
2572 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

Neural Abstractive Summarization for Long

Text and Multiple Tables
Shuaiqi Liu , Jiannong Cao , Fellow, IEEE, Zhongfen Deng , Member, IEEE, Wenting Zhao ,

Ruosong Yang , Zhiyuan Wen , and Philip S. Yu , Fellow, IEEE

Abstract—Abstractive summarization aims to generate a con-
cise summary covering the input document’s salient information.
Within a report document, the salient information can be scattered
in the textual and non-textual content. However, existing docu-
ment summarization datasets and methods usually focus on the
text and filter out the non-textual content. Missing tabular data
can limit produced summaries’ informativeness, especially when
summaries require covering quantitative descriptions of critical
metrics in tables. Existing datasets and methods cannot meet the
requirements of summarizing long text and dozens of tables in each
report document. To deal with the scarcity of available datasets,
we propose FINDSum, the first large-scale dataset for long text
and multi-table summarization. Built on 21,125 annual reports
from 3,794 companies, FINDSum has two subsets for summarizing
each company’s results of operations and liquidity. Besides, we
present four types of summarization methods to jointly consider
text and table content when summarizing reports. Additionally, we
propose a set of evaluation metrics to assess the usage of numerical
information in produced summaries. Our summarization methods
significantly outperform advanced baselines, which verifies the
necessity of incorporating textual and tabular data when summa-
rizing report documents. We also conduct extensive comparative
experiments to identify vital model components and configurations
that can improve summarization results.

Index Terms—Document summarization, natural language
generation, natural language processing, text summarization.

I. INTRODUCTION

R
EPORT documents, like financial reports, investigative

reports, and technical reports, are essential information

sources. These report documents usually contain large amounts

of textual and tabular content and provide rich knowledge about

companies, industries, technologies, etc. Each report’s salient

information can be scattered in long text and multiple tables in

Manuscript received 6 February 2023; revised 30 August 2023; accepted
30 September 2023. Date of publication 13 October 2023; date of current version
19 April 2024. This work is supported in part by the Research Institute for
Artificial Intelligence of Things at PolyU, the Hong Kong Jockey Club Chari-
ties Trust under Project 2021-0369, Hong Kong RGC Theme-Based Research
Scheme T41-603/20-R and Research Impact Fund R5034-18, and in part by NSF
under Grants III-2106758, III-1763325, III-1909323, and SaTC-1930941. Rec-
ommended for acceptance by M.A. Cheema. (Corresponding authors: Shuaiqi

Liu; Philip S. Yu.)

Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen are with
Hong Kong Polytechnic University, Hong Kong, China (e-mail: cssqliu@comp.
polyu.edu.hk; csjcao@comp.polyu.edu.hk; rsong.yang@polyu.edu.hk; cszwen
@comp.polyu.edu.hk).

Zhongfen Deng, Wenting Zhao, and Philip S. Yu are with the Univer-
sity of Illinois Chicago, Chicago, IL 60607 USA (e-mail: zdeng21@uic.edu;
wzhao41@uic.edu; psyu@uic.edu).

Digital Object Identifier 10.1109/TKDE.2023.3324012

different sections, which makes it difficult for non-specialized

readers to efficiently read these report documents. A high-quality

summary of each report document can help readers quickly

browse key information. Automatic document summarization

techniques can be utilized to produce reports’ summaries. Users

can flexibly adjust the input document and immediately get a

summary from the automatic summarization system. Our target

is to let the computer generate an informative, fluent, and non-

redundant summary for the long text and multiple tables in each

report document. To achieve this target, we need to deal with

some challenging issues: 1) the scarcity of available datasets, 2)

identifying the salient information scattered in a large amount of

input content, 3) incorporating different types of content when

generating summaries, and 4) models’ efficiency in processing

long inputs and outputs.

Previous document summarization datasets usually focus on

text. Non-textual content is usually regarded as noises and

filtered out. When target summaries only focus on narratives

and qualitative descriptions, removing non-textual content has

little effect since the document’s text already contains most of

the required information. When it comes to report documents,

like financial reports, their summaries should cover both the

narrative content and quantitative descriptions of critical metrics

recorded in tables, which are essential for readers’ analysis

and decision-making [1]. Existing datasets cannot meet the

requirements of summarizing long text and multiple tables in

each report document.

To deal with the scarcity of available datasets, we pro-

pose FINDSum, the first large-scale dataset for long text

and multi-table summarization.1 FINDSum has two subsets

named FINDSum-ROO and FINDSum-Liquidity for summa-

rizing companies’ results of operations and liquidity. Inputs of

each example in FINDSum include tens of thousands of words

and dozens of tables from a report document. Table I shows that

FINDSum’s target summaries usually contain more numerical

values than previous datasets. Meanwhile, most numerical val-

ues in target summaries cannot be found in the corresponding

input text. Only focusing on text is not enough to summarize

these financial reports.

We propose a solution for long text and multi-table sum-

marization to cope with the other three issues. As shown in

Fig. 1, our solution has three main steps: data pre-processing,

1FINDSum dataset is available for download online at: https://github.com/
StevenLau6/FINDSum

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2573

TABLE I
STATISTICAL INFORMATION OF SUMMARIZATION DATASETS

Fig. 1. Overview of our solution for long text and multi-table summarization.

content selection, and summarization. To efficiently identify

the scattered key information, we add the content selection

step as a rough selection over the long inputs, and then the

summarization step conducts a finer selection. The content

selection step aims to compress long inputs while maximizing

the recall of salient content in long text and dozens of tables.

Specifically, we adopt the Maximum Marginal Recall Gain

(MMRG) method to select salient text segments. As for the tab-

ular content, we transform each table cell into a tuple and regard

the salient tuple selection as a binary classification problem.

The summarization step should jointly consider different types

of inputs. To incorporate text and tabular content, we present

four types of summarization methods: generate-then-combine

(GC), combine-then-generate (CG), generate-template-then-fill

(GTF), and generate-combine-then-generate (GCG).

The complexity of the transformer’s self-attention mechanism

scales quadratically with the input length [2], which limits

transformer-based models’ efficiency. Thus we employ content

selection methods and sparse attention mechanisms to reduce

the complexity and enable fine-tuning large pre-trained models

over long inputs on an off-the-shelf GPU. Besides, existing

autoregressive models still have difficulty in generating long

sequences [3], [4]. We employ a divide-and-conquer approach

to generate summary segments in parallel and then merge them

as the final summary.

We benchmark advanced extractive and abstractive summa-

rizers as baselines on our FINDSum dataset. To compare their

performance, we conduct automatic evaluation and human eval-

uation. In addition to the commonly used ROUGE scores [5], we

propose a set of evaluation metrics to assess the usage of numer-

ical information in produced summaries. Experimental results

show that our methods can outperform competitive baselines.

We also conduct extensive comparative experiments and a

case study to compare and analyze the influence of model

components and configurations on summarization results. We

find the input sequence length, content selection methods,

divide-and-conquer method, sparse attention mechanism, and

pre-trained model can greatly affect summarization results. Ex-

perimental results also verify the effectiveness of our methods

in content selection and summarization.

Our contribution is fourfold:
� We build FINDSum, the first large-scale dataset for long

text and multi-table summarization.
� We present and compare four types of methods incorporat-

ing text and tables into summary generation.
� We propose evaluation metrics to assess the usage of nu-

merical information in generated summaries.
� We find vital components and configurations of models that

improve summarization results.

II. RELATED WORK

A. Automatic Document Summarization

Automatic document summarization techniques can produce

concise summaries covering input documents’ salient informa-

tion. In recent years, both large-scale summarization datasets

and advanced neural models boosted improvements in pro-

duced summaries’ quality. Except for the widely studied news

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2574 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

summarization [6], [7], summarizing long documents received

more attention. There are some datasets collected from differ-

ent domains, including scientific literature [8], [9], government

reports [10], and books [11]. The Financial Narrative Summari-

sation shared task in 2020 [12] delivered an annual report dataset

from firms listed on the London Stock Exchange. These datasets

only focus on the text, regard tabular data as noises, and filter

them out. Previous summarization methods can be generally

classified into two categories: extractive [13], [14] and abstrac-

tive methods [15], [16]. To model long inputs with limited GPU

memory, Huang et al. [10] compare various efficient attention

mechanisms for abstractive summarization. Liu et al. [9] identify

and encode salient content in different aspects from diverse and

long inputs by category-based alignment and sparse attention.

However, these summarization methods only focus on text and

neglect input tabular data.

B. Table Question Answering

Question answering aims to answer natural language ques-

tions based on the context (e.g., text, table, knowledge base,

etc.). There are many datasets and methods for QA over tabular

data. Some pre-trained models for tabular data achieved good

performance. TAPAS is pre-trained from BERT with a maximum

input length of 512. Its embedding setting cannot fit dozens of

differently shaped input tables in each example of FINDSum.

TAPEX is built on BART and uses special tokens to indicate the

region of table headers and rows. We try TAPEX as a component

in our GTF methods. Besides, some QA work uses both text

and tables to answer questions [17], [18], [19]. QA tasks are

essentially different from general summarization tasks. QA has

hints from questions and just needs to find matching answers. In

contrast, summarization tasks usually have no clear hints on what

to look for and require the model to comprehensively identify

and summarize the key content in longer inputs.

C. Table-to-Text Generation

There are some table summarization or table-to-text genera-

tion datasets, like the WEATHERGOV [20], WikiBio [21], and

ROTOWIRE [22]. Some advanced methods, like hierarchical-

encoder [23], macro-plan [24], and LATTICE [25], perform

well on these datasets. However, existing datasets and methods

are usually limited to generating short descriptions for limited

cells in a few tables with similar schemas. Conversely, financial

reports usually contain numerous cells in dozens of differently

shaped tables. Selecting salient ones from thousands of cells can

be challenging. In addition to summarizing multiple tables, we

observe that human-written summaries can combine the infor-

mation from both the text and multiple tables within the report

document. Unstructured text and structured tabular data have

different natures. It is also challenging to effectively integrate

different types of input data in the summary generation. To fill in

the gap between the limitations of existing work and the actual

requirements of long text and multi-table summarization, we

propose the FINDSum dataset and four types of summarization

methods.

III. FINDSUM DATASET

Financial report document summarization (FINDSum) is the

first large-scale dataset for long text and multi-table summa-

rization. This section introduces our data collection and pre-

processing procedures and describes FINDSum’s two subsets.

We conduct descriptive statistics and in-depth analysis on FIND-

Sum and compare it with other datasets.

A. Data Collection and Pre-Processing

Form 10-K is the annual report that comprehensively de-

scribes a company’s financial performance in the prior fiscal

year [1]. We collected thousands of companies’ last ten 10-K

forms’ HTML files from the Electronic Data Gathering, Anal-

ysis, and Retrieval (EDGAR) system.2 The U.S. Securities and

Exchange Commission (SEC) makes companies’ 10-K forms

publicly available through the EDGAR system. The SEC stip-

ulates the 10-K form’s format and required content. It usually

has four parts and sixteen items [26]. The item ”Management’s

Discussion and Analysis of Financial Condition and Results of

Operations” (MD&A) contains the management’s summary of

the company’s results of operations and liquidity [27]. FINDSum

uses the text in MD&A’s two sections: ”results of operations”

and ”liquidity and capital resources” as target summaries and

the remaining content of each report document as the input.

After collecting tens of thousands of 10-K forms’ HTML

files, we parse them and split text and tables. To keep tables’

positional information and align tables and text, we add a

special token containing each table’s index to concatenate the

text before and after the table. Extracted text and tables are

stored in separate files. Text and tabular data require different

pre-processing procedures, considering their different natures.

Our text pre-processing procedures include: removing noises

(e.g., cover pages and special characters composing a style) and

dividing text in different parts of 10-K form into text segments.

To pre-process tabular data, we extract table content (e.g., names

of rows and columns, cell content), remove noises in table

content, and transform each cell into a tuple: (row name, column

name, cell value, date, table index, row index, column index).

The cell value in the tuple concatenates the original cell value

and the rounding result with an ampersand. Besides, we remove

duplicate samples and outliers with too-short input text, truncate

too-long input text, split the training (80%), validation (10%),

and test (10%) sets. Considering that the same company’s annual

reports in different years usually have duplicate content, we split

these three sets by company to minimize their overlaps.

B. Dataset Description

FINDSum dataset is built on collected report documents. It

has two subsets: FINDSum-ROO and FINDSum-Liquidity.

FINDSum-ROO is the subset focusing on each company’s

results of operations (ROO). In the ROO section of MD&A, the

company’s management usually compares and explains critical

items of revenue and expense in the current and prior period [26].

2www.sec.gov/edgar/searchedgar/companysearch.html

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2575

TABLE II
PROPORTION OF NOVEL N-GRAMS IN TARGET SUMMARIES

This section’s text can be regarded as the target summary written

by experts. Table I exhibits that the average number of nu-

merical values in FINDSum-ROO’s target summaries is dozens

of times larger than that of previous datasets. However, nearly

three-quarters of these numerical values cannot be found in these

reports’ remaining text. A lot of critical numerical information is

only recorded in tables. Therefore, we use the remaining parts’

text and all the tables in each report as inputs for each example.

FINDSum-Liquidity focuses on summarizing each com-

pany’s liquidity and capital resources. The ”liquidity and capital

resources” section in MD&A mainly analyzes the company’s

ability to generate and obtain cash [27]. This section’s text can

be used as the target summary. Most of the numerical values in

target summaries are not included in the remaining parts’ text.

FINDSum-Liquidity’s inputs include the remaining text and all

the tables in each report.

C. Dataset Analysis

We conduct statistics and analysis on FINDSum’s two sub-

sets. Table I shows that both the input documents and target

summaries of these two subsets are much longer than those

of previous summarization datasets. These two subsets’ target

summaries contain much more numerical information, while

most of them cannot be found in the input text.

To measure how abstractive FINDSum’s target summaries

are, we count the percentage of summaries’ novel n-grams not

appearing in inputs. Table II shows that FINDSum-Liquidity’s

target summaries have more novel n-grams and are more abstrac-

tive. The abstractiveness of FINDSum-ROO’s target summaries

is similar to that of other datasets.

We also adopt three measures defined by Grusky et al. [6] to

assess the extractive nature of summarization datasets. Given

a document D = [d1, d2, ..., dn] consisting of a sequence of

tokens di and its summary S = [s1, s2, ..., sm], extractive frag-

ments F (D,S) is the set of shared token sequences in D and

S. In Equation (1a), extractive fragment coverage measures the

percentage of summary words that are part of an extractive

fragment from the input document. Equation (1b) calculates

the extractive fragment density assessing the average length of

the extractive fragment to which each summary word belongs.

Besides, the compression ratio is the word ratio between the

articles and their summaries, as shown in Equation (1c). We

report the extractive fragment coverage and density in Table I.

Two measures’ distributions are visualized using kernel density

estimation in Fig. 2. FINDSum’s density is higher than those

Fig. 2. Distributions of extractive fragments’ density and coverage.

of previous datasets. The variability along the y-axis (density)

suggests the varying writing styles in its target summaries.

COVERAGE(D,S) =
1

|S|

∑

f∈F (D,S)

|f | (1a)

DENSITY(D,S) =
1

|S|

∑

f∈F (D,S)

|f |2 (1b)

COMPRESSION(D,S) =
|D|

|S|
(1c)

IV. METHOD

Summarizing long text and multiple tables has several chal-

lenging issues: identifying the salient information from a large

amount of input content, incorporating the text and tabular con-

tent into the summary generation, and efficiently processing long

input and output sequences. This section presents our solution

to the above issues.

A. Textual and Tabular Content Selection

Fig. 1 shows the three main steps of our solution: data

pre-processing, content selection, and summarization. After the

pre-processing, we get dozens of text segments and thousands

of tuples from dozens of tables in each report. It is challenging

to accurately identify the scattered salient content. We add the

content selection step as a rough selection to compress long

inputs while maximizing the recall of salient content that should

be preserved in summaries. Then compressed inputs are fed

into the summarizer for further selection. Content selection

methods’ output lengths should not exceed pre-specified lengths,

as neural summarization models’ complexity can scale with

input sequence length.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2576 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

Algorithm 1: Maximum Marginal Recall Gain (MMRG).

Input: Input m examples I ← [e1, . . ., em], each

example ei contains n parts for selection

ei ← [p1i , . . ., p
n
i], the list of target item

T ← [t1, . . ., tm], and the maximum number of selected

parts n′ (n′ � n)

Output: The list of selected parts’ id S ← [j, . . ., k] and

the selected inputs I ′ ← [e′1, . . ., e
′
m], in which each

example e′i has selected parts e′i ← [pji , . . ., p
k
i] (|e

′
i| =

|S| ≤ n′)
S ← [];
e′1, . . ., e

′
m ← ′′′′, . . ., ′′′′;

I ′ ← [e′1, . . ., e
′
m];

while |S| < n′ do

//SelectPart finds the part pjselect bringing the largest

average recall gain across all examples

jselect = SelectPart(I, I ′, T, S);
if jselect > 0 then

S ← S ∪ [jselect];
while i ≤ m do

I ′[i] ← Concat(I ′[i], pjselecti);
end while

end if

end while

We employ separate methods to select salient content from

textual and tabular data considering their different natures. To se-

lect salient text segments, we adopt a method named Maximum

Marginal Recall Gain (MMRG) on our training set. Specifically,

MMRG keeps adding the text segment bringing the maximum

gain of n-gram’s recall into the combination of selected segments

till reaching the length limit. Finally, we can get selected salient

segments’ indexes and choose text segments with the same

indexes for samples in our test set. Algorithm 1 is MMRG’s

pseudocode. We also follow Liu et al. [28] to try some extractive

summarizers, like Textrank [29] and Lexrank [30], for salient

text selection. Experimental results in Section VI-B show that

MMRG performs the best, so we use it in our experiments.

As for those thousands of tuples extracted from tables, we

model the salient tuple selection as a binary classification prob-

lem. Based on the FINDSum dataset, we annotate a tuple selec-

tion dataset for training and evaluating different classifiers (e.g.,

logistic regression, support vector machine, AdaBoost [31],

XGBoost [32], and Multi-layer Perceptron).3 We also utilize

various features, including positional features (e.g., indexes of

the row, column, table, and section, together with their nor-

malized values) and text features (e.g., word embedding of

row and column names). Considering the content selection step

focuses more on the recall of salient content, we sort these tuples

by their positive probability predicted by the trained classifier

and use the top-n tuples’ recall to evaluate these classifiers.

Table VII shows that the XGBoost and MLP models equipped

with positional features and Glove embedding [33] outperform

3We use XGBoost’s implementation from xgboost.readthedocs.io/ en/stable/
and other classifiers from scikit-learn.

others. We adopt them for tuple selection and compare their

impact on the produced summaries in Section VI-B. We follow

the setting in [34] to flatten the selected tuples into a linearized

sequence.

B. Generating Summary for Textual and Tabular Data

To incorporate text and tabular data into summary genera-

tion, we present four types of methods: Generate-then-Combine

(GC), Combine-then-Generate (CG), Generate-Template-then-

Fill (GTF), and Generate-Combine-then-Generate (GCG). We

show their structures in Fig. 3.

GC method makes two assumptions: 1) The summary of

long text and multiple tables can be divided into text summary

and table summary. 2) Summary generation can be divided into

two parallel processes generating these two parts of summary.

It assigns the maximum output lengths for the text summary

and table summary, generates these two summaries separately,

and concatenates them to form the final summary. GC has

obvious limitations: 1) It cannot merge the information from

text and tables when generating each summary sentence. 2) The

pre-defined length assignment is not flexible enough to adapt to

diverse examples.

CG is an end-to-end method generating a summary for both

text and table content. It first concatenates the selected text

segments and tuples with a special symbol and then feeds them

into a sequence-to-sequence summarizer. The summarizer needs

to learn both text-to-text and tuple-to-text generation. When

generating summaries, it should jointly consider these two types

of input content.

GTF method is inspired by how humans write quantitative

descriptions of report documents. The CG and GC methods

use similar processes to generate qualitative and quantitative

descriptions, while the way people write quantitative descrip-

tions differs from the way they write qualitative descriptions.

Specifically, people usually decide which metrics to describe

and then read tables to find numerical values to fill in the

quantitative descriptions. When writing qualitative descriptions,

they mainly refer to text content. GTF method has two stages:

template generation and template filling, which mimic how

humans write quantitative descriptions. The template generation

stage generates all the words and the special token [num] as the

placeholder for numerical values from tables. We regard the

template filling as a question answering (QA) task. We use each

template sentence containing the placeholder as a question and

the linearized sequence of selected tuples as the context. We train

the QA model to find the numerical value from table content as an

answer to replace the placeholder. Table X shows that Bigbird’s

large model performs the best on the ROO subset. Longformer’s

large model performs the best on the Liquidity subset. We use

them for the template filling in GTF.

GCG is another two-stage method. It employs a tuple-to-text

generator to produce input tuples’ text descriptions, concate-

nates the input text with the tuples’ descriptions, and feeds them

into the summarizer. Compared with the CG, GCG simplifies

the requirement on the summarizer to focus on summarizing

text, but the extra tuple-to-text generation process can lose

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2577

Fig. 3. Overview of our summarization methods.

some tuples’ information. We annotate a tuple-to-text generation

dataset based on our FINDSum dataset for training and evaluat-

ing various generators. Table XII indicates that the BART-large

outperforms other baselines, so we use it as the tuple-to-text

generator in GCG.

C. Processing Long Inputs and Outputs

Input documents in our FINDSum-ROO and FINDSum-

Liquidity subsets contain tens of thousands of words. The av-

erage length of target summaries in FINDSum-Liquidity ex-

ceeds 1,000 words. Long inputs and outputs bring some prob-

lems: 1) The transformer model’s self-attention mechanism [2],

[35] scales quadratically with the input sequence length. It is

prohibitively expensive for long input [36] and precludes the

usage of large pre-trained models with limited computational

resources. 2) Existing autoregressive abstractive summarization

methods still have difficulty in generating long text in terms

of efficiency and quality [3], [4]. To deal with the first prob-

lem, we employ sparse attention mechanisms [37], [38] in our

summarization models’ encoders. The content selection step in

our solution also reduces the length of input sequences. To

handle the second problem, we follow a divide-and-conquer

method [39] and decompose the long summary generation prob-

lem into multiple sub-problems of summary segment gener-

ation. These summary segments can be generated in parallel

and merged as a final summary. To minimize output sum-

maries’ redundancy, we add a constraint that the MMRG in

the content selection step should not select the same combi-

nation of input text segments for generating different summary

segments.

V. EXPERIMENTS

A. Baselines

In our experiments, we adopt advanced extractive and abstrac-

tive summarization models as baselines.

LexRank and TextRank [29], [30] are two graph-based

ranking methods that can be used for unsupervised extractive

summarization.

BART [40] is a denoising autoencoder built with a sequence-

to-sequence model pre-trained to reconstruct the original input

text from the corrupted text.

PEGASUS [16] is a transformer-based model pre-trained

with the Gap Sentences Generation (GSG) and Masked Lan-

guage Model (MLM) objectives.

LongT5 [41] extends the original T5 encoder [42] with a

global-local attention mechanism to handle long inputs.

BigBird-PEGASUS [37] adopts the BigBird encoder with

sparse attention mechanisms and the PEGASUS decoder.

Longformer-Encoder-Decoder (LED) [38] follows BART’s

architecture and adopts sparse attention in its encoder.

B. Experimental Setting

The vocabulary’s maximum size is set as 50,265 for summa-

rization models, while the tuple-to-text generators use 32,128 as

default. When fine-tuning these pre-trained models, we use the

learning rate of 5e−5 and adopt the learning rate warmup and de-

cay. The optimizer is Adam with β1 = 0.9 and β2 = 0.999. We

use dropout with a probability of 0.1. In the generation process,

we use beam search with a beam size of 5. Trigram blocking

is used to reduce repetitions. We adopt the implementations of

BART, PEGASUS, T5, BigBird, and LED from HuggingFace’s

Transformers [43]. All the models are trained on one NVIDIA

RTX 8000 GPU.

C. Evaluation Metrics

We propose a set of evaluation metrics to assess the usage of

numerical information in produced summaries. This is necessary

for long text and multi-table summarization. We use D, S, and

H to denote the input document, human-written target summary,

and the summarizer’s output summary. Dn, Sn, and Hn are sets

of numbers contained in them. |Dn|, |Sn|, and |Hn| denote the

sizes of these number sets. For a produced summary H , we first

extract the number set Hn from it.4 Then M(Hn, Sn) counts

numbers appearing in both the produced summary H and the

4We do not count numbers in a word, like COVID-19.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2578 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

TABLE III
AUTOMATIC EVALUATION RESULTS ON TEST SETS OF FINDSUM-LIQUIDITY AND FINDSUM-ROO

target summary S. M(Dn, Sn) counts numbers appearing in

both the input document D and the target summary S.

We mainly consider three metrics: Number Precision (NP),

Number Coverage (NC), and Number Selection (NS). Calcu-

lated by Equation (2), NP is the ratio of numbers in the produced

summary that also appears in the target summary. It measures

how well the produced summary matches the target summary

in terms of contained numbers. NC measures how well the pro-

duced summary covers the numbers appearing in both the target

summary and the input document. Some of the numbers in the

target summary cannot be directly found in the inputs (including

textual and tabular data) and need numerical reasoning. Some

of them may be lost when preparing the summarization model’s

inputs, which can limit the produced summary’s number recall

computed by Equation (3a). To evaluate the summarization

model’s coverage capability, we divide the produced summary’s

number recall by the input document’s number recall in Equation

(3b). NS calculates the harmonic mean of NP and NC in Equation

(4) and reflects the quality of number selection in the produced

summary.

NP(Hn, Sn)=
M(Hn, Sn)

|Hn|
(2)

NR(Hn, Sn)=
M(Hn, Sn)

|Sn|
(3a)

NC(Dn, Hn, Sn)=
NR(Hn, Sn)∗ |Sn|

M(Dn, Sn)
(3b)

NS(Dn, Hn, Sn)=
2 ∗ NP ∗ NC

NP + NC
(4)

VI. RESULTS AND DISCUSSION

This section presents our experimental results and analysis.

We conduct automatic and human evaluations to compare the

quality of summaries produced by different models. We also

conduct extensive comparative experiments to compare and

analyze the influence of different components and configurations

of summarization models. Finally, a case study compares and

analyses different models’ output summaries.

A. Summarization Results

In the automatic evaluation, we calculate the ROUGE F1

scores [5], including the overlaps of unigrams (R-1), bigrams

(R-2), and longest common subsequence (R-L),5 and NP, NC,

and NS scores. We employ a divide-and-conquer approach to

generate summary segments in parallel and then merge them

as the final summary. Tables III, IV, V, and IX report the final

merged summaries’ scores. In Table III, all the abstractive meth-

ods are built on large pre-trained models. Limited by the GPU

memory size, the input text length of models using full attention

mechanism is 1024, while that of models with sparse attention

mechanisms is 2048. The GC, CG, GTF, and GCG methods in

Table III receive selected tuples’ linearized sequences of length

1024. Table III shows that these abstractive summarizers based

on pre-trained models outperform unsupervised extractive sum-

marizers. Compared with other baselines based on full attention,

LED [37] and BigBird-PEGASUS [38] equipped with sparse

attention can model longer context and achieve higher ROUGE

scores. Longer inputs can cover more scattered salient content,

which benefits output summaries’ informativeness.

Our CG, GTF, and GCG methods outperform these text-only

baselines on FINDSum’s two subsets. Incorporating tabular

information is conducive to improving the NP, NC, NS, and

ROUGE scores. GCG methods perform better on FINDSum-

Liquidity, while CG methods perform better on FINDSum-

ROO. Table I shows that target summaries in the FINDSum-

ROO subset have a larger ratio of numerical information not

found in the input text and rely more on tables. The table

content passes one generation process in CG methods but needs

to pass through two stages in GTF and GCG methods. The

5github.com/falcondai/pyrouge/

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2579

TABLE IV
GC METHODS’ EVALUATION RESULTS

TABLE V
HUMAN EVALUATION RESULTS

extra stage can lose some required tabular information and

accumulate more errors. In FINDSum-Liquidity, a larger ratio

of the numerical values can be found in the input text, and the

loss of tabular information in the extra stage has less effect.

Table XII depicts that these tuple-to-text generators perform

better on the Liquidity subset, which also contributes to the GCG

methods’ performance on the FINDSum-Liquidity. GTF meth-

ods’ performance is mainly limited by the template generation

process, which needs to decide whether to copy the numerical

values appearing in the input text or the values in input tables

and put placeholders in the exact positions. Meanwhile, better

template filling methods can also benefit produced summaries’

quality.

The GC methods do not perform well, which is due to GC’s

limitations mentioned in Section IV-B. In Table III, the GC meth-

ods’ evaluation results represent summaries combining text and

table summaries of the same length. Although they can achieve

high NC scores, their NP and ROUGE scores are unsatisfactory.

The result reflects that it is not appropriate to treat long text

and multi-table summarization as two independent processes.

Table IV shows that the pre-defined length assignment can affect

the combined summaries’ quality. It is not flexible enough to

adapt to diverse examples.

Our human evaluation compares different models’ output

summaries in terms of informativeness (the coverage of informa-

tion from input documents), fluency (content organization and

grammatical correctness), and non-redundancy (less repetitive

information). We randomly selected 30 samples from the test

sets of the FINDSum-ROO and FINDSum-Liquidity, respec-

tively. Four annotators are required to compare two models’

output summaries presented anonymously. We also assess their

agreements by Fleiss’ kappa [44]. Table V exhibits that CG-

BigBird, GTF-BigBird, and GCG-BigBird significantly outper-

form the BigBird-PEGASUS only using input text in terms of

informativeness and are comparable in terms of fluency and

non-redundancy. It verifies that incorporating text and tabular

data into summary generation can benefit output summaries’

informativeness.

The following subsections discuss our extensive compar-

ative experiments comparing the performance of different

model components (e.g., content selection methods, divide-and-

conquer method, sparse attention mechanisms, template filling

methods in GTF, and tuple-to-text generators in GCG). We also

analyze their influence on summarization results.

B. Discussion on Content Selection Methods

As introduced in Section IV-A, the content selection step

filters out the non-prominent content and retains the salient

content as summarizers’ inputs. Different methods are employed

to select salient content from text and tabular data, considering

their different natures. We conduct a series of experiments to

compare the performance of different content selection methods

and their impact on summarization results.

To select salient text content, we compare the statistics-based

MMRG method with some extractive summarization methods,

like TextRank and Lexrank. We use the recall of n-grams to

evaluate these methods’ performance in selecting the salient text

of the same length. Table VI indicates that MMRG outperforms

these extractive summarizers. We also compare their impact on

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2580 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

TABLE VI
EVALUATION RESULTS OF INPUT TEXT SELECTION METHODS

TABLE VII
EVALUATION RESULTS OF SALIENT TUPLE SELECTION

TABLE VIII
IMPACT OF TEXT CONTENT SELECTION METHODS ON SUMMARIZATION

RESULTS

the ROUGE scores of produced summaries. Table VIII depicts

that the better text content selection method benefits the quality

of produced summaries.

As for those thousands of tuples extracted from tables, we

model the salient tuple selection as a binary classification task.

We annotate a tuple selection dataset based on the FINDSum

dataset. Salient tuples (positive samples) are usually sparse

in these report documents. To deal with the class imbalance

problem, we perform undersampling over negative samples to

ensure the ratio of positive and negative samples is 1:10 in

the training set. We train and evaluate different classification

Fig. 4. Impact of tuple selection methods on FINDSum-Liquidity. Each sum-
marization method using outputs of XGBoost, MLP, and LR has three parts of
scores.

methods, including the logistic regression (LR), support vector

machine (SVM), AdaBoost, XGBoost, and Multi-layer Per-

ceptron (MLP), on our annotated tuple selection dataset. We

use the accuracy and recall of salient tuples to evaluate these

classifiers. Table VII shows that adding word embeddings of

row and column names as features significantly improves the

recall of all classifiers and facilitates finding salient table content.

Besides, XGBoost and MLP models equipped with positional

features and Glove embedding [33] outperform other classifiers.

We compare three tuple selection methods’ impact on the quality

of produced summaries. Figs. 4 and 5 depict that summarization

models receiving the outputs of XGBoost and MLP outperform

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2581

TABLE IX
EFFECT OF INPUT SEQUENCE LENGTH ON GENERATED RESULTS

Fig. 5. Impact of tuple selection methods on FINDSum-ROO. Each summa-
rization method using outputs of XGBoost, MLP, and LR has three parts of
scores.

summarization models using the LR model’s outputs. Better tu-

ple selection methods benefit the quality of produced summaries.

This verifies the effectiveness of our tuple selection methods.

C. Discussion on Input Length of Summarization Model

How to set the input sequence length of the summariza-

tion model is also an important issue. We conduct a series

of experiments to analyze the input sequence length’s impact

on the performance of summarization models. Considering the

constraint of GPU memory size, we use the base model of LED

as the backbone. We compare the performance of text-only, CG,

GTF, and GCG methods over the inputs of different lengths.

Table IX shows that these methods built on the base model

with longer inputs can surpass these methods based on the large

model shown in Table III. When the GPU memory size is limited,

using the base model with longer inputs may be better. However,

increasing input length does not always bring performance gain.

As shown in Figs. 6 and 7, all of these summarization models

improve when the input length is doubled. When the input length

increases from double to quadruple, models’ performance on

the Liquidity subset improves, while some models’ ROUGE

scores on the ROO subset decrease. Longer inputs can cover

more salient information, which benefits generating informative

summaries. Meanwhile, longer inputs can also introduce more

non-prominent content, making it more difficult for summa-

rization models to identify salient content. When adjusting the

input length, we should find a balance between covering salient

information and reducing non-prominent content to meet the

requirements of various outputs.

D. Discussion on the Divide-and-Conquer Method

Existing autoregressive abstractive summarization methods

still have difficulty in generating long text in terms of efficiency

and quality [3], [4]. We adopt a divide-and-conquer (DC)

method [39], which decomposes the long summary generation

problem into multiple sub-problems of summary segment

generation. These summary segments can be generated in

parallel and merged as a final summary. We conduct experiments

comparing the performance of these summarization models

with and without the divide-and-conquer method. Figs. 6 and

7 show that DC can bring additional performance gains even

when the context length grows. When the GPU memory size

limits the model’s context length, DC can help the model

produce better summaries with relatively short inputs. It reveals

the effectiveness of the divide-and-conquer method. To reduce

the redundancy in the merged summary, we add constraints to

MMRG to avoid providing the same inputs for summarizers

and use trigram blocking in the summary generation process, as

discussed in Sections IV-C and V-B. Besides, we train a separate

model to generate each summary segment. Different segments

of target summaries can supervise separate summarization

models to focus on different content.

E. Discussion on Template Filling Methods

Template filling is the second stage in GTF methods intro-

duced in Section IV-B. We model the template filling process as

a question answering (QA) task. We use each template sentence

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2582 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

Fig. 6. Impact of input length and Divide-and-Conquer (DC) on FINDSum-Liquidity. Each summarizer has two parts of scores denoting w/ and w/o DC.

Fig. 7. Impact of input length and Divide-and-Conquer (DC) on FINDSum-ROO. Each summarizer has two parts of scores denoting w/ and w/o DC.

containing the placeholder as a question and the linearized se-

quence of selected tuples as the context. We annotate a question

answering dataset based on FINDSum and employ extractive

or generative QA models to find numerical values from ta-

ble content as answers to replace placeholders in questions.

Considering the requirements of template filling, we use exact

match (EM) to evaluate template filling methods. Table X shows

that the Bigbird-large outperforms other baselines on the ROO

subset, while the Longformer-large performs the best on the

Liquidity subset. Besides, these extractive methods perform

better than generative methods. We find that generative methods

still suffer from hallucinations and can generate inaccurate nu-

merical values. Compared with the backbone BART model [40],

pre-training on table-related tasks brings performance gain to the

TAPEX model [34]. Table XI compares the impact of different

template filling methods on the quality of generated summaries

when using the same template generation method. As shown in

Table X, the large models of Bigbird and Longformer perform

better than their base models in template filling. These better

template filling methods benefit the NP, NC, and NS scores

of produced summaries. Presenting accurate numerical values

is essential for financial reports’ summaries. Template filling

methods have less impact on ROUGE scores because there are

many fewer numerical values than words in target summaries.

TABLE X
EVALUATION RESULTS OF TEMPLATE FILLING

F. Discussion on Tuple-to-Text Generation Methods

As introduced in Section IV-B, tuple-to-text generation is

the first step in GCG methods. We annotate a tuple-to-text

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2583

Fig. 8. Input content and output summaries of an example from the FINDSum-Liquidity. In these output summaries, the underlined content comes from row
names or cell values of input tables or input text fragments. The summary sentences marked with dotted lines below are mainly derived from the input text, while
those marked with solid lines below mainly come from the input tables.

TABLE XI
IMPACT OF TEMPLATE FILLING METHODS

generation dataset based on our FINDSum dataset for train-

ing and evaluating various generators. These tuple-to-text

TABLE XII
EVALUATION RESULTS OF TUPLE-TO-TEXT GENERATION

generators are evaluated by the ROUGE [5] and BLEU

scores6 [45]. Table XII depicts the performance of different

tuple-to-text generators on ROO and Liquidity subsets. The

6www.nltk.org/api/nltk.translate.bleu_score.html. We report the cumulative
4-gram BLEU score.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2584 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

TABLE XIII
N-GRAM RECALL OF TUPLE-TO-TEXT GENERATION RESULTS ON TEST SETS OF

FINDSUM-ROO AND FINDSUM-LIQUIDITY

large model of BART [40] performs the best on these two

subsets, so we use it as the tuple-to-text generator in GCG.

Table XIII depicts that both the tuple selection methods in the

content selection step and the number of input tuples can affect

tuple-to-text generators’ performance.

G. Case Study

We conduct a case study to compare and analyze summaries

generated by different models. Fig. 8 has two parts. Its left

part shows some fragments of input text and tables from one

example in the FINDSum-Liquidity. The right part presents

fragments in the target summary and different models’ output

summaries. When comparing these summaries, we find that our

GCG, CG, and GTF methods can generate quantitative descrip-

tions of some critical items in tables. The text-only baseline

BigBird-PEGASUS focuses more on narratives in the input text.

Without tabular data as evidence, most of the numerical values

generated by the BigBird-PEGASUS are inaccurate. It reflects

the importance of incorporating tables when summarizing report

documents.

GCG method’s input is the concatenation of input text and

generated text descriptions of selected tabular data, which differs

from the CG method. The summary generated by GCG focuses

more on descriptions of tables. Unlike the GCG method, the

CG method needs to handle text-to-text and tuple-to-text gener-

ation simultaneously, which is quite challenging. The generated

summary reflects that the CG method can find a balance for its

focus on text and table content. The accuracy of its tuple-to-text

generation needs further improvements. As for the GTF method,

it enumerates many critical items in its generated summary,

but it does not mention these items’ values. As discussed in

Section VI-A, the GTF method’s performance is mainly limited

by the template generation process. If the generated template

does not add or add placeholders in wrong positions, the template

filling step cannot produce quantitative descriptions correctly.

Some items mentioned in the target summary need numerical

reasoning over tabular data. For example, the item ”changes

in our operating assets and liabilities” has many components.

Although its value is not shown in the table, we can calculate

it by adding up all its components. Some items like ”non-cash

charges” do not appear in inputs. To handle these more complex

cases, the summarization model needs more knowledge about

the relationships among all these items and better numerical

reasoning ability.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce FINDSum, the first large-scale

dataset for long text and multi-table summarization. Besides,

we propose a solution for the long text and multi-table sum-

marization. It has three main steps: data pre-processing, con-

tent selection, and summarization. The content selection step

aims to compress long inputs while maximizing the recall of

salient content in long text and dozens of tables. As for the

summarization step, we present and compare four types of sum-

marization methods incorporating text and tabular data when

summarizing report documents. Additionally, we propose a set

of evaluation metrics to assess the usage of numerical infor-

mation in produced summaries. Our summarization methods

significantly outperform advanced baselines. Dataset analyses

and experimental results indicate the necessity of incorporating

textual and tabular data when summarizing report documents.

In our extensive comparison experiments, we find some vital

model components and configurations that can improve summa-

rization results, including the content selection method, divide-

and-conquer method, input sequence length, sparse attention

mechanism, and pre-trained model. In the future, we intend

to explore more methods and evaluation metrics for long text

and multi-table summarization. There is still room to improve

the produced summaries’ quality and summarization methods’

efficiency. Long text and multi-table summarization is still an

open problem, and there is still a lot of work to do.

REFERENCES

[1] U. S. SEC, “How to read a 10-k/10-q,” Jan. 2021. [Online]. Available:
www.sec.gov/fast-answers/answersreada10khtm.html

[2] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural

Inf. Process. Syst., 2017, pp. 5998–6008.
[3] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training

with recurrent neural networks,” in Proc. Int. Conf. Learn. Representations,
2016, pp. 1–16.

[4] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case
of neural text degeneration,” in Proc. Int. Conf. Learn. Representations,
2019, pp. 1–16.

[5] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in
Proc. Workshop Text Summarization Branches Out, 2004, pp. 74–81.

[6] M. Grusky, M. Naaman, and Y. Artzi, “Newsroom: A dataset of 1.3
million summaries with diverse extractive strategies,” in Proc. Conf. North

Amer. Chapter Assoc. Comput. Linguistics-Hum. Lang. Technol., 2018,
pp. 708–719.

[7] A. Fabbri, I. Li, T. She, S. Li, and D. Radev, “Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical
model,” in Proc. Assoc. Comput. Linguistics, 2019, pp. 1074–1084.

[8] A. Cohan et al., “A discourse-aware attention model for abstractive sum-
marization of long documents,” in Proc. Conf. North Amer. Chapter Assoc.

Comput. Linguistics-Hum. Lang. Technol., 2018, pp. 615–621.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NEURAL ABSTRACTIVE SUMMARIZATION FOR LONG TEXT AND MULTIPLE TABLES 2585

[9] S. Liu, J. Cao, R. Yang, and Z. Wen, “Generating a structured summary of
numerous academic papers: Dataset and method,” in Proc. Int. Joint Conf.

Artif. Intell., 2022, pp. 4259–4265.
[10] L. Huang, S. Cao, N. Parulian, H. Ji, and L. Wang, “Efficient attentions

for long document summarization,” in Proc. Conf. North Amer. Chapter

Assoc. Comput. Linguistics-Hum. Lang. Technol., 2021, pp. 1419–1436.
[11] W. Kryściński, N. Rajani, D. Agarwal, C. Xiong, and D. Radev, “Book-

Sum: A collection of datasets for long-form narrative summarization,”
2021, arXiv:2105.08209.

[12] M. El-Haj, A. AbuRa’ed, M. Litvak, N. Pittaras, and G. Giannakopoulos,
“The financial narrative summarisation shared task (FNS 2020),” in Proc.

1st Joint Workshop Financial Narrative Process. MultiLing Financial

Summarisation, 2020, pp. 1–12.
[13] X. Li, L. Du, and Y.-D. Shen, “Update summarization via graph-based

sentence ranking,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5,
pp. 1162–1174, May 2013.

[14] X. Zhou, X. Wan, and J. Xiao, “CMiner: Opinion extraction and summa-
rization for chinese microblogs,” IEEE Trans. Knowl. Data Eng., vol. 28,
no. 7, pp. 1650–1663, Jul. 2016.

[15] W. Li and H. Zhuge, “Abstractive multi-document summarization based
on semantic link network,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 1,
pp. 43–54, Jan. 2021.

[16] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “PEGASUS: Pre-training with
extracted gap-sentences for abstractive summarization,” in Proc. Int. Conf.

Mach. Learn., PMLR, 2020, pp. 11 328–11 339.
[17] W. Chen, M.-W. Chang, E. Schlinger, W. Y. Wang, and W. W. Cohen,

“Open question answering over tables and text,” in Proc. Int. Conf. Learn.

Representations, 2020, pp. 1–18.
[18] W. Chen, H. Zha, Z. Chen, W. Xiong, H. Wang, and W. Y. Wang,

“HybridQA: A dataset of multi-hop question answering over tabular and
textual data,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2020,
pp. 1026–1036.

[19] F. Zhu et al., “TAT-QA: A question answering benchmark on a hybrid of
tabular and textual content in finance,” in Proc. Assoc. Comput. Linguistics,
2021, pp. 3277–3287.

[20] P. Liang, M. Jordan, and D. Klein, “Learning semantic correspon-
dences with less supervision,” in Proc. Assoc. Comput. Linguistics, 2009,
pp. 91–99.

[21] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from struc-
tured data with application to the biography domain,” in Proc. Conf. Empir.

Methods Natural Lang. Process., 2016, pp. 1203–1213.
[22] S. Wiseman, S. M. Shieber, and A. M. Rush, “Challenges in data-to-

document generation,” in Proc. Conf. Empir. Methods Natural Lang.

Process., 2017, pp. 2253–2263.
[23] C. Rebuffel, L. Soulier, G. Scoutheeten, and P. Gallinari, “A hierarchical

model for data-to-text generation,” in Proc. Eur. Conf. Inf. Retrieval,
Springer, 2020, pp. 65–80.

[24] R. Puduppully and M. Lapata, “Data-to-text generation with macro plan-
ning,” Trans. Assoc. Comput. Linguistics, vol. 9, pp. 510–527, 2021.

[25] F. Wang, Z. Xu, P. Szekely, and M. Chen, “Robust (controlled) table-to-
text generation with structure-aware equivariance learning,” in Proc. Conf.

North Amer. Chapter Assoc. Comput. Linguistics-Hum. Lang. Technol.,
2022, pp. 5037–5048.

[26] U. S. SEC, Form 10-k general instructions. 2023. [Online]. Available:
www.sec.gov/about/forms/form10-k.pdf

[27] NARA, Regulation S-K item 303 management’s discussion and analysis
of financial condition and results of operations. 1982. [Online]. Available:
www.ecfr.gov/current/title-17/chapter-II/part-229

[28] P. J. Liu, “Generating wikipedia by summarizing long sequences,” in Proc.

Int. Conf. Learn. Representations, 2018, pp. 1–18.
[29] R. Mihalcea and P. Tarau, “TextRank: Bringing order into text,” in Proc.

Conf. Empir. Methods Natural Lang. Process., 2004, pp. 404–411.
[30] G. Erkan and D. R. Radev, “LexRank: Graph-based lexical centrality as

salience in text summarization,” J. Artif. Intell. Res., vol. 22, pp. 457–479,
2004.

[31] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statist.

Interface, vol. 2, no. 3, pp. 349–360, 2009.
[32] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in

Proc. Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 785–794.
[33] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors

for word representation,” in Proc. Conf. Empir. Methods Natural Lang.

Process., 2014, pp. 1532–1543.
[34] Q. Liu et al., “TAPEX: Table pre-training via learning a neural SQL

executor,” in Proc. Int. Conf. Learn. Representations, 2021, pp. 1–19.

[35] W. Guan, X. Song, H. Zhang, M. Liu, C.-H. Yeh, and X. Chang, “Bi-
directional heterogeneous graph hashing towards efficient outfit recom-
mendation,” in Proc. ACM Multimedia, 2022, pp. 268–276.

[36] K. Choromanski et al., “Rethinking attention with performers,”
2020, arXiv: 2009.14794.

[37] M. Zaheer et al., “Big bird: Transformers for longer sequences,” in Proc.

Int. Conf. Neural Inf. Process. Syst., 2020, pp. 17283–17297.
[38] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document

transformer,” 2020, arXiv: 2004.05150.
[39] A. Gidiotis and G. Tsoumakas, “A divide-and-conquer approach to the

summarization of long documents,” IEEE/ACM Trans. Audio, Speech,

Lang. Process., vol. 28, pp. 3029–3040, 2020.
[40] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training for

natural language generation, translation, and comprehension,” in Proc.

Assoc. Comput. Linguistics, 2020, pp. 7871–7880.
[41] M. Guo et al., “LongT5: Efficient text-to-text transformer for long se-

quences,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics,
2022, pp. 724–736.

[42] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67,
2020.

[43] T. Wolf et al., “Transformers: State-of-the-art natural language pro-
cessing,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2020,
pp. 38–45.

[44] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychol. Bull., vol. 76, no. 5, 1971, Art. no. 378.

[45] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proc. Assoc. Comput.

Linguistics, 2002, pp. 311–318.

Shuaiqi Liu received the BEng degree from Zhejiang
University, Hangzhou, China, in 2019. He is currently
working toward the PhD degree with the Department
of Computing, the Hong Kong Polytechnic Univer-
sity. His research interests include document sum-
marization, large language models, natural language
generation, and natural language processing.

Jiannong Cao (Fellow, IEEE) received the MSc and
PhD degrees in computer science from Washington
State University. He is currently a chair professor with
the Department of Computing at the Hong Kong Poly-
technic University. He is the dean of Graduate School
and the director of the Research Institute for Artificial
Intelligence of Things with PolyU. His research in-
terests include distributed systems, machine learning,
and edge computing. He is a member of Academia
Europaea and an ACM distinguished member.

Zhongfen Deng (Member, IEEE) received the bach-
elor’s degree in automation from Chongqing Uni-
versity and the master’s degree in control science
and engineering from Chongqing University. She is
currently working toward the PhD degree with the
Department of Computer Science, the University of
Illinois Chicago (UIC), USA. Her research interests
include natural language processing and generation,
and representation learning.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

2586 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 6, JUNE 2024

Wenting Zhao received the master’s degree in soft-
ware engineering from Shandong University. She is
working toward the PhD degree with BDSC Lab, the
Department of Computer Science, the University of
Illinois Chicago (UIC), USA. Prior to joining UIC,
Her research interests are natural language processing
and few-shot learning, structured data-to-text gener-
ation.

Ruosong Yang received the BEng degree from the
Beihang University in 2013, the MSc degree from
the National University of Defense and Technology
in 2016, and the PhD degree in computer science from
The Hong Kong Polytechnic University in 2022. He is
currently a postdoctoral fellow with the Department
of Computing, The Hong Kong Polytechnic Univer-
sity. His research interests include natural language
processing and machine learning.

Zhiyuan Wen received the BEng degree from the
School of Data and Computer Science, Sun Yat-sen
University, Guangzhou, China. He is currently work-
ing toward the PhD degree with the Department of
Computing, the Hong Kong Polytechnic University.
His current research interests include Open-domain
dialog systems and text generation.

Philip S. Yu (Fellow, IEEE) received the BS degree
in EE from National Taiwan University, the MS and
PhD degrees in EE from Stanford University, and
the MBA degree from New York University. He is
a distinguished professor in computer science with
the University of Illinois Chicago and also holds
the Wexler Chair in Information Technology. Before
joining UIC, he was with IBM, where he was manager
of the Software Tools and Techniques department
at the Watson Research Center. His research inter-
est is Big Data, including data mining, data stream,

databases, and privacy. He is a fellow of the ACM. He was the editor-in-chiefs of
ACM Transactions on Knowledge Discovery from Data (2011-2017) and IEEE

Transactions on Knowledge and Data Engineering (2001-2004).

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 07,2024 at 20:22:20 UTC from IEEE Xplore. Restrictions apply.

