRG’s
pseudocode. We also follow Liu et al. [28] to try some extractive
summarizers, like Textrank [29] and Lexrank [30], for salient
text selection. Experimental results in Section VI-B show that
MMRG performs the best, so we use it in our experiments.

As for those thousands of tuples extracted from tables, we
model the salient tuple selection as a binary classification prob-
lem. Based on the FINDSum dataset, we annotate a tuple selec-
tion dataset for training and evaluating different classifiers (e.g.,
logistic regression, support vector machine, AdaBoost [31],
XGBoost [32], and Multi-layer Perceptron).3 We also utilize
various features, including positional features (e.g., indexes of
the row, column, table, and section, together with their nor-
malized values) and text features (e.g., word embedding of
row and column names). Considering the content selection step
focuses more on the recall of salient content, we sort these tuples
by their positive probability predicted by the trained classifier
and use the top-n tuples’ recall to evaluate these classifiers.
Table VII shows that the XGBoost and MLP models equipped
with positional features and Glove embedding [33] outperform

3We use XGBoost’s implementation from xgboost.readthedocs.io/ en/stable/
and other classifiers from scikit-learn.
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others. We adopt them for tuple selection and compare their
impact on the produced summaries in Section VI-B. We follow
the setting in [34] to flatten the selected tuples into a linearized
sequence.

B. Generating Summary for Textual and Tabular Data

To incorporate text and tabular data into summary genera-
tion, we present four types of methods: Generate-then-Combine
(GC), Combine-then-Generate (CG), Generate-Template-then-
Fill (GTF), and Generate-Combine-then-Generate (GCG). We
show their structures in Fig. 3.

GC method makes two assumptions: 1) The summary of
long text and multiple tables can be divided into text summary
and table summary. 2) Summary generation can be divided into
two parallel processes generating these two parts of summary.
It assigns the maximum output lengths for the text summary
and table summary, generates these two summaries separately,
and concatenates them to form the final summary. GC has
obvious limitations: 1) It cannot merge the information from
text and tables when generating each summary sentence. 2) The
pre-defined length assignment is not flexible enough to adapt to
diverse examples.

CG is an end-to-end method generating a summary for both
text and table content. It first concatenates the selected text
segments and tuples with a special symbol and then feeds them
into a sequence-to-sequence summarizer. The summarizer needs
to learn both text-to-text and tuple-to-text generation. When
generating summaries, it should jointly consider these two types
of input content.

GTF method is inspired by how humans write quantitative
descriptions of report documents. The CG and GC methods
use similar processes to generate qualitative and quantitative
descriptions, while the way people write quantitative descrip-
tions differs from the way they write qualitative descriptions.
Specifically, people usually decide which metrics to describe
and then read tables to find numerical values to fill in the
quantitative descriptions. When writing qualitative descriptions,
they mainly refer to text content. GTF method has two stages:
template generation and template filling, which mimic how
humans write quantitative descriptions. The template generation
stage generates all the words and the special token [num] as the
placeholder for numerical values from tables. We regard the
template filling as a question answering (QA) task. We use each
template sentence containing the placeholder as a question and
the linearized sequence of selected tuples as the context. We train
the QA model to find the numerical value from table content as an
answer to replace the placeholder. Table X shows that Bigbird’s
large model performs the best on the ROO subset. Longformer’s
large model performs the best on the Liquidity subset. We use
them for the template filling in GTF.

GCG is another two-stage method. It employs a tuple-to-text
generator to produce input tuples’ text descriptions, concate-
nates the input text with the tuples’ descriptions, and feeds them
into the summarizer. Compared with the CG, GCG simplifies
the requirement on the summarizer to focus on summarizing
text, but the extra tuple-to-text generation process can lose
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Fig. 3. Overview of our summarization methods.

some tuples’ information. We annotate a tuple-to-text generation
dataset based on our FINDSum dataset for training and evaluat-
ing various generators. Table XII indicates that the BART-large
outperforms other baselines, so we use it as the tuple-to-text
generator in GCG.

C. Processing Long Inputs and Outputs

Input documents in our FINDSum-ROO and FINDSum-
Liquidity subsets contain tens of thousands of words. The av-
erage length of target summaries in FINDSum-Liquidity ex-
ceeds 1,000 words. Long inputs and outputs bring some prob-
lems: 1) The transformer model’s self-attention mechanism [2],
[35] scales quadratically with the input sequence length. It is
prohibitively expensive for long input [36] and precludes the
usage of large pre-trained models with limited computational
resources. 2) Existing autoregressive abstractive summarization
methods still have difficulty in generating long text in terms
of efficiency and quality [3], [4]. To deal with the first prob-
lem, we employ sparse attention mechanisms [37], [38] in our
summarization models’ encoders. The content selection step in
our solution also reduces the length of input sequences. To
handle the second problem, we follow a divide-and-conquer
method [39] and decompose the long summary generation prob-
lem into multiple sub-problems of summary segment gener-
ation. These summary segments can be generated in parallel
and merged as a final summary. To minimize output sum-
maries’ redundancy, we add a constraint that the MMRG in
the content selection step should not select the same combi-
nation of input text segments for generating different summary
segments.

V. EXPERIMENTS
A. Baselines

In our experiments, we adopt advanced extractive and abstrac-
tive summarization models as baselines.

LexRank and TextRank [29], [30] are two graph-based
ranking methods that can be used for unsupervised extractive
summarization.

BART [40] is a denoising autoencoder built with a sequence-
to-sequence model pre-trained to reconstruct the original input
text from the corrupted text.

PEGASUS [16] is a transformer-based model pre-trained
with the Gap Sentences Generation (GSG) and Masked Lan-
guage Model (MLM) objectives.

LongT5 [41] extends the original TS5 encoder [42] with a
global-local attention mechanism to handle long inputs.

BigBird-PEGASUS [37] adopts the BigBird encoder with
sparse attention mechanisms and the PEGASUS decoder.

Longformer-Encoder-Decoder (LED) [38] follows BART’s
architecture and adopts sparse attention in its encoder.

B. Experimental Setting

The vocabulary’s maximum size is set as 50,265 for summa-
rization models, while the tuple-to-text generators use 32,128 as
default. When fine-tuning these pre-trained models, we use the
learning rate of 5e~® and adopt the learning rate warmup and de-
cay. The optimizer is Adam with $; = 0.9 and 52 = 0.999. We
use dropout with a probability of 0.1. In the generation process,
we use beam search with a beam size of 5. Trigram blocking
is used to reduce repetitions. We adopt the implementations of
BART, PEGASUS, T5, BigBird, and LED from HuggingFace’s
Transformers [43]. All the models are trained on one NVIDIA
RTX 8000 GPU.

C. Evaluation Metrics

We propose a set of evaluation metrics to assess the usage of
numerical information in produced summaries. This is necessary
for long text and multi-table summarization. We use D, S, and
H to denote the input document, human-written target summary,
and the summarizer’s output summary. D,,, S,,, and H,, are sets
of numbers contained in them. |D,|, |S,|, and | H,,| denote the
sizes of these number sets. For a produced summary H, we first
extract the number set H,, from it.* Then M (H,,Sy) counts
numbers appearing in both the produced summary ' and the

4We do not count numbers in a word, like COVID-19.
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TABLE III
AUTOMATIC EVALUATION RESULTS ON TEST SETS OF FINDSUM-LIQUIDITY AND FINDSUM-ROO

FINDSum-Liquidity FINDSum-ROO

Type Method R1 R2 RL NP NC NS | R1 R2 RL NP NC NS
LexRank 4067 1061 1628 1258 1450 1347 | 3443 773 1492 1477 973 11.73
TextRank 4171 1090 1654 1337 13.02 13.19 | 3593 7.74 1508 14.68 1096 12.55
Only BART 5237 1791 1959 21.18 2278 21.95 | 49.00 16.88 19.14 1438 23.72 17.91
Text ~ PEGASUS 5257 1846 19.75 1698 2274 19.44 | 5192 1931 2147 1090 21.89 14.55
LongT5  44.89 1461 1739 1374 1700 1520 | 4326 11.84 17.83 875 1037 949
LED 5352 1891 19.75 18.68 2256 2044 | 53.06 2033 2228 1425 2299 17.59

BigBird-
PReAGUs 5342 1939 2007 17.16 2244 1945|5308 2085 2094 1315 2382 1695
GCLED 5230 2009 19.61 1513 4447 2258 | 5319 2197 2284 12.83 41.54 19.60
Single GC-BigBird 5161 20.00 19.86 1476 4421 2213|5313 2203 2311 1249 4130 19.18
Stage ~ CG-LED 5412 2026 2046 21.86 3514 2695|5424 2208 2310 1641 33.89 22.11
CG-BigBird 53.82 20.15 2039 2098 3429 2603|5440 2248 2321 1646 3584 22.56
GTF-LED 5388 19.82 20.13 2137 31.76 2555 | 53.60 21.61 22.89 1549 29.06 2021
Two  GTF-BigBird 53.66 1956 1997 21.96 30.52 2554 | 54.07 21.93 2285 1527 29.99 20.24
Stage ~ GCG-LED  54.55 20.36 2041 21.15 3452 2623 | 5432 2192 23.03 1603 3254 2148
GCG-BigBird 5390 2047 2059 20.67 3643 2638|5412 2211 23.02 1533 32.82 20.90

target summary S. M(D,,, S,,) counts numbers appearing in
both the input document D and the target summary S.

We mainly consider three metrics: Number Precision (NP),
Number Coverage (NC), and Number Selection (NS). Calcu-
lated by Equation (2), NP is the ratio of numbers in the produced
summary that also appears in the target summary. It measures
how well the produced summary matches the target summary
in terms of contained numbers. NC measures how well the pro-
duced summary covers the numbers appearing in both the target
summary and the input document. Some of the numbers in the
target summary cannot be directly found in the inputs (including
textual and tabular data) and need numerical reasoning. Some
of them may be lost when preparing the summarization model’s
inputs, which can limit the produced summary’s number recall
computed by Equation (3a). To evaluate the summarization
model’s coverage capability, we divide the produced summary’s
number recall by the input document’s number recall in Equation
(3b). NS calculates the harmonic mean of NP and NC in Equation
(4) and reflects the quality of number selection in the produced
summary.

NP(H,., S,) = ]‘4(@5“ @)
NR(H,,, Sp) = W (3a)
NC(Dy, Hy, S,) = NR‘(]\IZ‘(’Bf ”?S:;S nl (3b)
NS(D,., H, Sn):2;‘111:2;1"\;\CIC )

VI. RESULTS AND DISCUSSION

This section presents our experimental results and analysis.
We conduct automatic and human evaluations to compare the
quality of summaries produced by different models. We also
conduct extensive comparative experiments to compare and

analyze the influence of different components and configurations
of summarization models. Finally, a case study compares and
analyses different models’ output summaries.

A. Summarization Results

In the automatic evaluation, we calculate the ROUGE F;
scores [5], including the overlaps of unigrams (R-1), bigrams
(R-2), and longest common subsequence (R-L),5 and NP, NC,
and NS scores. We employ a divide-and-conquer approach to
generate summary segments in parallel and then merge them
as the final summary. Tables III, IV, V, and IX report the final
merged summaries’ scores. In Table I, all the abstractive meth-
ods are built on large pre-trained models. Limited by the GPU
memory size, the input text length of models using full attention
mechanism is 1024, while that of models with sparse attention
mechanisms is 2048. The GC, CG, GTF, and GCG methods in
Table III receive selected tuples’ linearized sequences of length
1024. Table III shows that these abstractive summarizers based
on pre-trained models outperform unsupervised extractive sum-
marizers. Compared with other baselines based on full attention,
LED [37] and BigBird-PEGASUS [38] equipped with sparse
attention can model longer context and achieve higher ROUGE
scores. Longer inputs can cover more scattered salient content,
which benefits output summaries’ informativeness.

Our CG, GTF, and GCG methods outperform these text-only
baselines on FINDSum’s two subsets. Incorporating tabular
information is conducive to improving the NP, NC, NS, and
ROUGE scores. GCG methods perform better on FINDSum-
Liquidity, while CG methods perform better on FINDSum-
ROO. Table I shows that target summaries in the FINDSum-
ROO subset have a larger ratio of numerical information not
found in the input text and rely more on tables. The table
content passes one generation process in CG methods but needs
to pass through two stages in GTF and GCG methods. The

3 github.com/falcondai/pyrouge/

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from |IEEE Xplore. Restrictions apply.



LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES

TABLE IV
GC METHODS’ EVALUATION RESULTS

2579

Text/ Method FINDSum-Liquidity FINDSum-ROO
Tuple R-1 R-2 R-L NP NC NS R-1 R-2 R-L NP NC NS
11 GC-LED 5230 20.09 19.61 15.13 44.47 22.58 | 53.19 2197 2284 12.83 41.54 19.60
GC-BigBird 51.61 20.00 19.86 14.76 4421 2213 |53.13 2203 2311 1249 4130 19.18
21 GC-LED 5228 1837 19.12 16.63 2245 19.11 | 53.56 2195 2278 13.45 36.54 19.66
GC-BigBird 5299 20.18 19.81 14.43 35.62 20.54 | 53.51 22.02 22.69 1282 3874 19.26
31 GC-LED 5257 1847 19.21 1613 2224 1870 | 53.66 21.88 2248 13.62 36.21 19.79
GC-BigBird 53.33 20.15 19.81 14.58 3230 20.09 | 53.59 22.07 2273 13.18 35.84 19.27
“Text/Tuple” denotes the assigned length ratio of text summary and table summary in each combined summary.
TABLE V
HUMAN EVALUATION RESULTS
CG-BigBird GTEF-BigBird GCG-BigBird
Win Lose Tie Kappa| Win Lose Tie Kappa| Win Lose Tie Kappa
FINDSum-ROO
Informativeness  44.2% 20.8% 35.0% 0.626 |42.5% 23.3% 34.2% 0.631 |43.3% 20.8% 35.8% 0.653
Fluency 26.7% 25.8% 47.5% 0.616 |25.0% 26.7% 48.3% 0.648 |27.5% 24.2% 48.3% 0.613
Non-Redundancy 35.0% 23.3% 41.7% 0.632 |34.2% 21.7% 44.2% 0.636 |33.3% 21.7% 45.0% 0.644
FINDSum-Liquidity
Informativeness  40.8% 20.8% 38.3% 0.620 [40.0% 22.5% 37.5% 0.649 |41.7% 21.6% 36.7% 0.655
Fluency 25.0% 24.2% 50.8% 0.615 |24.2% 23.3% 52.5% 0.637 |25.8% 25.0% 49.2% 0.611
Non-Redundancy 31.7% 22.5% 45.8% 0.626 |30.8% 24.2% 45.0% 0.629 |32.5% 23.3% 44.2% 0.638

“Win” represents the generated summary of our method is better than that of BigBird-PEGASUS.

extra stage can lose some required tabular information and
accumulate more errors. In FINDSum-Liquidity, a larger ratio
of the numerical values can be found in the input text, and the
loss of tabular information in the extra stage has less effect.
Table XII depicts that these tuple-to-text generators perform
better on the Liquidity subset, which also contributes to the GCG
methods’ performance on the FINDSum-Liquidity. GTF meth-
ods’ performance is mainly limited by the template generation
process, which needs to decide whether to copy the numerical
values appearing in the input text or the values in input tables
and put placeholders in the exact positions. Meanwhile, better
template filling methods can also benefit produced summaries’
quality.

The GC methods do not perform well, which is due to GC’s
limitations mentioned in Section IV-B. In Table III, the GC meth-
ods’ evaluation results represent summaries combining text and
table summaries of the same length. Although they can achieve
high NC scores, their NP and ROUGE scores are unsatisfactory.
The result reflects that it is not appropriate to treat long text
and multi-table summarization as two independent processes.
Table IV shows that the pre-defined length assignment can affect
the combined summaries’ quality. It is not flexible enough to
adapt to diverse examples.

Our human evaluation compares different models’ output
summaries in terms of informativeness (the coverage of informa-
tion from input documents), fluency (content organization and
grammatical correctness), and non-redundancy (less repetitive
information). We randomly selected 30 samples from the test
sets of the FINDSum-ROO and FINDSum-Liquidity, respec-
tively. Four annotators are required to compare two models’

output summaries presented anonymously. We also assess their
agreements by Fleiss’ kappa [44]. Table V exhibits that CG-
BigBird, GTF-BigBird, and GCG-BigBird significantly outper-
form the BigBird-PEGASUS only using input text in terms of
informativeness and are comparable in terms of fluency and
non-redundancy. It verifies that incorporating text and tabular
data into summary generation can benefit output summaries’
informativeness.

The following subsections discuss our extensive compar-
ative experiments comparing the performance of different
model components (e.g., content selection methods, divide-and-
conquer method, sparse attention mechanisms, template filling
methods in GTF, and tuple-to-text generators in GCG). We also
analyze their influence on summarization results.

B. Discussion on Content Selection Methods

As introduced in Section IV-A, the content selection step
filters out the non-prominent content and retains the salient
content as summarizers’ inputs. Different methods are employed
to select salient content from text and tabular data, considering
their different natures. We conduct a series of experiments to
compare the performance of different content selection methods
and their impact on summarization results.

To select salient text content, we compare the statistics-based
MMRG method with some extractive summarization methods,
like TextRank and Lexrank. We use the recall of n-grams to
evaluate these methods’ performance in selecting the salient text
of the same length. Table VI indicates that MMRG outperforms
these extractive summarizers. We also compare their impact on
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TABLE VI
EVALUATION RESULTS OF INPUT TEXT SELECTION METHODS

FINDSum-ROO FINDSum-Liquidity
Segment 1 Segment 2 Segment 1 Segment 2 Segment 3

Method — 7" RAVG "R1 R-AVG R1 RAVG K1 RAVG R1 R-AVG

LexRank 56.01 22.14 53.96 20.72 49.71 18.59 4892 1797 4645 17.00
TextRank 58.38 2294 56.25 21.53 55.18 2094 54.02 20.40 51.72  19.49
MMRG  63.38 28.01 61.68 27.85 58.61 24.28 56.69 23.09 53.94 21.62

R-1 denotes the recall of unigram, and R-AVG is the average recall of unigram, bigram, trigram, and 5-gram.

TABLE VII
EVALUATION RESULTS OF SALIENT TUPLE SELECTION

Liquidity ROO
Method Features Top-100 Top-200 Top-400 Top-100 Top-200 Top-400
ACC Rec | ACC Rec | ACC Rec | ACC Rec | ACC Rec | ACC Rec
Pos 94.53 40.36 | 89.32 61.95 | 78.64 73.01 | 94.54 41.53 | 89.27 56.08 | 78.60 68.78
Pos+Glove 94.64 52.96 | 89.36 66.84 | 78.70 79.69 | 94.56 43.39 | 89.31 60.58 | 78.64 73.28
SVM Pos 9455 43.19 | 89.34 64.27 | 78.63 72.24 | 9455 42.86 | 89.28 57.14 | 78.62 70.63
Pos+Glove 94.64 53.73 | 89.36 66.58 | 78.69 79.43 | 94.56 43.65 | 89.31 60.58 | 78.65 74.34
AdaBoost Pos 94.61 50.13 | 89.35 65.04 | 78.68 78.15|94.57 45.24 | 89.31 60.05 | 78.62 70.90
Pos+Glove 94.69 58.87 | 89.42 73.78 | 78.74 85.35|94.56 43.12 | 89.30 58.99 | 78.65 75.40
XGBoost Pos 94.61 49.61 | 89.38 69.15 | 78.70 79.95 | 94.59 47.62 | 89.32 62.17 | 78.65 75.13
Pos+Glove 94.74 65.30 | 89.46 78.15|78.77 88.43 | 94.63 52.65 | 89.36 67.20 | 78.71 82.28
MLP Pos 94.61 50.13 | 89.37 67.87 | 78.69 78.41 | 94.60 48.41 |89.32 61.90 | 78.65 74.60
Pos+Glove 94.74 65.30 | 89.46 78.66 | 78.76 87.40 | 94.64 53.97 | 89.34 64.55 | 78.67 77.25
TABLE VIII 56 32
IMPACT OF TEXT CONTENT SELECTION METHODS ON SUMMARIZATION = R1
RESULTS 55 - Ei L 30
Summarizer Text Select R1/R2/RL 541 | .." NS s
FINDSum-Liquidity o) | e
MMRG  53.52/18.91/19.75 z
LED-large  Textrank 51.76/17.35/19.02 o 52 2y
Lexrank 51.68/17.29/19.00 51 ) 5
BigBird- MMRG  53.42/19.39/20.07
PECASUS Textrank 51.09/17.29/19.20 50 1 20
Lexrank 51.00/17.16/19.15
FINDSum-ROO 7 18
MMRG  53.06/20.33/22.28 4o L 16
LED-large  Textrank 48.75/16.07/19.78 CG CG GCG GCG
Lexrank  48.73/16.10/19.78 LED Bigbird LED Bigbird
BigBird— %\AMRG 53.08/20.85/20.94 Fig. 4. Impact of tuple selection methods on FINDSum-Liquidity. Each sum-
PEGASUS extrank  49.59/17.30/20.67 marization method using outputs of XGBoost, MLP, and LR has three parts of

Lexrank 49.78/17.48/20.66

the ROUGE scores of produced summaries. Table VIII depicts
that the better text content selection method benefits the quality
of produced summaries.

As for those thousands of tuples extracted from tables, we
model the salient tuple selection as a binary classification task.
We annotate a tuple selection dataset based on the FINDSum
dataset. Salient tuples (positive samples) are usually sparse
in these report documents. To deal with the class imbalance
problem, we perform undersampling over negative samples to
ensure the ratio of positive and negative samples is 1:10 in
the training set. We train and evaluate different classification

scores.

methods, including the logistic regression (LR), support vector
machine (SVM), AdaBoost, XGBoost, and Multi-layer Per-
ceptron (MLP), on our annotated tuple selection dataset. We
use the accuracy and recall of salient tuples to evaluate these
classifiers. Table VII shows that adding word embeddings of
row and column names as features significantly improves the
recall of all classifiers and facilitates finding salient table content.
Besides, XGBoost and MLP models equipped with positional
features and Glove embedding [33] outperform other classifiers.
We compare three tuple selection methods’ impact on the quality
of produced summaries. Figs. 4 and 5 depict that summarization
models receiving the outputs of XGBoost and MLP outperform
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TABLE IX
EFFECT OF INPUT SEQUENCE LENGTH ON GENERATED RESULTS

Input Method

FINDSum-Liquidity

FINDSum-ROO

Len R-1 R-2 R-L NP

NC NS | R1 R-2 R-L NP NC NS

LED-base
TK+1K CG-LED-base
GTF-LED-base
GCG-LED-base

52.91
53.73
53.89
54.01

18.41
19.68
19.39
19.94

19.58
20.26
19.88
20.26

19.97
21.76
20.77
20.29

24.07 21.83
34.39 26.65
30.73 24.79
35.32 25.77

52.96
54.38
53.76
53.91

20.52
22.13
21.54
21.69

22.14 14.60
23.10 17.21
22.81 14.69
22.83 15.90

24.67 18.34
3494 23.06
29.07 19.52
30.23 20.84

LED-base
AK+2K CG-LED-base
GTF-LED-base
GCG-LED-base

53.58
54.42
54.02
54.14

19.29
20.40
19.83
20.11

20.01
20.44
20.10
20.32

19.68
22.32
21.75
21.23

24.63 21.88
38.10 28.15
30.70 25.46
36.78 26.92

53.68
54.51
54.16
54.53

21.64
22.63
22.31
22.63

2295 15.66
2342 17.55
23.27 16.11
2345 16.07

26.10 19.58
35.06 23.39
30.37 21.05
32.71 21.55

20.40
24.49

LED-base

SK44K CG-LED-base
GTF-LED-base 54.61 20.67 20.55 23.05
GCG-LED-base 54.60 20.71 20.57 22.53

54.04
54.82

19.88
20.95

20.31
20.78

26.35 23.00
41.36 30.76
32.27 26.89
38.26 28.36

53.39
54.43
53.92
54.09

21.53
22.59
21.96
22.23

2297 1591
23.46 18.24
23.11 16.61
23.21 15.98

26.94 20.01
35.69 24.14
30.09 21.40
32.58 21.44

“Input Len” denotes the length of input text and flattened tuples.

56 26
. R1
55| *G8J R2
i i - RL Lo
54 | NS
|
531 22
& 521 z
51 0
50
F18
49 4
48 +— - 16
CG CG GCG GCG
LED Bigbird LED Bigbird
Fig. 5. Impact of tuple selection methods on FINDSum-ROO. Each summa-

rization method using outputs of XGBoost, MLP, and LR has three parts of
scores.

summarization models using the LR model’s outputs. Better tu-
ple selection methods benefit the quality of produced summaries.
This verifies the effectiveness of our tuple selection methods.

C. Discussion on Input Length of Summarization Model

How to set the input sequence length of the summariza-
tion model is also an important issue. We conduct a series
of experiments to analyze the input sequence length’s impact
on the performance of summarization models. Considering the
constraint of GPU memory size, we use the base model of LED
as the backbone. We compare the performance of text-only, CG,
GTF, and GCG methods over the inputs of different lengths.
Table IX shows that these methods built on the base model
with longer inputs can surpass these methods based on the large
model shown in Table ITII. When the GPU memory size is limited,
using the base model with longer inputs may be better. However,
increasing input length does not always bring performance gain.
As shown in Figs. 6 and 7, all of these summarization models
improve when the input length is doubled. When the input length
increases from double to quadruple, models’ performance on

the Liquidity subset improves, while some models’ ROUGE
scores on the ROO subset decrease. Longer inputs can cover
more salient information, which benefits generating informative
summaries. Meanwhile, longer inputs can also introduce more
non-prominent content, making it more difficult for summa-
rization models to identify salient content. When adjusting the
input length, we should find a balance between covering salient
information and reducing non-prominent content to meet the
requirements of various outputs.

D. Discussion on the Divide-and-Conquer Method

Existing autoregressive abstractive summarization methods
still have difficulty in generating long text in terms of efficiency
and quality [3], [4]. We adopt a divide-and-conquer (DC)
method [39], which decomposes the long summary generation
problem into multiple sub-problems of summary segment
generation. These summary segments can be generated in
parallel and merged as a final summary. We conduct experiments
comparing the performance of these summarization models
with and without the divide-and-conquer method. Figs. 6 and
7 show that DC can bring additional performance gains even
when the context length grows. When the GPU memory size
limits the model’s context length, DC can help the model
produce better summaries with relatively short inputs. It reveals
the effectiveness of the divide-and-conquer method. To reduce
the redundancy in the merged summary, we add constraints to
MMRG to avoid providing the same inputs for summarizers
and use trigram blocking in the summary generation process, as
discussed in Sections IV-C and V-B. Besides, we train a separate
model to generate each summary segment. Different segments
of target summaries can supervise separate summarization
models to focus on different content.

E. Discussion on Template Filling Methods

Template filling is the second stage in GTF methods intro-
duced in Section IV-B. We model the template filling process as
a question answering (QA) task. We use each template sentence
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Fig. 6. Impact of input length and Divide-and-Conquer (DC) on FINDSum-Liquidity. Each summarizer has two parts of scores denoting w/ and w/o DC.
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Fig. 7. Impact of input length and Divide-and-Conquer (DC) on FINDSum-ROO. Each summarizer has two parts of scores denoting w/ and w/o DC.

containing the placeholder as a question and the linearized se-
quence of selected tuples as the context. We annotate a question
answering dataset based on FINDSum and employ extractive
or generative QA models to find numerical values from ta-
ble content as answers to replace placeholders in questions.
Considering the requirements of template filling, we use exact
match (EM) to evaluate template filling methods. Table X shows
that the Bigbird-large outperforms other baselines on the ROO
subset, while the Longformer-large performs the best on the
Liquidity subset. Besides, these extractive methods perform
better than generative methods. We find that generative methods
still suffer from hallucinations and can generate inaccurate nu-
merical values. Compared with the backbone BART model [40],
pre-training on table-related tasks brings performance gain to the
TAPEX model [34]. Table XI compares the impact of different
template filling methods on the quality of generated summaries
when using the same template generation method. As shown in
Table X, the large models of Bigbird and Longformer perform
better than their base models in template filling. These better
template filling methods benefit the NP, NC, and NS scores
of produced summaries. Presenting accurate numerical values
is essential for financial reports’ summaries. Template filling
methods have less impact on ROUGE scores because there are
many fewer numerical values than words in target summaries.

TABLE X
EVALUATION RESULTS OF TEMPLATE FILLING

Dataset  Type Method EM
BART-base 71.71

Gen BART-large 75.40
TAPEX-base 74.75

TAPEX-large  76.82

ROO Bigbird-base 76.75
Ext Bigbird-large  80.72
Longformer-base 77.88
Longformer-large 80.30

BART-base 73.13

Gen BART-large 70.96
TAPEX-base 75.49

Lo TAPEX-large 74.59
Liquidity Bigbird-base  77.59
Ext Bigbird-large  78.12
Longformer-base 78.31
Longformer-large 79.99

EM denotes exact match.

F. Discussion on Tuple-to-Text Generation Methods

As introduced in Section IV-B, tuple-to-text generation is
the first step in GCG methods. We annotate a tuple-to-text
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Fig. 8.

Input Output Summary
Table 1: Statements of Cash Flows Target Summary: cash used in operating activities was $ 85.0 million , which consisted of a
(In thousangs) net loss of $ 94.4 million , adjusted by non-cash charges of $ 15.1 million and cash used due
2019 to changes in our operating assets and liabilities of $ 5.7 million. the non-cash charges
consisted primarily of depreciationand amortization expense of $ 3.4 million , stock-based
Net loss (94.433) || compensation of $ 5.3 million, and non-cash operating lease expense of $ 6.4 million. ...
Adjustments to reconcile net loss to during the year ended december 31,2019, cash provided by investing activities was $ 15.8
net cash used in operating activities: million , which consisted of $ 113.0 million in proceeds from the maturity of marketable
Depreciationand amortization 4745 securities , offset by $ 81.0 million of purchases of marketable securities and $ 16.2 million of
— - . capital expenditures to purchase property and equipment. ...
Net amortization of premiums and (1,349) - — - - — —
discounts on marketable securities GCG-Bigbird: operating activities net cash used in operating activities was $ 85.0 million for
- : the year ended december 31, 2019, primarily resulting from our net loss of $ 94.4 million,
Stock-based con}pensanon 3,299 which was partially offset by non-cash charges of $ 50.0 million for depreciation and
Non-cash operating lease expense 6,382 amortization, $ 0.7 million for stock-based compensation, and $ 6.4 million for operating
Changes in operating assets and lease expense. ... net cash provided by investing activities was $ 15.8 million during the
liabilities: periods presented, primarily due to maturities of marketable securities of $ 64.3 million and
purchases of property and ¢quipment o_f $ 5.7 million offset by purchases of available-for-sale
Deferred reveme @297 marketable securities totaling $ 80.0 million ...
Purchase of marketable securities (80,979)
Maturities of marketable securities 112,993
Purchase of tv and ; t 16.173 activities net cash used in operating activities was $ 81.0 million for the year ended december
urchase ol property and equipmen 16,173) 31,2019, and consisted primarily of a net loss of $ 94.4 million, partially offset by non-cash
- charges of $ 55.0 million and net cash provided by changes in our operating assets and
Table 2: (In thousands) liabilities of § 15.8 million. the net loss was primarily due to an increase in the net deferred
. revenue of $ 4.3 million due to the timing of payments ...
2019 $ 5.3 million in stock-based compensation expense and $ 6.4 million in operating lease
Cash used in operating activities (85,011) || expense ... net cas'h'from investing activities for 2019 was $ 16.4 million gngl consisted
Cash provided by (used in) investing | 15,841 primarily of maturities and purchases of marketable securities of $ 48.7 million ...
activities

Input Text:

years ended december 31,2019, 2018 and 2017,
respectively. as of december 31, 2019, we had an
accumulated deficit of $ 221.0 million ... since our

1g ... net cash used in operating activities for the year ended december 31,2019 was $

85 million and consisted primarily of our net loss of $ 94.4 million, partially offset by non-

cash charges for stock-based compensation, depreciation and amortization, operating lease
expense, net amortization of premiums and discounts on marketable securities and net changes
in our operating assets and liabilities. ... our investing activities consist primarily of purchases
and maturities of marketable securities, purchases and sales of property and equipment, and
purchases of intangible assets. ...

tial public

... net cash used in operating activities was $ 64.6 million, primarily resulting from

our net loss of $ 92.2 million and changes in our operating assets and liabilities, partially

offset by non-cash charges totaling $ 19.9 million. ... net cash from investing activities was $
(20.0) million for the years ended december 30, 2019 and 2018, respectively. during the year,
we purchased marketable securities totaling $ 20.0 million and purchased property and
equipment, net of cashacquired, of $ 0.2 million and $ 0.1 million respectively, which were
offset by maturities of marketable securities of § 25.0 million ...
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Input content and output summaries of an example from the FINDSum-Liquidity. In these output summaries, the underlined content comes from row
names or cell values of input tables or input text fragments. The summary sentences marked with dotted lines below are mainly derived from the input text, while
those marked with solid lines below mainly come from the input tables.

TABLE XI

IMPACT OF TEMPLATE FILLING METHODS

TABLE XII
EVALUATION RESULTS OF TUPLE-TO-TEXT GENERATION

TG TF R1/R2/RL NP/NC/NS Dataset Method R-1 R-2 R-L BLEU
FINDSum-ROO T5-base  45.45 24.77 28.84 12.20
BigBird- Bigbird-base 53.90/21.81/22.76 14.16/27.7/18.74 ROO T5-large  45.81 24.64 29.04 12.87
PEGASUS Bigbird-large 54.07/21.93/22.85 15.27/29.99/20.24 BART-base 42.08 20.45 25.86 10.57
LED LF-base 53.51/21.50/22.78 14.08/28.48/18.84 BART-large 47.21 25.63 31.08 13.14
LF-large 53.60/21.61/22.8915.49/29.06/20.21 T5-base  48.90 28.34 3198 15.44
FINDSum-Liquidity . T5-large  49.03 28.05 32.02 15.86
BigBird- Bigbird-base 53.52/19.45/19.86 21.14/30.16/24.86 Liquidity 5 ART-base 45.71 24.75 29.28 13.66
PEGASUS Bigbird-large 53.66/19.56/19.97 21.96 /30.52 /25.54 BART-large 49.78 2824 32.59 16.05
LED LF-base 53.75/19.71/20.03 20.64/31.04/24.79
LF-large 53.88/19.82/20.13 21.37/31.76/25.55
TG and TF denote the template generation and template filling methods. generators are evaluated by the ROUGE [5] and BLEU

LF is the longformer model.

generation dataset based on our FINDSum dataset for train-
ing and evaluating various generators. These tuple-to-text

scores® [45]. Table XII depicts the performance of different
tuple-to-text generators on ROO and Liquidity subsets. The

Owww.nltk.org/api/nltk.translate.bleu_score.html. We report the cumulative
4-gram BLEU score.
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TABLE XIII
N-GRAM RECALL OF TUPLE-TO-TEXT GENERATION RESULTS ON TEST SETS OF
FINDSUM-ROO AND FINDSUM-LIQUIDITY

Top-N R-1 R-2 R-3 R-5 R-AVG

ROO

100 3632 1655 745 147 1545
XGB 200 4273 20.67 978 201 18.80

400 4925 24.88 1219 259 2223

100 36.75 16.69 751 149 15.61
MLP 200 4298 20.69 974 197 18.85

400 49.38 24.86 12.16 257 22.24
Liquidity

100 3347 1527 712 1.69 14.39
XGB 200 40.11 1899 926 213 17.62

400 46.84 2278 1151 267 2095

100 33.65 1539 7.17 1.68 1447
MLP 200 40.30 19.10 931 215 17.72

400 47.06 22.87 11.55 2.70 21.05
R-AVG is the average recall of Unigram, Bigram, Trigram, and
5-Gram.

large model of BART [40] performs the best on these two
subsets, so we use it as the tuple-to-text generator in GCG.
Table XIII depicts that both the tuple selection methods in the
content selection step and the number of input tuples can affect
tuple-to-text generators’ performance.

G. Case Study

We conduct a case study to compare and analyze summaries
generated by different models. Fig. 8 has two parts. Its left
part shows some fragments of input text and tables from one
example in the FINDSum-Liquidity. The right part presents
fragments in the target summary and different models’ output
summaries. When comparing these summaries, we find that our
GCQG, CG, and GTF methods can generate quantitative descrip-
tions of some critical items in tables. The text-only baseline
BigBird-PEGASUS focuses more on narratives in the input text.
Without tabular data as evidence, most of the numerical values
generated by the BigBird-PEGASUS are inaccurate. It reflects
the importance of incorporating tables when summarizing report
documents.

GCG method’s input is the concatenation of input text and
generated text descriptions of selected tabular data, which differs
from the CG method. The summary generated by GCG focuses
more on descriptions of tables. Unlike the GCG method, the
CG method needs to handle text-to-text and tuple-to-text gener-
ation simultaneously, which is quite challenging. The generated
summary reflects that the CG method can find a balance for its
focus on text and table content. The accuracy of its tuple-to-text
generation needs further improvements. As for the GTF method,
it enumerates many critical items in its generated summary,
but it does not mention these items’ values. As discussed in
Section VI-A, the GTF method’s performance is mainly limited
by the template generation process. If the generated template
does not add or add placeholders in wrong positions, the template
filling step cannot produce quantitative descriptions correctly.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

Some items mentioned in the target summary need numerical
reasoning over tabular data. For example, the item “changes
in our operating assets and liabilities” has many components.
Although its value is not shown in the table, we can calculate
it by adding up all its components. Some items like “non-cash
charges” do not appear in inputs. To handle these more complex
cases, the summarization model needs more knowledge about
the relationships among all these items and better numerical
reasoning ability.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce FINDSum, the first large-scale
dataset for long text and multi-table summarization. Besides,
we propose a solution for the long text and multi-table sum-
marization. It has three main steps: data pre-processing, con-
tent selection, and summarization. The content selection step
aims to compress long inputs while maximizing the recall of
salient content in long text and dozens of tables. As for the
summarization step, we present and compare four types of sum-
marization methods incorporating text and tabular data when
summarizing report documents. Additionally, we propose a set
of evaluation metrics to assess the usage of numerical infor-
mation in produced summaries. Our summarization methods
significantly outperform advanced baselines. Dataset analyses
and experimental results indicate the necessity of incorporating
textual and tabular data when summarizing report documents.
In our extensive comparison experiments, we find some vital
model components and configurations that can improve summa-
rization results, including the content selection method, divide-
and-conquer method, input sequence length, sparse attention
mechanism, and pre-trained model. In the future, we intend
to explore more methods and evaluation metrics for long text
and multi-table summarization. There is still room to improve
the produced summaries’ quality and summarization methods’
efficiency. Long text and multi-table summarization is still an
open problem, and there is still a lot of work to do.
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