
SPEED: Experimental Design for Policy Evaluation in Linear
Heteroscedastic Bandits

Subhojyoti Mukherjee⇤ Qiaomin Xie⇤ Josiah P. Hanna⇤ Robert Nowak⇤
⇤University of Wisconsin-Madison

Abstract

In this paper, we study the problem of opti-
mal data collection for policy evaluation in
linear bandits. In policy evaluation, we are
given a target policy and asked to estimate
the expected reward it will obtain when exe-
cuted in a multi-armed bandit environment.
Our work is the first work that focuses on
such an optimal data collection strategy for
policy evaluation involving heteroscedastic re-
ward noise in the linear bandit setting. We
first formulate an optimal design for weighted
least squares estimates in the heteroscedastic
linear bandit setting with the knowledge of
noise variances. This design minimizes the
mean squared error (MSE) of the estimated
value of the target policy and is termed the
oracle design. Since the noise variance is typi-
cally unknown, we then introduce a novel algo-
rithm, SPEED (Structured Policy Evaluation
Experimental Design), that tracks the oracle
design and derive its regret with respect to
the oracle design. We show that regret scales
as eO(d3n�3/2) and prove a matching lower
bound of ⌦(d2n�3/2). Finally, we evaluate
SPEED on a set of policy evaluation tasks
and demonstrate that it achieves MSE com-
parable to an optimal oracle and much lower
than simply running the target policy.

1 INTRODUCTION

Bandit policy optimization has been applied in vari-
ous applications such as web marketing [Bottou et al.,
2013], web search [Li et al., 2011], and healthcare rec-
ommendations [Zhou et al., 2017]. In practice, before

Proceedings of the 27
th
International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2024, Valencia,

Spain. PMLR: Volume 238. Copyright 2024 by the au-

thor(s).

widely deploying a learned policy, it is often necessary
to have an accurate estimation of its performance (i.e.,
expected reward). To this e↵ect, policy evaluation is
often a critical step as it allows practitioners to de-
termine if a learned policy truly represents improved
task performance. While o↵-policy evaluation has been
extensively studied as a potential solution [Dud́ık et al.,
2014, Li et al., 2015, Swaminathan et al., 2017, Wang
et al., 2017, Su et al., 2020, Kallus et al., 2021, Cai
et al., 2021], in practice, some amount of online evalua-
tion is often required before widescale deployment. For
instance, in web-marketing it is common to run an A/B
test with a subset of users before a potential new pol-
icy is deployed for all users [Kohavi and Longbotham,
2017]. When online policy evaluation is required, we
desire methods that provide an accurate estimate of
policy performance with a minimal amount of data col-
lected. The default choice for online policy evaluation
is to simply run the target policy and average the re-
sulting rewards. However, this approach is sub-optimal
when the action space is large or di↵erent actions have
reward distributions with di↵erent variances.

In this paper, we formulate a new experimental design
for allocating action samples so as to obtain minimal
mean squared error (MSE) for policy evaluation. Specif-
ically, we consider optimal policy evaluation under the
following linear heteroscedastic bandit model.

Let A be the set of actions and each a 2 A is associated
with a feature vector x(a) 2 Rd and |A| = A. The
reward distribution for each action a has mean ✓>

⇤ x(a),
for some ✓⇤ 2 Rd. Often the variance of the reward
distribution is assumed to be the same for all actions,
but in this paper, we depart from this assumption. We
consider the setting that the variance is governed by a
quadratic function of the form x(a)>⌃⇤x(a), for some
symmetric positive definite matrix ⌃⇤ 2 Rd⇥d. This
assumption allows us to capture problems in which
both the mean reward and the variance may depend
on the action taken, but both vary smoothly in x(a).

We briefly contrast our studied setting with other work.
In policy evaluation, the common metric of algorithm
performance is regret with respect to the mean squared

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

error of an oracle algorithm that has knowledge of the
variances of di↵erent reward distributions (i.e., knows
⌃⇤). There has been an increasing focus on studying
data collection for policy evaluation in bandit settings
[Zhu and Kveton, 2021, 2022, Wan et al., 2022] and
there has been some theoretical progress [Chaudhuri
et al., 2017, Fontaine et al., 2021]. Several works [Antos
et al., 2008, Carpentier and Munos, 2012, Carpentier
et al., 2015, Fontaine et al., 2021] have shown that in the
classical bandit setting a regret of eO(An�3/2) is possible
where n is the total budget of actions that can be tried
and eO hides logarithmic factors. These works have also
shown that simply running the target policy to take
actions results in a slower decrease of regret at the rate
of eO(An�1). Note that collecting data through running
the target policy is called on-policy sampling. The work
of Zhu and Kveton [2022], Wan et al. [2022] studies
the same setting under safety constraints and provides
asymptotic error bounds. However, none of the above
works provides a finite-time regret guarantee for data
collection for policy evaluation in the heteroscedastic
linear bandit setting.

The closest works to ours [Antos et al., 2008, Carpen-
tier and Munos, 2012, Carpentier et al., 2015, Fontaine
et al., 2021] either consider unstructured settings or con-
sider the classical bandit setting. As many real-world
bandit applications have d ⌧ A, a natural question
arises as to how to build an algorithm for policy evalu-
ation in the heteroscedastic linear bandit setting with
unknown ✓⇤ and ⌃⇤ that can leverage the structure.
Further, we want the regret of such an algorithm to
decrease at a rate faster than eO(n�1) (the on-policy
regret rate) and to scale with the dimension d instead
of actions as A� d. Note that the regret should scale
at least by d2 because the learner needs to probe in d2

dimensions to estimate ⌃⇤ 2 Rd⇥d [Wainwright, 2019].
Thus, the goal of our work is to answer the question:

Can we design an algorithm to collect
data for policy evaluation that adapts
to the variance of each action, and its
regret decreases at a rate faster than

eO(d2n�1)?

In this paper, we answer this question a�rmatively. We
make the following novel contributions to the growing
literature on online policy evaluation:

1. We are the first to formulate the policy evaluation
problem for heteroscedastic linear bandit setting where
the variance of each action a 2 A depends on a lower
dimensional co-variance matrix parameter ⌃⇤ 2 Rd⇥d

such that variance �2(a) = x(a)>⌃⇤x(a). This is
a more general heteroscedastic linear bandit setting
than studied in Chaudhuri et al. [2017], Kirschner and
Krause [2018], Fontaine et al. [2021], and di↵erent

than the time-dependent variance model of Zhang et al.
[2021], Zhao et al. [2022].

2. We characterize the MSE in this setting and show
that the optimal design, denoted as Policy Evaluation
(PE) Optimal design that minimizes the MSE is di↵er-
ent than A-, D-, E-, G-optimality [Pukelsheim, 2006].
We establish several key properties of this novel PE-
Optimal design and discuss how we can solve for the
design e�ciently.

3. Finally, we propose the agnostic algorithm, SPEED,
that does not know the underlying covariance matrix
⌃⇤. SPEED tracks the oracle design and we analyze
its MSE. We then bound the regret of SPEED com-
pared to an oracle strategy that follows the optimal
design with the knowledge of ⌃⇤. We show that the

regret scales as O(d
3 log(n)
n3/2) which is an improvement

over the regret for the stochastic non-structured ban-
dit setting which scales as O(A log(n)

n3/2) [Carpentier and
Munos, 2011, 2012, Carpentier et al., 2015, Fontaine
et al., 2021]. Hence, we answer positively to our main
query. We also prove the first lower bound for this

setting that scales as ⌦(d
2 log(n)
n3/2). Finally, we conduct

experiments on synthetic and real-life data sets and
show that SPEED lowers the MSE of policy evalua-
tion compared to baseline methods. We discuss more
related works and motivations in Appendix A.1.

2 PRELIMINARIES

We study the linear bandit setting where the expected
reward for each action is assumed to be a linear func-
tion [Mason et al., 2021, Jamieson and Jain, 2022]. We
define [m] := [1, 2, . . . ,m]. We denote the action space
as A and |A| = A. Actions are indexed by a 2 [A],
and each action a is associated with a feature vector
x(a) 2 Rd with dimension d ⌧ A. Denote by 4(A)
the probability simplex over the action space A and a
policy ⇡ 2 4(A) as a mapping ⇡ : A! [0, 1] such thatP

a
⇡(a) = 1.

Data collection is performed over n rounds of action se-
lection. Specifically, at each round t 2 [n], the selected
action at yields a reward: rt = x(at)>✓⇤ + ⌘t, where
✓⇤ 2 Rd is the unknown reward parameter, and ⌘t is
zero-mean noise with variance �2(at) and we further
assume that ⌘t is 2-subgaussian. We assume that
for each action a 2 A the variance �2(a) has a lower-
dimensional structure such that �2(a) = x(a)>⌃⇤x(a)
where ⌃⇤ 2 Rd⇥d is an unknown variance parame-
ter. Observe that the variance depends on the ac-
tion features, which is called the heteroscedastic noise
model [Greene, 2002, Chaudhuri et al., 2017] which dif-
fers from the unknown time-dependent variance model
of Zhang et al. [2021], Zhao et al. [2022]. Moreover,

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Fontaine et al. [2021] do not consider structure in vari-
ances and Chaudhuri et al. [2017] only consider a spe-
cial case of our setting where ⌃⇤ is a rank-1 matrix.
We also assume that the norms of the features are
bounded such that H2

L
 kx(a)k2  H2

U
for all a 2 A.

In our heteroscedastic linear bandit setting selecting
any action gives information about ✓⇤ and also gives
information about the noise covariance matrix ⌃⇤.

The value of a policy ⇡ is defined as v(⇡) := E[Rt] where
the expectation is taken over at⇠⇡, Rt⇠x(at)>✓⇤+⌘t.
In the policy evaluation problem, we are given a fixed,
target policy ⇡ and asked to estimate v(⇡). Estimating
v(⇡) requires a dataset of actions and their associated
rewards, D := {(a1, r1, ..., an, rn)}, which is collected
by executing some policy. We refer to the policy that
collects D as the behavior policy, denoted by b 2 4(A).
We then define the value estimate of a policy ⇡ as Yn,
where n is the sample budget. The exact nature of
the value estimate for the linear bandit setting will
be made clear in Section 3.1. Our goal is to choose
a behavior policy that minimizes the mean squared
error (MSE) defined as ED[(Yn � v(⇡))2], where the
expectation is over the collected data set D.

We now state an assumption on the boundedness on the
variance of each action a 2 [A]. Let the singular value
decomposition of ⌃⇤ be UDP> with orthogonal ma-
trices U,P> and D = diag (�1, . . . ,�d) where {�i} are
singular values. It follows that �2

min  �2(a)  �2
max

where �2
min = mini |�i|H2

L
and �2

max = maxi |�i|H2
U

(see Remark 1).

Assumption 1. We assume that ⌃⇤ has its minimum
and maximum eigenvalues bounded such that for every
action a 2 [A] the following holds �2

min  �2(a)  �2
max.

3 OPTIMAL DESIGN FOR POLICY
EVALUATION

In this section, we first discuss why following the target
policy to take actions can lead to a poor estimation
of the value of the policy. This discussion motivates
how a di↵erent behavior policy can produce more ac-
curate estimates of the target policy’s value. After
this motivation, we derive an expression for policy
evaluation error in terms of the behavior sampling pro-
portion b 2 4(A), target policy ⇡, and action features
x(a) 2 Rd. We call the minimizer of this expression the
“optimal design” [Pukelsheim, 2006] as it minimizes the
mean squared error for policy evaluation. We then
analyze the error incurred by an oracle that can com-
pute and follow the optimal behavior policy through
knowledge of problem-dependent parameters.

Motivating Example: Consider the linear bandit en-
vironment where d = 2 and A = 100 actions. Let one

action be along the x-axis, one action along the y-axis,
and 98 actions along the direction of (1p

2
, 1p

2
). Assume

✓⇤ is in the direction of x-axis (so action 1 is the opti-
mal action). A similar canonical linear bandit setting
has been studied by Fiez et al. [2019], Katz-Samuels
et al. [2020]. Consider a target policy ⇡ such that
⇡(1) = 0.9 and it distributes 0.1 probability equally
on the remaining actions. In this case, just running
the target policy ⇡ for n rounds leads to sampling un-
informative actions for identifying ✓⇤. In fact, in our
experiments, we show that the estimate v(⇡) will be
inaccurate compared to running the optimal behavior
policy (called Oracle policy; see Figure 1 top-left).

Now suppose we divide the budget of n samples across
the actions, and let Tn(1), Tn(2), . . . , Tn(A) be the num-
ber of samples allocated to actions 1, 2, . . . , A at the
end of n rounds. After observing n samples, let the
weighted least square estimate (WLS) be:

b✓n := argmin
✓

nX

t=1

1
�2(at)

(rt � x(at)
>✓)2 (1)

where at is the action sampled at round t and �2(at)
is the variance of action at. Also note that this is an
unbiased estimator of ✓⇤ (see Remark 2). In a linear
bandit, we can define the value estimate of a target
policy as Yn :=

P
a
w(a)>b✓n, where w(a) := ⇡(a)x(a)

is the expected feature for each action a 2 A under
the target policy, and b✓n is an unbiased estimate of ✓⇤
computed with n samples in D. As b✓n is an unbiased es-
timate, we have that ED[Yn] =

P
A

a=1 w(a)>✓⇤ = v(⇡).
Since we have an unbiased estimator of v(⇡), minimiz-
ing the MSE is equivalent to minimizing the variance,
minED

⇥
(Yn�E[Yn])

2 ⇤ = minED
⇥�P

A

a=1 w(a)>(b✓n�
✓⇤)
�2⇤

, where the minimization is with respect to the
data distribution D, which is determined by the be-
havior policy. In general, the behavior policy that
minimizes the MSE may be di↵erent from the target
policy. To identify this optimal behavior policy, fol-
lowing the optimal design literature [Pukelsheim, 2006,
Fedorov, 2013] we define the design or information
matrix Ab,⌃⇤ 2 Rd⇥d w.r.t. each b 2 �(A) as

Ab,⌃⇤=
X

a2A
b(a)

�x(a)
�(a)

��x(a)
�(a)

�>
=
X

a2A
b(a)ex(a)ex(a)> (2)

where ex(a) = x(a)/�(a). Observe that our design
matrix in (2) captures the information about the action
features x(a), and variance �2(a) and weights them by
the sampling proportion b(a). Then in the following
proposition, we exactly characterize the MSE with
respect to the design matrix Ab,⌃⇤ , target policy ⇡
and action features x. Moving forward, we will use the
term loss interchangeably with MSE.

Proposition 1. Let b✓n be the Weighted Least Square
(WLS) estimate (1) of ✓⇤ after observing n samples

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

and define w(a) = ⇡(a)x(a). Define the design matrix
as Ab,⌃⇤ (see (2)). Then the loss is given by

ED
⇥� AX

a=1

w(a)>(b✓n � ✓⇤)
�2⇤

=
1

n

X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

| {z }
:=Ln(⇡,b,⌃⇤)

.

Proof (Overview) The key idea is to show that the
linear model yields for each action a 2 [A], eYn(a) =
exn(a)>✓? + e⌘n(a) where we define

eYn(a) =

Tn(a)X

i=1

Ri(a)

�(a)
p

Tn(a)
, exn(a) =

p
Tn(a)x(a)

�(a) ,

e⌘n(a) =
Tn(a)X

i=1

⌘i(a)

�(a)
p

Tn(a)
,

with Ri(a) being the reward observed for action a
taken for the i-th time, ⌘i(a) being the correspond-
ing noise, and Tn(a) is the number of samples of ac-
tion a. Next, observe that using the independent
noise assumption, we have that E[e⌘n(a)] = 0 and

Var [e⌘n(a)] = 1. Let X =
�
exn(1)>, · · · , exn(A)>

�>
2

RA⇥d be the induced feature matrix of the policy and
Y = [eYn(1), eYn(2), . . . , eYn(A)]>. The above weighted
least squares (WLS) problem has an optimal unbiased

estimator b✓n =
�
X>X

��1
X>Y [Fontaine et al., 2021].

Substituting the definition of b✓n yields the desired ex-
pression of the loss as stated in the proposition. The
detailed proof is given in Appendix A.3. ⌅
Observe that the loss in our setting depends on the in-
verse of the design matrix denoted by A�1

b,⌃⇤
, the target

policy, as well as features of action pairs (a, a0) 2 A⇥A.
Hence, minimizing the loss is equivalent to minimiz-
ing the quantity 1/n(

P
a,a0 w(a)>A�1

b,⌃⇤
w(a0)). As

this design is di↵erent than a number of existing no-
tions of optimality such as D-, E-, T-, or G-optimality
[Pukelsheim, 2006, Fedorov, 2013, Jamieson and Jain,
2022], we call this the PE-Optimal design. None of
these previously proposed designs capture the objec-
tive of minimal MSE for policy evaluation. For exam-
ple, G-optimality (as studied by [Katz-Samuels et al.,
2020, Mason et al., 2021, Katz-Samuels et al., 2021,
Mukherjee et al., 2023, 2024]) minimizes the worst-

case error of maxx(a) ED[(x(a)>(b✓n � ✓⇤))2] by min-

imizing the quantity maxx(a) x(a)
>A�1

b x(a) for ho-
moscedastic noise. The E-optimal design minimizes
maxkuk1 ED[(u>(b✓n � ✓⇤))2] by minimizing the mini-
mum eigenvalue of the inverse of design matrix [Mukher-
jee et al., 2022b] and the A-optimal design minimizes

ED[(b✓n � ✓⇤)2] by minimizing the trace of the inverse
of design matrix [Fontaine et al., 2021].

We now state a few more notations for ease of ex-
position. Using Proposition 1 we define the optimal

behavior policy when the matrix ⌃⇤ is known as:

b⇤ := argmin
b

Ln(⇡,b,⌃⇤), (3)

where the loss Ln(⇡,b,⌃⇤) is defined in Proposition 1.
We define the optimal loss (with knowledge of ⌃⇤) as:

L
⇤
n
(⇡,b⇤,⌃⇤) = min

b
Ln(⇡,b,⌃⇤). (4)

3.1 Computation of the optimal design b⇤

In this section, we digress a bit to discuss the com-
putational aspect of Ln(⇡,b,⌃⇤). Since PE-Optimal
design is a new type of design, the natural question to
ask is how to optimize this loss function w.r.t. b? We
show in Proposition 2 that the loss Ln(⇡,b,⌃⇤) for
any arbitrary design proportion b 2 4(A) is strictly
convex with respect to the proportion b. The propo-
sition and its proof are given in Appendix A.4. Next
in Proposition 3 we show that the gradient of the
loss function is bounded. Due to space constraints,
both propositions and their proofs are given in Ap-
pendix A.4 and Appendix A.5 respectively. We first
state an assumption that the minimum eigenvalue sat-

isfies �min

⇣P
A

a=1 w(a)w(a)>
⌘
> 0, which is required

for proving Proposition 3.

Assumption 2. (Distribution of ⇡) We assume
that the set of actions a such that ⇡(a)>0, spans Rd

and Rd⇥d.

Note that this is a realistic and not a restrictive assump-
tion, since if the target policy never takes an action
that is needed to cover some dimension then we can
avoid identifying ✓⇤ in that dimension. Using Proposi-
tion 2, 3 we can e↵ectively solve the PE-Optimal design
with gradient descent approaches [Lacoste-Julien and
Jaggi, 2013, Berthet and Perchet, 2017]. We capture
this convergence guarantee with the assumption of the
existence of an approximation oracle.

Assumption 3. (Approximation Oracle) We
assume access to an approximation oracle. Given
a convex loss function Ln(⇡,b,⌃⇤) with minimizer
b⇤, the approximation oracle returns a proportion
bb⇤ = argminb Ln(⇡,b,⌃⇤) such that |Ln(⇡, bb⇤,⌃⇤)�
Ln(⇡,b⇤,⌃⇤)|  ✏.

Therefore from Proposition 2, and 3 and using Assump-
tion 2, and 3 we can get a computationally e�cient
solution to minb2�(A) Ln(⇡,b,⌃⇤).

3.2 Oracle Loss

Recall from Section 1, that our final goal is to control
the regret (excess loss) of an agnostic algorithm that
does not know ⌃⇤, with respect to an oracle that al-
ready knows ⌃⇤. Towards this goal, in this section,

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

we develop our theory for optimal data collection by
considering an oracle for the heteroscedastic linear ban-
dit setting. Specifically, we consider an oracle that
has knowledge of ⌃⇤ but does not know ✓⇤. With this
knowledge, it can solve Equation (3) (Assumption 3) to
determine the PE-Optimal design, b⇤, that minimizes
the loss. The oracle takes actions in proportion b⇤ for
n samples and then computes the WLS estimate b✓n
using ⌃⇤. The following proposition then bounds the
loss of the oracle after n samples.

Proposition 5. (Oracle Loss) Let the oracle sample
each action a for dnb⇤(a)e times, where b⇤ is the solu-
tion to (3). Define �1(V) as the maximum eigenvalue
of V :=

P
a,a0 w(a)w(a0)>. Then the loss satisfies

L
⇤
n
(⇡,b⇤,⌃⇤)  O2,H2

U

1
⇣

d�1(V) logn

n

⌘
+O2,H2

U

�
1
n

�
.

Proof (Overview) Note that the oracle knows the

⌃⇤ and uses b✓n in (1) to estimate ✓⇤. We use Corol-
lary 1 to show that Ln(⇡,b⇤,⌃⇤)  �1(V)d where
V =

P
a,a0 w(a)w(a0)>. The proof follows by show-

ing that (
P

A

a=1 w(a)>(b✓n � ✓⇤))2 is a sub-exponential
variable. Then using sub-exponential concentration
inequality in Lemma 4 (Appendix A.2) and setting
� = O(1/n2) we can bound the expected loss with high
probability. The full proof is given in Appendix B.1. ⌅
Connection to prior work: Prior work has consid-
ered a similar oracle for the basic stochastic bandit
setting, which is a special case of our setting with x(a)
being a one-hot vector in RA. In this case, we can

see that b⇤ = argminb
P

a

⇡
2(a)�2(a)
db(a)ne . This captures

the optimal number of times the actions should be
pulled weighted by the target policy and their variance.
Solving for b⇤, we obtain b⇤(a) / ⇡2(a)�2(a). This so-
lution matches the optimal sampling proportion given
by Antos et al. [2008], Carpentier and Munos [2011,
2012], Carpentier et al. [2015] for this special case.
The loss in prior work decays at the rate of eO2(An�1)
whereas the loss in Proposition 5 decreases at the rate
of eO(dn�1). Also note the loss in Proposition 5 scales
with d instead of d2 as the oracle knows the ⌃⇤ and
does not need to explore d2 directions to estimate ⌃⇤.
So we obtain an equivalence between the PE-Optimal
design and the solution from prior work in the basic
bandit setting while considering a more general setting.

4 SPEED AND REGRET ANALYSIS

In this section, we first introduce an agnostic algorithm
called SPEED for data collection that does not know

1
Here O

2,H2
U
() hides the sub-Gaussian factor 2

and

upper bound H2
U on feature norm

2
Here eO hides logarithmic and problem dependent fac-

tors like �2
min,

2, H2
U .

⌃⇤, and then analyze its regret. Here, regret refers to
the excess loss relative to the oracle that knows ⌃⇤.

4.1 Details of Algorithm SPEED

In practice, ⌃⇤ is unknown and so the oracle behav-
ior policy cannot be directly computed. Instead, we
first conduct a small amount of exploration to esti-
mate ⌃⇤ and then use the estimate in place of ⌃⇤
in (2). Specifically, we define the forced exploration
phase as the first � rounds in which the algorithm
conducts exploration to estimate ⌃⇤. To ensure ade-
quate exploration, we first apply Principal Component
Analysis (PCA) on the feature matrix X and choose
the most significant d directions (directions having the
highest variance). Then we choose one random action
for each of these d significant directions and sample
these actions uniform randomly for � rounds. Since the
algorithm explores first and then uses the estimate to
compute the PE-Optimal design, it can be viewed as an
explore-then-commit algorithm [Rusmevichientong and
Tsitsiklis, 2010, Lattimore and Szepesvári, 2020b]. As
we consider a structured setting we call this algorithm
Structured Policy Evaluation Experimental Design
(SPEED). After � =

p
n rounds, SPEED estimates the

covariance matrix b⌃� as follows:

b⌃�= min
S2Rd⇥d

�X

t=1

⇥
hx(at)x(at)

>,Si�(rt�x(at)
>b✓�)2

⇤2
(5)

where b✓� is the ordinary least square (OLS) estimate
of ✓⇤ using the data from the first � rounds. Note that
the OLS estimate is given by b✓� = (X>X)�1X>Y,

where X =
�
x>
1 , · · · ,x

>
�

�>
and Y = [r1, . . . , r�]>. A

covariance estimation technique similar to (5) has been
considered for the active regression setting though only
for the case when ⌃⇤ has rank 1 [Chaudhuri et al.,

2017]. The estimate of the covariance matrix b⌃� is
then fed to the oracle optimizer (Assumption 3) to

compute the sampling proportion bb. Actions are chosen
according to bb for the remaining n�� rounds and then
the WLS estimate b✓n�� is computed using b⌃� as the
covariance matrix parameter (Equation (1)). Finally,
SPEED outputs the dataset D to estimate the value
of target policy ⇡ and b✓n��. Full pseudocode is given
in Algorithm 1.

4.2 Regret Analysis of SPEED

In this section, we first state our regret definition
and then analyze the regret of the agnostic algorithm
SPEED. As an agnostic algorithm, SPEED does not
know the true covariance matrix ⌃⇤ and must estimate
the covariance matrix b⌃� after conducting exploration
for � rounds. We define the loss of an algorithm after
exploring for � rounds as the MSE of the resulting

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Algorithm 1 Structured Policy Evaluation Experi-
mental Design (SPEED)

1: Input: Action set A, target policy ⇡, budget n.
2: Conduct forced exploration for � =

p
n rounds and

estimate b⌃� using (5).

3: Let bb 2 4(A) be the minimizer of Ln(⇡,b, b⌃�).

4: Pull each action a exactly Tn(a) =
j
bb(a)(n� �)

k

times, and let H(a) := {a,Ri(a)}
Tn(a)
i=1 be the cor-

responding data. Set D [aH(a).
5: Construct the weighted least squares estimator
b✓n�� using only the observations D from step 4.

6: Output: D and b✓n��.

value estimate as follows:

Ln(⇡, bb, b⌃�) := ED
⇥� AX

a=1

w(a)>(b✓n�� � ✓⇤)
�2⇤

, (6)

where b✓n�� is the WLS estimate of ✓⇤ calculated from
data of last n � � rounds. We now define the regret
for the agnostic algorithm with the estimated behavior
policy bb as

Rn = Ln(⇡, bb, b⌃�)� L
⇤
n
(⇡,b⇤,⌃⇤). (7)

where Ln(⇡, bb, b⌃�) is the loss of the agnostic algorithm
and Ln(⇡,b⇤,⌃⇤) is the oracle loss defined in (4). We
now state the main theorem for the regret of SPEED.

Theorem 1. (Regret of Algorithm 1, in-
formal) Running Algorithm 1 with budget n �

O2,H2
U
(d

4
�
4
max log2(A/�)

�
4
min

), the resulting regret satisfies

Rn = O2,H2
U

⇣
d
3
�
2
max log(n)

�
2
minn

3/2

⌘
.

Discussion of Regret: Theorem 1 states
that the regret of Algorithm 1 scales as
O2,H2

U
(d3�2

max log(n)/n
3/2) where d is the di-

mension of ✓⇤. Note that our regret bound depends on
the underlying feature dimension d instead of actions
A, and scales as eO(d3n�3/2) which gives a positive
answer to the main question of whether such a result
is possible. In comparison to earlier work, when
d3 < A, we have a tighter bound than that given by
Carpentier and Munos [2011]. Furthermore, the results
of Carpentier and Munos [2011, 2012], Carpentier
et al. [2015] are for the standard multi-armed bandit
setting and cannot be easily extended to incorporate
structure in the linear bandit setting. Our new bound
also improves upon the A-optimal design method given
by Fontaine et al. [2021], as their regret depends on
the number of actions A and scales as O(A logn

n3/2).

Proof (Overview) of Theorem 1: We now outline
the key steps for proving Theorem 1.

Step 1 (Regret Decomposition): We first decom-

pose the regret Rn = Ln(⇡, bb, b⌃�) � L
⇤
n
(⇡,b⇤,⌃⇤).

Recall that b⇤ 2 4(A) is the optimal design in (3) and
bb 2 4(A) is the design followed by SPEED. However,

we cannot directly go after the loss Ln(⇡, bb, b⌃�) as it
does not admit a simple structure like L

⇤
n
(⇡,b⇤,⌃⇤).

Rather we establish an upper bound on the loss
Ln(⇡, bb, b⌃�), given by L

0
n��(⇡,

bb⇤, b⌃�) (defined for-
mally in (9)). Consequently, we can decompose the
regret Rn into three parts as follows:

Rn

(a)
 L

0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�)| {z }

Approximation error

+ L
0
n��(⇡, bb⇤, b⌃�)� Ln(⇡,b⇤, b⌃�)| {z }

Comparing two di↵erent loss

+ Ln(⇡,b⇤, b⌃�)� L
⇤
n
(⇡,b⇤,⌃⇤)| {z }

Estimation error of ⌃⇤

. (8)

where (a) follows as we show that

Ln(⇡, bb, b⌃�) = E
"
� AX

a=1

w(a)>(b✓n�� � ✓⇤)
�2
#


1

n��

⇣
1 + 2Cd

2 log(A/�)
�
2
min�

⌘X

a,a0

w(a)>A�1
bb⇤,b⌃�

w(a0)

:= L
0
n��(⇡, bb⇤, b⌃�), (9)

where C > 0 is a constant. Note that the inequality
above is shown in Proposition 6 which we discuss in
depth in step 2. Finally note that bb⇤ is the empirical
PE-Optimal design returned by the approximator after
it is supplied with b⌃�.

Step 2 (Bounding the loss Ln(⇡, bb, b⌃�)): In this
step we discuss how to upper bound the agnostic loss
Ln(⇡, bb, b⌃�) with L

0
n��(⇡,

bb⇤, b⌃�) as defined in (9).

We first state a concentration lemma that is key to
proving this upper bound. This lemma is novel for our
proof because we estimate the underlying covariance
matrix ⌃⇤ using OLS estimator for � rounds. We then
use the estimation b⌃� in the WLS estimator. For our
lemma, we first define the variance concentration good
event under � rounds of forced exploration as:

⇠var
�

(�) :=

⇢
8a,

����x(a)
>(b⌃� �⌃⇤)x(a)

����

<
2Cd2�2

max log(A/�)

�

�
(10)

Lemma 1. (OLS-WLS Concentration Lemma)
After � samples of exploration, we can show that
P (⇠var

�
(�)) � 1� 8�, where C > 0 is a constant.

Proof (Overview) of Lemma 1: Note that we con-

struct an initial estimate b✓� of ✓⇤ using OLS esti-
mate based on the first � rounds of data {at, rt}�t=1.

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Let the feature of at be xt and the squared residual
yt := (x>

t
b✓��rt)2. Recall that SPEED estimates⌃⇤ via

minS2Rd⇥d

P�
t=1(

⌦
xtx>

t
,S
↵
� yt)2. Let ⇣� := b✓� � ✓⇤.

Then we can show that yt = x>
t
⌃⇤xt+ ✏t and the noise

✏t can be bounded by

✏t = ⌘2
t
� E[⌘2

t
]| {z }

Part A

+2⌘tx
>
t
⇣�| {z }

Part B

+
�
x>
t
⇣�
�2

| {z }
Part C

.

For the part A, observe that ⌘2
t
is a sub-exponential

random variable as ⌘t ⇠ SG(0,x>
t
⌃⇤xt). Hence we

can use sub-exponential concentration inequality from
Lemma 4 (Appendix A.2) to bound it. For part C

first recall that ⇣� := b✓� � ✓⇤ and we use Lemma 5
(Appendix A.2) to bound it. Finally, for part B, we can
decompose 2⌘tx>

t
⇣�  2⌘2

t
+ 1

2 (x
>
t
⇣�)2. Then using the

same technique for parts A and C we bound the total
deviation for part B. Combining the three parts gives
the desired concentration inequality. The proof is in
Appendix B.2. ⌅
Lemma 1 directly leads to Corollary 3 (Appendix B.4)
which shows that for n � 16C2d4 log2(A/�)/�4

min we

have that Ln(⇡, bb, b⌃�)  L
0
n��(⇡,

bb, b⌃�). Compared
to earlier work, Fontaine et al. [2021] does not require
this approach as the variances of each action lack a
common structure. Similarly, this approach di↵ers
from the time-dependent variance model of Zhang et al.
[2021], Zhao et al. [2022].

Step 3 (Bounding the approximation error and
comparing two di↵erent losses): For the approxi-
mation error in (8) we need access to an optimization
oracle that gives ✏ approximation error (Assumption 3).
Then setting ✏ = 1p

n
we have that the estimation er-

ror is upper bounded by n�3/2. For comparing the
two di↵erent losses in (8), we use their definition of

to bound it as O2,H2
u
(d

2 log(A/�)
n3/2) as shown in (29) in

Appendix B.3.

Step 4 (Bounding Estimation Error): Now ob-
serve that the third quantity in (8) (estimation error

of ⌃⇤) contains Ln(⇡,b⇤, b⌃�) that depends on the
design matrix A�1

b⇤,b⌃�
which in turn depends on the

estimation of b⌃�. Similarly Ln(⇡,b⇤,⌃⇤) in the third
quantity depends on the design matrix A�1

b⇤,⌃⇤
which

in turn depends on the true ⌃⇤. Hence, we now bound
the concentration of the loss under A�1

b⇤,b⌃�
against the

design matrix A�1
b⇤,⌃⇤

in the following lemma.

Lemma 2. (Concentration of the design matrix)
Let b⌃� be the empirical estimate of ⌃⇤, and V =P

a,a0 w(a)w(a0)>. For any arbitrary proportion b,
with probability at least (1� �), we have the following:

����
X

a,a0

w(a)>(A�1
b⇤,b⌃�

�A�1
b⇤,⌃⇤

)w(a0)

����


2CB⇤d3�2

max log(A/�)

�
,

where B⇤ is a problem-dependent quantity and C > 0
is a universal constant.

Proof (Overview) of Lemma 2: We can up-
per bound |

P
a,a0w(a)>(A�1

b⇤,b⌃�
�A�1

b⇤,⌃⇤
)w(a0)| 

kuk
���Ab⇤,⌃⇤ �Ab⇤,b⌃�

���
| {z }

�

kvk where, kuk = kA�1
b⇤,⌃⇤

wk

and kvk = kA�1
b⇤,b⌃�

wk. First, observe that kuk is

a problem-dependent quantity. Then to bound �
we use the Lemma 1 on the concentration of b�2

�(a).
Finally to bound kvk we need to bound b�2

�(a) 

�2(a) + 2Cd
2
�
2
max log(A/�)

� where b�2
�(a) is the empirical

variance of �2(a). Combining everything yields the
desired result. The proof is in Appendix B.4 ⌅
One of our key technical contributions in Lemma 2
is to show that the di↵erence between the two losses
Ln(⇡,b⇤, b⌃�), and Ln(⇡,b⇤,⌃⇤) scales with d3 instead
of the number of actions A. In contrast to prior work, a
similar loss concentration in Fontaine et al. [2021] scales
with A. Now using Lemma 2, setting the exploration
factor � =

p
n, and � = 1

n
we can show that the

estimation error is upper bounded by B
⇤
Cd

3
�
2
max log(n)

�
2
minn

3/2 +

d
2

n2Tr(
P

a,a0 w(a)w(a0)>). Combining steps 1 – 4 we

have the regret of SPEED as O2,H2
U
(B

⇤
d
3
�
2
max log(n)

�
2
minn

3/2).

The full proof of Theorem 1 is in Appendix B.5. ⌅.

4.3 Lower Bound

Theorem 1 upper bounds the regret of our agnostic
algorithm SPEED compared to an oracle algorithm
with knowledge of ⌃⇤. To quantify the tightness of our
upper bound, we now turn to the question of whether
we can lower bound the regret for any behavior pol-
icy learning algorithm. For our final theoretical re-
sult, we consider a slightly di↵erent notion of regret:
R

0
n

:= Ln(⇡, bb,⌃⇤) � Ln(⇡,b⇤,⌃⇤). This notion of

regret captures how sub-optimal the estimated bb is
compared to b⇤, without additional error incurred by
using an estimate of ⌃⇤ in the WLS estimator. We
conjecture that R0

n
is indeed a lower bound to Rn as

we have established in Proposition 1 that the minimum
variance estimator is the WLS estimator using ⌃⇤. In-
tuitively, Ln(⇡, bb,⌃⇤) is a lower bound to Ln(⇡, bb, b⌃�)

as estimation error will likely increase when using b⌃�

in place of ⌃⇤ in the WLS estimator. We leave proving
that R0

n
is a lower bound to Rn to future work.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Theorem 2.(Lower Bound) Let |⇥|=2d, ✓⇤ 2⇥.
Then any arbitrary �-PAC policy following the design
b 2 4(A) satisfies R

0
n
=Ln(⇡,b,⌃⇤)�Ln(⇡,b⇤,⌃⇤)�

⌦
⇣

d
2
�d(V) log(n)

n3/2

⌘
for the environment specified in (33).

Proof (Overview:) The proof follows the change of
measure argument [Lattimore and Szepesvári, 2020b]
and we follow the proof technique of Huang et al. [2017],
Mukherjee et al. [2022b]. We reduce the policy eval-
uation problem to the hypothesis testing setting and
state a worst-case environment as in (33). We then
show that the regret of any �-PAC algorithm against an
oracle in this environment must scale as ⌦(log n/n3/2).
The proof is given in Appendix C. ⌅
From the above result, the upper bound of SPEED
regret Rn matches the lower bound of regret R0

n
in n

but su↵ers an additional factor of d.

5 EXPERIMENTS

We now conduct numerical experiments to show that
SPEED decreases MSE faster than other baselines.
These experiments complement our theoretical analysis
as they do not have the conditions on budget n required
in Theorem 1. Thus, our experimental analysis will
show that the theoretically motivated SPEED algo-
rithm still provides benefit even outside of the sample
regime considered in theory. As baselines, we compare
against On-policy, Oracle, A-Optimal [Fontaine et al.,
2021], and G-Optimal [Wan et al., 2022]. The On-policy
algorithm simply runs the target policy to collect data,
whereas the Oracle (as discussed in Section 3) samples
according to the optimal b⇤. Of existing optimal design
methods, A-Optimal , and G-Optimal are the closest in
relation to our work. We experiment with A-Optimal
design because this criterion minimizes the average
variance of the estimates of the regression coe�cients
and is most closely aligned with our goal. The work
of Wan et al. [2022] considers data collection under
safety constraints using Inverse Propensity Weighting.
In our unconstrained policy evaluation setting their
approach boils down to just G-optimal design. Further
experimental details are in Appendix D.

Unit Ball: We perform this experiment on a set of 5
actions that are arranged in a unit ball in R2 to show
that SPEED allocates proportion to the most infor-
mative action (weighted by their variance). Figure 1
(Top Left) shows that SPEED reduces the MSE faster
than On-policy, G-Optimal , and A-Optimal . We
also include Oracle in this setting to show how quickly
SPEED converges to it. However, for settings based
on real-life data, we do not have such oracles.

Movielens Dataset: Consider a startup that wants

Figure 1: (Top-left) MSE plot for the Unit ball. (Top-
right) MSE plot for the Movielens dataset. (Bottom-
left) MSE plot for Red Wine Quality dataset. (Bottom-
right) MSE plot for Air Quality dataset. The vertical
axis gives MSE and the horizontal axis is the number of
rounds. The vertical axis is log-scaled and confidence
bars show one standard error.

to recommend movies to users based on their ratings.
They have access to a target policy and want to evaluate
it on a limited informative dataset before deploying it
for full public use. We use real-world Movielens 1M
dataset [Lam and Herlocker, 2016] datasets for this
experiment. We apply low-rank factorization to the
rating matrix to obtain 5-dimensional representations
of users and movies. We then fit a weighted least
square estimate of ✓⇤ and ⌃⇤. We generate the reward
using this ✓⇤ and ⌃⇤. Then we use SPEED and other
baselines to generate the small informative dataset to
evaluate the target policy and this experiment is shown
in Figure 1 (Top Right). SPEED initially conducts
forced exploration to estimate ✓⇤, ⌃⇤ and incurs slightly
higher MSE but the MSE decreases faster than other
baselines as the number of rounds increases.

Red Wine Quality: Consider an online wine company
that wants to recommend wines to users and wants to
evaluate a target policy before full deployment. We
perform this experiment on real-world dataset Red
Wine Quality from UCI datasets [Cortez et al., 2009].
The dataset consists of 1600 samples (actions) of red
wine with each sample a having feature x(a) 2 R11 and
their ratings. We fit a weighted least square estimate
to the original dataset and get an estimate of ✓⇤ and
⌃⇤. Then we use SPEED to generate the informative
dataset to evaluate the target policy. Figure 2 (Bottom-
left) shows SPEED outperforming other baselines as
horizon increases.

Air Quality: We now consider a setting where a
government agency wants to record air quality and

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

notify the public. However, it wants to evaluate a
target policy on a limited informative dataset before full
deployment. We perform this experiment on real-world
dataset Air-Quality from UCI datasets [De Vito et al.,
2008]. The dataset consists of 1500 samples (actions)
with each sample a having feature x(a) 2 R6 and
their air quality value. Similar to red wine dataset we
estimate of ✓⇤ and ⌃⇤. Then we use SPEED and other
baselines (which do not know ✓⇤ and ⌃⇤) to generate
the informative dataset to evaluate the target policy
and this experiment is shown in Figure 1 (Bottom-
right). Observe that SPEED’s MSE decreases faster
than other baselines as the number of rounds increases.

6 CONCLUSIONS AND FUTURE
DIRECTIONS

We proposed SPEED for optimal data collection for
policy evaluation in linear bandits with heteroscedastic
reward noise. We formulated a novel optimal design
problem, PE-Optimal design, for which the optimal be-
havior policy is the solution that will produce minimal
MSE policy evaluation when using a weighted least
square estimate of the hidden reward parameters ✓⇤
and ⌃⇤. We showed the regret of SPEED degrades at
the rate of eO(d3n�3/2) and matches the lower bound
of eO(d2n�3/2) except a factor of d. In contrast the
On-policy su↵ers a regret of eO(n�1) [Carpentier et al.,
2015]. We showed empirically that our design outper-
forms other optimal designs. In future work, we intend
to extend the result to a more general class of hard
problems such as collecting data to minimize the MSE
of multiple target policies.

Acknowledgements

We would like to thank all the reviewers for their help-
ful feedback. Q. Xie is supported in part by NSF
grant CNS-1955997. J. Hanna is supported in part by
American Family Insurance through a research partner-
ship with the University of Wisconsin-Madison’s Data
Science Institute. We also thank Justin Weltz, Blake
Mason, and Lalit Jain for pointing out errors in the
previous version of this paper and helping to improve
the draft.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba
Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing
systems, 24, 2011.

Shipra Agrawal and Navin Goyal. Analysis of thompson
sampling for the multi-armed bandit problem. In

Conference on learning theory, pages 39–1. JMLR
Workshop and Conference Proceedings, 2012.

András Antos, Varun Grover, and Csaba Szepesvári.
Active learning in multi-armed bandits. In Interna-
tional Conference on Algorithmic Learning Theory,
pages 287–302. Springer, 2008.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fis-
cher. Finite-time Analysis of the Multiarmed Ban-
dit Problem. Machine Learning, 47(2):235–256,
May 2002. ISSN 1573-0565. doi: 10.1023/A:
1013689704352. URL https://doi.org/10.1023/
A:1013689704352.

Quentin Berthet and Vianney Perchet. Fast rates for
bandit optimization with upper-confidence frank-
wolfe. Advances in Neural Information Processing
Systems, 30, 2017.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-
Candela, Denis X Charles, D Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and
Ed Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising.
Journal of Machine Learning Research, 14(11), 2013.

Guillaume Bouchard, Théo Trouillon, Julien Perez, and
Adrien Gaidon. Online learning to sample. arXiv
preprint arXiv:1506.09016, 2016.

Hengrui Cai, Chengchun Shi, Rui Song, and Wenbin
Lu. Deep jump learning for o↵-policy evaluation
in continuous treatment settings. Advances in Neu-
ral Information Processing Systems, 34:15285–15300,
2021.

Alexandra Carpentier and Rémi Munos. Finite-time
analysis of stratified sampling for monte carlo. In
NIPS-Twenty-Fifth Annual Conference on Neural
Information Processing Systems, 2011.

Alexandra Carpentier and Rémi Munos. Minimax num-
ber of strata for online stratified sampling given noisy
samples. In International Conference on Algorithmic
Learning Theory, pages 229–244. Springer, 2012.

Alexandra Carpentier, Remi Munos, and András Antos.
Adaptive strategy for stratified monte carlo sampling.
J. Mach. Learn. Res., 16:2231–2271, 2015.

Kamalika Chaudhuri, Prateek Jain, and Nagarajan
Natarajan. Active heteroscedastic regression. In In-
ternational Conference on Machine Learning, pages
694–702. PMLR, 2017.

Kamil Ciosek and Shimon Whiteson. OFFER: O↵-
environment reinforcement learning. In Proceedings
of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI), 2017.

Nicholas Corrado and Josiah P. Hanna. On-policy
policy gradient reinforcement learning without on-

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

policy sampling. In Arxiv Pre-print, September 2023.
URL https://arxiv.org/abs/2311.08290.

Paulo Cortez, António Cerdeira, Fernando Almeida,
Telmo Matos, and José Reis. Modeling wine prefer-
ences by data mining from physicochemical proper-
ties. Decision support systems, 47(4):547–553, 2009.

Saverio De Vito, Ettore Massera, Marco Piga, Luca
Martinotto, and Girolamo Di Francia. On field cali-
bration of an electronic nose for benzene estimation
in an urban pollution monitoring scenario. Sensors
and Actuators B: Chemical, 129(2):750–757, 2008.

Miroslav Dud́ık, Dumitru Erhan, John Langford, and
Lihong Li. Doubly robust policy evaluation and
optimization. 2014.

Yuguang Fang, Kenneth A Loparo, and Xiangbo Feng.
Inequalities for the trace of matrix product. IEEE
Transactions on Automatic Control, 39(12):2489–
2490, 1994.

Valerii Vadimovich Fedorov. Theory of optimal experi-
ments. Elsevier, 2013.

Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian
Ratli↵. Sequential experimental design for transduc-
tive linear bandits. Advances in neural information
processing systems, 32, 2019.

Xavier Fontaine, Pierre Perrault, Michal Valko, and
Vianney Perchet. Online a-optimal design and active
linear regression. In International Conference on
Machine Learning, pages 3374–3383. PMLR, 2021.

William H Greene. 000. econometric analysis, 2002.

Josiah P. Hanna, Philip S. Thomas, Peter Stone, and
Scott Niekum. Data-E�cient Policy Evaluation
Through Behavior Policy Search. arXiv:1706.03469
[cs], June 2017. URL http://arxiv.org/abs/1706.
03469. arXiv: 1706.03469.

Jean Honorio and Tommi Jaakkola. Tight bounds for
the expected risk of linear classifiers and pac-bayes
finite-sample guarantees. In Artificial Intelligence
and Statistics, pages 384–392. PMLR, 2014.

Ruitong Huang, Mohammad M. Ajallooeian, Csaba
Szepesvári, and Martin Müller. Structured best arm
identification with fixed confidence. In Steve Han-
neke and Lev Reyzin, editors, International Confer-
ence on Algorithmic Learning Theory, ALT 2017,
15-17 October 2017, Kyoto University, Kyoto, Japan,
volume 76 of Proceedings of Machine Learning Re-
search, pages 593–616. PMLR, 2017. URL http:
//proceedings.mlr.press/v76/huang17a.html.

Kevin Jamieson and Lalit Jain. Interactive machine
learning. 2022.

Nathan Kallus, Yuta Saito, and Masatoshi Uehara.
Optimal o↵-policy evaluation from multiple logging

policies. In International Conference on Machine
Learning, pages 5247–5256. PMLR, 2021.

Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson,
et al. An empirical process approach to the union
bound: Practical algorithms for combinatorial and
linear bandits. Advances in Neural Information Pro-
cessing Systems, 33:10371–10382, 2020.

Julian Katz-Samuels, Jifan Zhang, Lalit Jain, and
Kevin Jamieson. Improved algorithms for agnos-
tic pool-based active classification. In International
Conference on Machine Learning, pages 5334–5344.
PMLR, 2021.

Jack Kiefer and Jacob Wolfowitz. The equivalence
of two extremum problems. Canadian Journal of
Mathematics, 12:363–366, 1960.

Johannes Kirschner and Andreas Krause. Information
directed sampling and bandits with heteroscedastic
noise. In Conference On Learning Theory, pages
358–384. PMLR, 2018.

Ron Kohavi and Roger Longbotham. Online controlled
experiments and a/b testing. Encyclopedia of ma-
chine learning and data mining, 7(8):922–929, 2017.

Simon Lacoste-Julien and Martin Jaggi. An a�ne
invariant linear convergence analysis for frank-wolfe
algorithms. arXiv preprint arXiv:1312.7864, 2013.

T. L Lai and Herbert Robbins. Asymptotically ef-
ficient adaptive allocation rules. Advances in Ap-
plied Mathematics, 6(1):4–22, March 1985. ISSN
0196-8858. doi: 10.1016/0196-8858(85)90002-8.
URL https://www.sciencedirect.com/science/
article/pii/0196885885900028.

Shyong Lam and Jon Herlocker. MovieLens Dataset.
http://grouplens.org/datasets/movielens/, 2016.

Tor Lattimore and Csaba Szepesvári. Bandit algo-
rithms. Cambridge University Press, 2020a.

Tor Lattimore and Csaba Szepesvári. Bandit algo-
rithms. Cambridge University Press, 2020b.

Lihong Li, Wei Chu, John Langford, and Xuanhui
Wang. Unbiased o✏ine evaluation of contextual-
bandit-based news article recommendation algo-
rithms. In Proceedings of the fourth ACM inter-
national conference on Web search and data mining,
pages 297–306, 2011.

Lihong Li, Rémi Munos, and Csaba Szepesvári. Toward
minimax o↵-policy value estimation. In Artificial
Intelligence and Statistics, pages 608–616. PMLR,
2015.

Ting Li, Chengchun Shi, Jianing Wang, Fan Zhou,
et al. Optimal treatment allocation for e�cient policy
evaluation in sequential decision making. Advances
in Neural Information Processing Systems, 36, 2024.

https://arxiv.org/abs/2311.08290
http://arxiv.org/abs/1706.03469
http://arxiv.org/abs/1706.03469
http://proceedings.mlr.press/v76/huang17a.html
http://proceedings.mlr.press/v76/huang17a.html
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://www.sciencedirect.com/science/article/pii/0196885885900028

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Blake Mason, Romain Camilleri, Subhojyoti Mukher-
jee, Kevin Jamieson, Robert Nowak, and Lalit Jain.
Nearly optimal algorithms for level set estimation.
arXiv preprint arXiv:2111.01768, 2021.

Subhojyoti Mukherjee, Josiah P Hanna, and Robert D
Nowak. Revar: Strengthening policy evaluation via
reduced variance sampling. In Uncertainty in Artifi-
cial Intelligence, pages 1413–1422. PMLR, 2022a.

Subhojyoti Mukherjee, Ardhendu S Tripathy, and
Robert Nowak. Cherno↵ sampling for active testing
and extension to active regression. In International
Conference on Artificial Intelligence and Statistics,
pages 7384–7432. PMLR, 2022b.

Subhojyoti Mukherjee, Ruihao Zhu, and Branislav Kve-
ton. E�cient and interpretable bandit algorithms.
arXiv preprint arXiv:2310.14751, 2023.

Subhojyoti Mukherjee, Qiaomin Xie, Josiah Hanna,
and Robert Nowak. Multi-task representation learn-
ing for pure exploration in bilinear bandits. Advances
in Neural Information Processing Systems, 36, 2024.

Harrie Oosterhuis and Maarten de Rijke. Taking the
Counterfactual Online: E�cient and Unbiased On-
line Evaluation for Ranking. Proceedings of the
2020 ACM SIGIR on International Conference on
Theory of Information Retrieval, pages 137–144,
September 2020. doi: 10.1145/3409256.3409820.
URL http://arxiv.org/abs/2007.12719. arXiv:
2007.12719.

Friedrich Pukelsheim. Optimal design of experiments.
SIAM, 2006.

Phillippe Rigollet and Jan-Christian Hütter. High di-
mensional statistics. Lecture notes for course 18S997,
813(814):46, 2015.

Carlos Riquelme, Mohammad Ghavamzadeh, and
Alessandro Lazaric. Active learning for accurate
estimation of linear models. In International Confer-
ence on Machine Learning, pages 2931–2939. PMLR,
2017.

Paat Rusmevichientong and John N Tsitsiklis. Linearly
parameterized bandits. Mathematics of Operations
Research, 35(2):395–411, 2010.

Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy,
and Miroslav Dud́ık. Doubly robust o↵-policy evalu-
ation with shrinkage. In International Conference on
Machine Learning, pages 9167–9176. PMLR, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Adith Swaminathan, Akshay Krishnamurthy, Alekh
Agarwal, Miro Dudik, John Langford, Damien Jose,
and Imed Zitouni. O↵-policy evaluation for slate
recommendation. Advances in Neural Information
Processing Systems, 30, 2017.

William R. Thompson. On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–
294, December 1933. ISSN 0006-3444. doi: 10.
1093/biomet/25.3-4.285. URL https://doi.org/
10.1093/biomet/25.3-4.285.

Alexandre B Tsybakov. Introduction to nonparametric
estimation. Springer Science & Business Media, 2008.

Aaron David Tucker and Thorsten Joachims. Variance-
Optimal Augmentation Logging for Counterfactual
Evaluation in Contextual Bandits. arXiv:2202.01721
[cs], February 2022. URL http://arxiv.org/abs/
2202.01721. arXiv: 2202.01721.

Martin J Wainwright. High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019.

Runzhe Wan, Branislav Kveton, and Rui Song. Safe
exploration for e�cient policy evaluation and com-
parison. arXiv preprint arXiv:2202.13234, 2022.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudık.
Optimal and adaptive o↵-policy evaluation in con-
textual bandits. In International Conference on Ma-
chine Learning, pages 3589–3597. PMLR, 2017.

P Whittle. A multivariate generalization of tchebichev’s
inequality. The Quarterly Journal of Mathematics,
9(1):232–240, 1958.

Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S
Du. Improved variance-aware confidence sets for
linear bandits and linear mixture mdp. Advances
in Neural Information Processing Systems, 34:4342–
4355, 2021.

Heyang Zhao, Dongruo Zhou, Jiafan He, and Quanquan
Gu. Bandit learning with general function classes:
Heteroscedastic noise and variance-dependent regret
bounds. arXiv preprint arXiv:2202.13603, 2022.

Rujie Zhong, Duohan Zhang, Lukas Schäfer, Stefano V.
Albrecht, and Josiah P. Hanna. Robust on-policy
sampling for data-e�cient policy evaluation. In Pro-
ceedings of Advances in Neural Information Process-
ing Systems (NeurIPS), December 2022.

Dongruo Zhou and Quanquan Gu. Computationally
e�cient horizon-free reinforcement learning for linear
mixture mdps. arXiv preprint arXiv:2205.11507,
2022.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari.
Nearly minimax optimal reinforcement learning for
linear mixture markov decision processes. In Confer-
ence on Learning Theory, pages 4532–4576. PMLR,
2021.

Xin Zhou, Nicole Mayer-Hamblett, Umer Khan, and
Michael R Kosorok. Residual weighted learning for
estimating individualized treatment rules. Journal

http://arxiv.org/abs/2007.12719
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
http://arxiv.org/abs/2202.01721
http://arxiv.org/abs/2202.01721

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

of the American Statistical Association, 112(517):
169–187, 2017.

Ruihao Zhu and Branislav Kveton. Safe data collection
for o✏ine and online policy learning. arXiv preprint
arXiv:2111.04835, 2021.

Ruihao Zhu and Branislav Kveton. Safe optimal de-
sign with applications in o↵-policy learning. In
Gustau Camps-Valls, Francisco J. R. Ruiz, and Is-
abel Valera, editors, Proceedings of The 25th Inter-
national Conference on Artificial Intelligence and
Statistics, volume 151 of Proceedings of Machine
Learning Research, pages 2436–2447. PMLR, 28–30
Mar 2022. URL https://proceedings.mlr.press/
v151/zhu22a.html.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] We present the model and assumptions
in Section 2. The algorithms are presented in
Section 3 and Section 4.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] Results are presented in Section 3 and
Section 4.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] In supplementary ma-
terial.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] See Section 2 for
the details.

(b) Complete proofs of all theoretical results.
[Yes] Proofs outlines are provided in the main
paper, with all detailed proofs are deferred to
the appendix.

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes] In the supplementary material.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
In the supplementary material.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] In the supplementary
material.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

https://proceedings.mlr.press/v151/zhu22a.html
https://proceedings.mlr.press/v151/zhu22a.html

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

A APPENDIX

A.1 Related Works and Motivations

Our work is most closely related to existing work on data collection for policy evaluation. Perhaps the most
natural choice of behavior policy is to simply run the target policy, i.e., on-policy data collection [Sutton and
Barto, 2018]. The works in adaptive Monte Carlo for bandits [Oosterhuis and de Rijke, 2020, Tucker and Joachims,
2022] and MDPs [Hanna et al., 2017, Ciosek and Whiteson, 2017, Bouchard et al., 2016, Zhong et al., 2022,
Corrado and Hanna, 2023] have shown how to lower the variance of Monte Carlo estimation through the choice of
behavior policy. In contrast to these works, we consider estimating v(⇡) by estimating the reward distributions
rather than using Monte Carlo estimation. Such certainty-equivalence estimators take advantage of the setting’s
structure and are thus typically of lower variance than Monte Carlo estimators [Sutton and Barto, 2018]. The
work of Wan et al. [2022] studies a di↵erent estimator for reducing the variance of the importance sampling in
constrained MDP setting whereas we study certainty equivalence estimator. Another set of work has studied
sample allocation for stratified Monte Carlo estimators – a problem that is formally equivalent to behavior policy
selection for policy evaluation in the bandit setting with linearly independent arms [Antos et al., 2008, Carpentier
et al., 2015]. This line of work was recently extended to tabular, tree-structured MDPs by Mukherjee et al.
[2022a]. In contrast, we consider the structured linear bandit setting which incorporates generalization across
actions. Li et al. [2024] use A-optimal design to find an optimal behavior policy for the doubly robust estimator.
Their focus is di↵erent though as they consider tabular MDPs rather than linear heteroscedastic bandits.

Our work is closely related to optimal experimental design and active learning literature. We formulate determining
the optimal behavior policy in the bandit setting as an optimal design problem. In contrast to prior work, we
introduce a new type of optimality that is tailored to the policy evaluation problem. We are also, to the best of our
knowledge, the first to consider both heteroscedastic noise and weighted least squares estimators in formulating
our design. The heteroscedastic noise model and weighted least squares estimator have been considered by
Chaudhuri et al. [2017] in the active learning literature and in linear bandit setting by Kirschner and Krause
[2018] using information directed sampling. In contrast to these works (and the active learning setting in general),

we aim to minimize the weighted error
P

a2A ⇡(a)x(a)>(✓⇤
� b✓)2 whereas in the active learning setting the goal is

to minimize k✓⇤
� b✓k2 which results in A-optimal design [Fontaine et al., 2021, Pukelsheim, 2006]. Moreover the

regret bounds in Fontaine et al. [2021] holds for d = |A|. Riquelme et al. [2017] extends the results of Carpentier
and Munos [2011] to a di↵erent linear regression setting than ours but under the homoscedastic noise model.

Data collection for policy evaluation is also related to the problem of exploration for policy learning in MDPs or
best-arm identification in bandits. In those contexts, the aim of exploration is to find the optimal policy and
the exploration-exploitation trade-o↵ describes the tension between reducing uncertainty and focusing on known
promising actions. In bandits, the exploration-exploitation trade-o↵ is often navigated under the “Optimism
in the Face of Uncertainty” principle using techniques such as UCB [Lai and Robbins, 1985, Auer et al., 2002,
Abbasi-Yadkori et al., 2011] or Thompson Sampling [Thompson, 1933, Agrawal and Goyal, 2012]. In contrast
to the standard exploration problem, we focus on evaluating a fixed policy. Instead of balancing exploration
and exploitation, a behavior policy for policy evaluation should take actions that reduce uncertainty about v(⇡)
with emphasis on actions that have high probability under ⇡. Also, note that heteroscedastic bandits have been
studied from the perspective of policy improvement [Kirschner and Krause, 2018, Zhao et al., 2022] however, in
this paper we focus on optimal data collection for policy evaluation.

We note that heteroscedasticity is also studied for the policy improvement setup [Kirschner and Krause, 2018,
Zhou and Gu, 2022, Zhou et al., 2021, Zhang et al., 2021, Zhao et al., 2022]. In these prior works the reward
variances are time-dependent as opposed to the quadratic structure studied in this paper. Note that policy
improvement requires a di↵erent approach than policy evaluation. These works build tight confidence sets around
the unknown model parameter ✓⇤ by employing weighted ridge regression involving an estimated upper bound
to the time-dependent variances. However, in our setting, the variances of each action share the unknown low
dimensional co-variance matrix ⌃⇤. Hence we deviate from these approaches and employ an alternating OLS-WLS
estimation to learn the underlying parameter ⌃⇤.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

A.2 Probability Tools

Lemma 3. [Kiefer and Wolfowitz, 1960] Assume that A ⇢ Rd is compact and span(A) = Rd. Let
⇡ : A! [0, 1] be a distribution on A so that

P
a2A ⇡(a) = 1 and V(⇡) 2 Rd⇥d and g(⇡) 2 R be given by

V(⇡) =
X

a2A
⇡(a)aa>, g(⇡) = max

a2A
kak2eX(⇡)�1

Then the following are equivalent:

(a) ⇡⇤ is a minimizer of g.

(b) ⇡⇤ is a maximizer of f(⇡) = log detV(⇡).

(c) g (⇡⇤) = d.

Furthermore, there exists a minimizer ⇡⇤ of g such that |Supp (⇡⇤)|  d(d+ 1)/2.

Lemma 4. (Sub-Exponential Concentration) Suppose that X is sub-exponential with parameters (⌫,↵).
Then

P[X � µ+ t] 

(
e�

t2

2⌫2 if 0  t  ⌫
2

↵

e�
t

2↵ if t > ⌫
2

↵

which can be equivalently written as follows:

P[X � µ+ t]  exp

⇢
�
1

2
min

⇢
t

↵
,
t2

⌫2

��
.

Lemma 5. (Restatement of Theorem 2.2 in Rigollet and Hütter [2015]) Assume that the linear model

holds where the noise " ⇠ subGn

�
�2
�
. Then the least squares estimator b✓� satisfies

E
h
MSE

⇣
Xb✓�

⌘i
=

1

n
E
���Xb✓� �X✓⇤

���
2

2
. �2 r

n

where r = rank
�
X>X

�
. Moreover, for any � > 0, with probability at least 1� �, it holds

MSE
⇣
Xb✓�

⌘
. �2 r + log(1/�)

n

A.3 Formulation for PE-Optimal Design to Reduce MSE

Proposition 1. Let b✓n be the Weighted Least Square (WLS) estimate (1) of ✓⇤ after observing n samples and
define w(a) = ⇡(a)x(a). Define the design matrix as Ab,⌃⇤ (see (2)). Then the loss is given by

E

2

4

AX

a=1

w(a)>(b✓n � ✓⇤)

!2
3

5 =
1

n

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A .

Proof. Let Tn(a) � 0 be the number of samples of x(a), hence n =
P

A

a=1 Tn(a). For each a 2 [A], the linear
model yields:

1

Tn(a)

Tn(a)X

i=1

R
i
(a) = x(a)>✓⇤ +

1

Tn(a)

Tn(a)X

i=1

⌘
i
(a).

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

with Ri(a) being the reward observed for action a taken for the i-th time, ⌘i(a) being the corresponding noise,
and Tn(a) is the number of samples of action a. We define the following:

eYn(a) =

Tn(a)X

i=1

R
i
(a)

�(a)
p

Tn(a)
, exn(a) =

p
Tn(a)x(a)

�(a)
, e⌘n(a) =

Tn(a)X

i=1

⌘
i
(a)

�(a)
p
Tn(a)

so that for all a 2 [A], eYn(a) = exn(a)>✓⇤ + e⌘n(a) where we can show the following regarding the expectation of
e⌘n(a) as

E[e⌘n(a)] = E

2

4
Tn(a)X

i=1

⌘i(a)

�(a)
p
Tn(a)

3

5 =

Tn(a)X

i=1

E [⌘i(a)]

�(a)
p
Tn(a)

= 0

and the variance as

Var [e⌘n(a)] = Var

2

4
Tn(a)X

i=1

⌘i(a)

�(a)
p
Tn(a)

3

5 (a)
=

Tn(a)X

i=1

Var

"
⌘i(a)

�(a)
p

Tn(a)

#
=

Tn(a)X

i=1

Var [⌘i(a)]

�2(a)Tn(a)
=

Tn(a)�2(a)

�2(a)Tn(a)
= 1

where (a) follows as the noises are independent. We denote by X =
�
exn(1)>, · · · , exn(A)>

�>
2 RA⇥d the induced

design matrix of the policy. Under the assumption that X has full rank, the above weighted least squares (WLS)

problem has an optimal unbiased estimator b✓n =
�
X>X

��1
X>Y, where Y = [eYn(1), eYn(2), . . . , eYn(A)]>. Let

⌘ = [e⌘n(1), e⌘n(2), . . . , e⌘n(A)]>. Let w(a) = ⇡(a)x(a). Then the objective is to bound the loss as follows

E

2

4

AX

a=1

w(a)>b✓n �
AX

a=1

w(a)>✓⇤

!2
3

5 = E

2

4

AX

a=1

w(a)>(b✓n � ✓⇤)

!2
3

5

= E

2

4

AX

a=1

w(a)>
⇣�

X>X
��1

X>Y � ✓⇤
⌘!2

3

5 = E

2

4

AX

a=1

w(a)>
⇣�

X>X
��1

X> (X✓⇤ + ⌘)� ✓⇤
⌘!2

3

5

= E

2

4

AX

a=1

w(a)>
�
X>X

��1
X>⌘

!2
3

5 (a)
= E

"
Tr

AX

a=1

w(a)>
�
X>X

��1
X>⌘⌘>X

�
X>X

��1
AX

a=1

w(a)

!#

= Tr

AX

a=1

w(a)>
�
X>X

��1
X>E

⇥
⌘⌘>

⇤
X
�
X>X

��1
AX

a=1

w(a)

!

(b)
= Tr

AX

a=1

w(a)>
�
X>X

��1
X>IX

�
X>X

��1
AX

a=1

w(a)

!

= Tr

AX

a=1

w(a)>
�
X>X

��1
AX

a=1

w(a)

!
= Tr

0

@
AX

a=1

w(a)>

AX

a=1

exn(a)exn(a)
>

!�1
AX

a=1

w(a)

1

A

=
1

n
Tr

0

@
AX

a=1

w(a)>

AX

a=1

b(a)x(a)x(a)>

�(a)2

!�1
AX

a=1

w(a)

1

A

(c)
=

1

n
Tr

0

@
AX

a=1

w(a)>

AX

a=1

b(a)ex(a)ex(a)>
!�1

AX

a=1

w(a)

1

A

=
1

n
Tr

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A

where, in (a) we can introduce the trace operator as for any vector x we have Tr(x>x) = kxk2, (b) follows as the
matrix E[⌘⌘>] has all the non-diagonal element as 0 (since noises are independent and Cov(e✏n(a),e✏n(a0)) = 0)
and the diagonal element are the Var[e✏n(a)] = 1, and (c) follows as we redefine ex(a) = x(a)/�(a).

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

A.4 Loss is convex

Proposition 2. The loss function

Ln(⇡,b,⌃⇤) =
1

n

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A

for any arbitrary design proportion b 2 4(A) and co-variance matrix ⌃⇤ is strictly convex.

Proof. Let b,b0
2 4(A), so that Ab and Ab0 are invertible. Recall that we have the loss for a design proportion

b as

Ln(⇡,b,⌃⇤) =
1

n

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A (a)
=

1

n
Tr

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A =
1

n
Tr

0

@A�1
b,⌃⇤

X

a,a0

w(a)w(a0)>

1

A

=
1

n
Tr
⇣
VA�1

b,⌃⇤

⌘

where, in (a) we can introduce the trace as the R.H.S. is a scalar quantity, w(a) = ⇡(a)x(a) and V =P
a,a0 w(a)w(a0)>. Similarly for a � 2 [0, 1] we have

Ln(⇡,�b+ (1� �)b0,⌃⇤) =
1

n
Tr

0

@A�1
b,b0,⌃⇤

X

a,a0

w(a)w(a0)>

1

A =
1

n
Tr
⇣
VA�1

b,b0,⌃⇤

⌘
.

Let the matrix Ab,b0,⌃⇤ be defined as

Ab,b0,⌃⇤ := �Ab,⌃⇤ + (1� �)Ab0,⌃⇤ .

Now observe that

Ab,b0,⌃⇤ = �Ab,⌃⇤ + (1� �)Ab0,⌃⇤ =
AX

a=1

(�b(a) + (1� �)b0(a)) ex(a)ex(a)>.

Also observe that this is a positive semi-definite matrix. Now using Lemma 1 from [Whittle, 1958] we can show
that

(�Ab,⌃⇤ + (1� �)Ab0,⌃⇤)
�1
� �A�1

b,⌃⇤
+ (1� �)A�1

b0,⌃⇤

for any positive semi-definite matrices Ab,Ab0 , and � 2 [0, 1]. Now taking the trace on both sides we get

Tr (�Ab,⌃⇤ + (1� �)Ab0,⌃⇤)
�1
� Tr�A�1

b,⌃⇤
+Tr(1� �)A�1

b0,⌃⇤
.

Now using Lemma 2 from Whittle [1958] we can show that

Tr (�VAb,⌃⇤ + (1� �)VAb0,⌃⇤)
�1
� Tr�VA�1

b,⌃⇤
+Tr(1� �)VA�1

b0,⌃⇤
.

for any positive semi-definite matrix V. This implies that

Ln(⇡,�b+ (1� �)b0,⌃⇤) < �Ln(⇡,b,⌃⇤) + (1� �)Ln(⇡,b
0,⌃⇤).

Hence, the loss function is convex.

Remark 1. (Bound on variance) We can use singular value decomposition of ⌃⇤ as ⌃⇤ = UDP> with
orthogonal matrices U,P> and D = diag (�1, . . . ,�d) where �i denotes a singular value. Then we can bound
x(a)>⌃⇤x(a) as

��x(a)>⌃⇤x(a)
�� =

��x(a)>UDP>x(a)
�� (a)
=
��u>Dp

�� 
��u>��max

i

|�i| kpk

(b)
= kx(a)kmax

i

|�i| kx(a)k = max
i

|�i| kx(a)k
2

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

where in (a) we have u = U>x(a), p = P>x(a) and (b) uses the fact that
��U>x(a)

�� = kx(a)k for any orthogonal

matrix U>. Similarly we can show that
��x(a)>⌃⇤x(a)

�� � mini |�i| kx(a)k
2. Let H2

L
 kx(a)k2  H2

U
for any

a 2 [A]. This implies that

min
i

|�i|H
2
L

| {z }
�
2
min

 min
i

|�i| kx(a)k
2
 x(a)>⌃⇤x(a)| {z }

�2(a)

 max
i

|�i| kx(a)k
2
 max

i

|�i|H
2
U

| {z }
�2
max

A.5 Loss Gradient is Bounded

Proposition 3. Let b,b0
2 4(A), so that Ab,⌃⇤ and Ab0,⌃⇤ are invertible and define V =

P
a,a0 w(a)w(a0)>.

Then the gradient of the loss function is bounded such that

krb(a)L(⇡,b,⌃⇤)�rb(a)L(⇡,b
0,⌃⇤)k2  C

where, the

C =
�d(V)H2

U

�2(a)
⇣
mina02A

b(a0)
�(a0)2�min

⇣P
A

a=1 w(a)w(a)>
⌘⌘2 +

�1(V)H2
U

�2(a)
⇣
mina02A

b0(a0)
�(a0)2�min

⇣P
A

a=1 w(a)w(a)>
⌘⌘2 .

Proof. Let b,b0
2 4(A), so that Ab,⌃⇤ and Ab0,⌃⇤ are invertible. Observe that the gradient of the loss is given

by

rb(a)L(⇡,b,⌃⇤) = rb(a)Tr

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A

(a)
 �1(V)rb(a)Tr(A

�1
b,⌃⇤

)

= ��1(V)Tr

✓✓
w(a)w(a)>

�2(a)

◆
A�2

b,⌃⇤

◆

= ��1(V)
1

�2(a)

���A�1
b,⌃⇤

w(a)
���
2

2

where, in (a) we denote V =
P

a,a0 w(a)w(a0)>. Similarly, the gradient of the loss is lower bounded by

rb(a)L(⇡,b,⌃⇤) � ��d(V)
1

�2(a)

���A�1
b,⌃⇤

w(a)
���
2

2

which yields a bound on the gradient di↵erence as

krb(a)L(⇡,b,⌃⇤)�rb0(a)L(⇡,b
0,⌃⇤)k2 

�����d(V)
1

�2(a)

���A�1
b,⌃⇤

w(a)
���
2

2
� �1(V)

1

�2(a)

���A�1
b0,⌃⇤

w(a)
���
2

2

����
2



�����d(V)
1

�2(a)

���A�1
b,⌃⇤

w(a)
���
2

2

����+
�����1(V)

1

�2(a)

���A�1
b0,⌃⇤

w(a)
���
2

2

���� .

So now we focus on the quantity

���A�1
b,⌃⇤

w(a)
���
2

2
 kA�1

b,⌃⇤
k
2
2kw(a)k22  kA

�1
b,⌃⇤
k
2
2H

2
U
.

Now observe that when b(a) 2 4(A) and initialized uniform randomly, then the optimization in (6) results in a
non-singular A�1

b,⌃⇤
if each action has been sampled at least once which is satisfied by SPEED. So now we need

to bound the minimum eigenvalue of Ab,⌃⇤
denoted as �min(Ab,⌃⇤

). Using Lemma 7 of Fontaine et al. [2021] we
have that for all b 2 4(A),

min
a2[A]

b(a)

�(a)2

AX

a=1

w(a)w(a)> 4
AX

a=1

b(a)

�(a)2
w(a)w(a)>.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

And finally

min
a2[A]

b(a)

�(a)2
�min

AX

a=1

w(a)w(a)>
!
 �min(Ab,⌃⇤)

This implies that

�min(A
�1
b,⌃⇤

) 
1

mina2[A]
b(a)
�(a)2�min

⇣P
A

a=1 w(a)w(a)>
⌘

Plugging everything back we get that

krb(a)L(⇡,b,⌃⇤)�rb0(a)L(⇡,b
0,⌃⇤)k2 

�d(V)H2
U

�2(a)
⇣
mina02A

b(a0)
�(a0)2�min

⇣P
A

a=1 w(a)w(a)>
⌘⌘2

+
�1(V)H2

U

�2(a)
⇣
mina02A

b0(a0)
�(a0)2�min

⇣P
A

a=1 w(a)w(a)>
⌘⌘2 .

The claim of the lemma follows.

A.6 Kiefer-Wolfowitz Equivalence

We now introduce a Kiefer-Wolfowitz type equivalence [Kiefer and Wolfowitz, 1960] for the quantity Tr(A�1
b⇤,⌃⇤

)
for optimal b⇤ 2 �(A) and co-variance matrix ⌃⇤ in Proposition 4.

Proposition 4. (Kiefer-Wolfowitz for PE-Optimal) Define the heteroscedastic design matrix as Ab,⌃⇤ =P
A

a=1 b(a)ex(a)ex(a)>. Assume that A ⇢ Rd is compact and span(A) = Rd. Then the following are equivalent:

(a) b⇤ is a minimiser of eg(b,⌃⇤) = Tr
⇣
A�1

b,⌃⇤

⌘
.

(b) b⇤ is a maximiser of f(b,⌃⇤) = log det (Ab,⌃⇤).

(c) eg (b⇤,⌃⇤) = d.

Furthermore, there exists a minimiser b⇤ of eg(b,⌃⇤) such that |Supp (b⇤)|  d(d+ 1)/2.

Proof. We follow the proof technique of Lattimore and Szepesvári [2020b]. Let b : A! [0, 1] be a distribution on
A so that

P
a2A b(a) = 1 and Ab,⌃⇤ 2 Rd⇥d and g(b) 2 R be given by

Ab,⌃⇤ =
AX

a=1

b(a)⇡2(a)��2(a) x(a)x(a)> =
AX

a=1

b(a)
⇡(a)x(a)

�(a)

✓
⇡(a)x(a)

�(a)

◆>

where, (a) follows by setting ex(a) = x(a)/�(a). First recall that for a square matrix A let adj (A) be the
transpose of the cofactor matrix of A. Use the facts that the inverse of a matrix A is A�1 = adj(A)>/ det(A)
and that if A : R! Rd⇥d, then

d

dt
det(A(t)) = Tr

✓
adj(A)

d

dt
A(t)

◆
.

It follows then that

rf(b,⌃⇤)b(a)
(a)
=

Tr
�
adj(Ab,⌃⇤)ex(a)ex(a0)>

�

det(Ab,⌃⇤)

=
ex(a)> adj(Ab,⌃⇤)ex(a0)

det(Ab,⌃⇤)

(b)
= ex(a)>A�1

b,⌃⇤
ex(a0) = eg(b)

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

where, in (a) we show the a-th component of f(b) when we di↵erentiate w.r.t to b(a), and (b) follows as
adj(Ab,⌃⇤)
det(Ab,⌃⇤)

= A�1
b,⌃⇤

. Also observe that

AX

a=1

b(a)kex(a)k2
A�1

b,⌃⇤

!
= Tr

AX

a=1

b(a)ex(a)ex(a0)>A�1
b,⌃⇤

!
= d. (11)

Hence, maxb log detAb,⌃⇤ is lower bounded by d as in average we have that

✓P
A

a=1 b(a)kex(a)k2A�1
b,⌃⇤

◆
= d.

(b)) (a): Suppose that b⇤ is a maximiser of f . By the first-order optimality criterion, for any b distribution on
A,

0 � hrf (b⇤,⌃⇤) ,b� b⇤i

�

AX

a=1

b(a)kex(a)k2
A�1

b⇤,⌃⇤
�

AX

a=1

b⇤(a)kex(a)k2A�1
b⇤,⌃⇤

!

�

AX

a=1

b(a)kex(a)k2
A�1

b⇤,⌃⇤
� d

!
.

For an arbitrary a 2 A, choosing b to be the Dirac at a 2 A proves that
P

A

a=1 kex(a)k2A�1
b⇤,⌃⇤

 d. Since eg(b) � d

for all b by (11), it follows that b⇤ is a minimiser of eg and that minb eg(b) = d.

(c) =) (b): Suppose that eg (b⇤) = d. Then, for any b,

hrf (b⇤,⌃⇤) ,b� b⇤i =

AX

a=1

b(a)kex(a)k2
A�1

b⇤,⌃⇤
� d

!
 0.

And it follows that b⇤ is a maximiser of f by the first-order optimality conditions and the concavity of f . This
can be shown as follows:

Let b be a Dirac at a and b(t) = b⇤ + t (b⇤ � b). Since b⇤(a) > 0 it follows for su�ciently small t > 0 that b(t)
is a distribution over A. Because b⇤ is a minimiser of f ,

0 �
d

dt
f(b(t),⌃⇤)

����
t=0

= hrf (b⇤,⌃⇤) ,b⇤ � bi = d�
AX

a=1

kex(a)k2
A�1

b,⌃⇤
.

We now show (a) =) (c). To prove the second part of the theorem, let b⇤ be a minimiser of eg, which by the
previous part is a maximiser of f . Let S = Supp (b⇤), and suppose that |S| > d(d+ 1)/2. Since the dimension
of the subspace of d⇥ d symmetric matrices is d(d+ 1)/2, there must be a non-zero function v : A ! R with
Supp(v) ✓ S such that

X

a2S

v(a)ex(a)ex(a)> = 0. (12)

Notice that for any ex(a) 2 S, the first-order optimality conditions ensure that
P

A

a=1 kex(a)k2A�1
b⇤,⌃⇤

= d. Hence

d
X

a2S

v(a) =
X

a2S

v(a)kex(a)k2
A�1

b⇤,⌃⇤
= 0,

where the last equality follows from (12). Let b(t) = b⇤+tv and let ⌧ = max {t > 0 : b(t) 2 PA}, which exists since
v 6= 0 and

P
a2S

v(a) = 0 and Supp(v) ✓ S. By (12), Ab(t),⌃⇤ = Ab⇤,⌃⇤ , and hence f(b(⌧),⌃⇤) = f (b⇤,⌃⇤),
which means that b(⌧) also maximises f . The claim follows by checking that | Supp(b(T))| < |Supp (b⇤)| and
then using induction.

Corollary 1. 1 From Proposition 4 we know that b⇤ is a minimizer for Tr(A�1
b,⌃⇤

) and Tr(A�1
b⇤,⌃⇤

) = d. This

implies that the loss is bounded at b⇤ as �d(V)d
n
 Ln(⇡,b⇤,⌃⇤) 

�1(V)d
n

where V =
P

a,a0 w(a)w(a0)>.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Proof. First recall that we can rewrite the loss for any arbitrary proportion b and co-variance ⌃⇤ as

Ln(⇡,b,⌃⇤) =
1

n

0

@
X

a,a0

w(a)>A�1
b,⌃⇤

w(a0)

1

A =
1

n

0

@A�1
b,⌃⇤

X

a,a0

w(a)w(a0)>

1

A =
1

n

⇣
A�1

b,⌃⇤
V
⌘
.

From [Fang et al., 1994] we know that for any positive semi-definite matrices A�1
b,⌃⇤

and V we have that

�d(V)Tr(A�1
b,⌃⇤

)  Tr(VA�1
b,⌃⇤

)  �1(V)Tr(A�1
b,⌃⇤

)

where �i(V) is the i th largest eigenvalue of V. Now from Proposition 4 we know that for b⇤ is a minimizer for
Tr(A�1

b,⌃⇤
) and Tr(A�1

b⇤,⌃⇤
) = d. This implies that the loss is bounded at b⇤ as

�d(V)Tr(A�1
b⇤,⌃⇤

)  Tr(VA�1
b⇤,⌃⇤

)  �1(V)Tr(A�1
b⇤,⌃⇤

) =)
�d(V)d

n
 Ln(⇡,b⇤,⌃⇤) 

�1(V)d

n
.

The claim of the corollary follows.

Remark 2. Note that the estimator b✓n is an unbiased estimator of ✓⇤. Recall that

b✓n := argmin
✓

nX

t=1

1
�2(at)

(rt � x(at)
>✓)2

where, at is the action sampled at timestep t. Define the diag(⌃n) = [�2(a1),�2(a2), . . . ,�2(an)], Rn =
[r1, r2, . . . , rn]> 2 Rn⇥1 be the n rewards observed and ⌘ 2 Rn⇥1 is the noise vector, where a1, a2, . . . , an are the
actions pulled at time t = 1, 2, . . . , n. Then it can be shown that

E
h
b✓n
i
� ✓⇤ = E

h�
X>

n
⌃�1

n
Xn

��1
X>

n
⌃�1

n
Rn

i
� ✓⇤

= E
h�
X>

n
⌃�1

n
Xn

��1
X>

n
⌃�1

n
(Xn✓⇤ + ⌘)

i
� ✓⇤

= E
h�
X>

n
⌃�1

n
Xn

��1
X>

n
⌃�1

n
Xn✓⇤

i
+ E

h�
X>

n
⌃�1

n
Xn

��1
X>

n
⌃�1

n
⌘
i
� ✓⇤

= ✓⇤ +
�
X>

n
⌃�1

n
Xn

��1
X>

n
⌃�1

n
E [⌘]� ✓⇤

(a)
= 0

where, (a) follows as noise is zero mean.

B Bandit Regret Proofs

B.1 Loss of Bandit Oracle

Proposition 5. (Bandit Oracle MSE) Let the oracle sample each action a for dnb⇤(a)e times, where b⇤ is
the solution to (3). Define �1(V) as the maximum eigenvalue of V :=

P
a,a0 w(a)w(a0)>. Then the loss satisfies

L
⇤
n
(⇡,b⇤,⌃⇤)  O2,H2

U

✓
d�1(V) log n

n

◆
+O2,H2

U

✓
1

n

◆
.

Proof. Recall the matrix Xn = [x1,x2, . . . ,xn]> 2 Rn⇥d are the observed features for the n samples taken. Let
Rn = [r1, r2, . . . , rn]> 2 Rn⇥1 be the n rewards observed and ⌘ 2 Rn⇥1 is the noise vector. Then using weighted
least square estimates we have

b✓n := argmin
✓

nX

t=1

1

�2(at)
(rt � x(at)

>✓)2

where, in (a) we at is the action sampled at timestep t. Recall that the diag(⌃n) = [�2(a1),�2(a2), . . . ,�2(an)],
where a1, a2, . . . , an are the actions pulled at time t = 1, 2, . . . , n. We have that:

b✓n � ✓⇤ = (X>
n
⌃�1

n
Xn)

�1X>
n
⌃�1

n
⌘

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

where the noise vector ⌘ ⇠ SG(0,⌃n) where ⌃n 2 Rn⇥n. For any z 2 Rd we have

z>(b✓n � ✓⇤) = z>(X>
n
⌃�1

n
Xn)

�1X>
n
⌃�1

n
⌘.

Let b⇤ be the PE-Optimal design for A defined in (3). Then the oracle pulls action a 2 A exactly dnb⇤e times

for some n > d(d+ 1)/2 and computes the least square estimator b✓n. Observe that

AX

a=1

w(a)>(b✓n � ✓⇤) ⇠ SG

0

@0,
X

a,a0

w(a)>(X>
n
⌃�1

n
Xn)

�1w(a0)

1

A .

So
⇣P

A

a=1 w(a)>(b✓n � ✓⇤)
⌘2
⇠ SE

⇣
0,
P

a,a0 w(a)>(X>
n
⌃�1

n
Xn)�1w(a0)

⌘
where SE denotes the sub-exponential

distribution. Denote the quantity

t :=

s
2
X

a,a0

w(a)>(X>
n
⌃�1

n Xn)�1w(a0) log(1/�).

Now using sub-exponential concentration inequality in Lemma 4, setting

⌫2 =
X

a,a0

w(a)>(X>
n
⌃�1

n
Xn)

�1w(a0),

and ↵ = ⌫, we can show that

P

0

@

AX

a=1

w(a)>(b✓n � ✓⇤)

!2

> t

1

A  �, if t 2 (0, 1]

P

0

@

AX

a=1

w(a)>(b✓n � ✓⇤)

!2

> t2

1

A  �, if t > 1.

Combining the above two we can show that

P

0

@

AX

a=1

w(a)>(b✓n � ✓⇤)

!2

> min{t, t2}

1

A  �, 8t > 0.

Further define matrix ⌃n 2 Rd⇥d as ⌃
�1
n

:= (X>
n
⌃�1

n
Xn)�1. This means that we have with probability (1� �)

that

AX

a=1

w(a)>(b✓n � ✓⇤)

!2

min

8
<

:

s
2
X

a,a0

w(a)>⌃
�1
n

w(a0) log(1/�), 2
X

a,a0

w(a)>⌃
�1
n

w(a0) log(1/�)

9
=

;

(a)
= min

⇢s
2

n

X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0) log(1/�),
2

n

X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0) log(1/�)

�

(b)
 min

(r
8d�1(V) log(1/�)

n
,
8d�1(V) log(1/�)

n

)

and we have taken at most n pulls such that n > d(d+1)
2 pulls. Here (a) follows as nAb⇤,⌃⇤

= ⌃
n
and observing

that oracle has access to ⌃⇤, and optimal proportion b⇤. The (b) follows from applying Corollary 1 such thatP
a,a0 w(a)>A�1

b⇤,⌃⇤
w(a0)  d�1(V) where V =

P
a,a0 w(a)w(a0)>. Thus, for any � 2 (0, 1) we have

P

0

@

8
<

:

AX

a=1

ex(a)>(b✓n � ✓⇤)

!2

> min

(r
8d�1(V) log(1/�)

n
,
8d�1(V) log(1/�)

n

)9=

;

1

A  �. (13)

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Define the good event ⇠�(n) as follows:

⇠�(n) :=

8
<

:

AX

a=1

ex(a)>(b✓n � ✓⇤)

!2

 min

(r
8d�1(V) log(1/�)

n
,
8d�1(V) log(1/�)

n

)9=

; .

Then the loss of the oracle following PE-Optimal b⇤ is given by

L
⇤
n
(⇡,b⇤,⌃⇤) = ED

2

4

AX

a=1

w(a)>
⇣
b✓n � ✓⇤

⌘!2
3

5

 ED

2

4

AX

a=1

w(a)>
⇣
b✓n � ✓⇤

⌘!2

⇠�(n)

3

5+ ED

2

4

AX

a=1

w(a)>
⇣
b✓n � ✓⇤

⌘!2

⇠c
�
(n)

3

5

(a)
 ED

2

4

AX

a=1

w(a)>
⇣
b✓n � ✓⇤

⌘!2

⇠�(n)

3

5+
nX

t=1

AH2
U
2P(⇠c

�
(n))

(b)
 min

(r
8d�1(V) log(1/�)

n
,
8d�1(V) log(1/�)

n

)
+

nX

t=1

AH2
U
2P(⇠c

�
(n))

(c)
 min

(r
16d�1(V) log n

n
,
16d�1(V) log n

n

)
+O2,H2

U

✓
1

n

◆


48d�1(V) log n

n
+O2,H2

U

✓
1

n

◆

where, (a) follows as the noise ⌘2  2 and
P

a
kx(a)k2  AH2

U
which implies

ED

2

4

AX

a=1

w(a)>
⇣
b✓n � ✓⇤

⌘!2
3

5  nAH2
U
2.

The (b) follows from (13), and (c) follows by setting � = 1/n3, and noting that n > A.

B.2 OLS-WLS Concentration Lemma

Lemma 6. (Concentration Lemma) After � samples of exploration, we can show that P (⇠var
�

(�)) � 1� 8�
where, C > 0 is a constant.

Proof. We observed (xt, rt) 2 Rd
⇥ R, i = 1, . . . ,� from the model

rt = x>
t
✓⇤ + ⌘t, (14)

⌘t ⇠ SG(0,x>
t
⌃⇤xt), (15)

where ✓⇤ 2 Rd and ⌃⇤ 2 Rd⇥d are unknown.

Given an initial estimate b✓� of ✓⇤, we first compute the squared residual yt :=
⇣
x>
t
b✓� � rt

⌘2
, and then obtain an

estimate of ⌃⇤ via

min
S2Rd⇥d

�X

t=1

�⌦
xtx

>
t
,S
↵
� yt

�2
. (16)

Observe that if b✓� = ✓⇤, then the expectation of the squared residual yt is

E [yt] = E
h�
x>
t
✓⇤ � rt

�2i
= E

⇥
⌘2
t

⇤
= x>

t
⌃⇤xt =

⌦
xtx

>
t
,⌃⇤

↵
,

which is a linear function of ⌃⇤. The program (16) is thus a least square formulation for estimating ⌃⇤.

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Let Xt := xtx>
t
. Below we abuse notation and view ⌃⇤, b⌃�,Xt,S as vectors in Rd

2

endowed with the trace

inner product h·, ·i. Let X 2 R�⇥d
2

have rows {Xt} , and y = (y1, . . . , y�)> 2 R�. Suppose xt can only take
on M possible values from {�1, . . . ,�M} , so Xt 2 {�1, . . . ,�M}, where �m := �m�>

m
. Note that for the forced

exploration setting we have M = d < A. Moreover, each value appears exactly �/M times. Then (16) can be
rewritten as

min
S2Rd2

MX

m=1

X

t:Xt=�m

(h�m,Si � yt)
2 = min

S2Rd2

MX

m=1

h�m,Si �

1

�/M

X

t:Xt=�m

yt

!2

.

Let zm := 1
�/M

P
t:Xt=�m

yt. Then it becomes

min
S2Rd2

MX

m=1

(h�m,Si � zm)2 = min
S2Rd2

k�S� zk22 ,

where � 2 Rm⇥d
2

has rows {�m} , and z := (z1, . . . , zm)> 2 R/M . Note that {�m} may or may not span Rd
2

.

Observe that b⌃� be an optimal solution to the above problem. Then

����(b⌃� �⌃⇤)
���
2

2
+ k�⌃⇤ � zk22 + 2

D
�(b⌃� �⌃⇤),�⌃⇤ � z

E
=
����b⌃� � �⌃⇤ + �⌃⇤ � z

���
2

2

=
����b⌃� � z

���
2

2
 k�⌃⇤ � zk22 .

Hence, we can show that

����(b⌃� �⌃⇤)
���
2

2
 �2

D
�(b⌃� �⌃⇤),�⌃⇤ � z

E

(a)
 2

����(b⌃� �⌃⇤)
���
2
k�⌃⇤ � zk2 .

where, (a) follows from Cauchy Schwarz inequality. So
����(b⌃� �⌃⇤)

���
2
 2 k�⌃⇤ � zk2 .

Observe that the RHS does not contain the b⌃� anymore. Note that the m-th entry of �⌃⇤ � z is

h�m,⌃⇤i � zm = �>
m
⌃⇤�m �

1

�/M

X

t:Xt=�m

yt.

Let ⇣� := b✓� � ✓⇤ where b✓� is the estimation of ✓⇤ after � =
p
n rounds of exploration. The noise ⌘t is �2

t

sub-Gaussian. Then

yt =
⇣
x>
t
b✓t � rt

⌘2

= (⌘t + x>
t
⇣�)

2

= ⌘2
t
+ 2⌘tx

>
t
⇣� +

�
x>
t
⇣�
�2

= x>
t
⌃⇤xt + ✏t = h⌃⇤,xtx

>
t
i+ ✏t

(a)
= he✓⇤, zti+ ✏t

where, in (a) we denote the e✓⇤ 2 Rd
2

as the vector reshaping ⌃⇤ and zt 2 Rd
2

is the vector reshaping xtx>
t
. This

shows that the feedback yt is linear. Now we need to show that ✏t is sub-exponential. We proceed as follows: We
have that

✏t := yt � x>
t
⌃⇤xt = ⌘2

t
� E[⌘2

t
]| {z }

Part A

+2⌘tx
>
t
⇣�| {z }

Part B

+
�
x>
t
⇣�
�2

| {z }
Part C

The goal is to prove that P(✏t > E[✏t] + s)  exp(�s/2�2
max) for some s 2 R.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

For part A, we know that the ⌘2
t
is a sub-exponential random variable with ⌘2

t
⇠ SE(⌫,↵) where ⌫ = 4�2

t

p
2,↵ =

4�2
t
, and �2

t
= x>

t
⌃⇤xt. This follows from Equation 37 in Appendix B of Honorio and Jaakkola [2014]. It shows

that if X is a centered sub-Gaussian random variable with sub-Gaussian parameter �2 then X2 is sub-exponential
with parameters ⌫ = 4�2

p
2,↵ = 4�2.

From Lemma 4 we know that

P
�
⌘2
t
� E[⌘2

t
] + 8�2

t
log(A/�)

�
 exp

✓
�
1

2
min

⇢
8�2

t
log(A/�)

4�2
t

,
64�4

t
log2(A/�)

32�4
t

�◆
= exp (� log(A/�)) .

Hence, ⌘2
t
 4�2

t

p
2 + 8�2

t
log(A/�)  16�2

max log(A/�) with probability (1� �) as E[⌘2
t
] = ⌫. Equivalently we can

write that

P
�
⌘2
t
� E[⌘2

t
] + 16�2

t
log(A/�)

�
 exp

✓
�

s21
16�2

max

◆
= exp

✓
�

s21
2c0�2

max

◆
. (17)

where s1 =
p
2c0�2

max log(A/�) and c0 > 0 is a constant.

For part C we proceed as follows:

(x>
t
(b✓� � ✓⇤))

2
 (x>x)kb✓� � ✓⇤k

2
 (x>x)

MSE(X(b✓� � ✓⇤))

�min


H2

U

�min�

�
8 log(6)�2

maxr + 8�2
max log(1/�)

�


2c
00
�2
maxd

2 log(A/�)

�

The first inequality follows by Cauchy Schwarz and the second by Remark 2.3 of Rigollet and Hütter [2015].
Therefore it follows that

P

(x>

t
(b✓� � ✓⇤))

2
�

2c
00
�2
maxd

2 log(A/�)

�

!
 �.

Assuming � > d2 we can also show that

P
⇣
(x>

t
(b✓� � ✓⇤))

2
� 2c

00
�2
max log(A/�)

⌘
 �

which drops the dependence on � and d. Equivalently we can write that

P
⇣
(x>

t
(b✓� � ✓⇤))

2
� 2c

00
�2
max log(A/�)

⌘
 exp

✓
�

s23
2c00�2

max

◆
. (18)

where s3 =
p
2c00�2

max log(A/�).

For part B we proceed as follows:

2 ⌘t|{z}
a

x>
t

⇣
b✓� � ✓⇤

⌘

| {z }
b

(a)
 2⌘2

t
+

1

2

⇣
x>
t

⇣
b✓� � ✓⇤

⌘⌘2

where, (a) follows as 2ab  2a2 + 1
2b

2. It follows then that

P
⇣
2⌘tx

>
t

⇣
b✓� � ✓⇤

⌘
� s21 + s33

⌘ (a)
 P

✓
2⌘2

t
+

1

2
(x>

t

⇣
b✓� � ✓⇤

⌘
)2 > s21 + s23

◆

 P
�
2⌘2

t
> s21 + s23

�
+ P

✓
1

2
(x>

t

⇣
b✓� � ✓⇤

⌘
)2 > s21 + s23

◆

= P
✓
⌘2
t
>

s21 + s23
2

◆
+ P

⇣
(x>

t

⇣
b✓� � ✓⇤

⌘
)2 > 2(s21 + s23)

⌘

(b)
 P

✓
⌘2
t
>

s21 + s23
2

◆
+ P

✓
(x>

t

⇣
b✓� � ✓⇤

⌘
)2 >

s21 + s23
2

◆

(c)
 P

✓
⌘2
t
>

s21
2

◆
+ P

✓
(x>

t

⇣
b✓� � ✓⇤

⌘
)2 >

s23
2

◆

(d)
 exp

✓
�

s21
c0�2

max

◆
+ exp

✓
�

s23
c00�2

max

◆

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

where, (a) follows as LHS 2⌘2
t
+ 1

2 (x
>
t

⇣
b✓� � ✓⇤

⌘
)2 > 2⌘tx>

t

⇣
b✓� � ✓⇤

⌘
(that is LHS is larger). The (b) follows as

RHS s
2
1+s

2
3

2 < 2(s21 + s23) and (c) follows as RHS s
2
1+s

2
3

2 < s
2
1
2 (that is RHS is smaller). The (d) follows from (17),

and (18).

We now estimate the expectation of ✏t. Observe that for � > d2 we have that

E⌘,⇣ [✏t] = E⌘,⇣

h
⌘2
t
� E⌘[⌘

2
t
] + 2⌘tx

>
t
⇣� +

�
x>
t
⇣�
�2i

= E⌘[⌘
2
t
]� E⌘,⇣ [E⌘[⌘

2
t
]] + 2E⌘,⇣ [⌘tx

>
t
⇣�] + E⇣ [

�
x>
t
⇣�
�2
]

� 2E⌘,⇣ [⌘tx
>
t
⇣�] + E⇣ [

�
x>
t
⇣�
�2
] �

�2
maxd

�
.

Similarly we can get an upper bound to E[✏t] for � > d2 as follows:

E⌘,⇣ [✏t] = E⌘,⇣

h
⌘2
t
� E⌘[⌘

2
t
] + 2⌘tx

>
t
⇣� +

�
x>
t
⇣�
�2i (a)
 2E⌘[⌘

2
t
] +

1

2
E⇣ [
�
x>
t
⇣�
�2
] + E⇣ [

�
x>
t
⇣�
�2
]

 2E⌘[⌘
2
t
] +

2c
00
�2
maxd

2 log(A/�)

�

(b)
 16�2

max +
2c

00
�2
maxd

2 log(A/�)

�

where, (a) follows for 2ab  2a2 + 1
2b

2, (b) follows as E[⌘2
t
] = ⌫  8�2

max.

Define s2 = (s21 + s23). Then combining Part A, B and C it follows that

P(✏t � s2) = P(⌘2
t
+ 2⌘tx

>
t
⇣� +

�
x>
t
⇣�
�2
� s2)  P(⌘2

t
� s2) + P(2⌘tx>

t
⇣� � s2) + P(

�
x>
t
⇣�
�2
� s2)

(a)
 P(⌘2

t
� s21) + P(2⌘tx>

t
⇣� � s21 + s23) + P(

�
x>
t
⇣�
�2
� s23)

 2 exp

✓
�

s21
c0�2

max

◆
+ 2 exp

✓
�

s23
c00�2

max

◆
(19)

where (a) follows as RHS s21 < s2, and s23 < s2 (that is the RHS is smaller). Let there be some constant C > 0
such that s2/C < max{s21/c

0, s23/c
00
}. Then it follows that

P(✏t � E[✏t] + s2)
(a)
 P

✓
✏t �

�2
maxd

�
+ s2

◆
 P(✏t � s2)  4 exp

✓
�

s2

C�2
max

◆
.

where, (a) as the RHS E[✏t] � �
2
maxd

� is smaller. This shows that ✏t is a sub-exponential random variable using
Lemma 4. Then using Lemma 4 and � > d2 we can show that

P
✓
✏t � E[✏t] +

Cd2�2
max log(A/�)

�

◆
 4 exp

✓
�
Cd2�2

max log(A/�)

C��2
max

◆
 4

�

A
.

This implies that ✏t  E[✏t] +
Cd2�2

max log(A/�)

�
 16�2

max +
2Cd2�2

max log(A/�)

�
with probability greater than

1� 4 �

A
.

Combining all of the steps above we can show that

P

h�m,⌃⇤i � zm >

d
p
n

X

t:Xt=�m

✓
16�2

max +
2Cd2�2

max log(A/�)

�

◆!

(a)
= P

✓
h�m,⌃⇤i � zm >

✓
16�2

max +
2Cd2�2

max log(A/�)

�

◆◆

(b)
 P

✓
h�m,⌃⇤i � zm >

2Cd2�2
max log(A/�)

�

◆
 4�/A,

where, (a) follows by setting � =
p
n and M = d < A and noting that the m-th row consist of

p
n/d entries. The

(b) follows as the Hence the above implies that

P
✓
x(a)> b⌃�x(a)� x(a)>⌃⇤x(a) �

2Cd2�2
max log(A/�)

�

◆
 4�/A.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Similarly, we can bound the other tail inequality as

P
✓
x(a)> b⌃�x(a)� x(a)>⌃⇤x(a)  �

2Cd2�2
max log(A/�)

�

◆
 4�/A.

Hence we can show by union bounding over all actions A > d that

P
✓
8a,
���x(a)>

⇣
b⌃� �⌃⇤

⌘
x(a)

��� �
2Cd2�2

max log(A/�)

�

◆
 2A

4�

A
= 8�.

The claim of the lemma follows.

Lemma 7. (Operator Norm Concentration Lemma) We have that

P
✓
kb⌃� �⌃⇤k �

2Cd2�2
max�

�1
min(Y) log(A/�)

�

◆
 8�

for a constant C > 0.

Proof. Define the set of actions Z such that it has a span over X and XX>. Define the vector y(a) = x(a)x(a)> 2

Rd
2

. Also observe that |Z| = d2. Without loss of generosity, we assume that Z = {1, 2, . . . , d2}. Now define the

matrix Y 2 Rd
2⇥d

2

such that

Y = [y(1),y(2), . . . ,y(|Z|)]

We further assume that the �min(Y) > 0. We already have from Lemma 1 that

P
✓
8a 2 A,

���x(a)>(b⌃� �⌃⇤)x(a)
��� 

2Cd2�2
max log(A/�)

�

◆
� 1� 8�

(a)
=) P

✓
8a 2 Z,

���hb⌃�,y(a)i � h⌃⇤,y(a)i
��� 

2Cd2�2
max log(A/�)

�

◆
� 1� 8�.

where, (a) follows by the fact that Z ⇢ A. Now take an arbitrary vector x in unit ball such that kxk2  1. Now

we define the vector y = xx> such that y 2 Rd
2

. Then following Assumption 2 we have that

xx> = y =
X

a2Z
↵(a)y(a) = ↵Y

(a)
=) ↵ = Y�1y

where, in (a) we can take the inverse because �min(Y) > 0. Now we want to bound

kb⌃� �⌃⇤k =
���x>

⇣
b⌃� �⌃⇤

⌘
x
��� =

���hb⌃� �⌃⇤,yi
��� 

2Cd2�2
max log(A/�)

�

���������

X

a

↵(a)

| {z }
↵

���������

=
2Cd2�2

max log(A/�)

�
kY�1yk


2Cd2�2

max log(A/�)

�
kY�1

kkxk2


2Cd2�2

max�
�1
min(Y) log(A/�)

�
.

The claim of the lemma follows.

Corollary 2. For, n � 4C2d2�2
max log

2(A/�)/�2
min, we have that with probability at least 1� 8�, the following

holds: for all action a,
�2(a)

b�2
�(a)

 1 + 4Cd
2
�
2
max log(A/�)
�
2
min�

.

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Proof. From the Lemma 1, we know that
���x(a)>(b⌃� �⌃⇤)x(a)

���  2Cd
2 log(A/�)

� with probability at least 1� 8�.

Hence we can show that

|b�2
�(a)� �2(a)| 

2Cd2�2
max log(A/�)

�
=) �2(a)�

2Cd2�2
max log(A/�)

�
 b�2

�(a)  �2(a) +
2Cd2�2

max log(A/�)

�

=) 1�
2Cd2�2

max log(A/�)

�2(a)�

b�2
�(a)

�2(a)
 1 +

2Cd2�2
max log(A/�)

�2(a)�

=) 1�
2Cd2�2

max log(A/�)

�2
min�


b�2
�(a)

�2(a)
 1 +

2Cd2�2
max�

2
max log(A/�)

�2
min�

=)
1

1 + 2Cd2�2
max log(A/�)
�
2
min�


�2(a)

b�2
�(a)


1

1� 2Cd2�2
max log(A/�)
�
2
min�

.

It follows then that

�2(a)

b�2
�(a)


1

1� 2Cd2�2
max log(A/�)
�
2
min�

(a)
 1 +

4Cd2�2
max log(A/�)

�2
min�

where, (a) follows for x = 2Cd
2
�
2
max log(A/�)
�
2
min�

and

1

1� x
 1 + 2x =) 1  1 + x� 2x2 =) x(1� 2x) � 0

which holds for x = 2Cd
2
�
2
max log(A/�)
�
2
min�


1
2 . For n � 4C2d2�2

max log
2(A/�)/�2

min we can show that x  1
2 . The

claim of the corollary follows.

B.3 Bounding the Loss of Algorithm 1

Proposition 6. (Loss of Algorithm 1, formal) Let bb be the empirical PE-Optimal design followed by

Algorithm 1 and it samples each action a as dnbb(a)e times. Then the MSE of Algorithm 1 for for n �
2Cd

2
�
2
max log(A/�)
�
2
min�

is given by

Ln(⇡, bb, b⌃�)  O2,H2
U

✓
d3�1(V) log n

�2
minn

◆

| {z }
PE-Optimal MSE

and exploration error

+O2,H2
U

✓
d2�1(V) log n

n3/2

◆

| {z }
Approximation error

+ O2,H2
U

✓
1

n

◆

| {z }
Failure event MSE

.

Proof. Recall that the b⌃� be the empirical co-variance after � timesteps. Then Algorithm 1 pulls each action

a 2 A exactly
l
(n� �)bb(a)

m
times for some

p
n > A and computes the least squares estimator b✓n. Recall

that the estimate b✓n only uses the (n� �) data sampled under bb. Also recall we actually use b⌃� as input for
optimization problem (3), where � =

p
n. We first define the good event ⇠�(n� �) as follows:

⇠�(n� �) :=

⇢ AX

a=1

w(a)>(b✓n�� � ✓⇤)

!2

 min

⇢r
(8d�1(V) + ↵0 + ↵) log(1/�)

n� �
,

(8d�1(V) + ↵0 + ↵) log(1/�)

n� �

��

where, ↵0, and ↵ will be defined later. Also, define the good variance event as follows:

⇠var
�

(�) :=

⇢
8a,
���x(a)>

⇣
b⌃� �⌃⇤

⌘
x(a)

��� <
2Cd2�2

max log(A/�)

�

�
. (20)

Then we can bound the loss of the SPEED as follows:

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Ln(⇡, bb, b⌃�) = ED

2

4

AX

a=1

w(a)>
⇣
b✓n�� � ✓⇤

⌘!2
3

5

= ED

2

4

AX

a=1

w(a)>
⇣
b✓n�� � ✓⇤

⌘!2

I{⇠�(n� �)}I{⇠var
�

(�)}

3

5+ ED

2

4

AX

a=1

w(a)>
⇣
b✓n�� � ✓⇤

⌘!2

I{⇠c
�
(n� �)}

3

5

+ ED

2

4

AX

a=1

w(a)>
⇣
b✓n�� � ✓⇤

⌘!2

I{(⇠var
�

(�))c}

3

5 . (21)

Now we bound the first term of the (21). Note that using weighted least square estimates we have

b✓n��
(a)
= b✓n := argmin

✓

nX

t=�+1

1

�2(at)
(rt � x(at)

>✓)2

where, in (a) we at is the action sampled at timestep t. Recall that the diag(b⌃�) = [b�2
�(a1), b�2

�(a2), . . . , b�2
�(an)],

where a1, a2, . . . , an�� are the actions pulled at time t = �+ 1, 2, . . . , n. We have that:

b✓n�� = (X>
n��

b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� Rn = (X>

n��
b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� (Xn��✓⇤ + ⌘)

b✓n�� � ✓⇤ = (X>
n��

b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� ⌘

where the noise vector ⌘ ⇠ SG(0,⌃n��) where diag(⌃n) = [�2(a1),�2(a2), . . . ,�2(an��)]. For any z :=P
a
w(a) 2 Rd we have

z>(b✓n�� � ✓⇤) = z>(X>
n��

b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� ⌘. (22)

It implies from (22) that

⇣
z>(b✓n�� � ✓⇤)

⌘2
⇠ SE

⇣
0, z>(X>

n��
b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� E

⇥
⌘⌘>

⇤ b⌃�1
� Xn��(X

>
n��

b⌃�1
� Xn��)

�1z
⌘

(23)

where SE denotes the sub-exponential distribution. Hence to bound the quantity
⇣
z>(b✓n�� � ✓⇤)

⌘2
we need to

bound the variance. We first begin by rewriting the loss function for n � 2Cd
2
�
2
max log(A/�)
�
2
min�

as follows

E
⇣

z>(b✓n�� � ✓⇤)
⌘2�

= z>(X>
n��

b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� E

⇥
⌘⌘>

⇤ b⌃�1
� Xn��(X

>
n��

b⌃�1
� Xn��)

�1z

(a)
= z>(X>

n��
b⌃�1
� Xn��)

�1X>
n��

b⌃�1
� ⌃n

b⌃�1
� Xn��(X

>
n��

b⌃�1
� Xn��)

�1z

= z>(X>
n��

b⌃�1
� Xn��)

�1X>
n��

b⌃� 1
2

�
b⌃� 1

2
� ⌃n

b⌃� 1
2

�
b⌃� 1

2
� Xn��(X

>
n��

b⌃�1
� Xn��)

�1z

(b)
= z>(X>

n��
b⌃�1
� Xn��)

�1X>
n��

b⌃� 1
2

�| {z }
m>2Rn��

b⌃� 1
2

� ⌃n
b⌃� 1

2
�
b⌃� 1

2
� Xn��(X

>
n��

b⌃�1
� Xn��)

�1z
| {z }

m2Rn��

(c)
 z>(X>

n��
b⌃�1
� Xn��)

�1X>
n��

b⌃�1/2
�

⇣⇣
1 + 2C�,�2

min
(�)
⌘
In
⌘
b⌃�1/2
� Xn��(X

>
n��

b⌃�1
� Xn��)

�1z

(d)
=
⇣
1 + 2C�,�2

min
(�)
⌘
z>(X>

n��
b⌃�1
� Xn��)

�1z (24)

where, (a) follows as E
⇥
⌘⌘>

⇤
= ⌃n, in (b) m is a vector in Rn��. The (c) follows by first observing that

b⌃� 1
2

� ⌃n
b⌃� 1

2
� = b⌃�1

� ⌃n = diag(b⌃�1
� ⌃n) =


�2(I1)

b�2
�(I1)

,
�2(I2)

b�2
�(I2)

, . . . ,
�2(In)

b�2
�(In)

�
.

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Then note that using Corollary 2 we have

�2(It)

b�2
�(It)

 1 + 2 ·
2Cd2�2

max log(A/�)

�2
min�| {z }

:= C�,�2
min

(�)

for each t 2 [n], and (d) follows as 1 + 2C�,�2
min

(�) is not a random variable. Let bb⇤ be the empirical PE-Optimal

design returned by the approximator after it is supplied with b⌃�. Now observe that the quantity of the samples
collected (following bb⇤) after exploration is as follows:

⇣
eX>

n��
b⌃�1
�
eXn��

⌘�1
=

X

a

l
(n� �)bb⇤(a)b��2

� (a)
m
w(a)w(a)>

!�1

=
1

n� �
A�1

bb⇤,b⌃�
.

Hence we use the loss function

L
0
n��(⇡, bb, b⌃�) :=

⇣
1 + 2C�,�2

min
(�)
⌘
z>(eX>

n��
b⌃�1
�
eXn��)

�1z =

⇣
1 + 2C�,�2

min
(�)
⌘

n� �

X

a,a0

w(a)>A�1
bb⇤,b⌃�

w(a0).

(25)

Also recall that we define

Ln(⇡,b⇤, b⌃�) =
1

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0).

So to minimize the quantity E
⇣P

a
w(a)>(b✓n�� � ✓⇤)

⌘2�
is minimizing the quantity

⇣
1+2C�,�2

min
(�)

⌘

n��

P
a,a0 w(a)>A�1

bb⇤,b⌃�
w(a0). Further recall that we can show that from Assumption 3 (ap-

proximation oracle) and Kiefer-Wolfowitz theorem in Corollary 1 that for the proportion b⇤ and any arbitrary

positive semi-definite matrix b⌃� the following holds

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0) = Tr

0

@
X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

1

A = Tr

✓
A�1

b⇤,b⌃�

X

a,a0

w(a)w(a0)>

| {z }
V

◆

= Tr
⇣
A�1

b⇤,b⌃�
V
⌘
 d�1(V). (26)

Then we can decompose the loss as follows:

L
0
n��(⇡, bb, b⌃�) = L

0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�) + L

0
n��(⇡, bb⇤, b⌃�)

= L
0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�)| {z }

Approximation error

+L
0
n��(⇡, bb⇤, b⌃�)� Ln(⇡,b⇤, b⌃�)| {z }

Comparing two di↵ loss

+Ln(⇡,b⇤, b⌃�). (27)

For the approximation error we need access to an oracle (see Assumption 3) that gives ✏ approximation error.
Then setting ✏ = 1p

n
we have that

L
0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�) =

⇣
1 + 2C�,�2

min
(�)
⌘

n� �
Tr

0

@
X

a,a0

w(a)>A�1
bb,b⌃�

w(a0)�
X

a,a0

w(a)>A�1
bb⇤,b⌃�

w(a0)

1

A

| {z }
✏

(a)
 O2,H2

U

✓
d2�2

max log(A/�)

n3/2

◆
(28)

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

where, (a) follows by setting � =
p
n, ✏ = 1/

p
n and C�,�2

min
(�) = 2Cd

2
�
2
max log(A/�)
�
2
min�

= 2Cd
2
�
2
max log(A/�)
�
2
min

p
n

. Let

us define K1 := Tr(
P

a,a0 w(a)>A�1
bb⇤,b⌃�

w(a0)), and K2 := Tr(w(a)>A�1
b⇤,b⌃�

w(a0)). For the second part of

comparing the two losses we can show that

L
0
n��(⇡, bb⇤, b⌃�)� Ln(⇡,b⇤, b⌃�) =

1

(n� �)
Tr
⇣⇣

1 + 2C�,�2
min

(�)
⌘
K1

⌘
�

1

n
K2

=
(1 + 2C�,�2

min
(�))K1

n� �
�

(1 + 2C�,�2
min

(�))K2

n� �
+

(1 + 2C�,�2
min

(�))K2

n� �
�

1

n
K2

=
(1 + 2C�,�2

min
(�))

n� �
(K1 �K2) +

2C�,�2
min

(�)K2

n� �
+

1

n� �
K2 �

1

n
K2

(a)
=

�

n(n� �)
Tr

0

@
X

a,a0

w(a)>A�1
bb⇤,b⌃�

w(a0)�
X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

1

A

| {z }
0

+
2C�,�2

min
(�)

n� �
Tr

0

@
X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

1

A+
�

n(n� �)
Tr

0

@
X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

1

A

(b)
 O2,H2

U

✓
d3�2

max�1(V) log(A/�)

�2
minn

3/2

◆
(29)

where, (a) follows by substituting the definition of K1 and K2. The (b) follows by setting � =
p
n, C�,�2

min
(�) =

2Cd
2
�
2
max log(A/�)
�
2
min�

= 2Cd
2
�
2
max log(A/�)
�
2
min

p
n

, and Tr
⇣P

a,a0 w(a)>A�1
b⇤,b⌃�

w(a0)
⌘
 d�1(V).

Now we combine all parts together in (27) using (26), (28) and (29). First we define the quantity

↵ := 2C�,�2
min

(�)Tr

0

@
X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

1

A+
�

n
Tr

0

@
X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

1

A .

It follows then that (27) can be written as

1 + 2C�,�2
min

(�)

n� �

X

a,a0

w(a)>A�1
bb,b⌃�

w(a0) 
(1 + 2C�(�))✏

(n� �)| {z }
Approximation error

+
↵

n� �
+

1

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

=) (1 + 2C�,�2
min

(�))
X

a,a0

w(a)>A�1
bb,b⌃�

w(a0)  (1 + 2C�(�))✏| {z }
↵0

+↵+
n� �

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)

(a)
 ↵0 + ↵+ d�1(V) (30)

where, (a) follows from Assumption 3, Corollary 1 and (26). Also observe that from (23) we have that�P
A

a=1 w(a)>(b✓n � ✓⇤)
�2

is a sub-exponential random variable. Then using the sub-exponential concentra-
tion inequality we have with probability at least 1� �

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

AX

a=1

w(a)>(b✓n�� � ✓⇤)

!2

 min

⇢s
(1 + 2C�,�2

min
(�))

X

a,a0

w(a)
⇣
X>

n��
b⌃�1
� Xn��

⌘�1
w(a0)2 log(1/�),

(1 + 2C�(�))
X

a,a0

w(a)>
⇣
X>

n��
b⌃�1
� Xn��

⌘�1
w(a0)2 log(1/�)

�

= min

⇢
1

p
n� �

s
(1 + 2C�,�2

min
(�))

X

a,a0

w(a)>A�1
b,b⌃�

w(a0)2 log(1/�),

(1 + 2C�,�2
min

(�))

n� �

X

a,a0

w(a)>A�1
b,b⌃�

w(a0)2 log(1/�)

�

(a)
 min

(r
(8d�1(V) + ↵0 + ↵) log(1/�)

n� �
,
(8d�1(V) + ↵0 + ↵) log(1/�)

n� �

)

where, (a) follows from (30), and we have taken at most n� � pulls to estimate b✓n after forced exploration and
p
n > d. Thus, for any � 2 (0, 1) we have

P

0

@

8
<

:

AX

a=1

w(a)>(b✓n � ✓⇤)

!2

> min

(r
(8d�1(V) + ↵0 + ↵) log(1/�)

n� �
,
(8d�1(V) + ↵0 + ↵) log(1/�)

n� �

)9=

;

1

A  �.

(31)

This gives us a bound on the first term of (21). Combining everything in (21) we can bound the loss of the
SPEED as follows:

Ln(⇡, bb, b⌃�)  ED

2

4

AX

a=1

w(a)>
⇣
b✓n�� � ✓⇤

⌘!2

I{⇠�(n� �)}I{⇠var
�

(�)}

3

5+
nX

t=1

AH2
U
⌘2P(⇠c

�
(n� �))

+
nX

t=1

AH2
U
⌘2P ((⇠var

�
(�))c)

 min

(
2Cd2 log(A/�)

�
,

r
(8d�1(V) + ↵0 + ↵) log(A/�)

n� �
,
(8d�1(V) + ↵0 + ↵) log(A/�)

n� �

)

+
nX

t=1

AH2
U
⌘2P(⇠c

�
(n� �)) +

nX

t=1

AH2
U
⌘2P ((⇠var

�
(�))c)

(a)
 min

(
8Cd2�2

max log(nA)
p
n

,

r
48(d�1(V) + ↵0 + ↵) log(nA)

n
,
48(d�1(V) + ↵0 + ↵) log(nA)

n

)
+O

✓
1

n

◆


48d2�2

max�1(V) log(nA)

n
+

48↵ log(nA)

n
+

48↵0 log(nA)

n
+O

✓
1

n

◆

(b)


48d2�2
max�1(V) log(nA)

n
+

144d�1(V)C�,�2
min

(�) log(nA)

n
+

48d�1(V)� log(nA)

n3/2
+

48✏ log(nA)

n
+O

✓
1

n

◆

where (a) follows as Proposition 6 and setting � = 1/n3 and noting that
p
n > d. The (b) follows by setting

(1 + 2C�(�))✏ and the definition of ↵. Recall that for � =
p
n we have that C�,�2

min
(�) = 2Cd

2
�
2
max log(A/�)
�
2
min�

=

2Cd
2
�
2
max log(A/�)
�
2
min

p
n

. Then setting ✏ = 1/
p
n we can bound the loss of the following PE-Optimal bb as

Ln(⇡, bb, b⌃�)  O2,H2
U

✓
d3�2

max�1(V) log(nA)

�2
minn

◆
+O2,H2

U

✓
d2�2

max�1(V) log(nA)

n3/2

◆
+O2,H2

U

✓
1

n

◆
.

The claim of the proposition follows.

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

Remark 3. (Discussion on loss) Observe that from Proposition 6 that the MSE for policy evaluation setting

scales as O(d
3 log(n)

n
). We contrast this result with Chaudhuri et al. [2017] who obtain a bound on the MSE

ED[k✓⇤ � b✓nk2]  O(d log(n)
n

) in a related setting. Note that Chaudhuri et al. [2017] only considers the setting
when ⌃⇤ is rank 1. We make no such assumption and get an additional factor of d in our result due to exploration
in d2 dimension to estimate ⌃⇤. Finally we get the scaling as d3 due to

P
a,a0 w(a)>A�1

b⇤,b⌃�
w(a0)  d�1(V) from

Corollary 1. Also observe that we estimate ED[
P

a
w(a)>(✓⇤ � b✓n)2] as opposed to ED[k✓⇤ � b✓nk2] in Chaudhuri

et al. [2017].

B.4 Regret of Algorithm 1

Corollary 3. For, n � 16C2d4�4
max log

2(A/�)/�4
min we have that for all action a, |b�2

�(a)� �2(a)|  �2
min/2.

Proof. From the Lemma 1, we know that
���x(a)>(b⌃� �⌃⇤)x(a)

���  2Cd
2
�
2
max log(A/�)

� with probability 1 � 8�.

Hence we can show that

|b�2
�(a)� �2(a)| 

2Cd2�2
max log(A/�)

�
=

2Cd2�2
max log(A/�)
p
n

(a)


2Cd2�2
max log(A/�)q

16C2d4�4
max log

2(A/�)/�4
min

=
�2
min

2
,

where (a) follows for n � 16C2d4�4
max log

2(A/�)/�4
min. The claim of the corollary follows.

Lemma 8. (Loss Concentration of design matrix) Let b⌃� be the empirical estimate of ⌃⇤. Define
V =

P
a,a0 w(a)w(a0)>. We have that for any arbitrary proportion b the following

P
✓ ������

X

a,a0

w(a)>(A�1
b⇤,b⌃�

�A�1
b⇤,⌃⇤

)w(a0)

������


2CB⇤d3 log(A/�)

�

◆
� 1� �

where B⇤ is a problem-dependent quantity such that

B⇤ =

0

B@
���A�1

b⇤,⌃⇤
w
���
2
�����

AX

a=1

b⇤(a)w(a)w(a)>H2
U

�����

�������

0

@
AX

a=1

b⇤(a)w(a)w(a)>

�2(a) +
2Cd2�2

max log(9H2
U/�)p

n

1

A
�1

w

�������

1

CA

and C > 0 is a universal constant.

Proof. We have the following

������

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)�
X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0)

������
=

���������

X

a

w(a)>

| {z }
w

⇣
A�1

b⇤,b⌃�
�A�1

b⇤,⌃⇤

⌘X

a

w(a)

| {z }
w

���������

=
���w>

⇣
A�1

b⇤,⌃⇤

⇣
Ab⇤,⌃⇤ �Ab⇤,b⌃�

⌘
A�1

b⇤,b⌃�

⌘
w
��� =

�������
w> (A�1

b⇤,⌃⇤| {z }
u

⇣
Ab⇤,⌃⇤ �Ab⇤,b⌃�

⌘
A�1

b⇤,b⌃�
)w

| {z }
v

�������

=
���u
⇣
Ab⇤,⌃⇤ �Ab⇤,b⌃�

⌘
v
���
(a)
 kuk

���Ab⇤,⌃⇤ �Ab⇤,b⌃�

���
| {z }

�

kvk (32)

where, (a) follows by Cauchy-Schwarz inequality. Now observe that the vector u 2 Rd is a problem dependent

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

quantity. We now bound the � in (32) as follows

� =

�����

AX

a=1

b⇤(a)w(a)w(a)>

x(a)>⌃⇤x(a)
�

AX

a=1

b⇤(a)w(a)w(a)>

x(a)> b⌃�x(a)

�����

(a)
=

�����
X

a

b⇤(a)w(a)w(a)>

�2(a)
�

X

a

b⇤(a)w(a)w(a)>

b�2
�(a)

�����

=

�����
X

a

b⇤(a)w(a)w(a)>
✓

1

�2(a)
�

1

b�2
�(a)

◆�����

=

�����
X

a

b⇤(a)w(a)w(a)>
✓
b�2
�(a)� �2(a)

b�2
�(a)�

2(a)

◆�����

(b)


�����
X

a

b⇤(a)w(a)w(a)>
✓
b�2
�(a)� �2(a)

�4
min

◆�����

=

�����
1

�4
min

X

a

b⇤(a)w(a)w(a)>
⇣
x(a)> b⌃�x(a)� x(a)>⌃⇤x(a)

⌘�����

=
1

�4
min

��������

AX

a=1

b⇤(a)w(a)w(a)>| {z }
Problem dependent quantity

⇣
x(a)>

⇣
b⌃� �⌃⇤

⌘
x(a)

⌘

| {z }
Random Quantity

��������

where, (a) follows b�2
�(a) = x(a)> b⌃�x(a) and �2(a) = x(a)>⌃⇤x(a), ad (b) follows from Corollary 3. Now observe

from Lemma 7 that we can bound the quantity

kb⌃� �⌃⇤k 
2Cd2�2

max�
�1
min(Y) log(A/�)

�
.

Then we also have that the spread of maximum eigenvalue of kb⌃� �⌃⇤k2 is controlled which implies

1

�4
min

��������

AX

a=1

b⇤(a)w(a)w(a)>| {z }
Problem dependent quantity

⇣
x(a)>

⇣
b⌃� �⌃⇤

⌘
x(a)

⌘

| {z }
Random Quantity

��������

(a)


�����

AX

a=1

b⇤(a)w(a)w(a)>(x(a)>x(a))

�����
2Cd2�2

max�
�1
min(Y) log(A/�)

�

where, (a) follows by Lemma 7. Next for the third quantity in (32) we can bound as follows

kvk = kA�1
b⇤,b⌃�

wk =

������

AX

a=1

b⇤(a)w(a)w(a)>

b�2
�(a)

!�1

w

������

(a)


�������

0

@
AX

a=1

b⇤(a)w(a)w(a)>

�2(a) + 2Cd2�2
max log(A/�)p

n

1

A
�1

w

�������

where, (a) follows as

b�2(a)  �2(a) +
2Cd2�2

max log(A/�)

�

from Lemma 1. Finally observe that the first part of (32) we have that w>A�1
b⇤,⌃⇤

is a problem dependent

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

parameter. Finally, plugging back everything in (32) we get

kuk
���Ab⇤,⌃⇤ �Ab⇤,b⌃�

��� kvk



���A�1
b⇤,⌃⇤

w
���

�����

AX

a=1

b⇤(a)w(a)w(a)>(x(a)>x(a))

�����
2Cd2�2

max log(A/�)

�4
min�

������

AX

a=1

b⇤(a)w(a)w(a)>

�2(a) + 2Cd2�2
max log(A/�)

�

!�1

w

������



0

@
���A�1

b⇤,⌃⇤
w
���
2
�����

AX

a=1

b⇤(a)w(a)w(a)>H2
U

�����

������

AX

a=1

b⇤(a)w(a)w(a)>

�2(a) + 2Cd2�2
max log(A/�)

�

!�1

w

������

1

A

| {z }
B⇤

2Cd3 log(A/�)

�

(a)
=

2CB⇤d3�2
max�

�1
min(Y) log(A/�)

�

where, (a) follows by substituting the value of B⇤.

B.5 Regret Bound of SPEED

Theorem 1. (formal) Running Algorithm 1 with budget n � 16C2d4 log2(A/�)/�4
min the resulting regret satisfies

Rn 
1

n3/2
+O2,H2

U

✓
d2�2

max log(n)

�2
minn

3/2

◆
+

2B⇤Cd3�2
max log(n)

�2
minn

3/2
+

d2

n2
Tr

0

@
X

a,a0

w(a)w(a0)>

1

A+
2AH2

U
2

n2

= O2,H2
U

✓
B⇤d3�2

max log(n)

�2
minn

3/2

◆
.

Proof. We follow the same steps as in Proposition 6. Observe that 16C2
d
4
�
4
max log2(A/�)
�
4
min

> 2Cd
2
�
2
max log(A/�)
�
2
min�

. Hence

for z =
P

a
w(a) the loss function for n � 2Cd

2
�
2
max log(A/�)
�
2
min�

as follows

Ln(⇡, bb, b⌃�) := E
⇣

z>(b✓n�� � ✓⇤)
⌘2� (a)


⇣
1 + 2C�,�2

min
(�)
⌘
z>(eX>

n��
b⌃�1
�
eXn��)

�1z.

where, (a) follows from (24). Recall that the quantity of the samples collected (following bb⇤) after exploration is
as follows:

⇣
eX>

n��
b⌃�1
�
eXn��

⌘�1
=

X

a

l
(n� �)bb⇤(a)b��2

� (a)
m
w(a)w(a)>

!�1

=
1

n� �
A�1

bb⇤,b⌃�
.

Hence we use the loss function

L
0
n��(⇡, bb, b⌃�) := (1 + 2C�(�)) z

>(eX>
n��

b⌃�1
�
eXn��)

�1z =

⇣
1 + 2C�,�2

min
(�)
⌘

n� �

X

a,a0

w(a)>A�1
bb⇤,b⌃�

w(a0).

Also, recall that we define

Ln(⇡,b⇤, b⌃�) =
1

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0).

Then we can decompose the regret as follows:

Rn = Ln(⇡, bb, b⌃�)� L
⇤
n
(⇡,b⇤,⌃⇤)

 L
0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�) + L

0
n��(⇡, bb⇤, b⌃�)� L

⇤
n
(⇡,b⇤,⌃⇤)

= L
0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�)| {z }

Approximation error

+L
0
n��(⇡, bb⇤, b⌃�)� Ln(⇡,b⇤, b⌃�)| {z }

Comparing two di↵ loss

+Ln(⇡,b⇤, b⌃�)� L
⇤
n
(⇡,b⇤,⌃⇤)| {z }

Estimation error of ⌃⇤

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

First recall that the good variance event as follows:

⇠var
�

(�) :=

⇢
8a,
���x(a)>

⇣
b⌃� �⌃⇤

⌘
x(a)

��� <
2Cd2�2

max log(A/�)

�

�
.

Now first observe that n � 16C2d4�4
max log

2(A/�)/�4
min is a larger regime than n � 2Cd

2
�
2
max log(A/�)
�
2
min�

required for

Proposition 6. Then under the good variance event, following the same steps as Proposition 6 we can bound the
approximation error setting � = 1/n3 as follows

L
0
n��(⇡, bb, b⌃�)� L

0
n��(⇡, bb⇤, b⌃�)  O2,H2

U

✓
d2�2

max log(A/�)

�2
minn

3/2

◆
I{⇠var

�
(�)}+

nX

t=1

AH2
U
2P ((⇠var

�
(�))c)

 O2,H2
U

✓
d2�2

max log(A/�)

�2
minn

3/2

◆
+

AH2
U
2

n2

and the second part of comparing the two losses as

L
0
n��(⇡, bb⇤, b⌃�)� Ln(⇡,b⇤, b⌃�)  O2,H2

U

✓
d2�2

max log(A/�)

�2
minn

3/2

◆
I{⇠var

�
(�)}+

nX

t=1

AH2
U
2P ((⇠var

�
(�))c)

 O2,H2
U

✓
d2�2

max log(A/�)

�2
minn

3/2

◆
+

AH2
U
2

n2

We define the good estimation event as follows:

⇠est
�

(�) :=

8
<

:

������

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)�
X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0)

������


2CB⇤d3�4
max log(9H

2
U
/�)

�4
min�

9
=

;

Under the good estimation event ⇠est(�) and using Lemma 2 we can show that the estimation error is given by

Ln(⇡,b⇤, b⌃�)� Ln(⇡,b⇤,⌃⇤) 

0

@ 1

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)�
1

n

X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0)

1

A I{⇠est
�

(�)}

+

0

@ 1

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)�
1

n

X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0)

1

A I{⇠est
�

(�)C}

=

0

@ 1

n

X

a,a0

w(a)>A�1
b⇤,b⌃�

w(a0)�
1

n

X

a,a0

w(a)>A�1
b⇤,⌃⇤

w(a0)

1

A I{⇠est
�

(�)}

+
1

n
Tr

0

@
⇣
A�1

b⇤,b⌃�
�A�1

b⇤,⌃⇤

⌘
0

@
X

a,a0

w(a)w(a0)>

1

A

1

A I{⇠est
�

(�)C}

(a)


1

n
2B⇤Cd3�2

max log(1/�)

�2
min�

+
1

n
Tr
⇣
A�1

b⇤,⌃⇤

⌘
Tr
⇣
A�1

b⇤,b⌃�

⌘
Tr

0

@
X

a,a0

w(a)w(a0)>

1

A �

(b)


1

n
2B⇤Cd3�2

max log(n)

�2
min

p
n

+
d2

n2
Tr

0

@
X

a,a0

w(a)w(a0)>

1

A =
2B⇤Cd3�2

max log(n)

�2
minn

3/2
+

d2

n2
Tr

0

@
X

a,a0

w(a)w(a0)>

1

A

where, (a) follows from Lemma 2, (b) follows as � =
p
n and setting � = 1

n3 . Combining everything we have the
following regret as

Rn 
1

n3/2
+O2,H2

U

✓
d2�2

max log(n)

�2
minn

3/2

◆
+

2B⇤Cd3�2
max log(n)

�2
minn

3/2
+

d2

n2
Tr

0

@
X

a,a0

w(a)w(a0)>

1

A+
2AH2

U
2

n2

= O2,H2
U

✓
B⇤d3�2

max log(n)

�2
minn

3/2

◆

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

where, B⇤ =

0

B@
���A�1

b⇤,⌃⇤
w
���
2 ���
P

A

a=1 b⇤(a)w(a)w(a)>H2
U

���

�������

0

@PA

a=1

b⇤(a)w(a)w(a)>

�2(a) +
2Cd3 log(9H2

U/�)p
n

1

A
�1

w

�������

1

CA. The claim

of the theorem follows.

Remark 4. (Discussion on Sample regime and B⇤): Observe that combining Proposition 5 and Theorem 1
we can have a loss of SPEED that scales as

O2,H2
U ,�2

max,�
2
min

✓
d log(n)

n

◆
+O2,H2

U ,�2
max,�

2
min

✓
B?d3 log(n)

n3/2

◆

which seems to contradict the loss bound in Proposition 6.

However, this is not the case. Observe that the B⇤ is a problem-dependent quantity that depends on a number of
samples n. We define it as

B⇤ :=
���A�1

b⇤,⌃⇤
w
���
2
�����

AX

a=1

b⇤(a)w(a)w(a)>H2
U

�����

�������

0

@
AX

a=1

b⇤(a)w(a)w(a)>

�2(a) + 2Cd2 log(A/�)p
n

1

A
�1

w

�������
.

However, there are two regimes when n  16C2
d
4
�
4
max log2(A/�)
�
4
min

then B⇤ = ⇥(
p
n) and for n > 16C2

d
4
�
4
max log2(A/�)
�
4
min

then B⇤ = o(
p
n) . In the first case when n  16C2

d
4
�
4
max log2(A/�)
�
4
min

with B⇤ = ⇥(
p
n) we have the loss that scales

as

O2,H2
U ,�2

max,�
2
min

✓
d log(n)

n

◆
+O2,H2

U ,�2
max,�

2
min

✓
B⇤d3 log(n)

n3/2

◆
= O2,H2

U ,�2
max,�

2
min

✓
d3 log(n)

n

◆

This is the regime of Proposition 6 as it holds for all n � 2Cd
2
�
2
max log(A/�)
�
2
min�

for � � 1. Note that 2Cd
2
�
2
max log(A/�)
�
2
min�

is less than 16C2
d
4
�
4
max log2(A/�)
�
4
min

.

In the second case when n > 16C2
d
4
�
4
max log2(A/�)
�
4
min

with B⇤ = o(
p
n) we have a tighter bound as the first term

dominates and we have the loss scaling as

O2,H2
U ,�2

max,�
2
min

✓
d log(n)

n

◆
+O2,H2

U ,�2
max,�

2
min

✓
B?d3 log(n)

n3/2

◆
= O2,H2

U ,�2
max,�

2
min

✓
d log(n)

n

◆

Intuitively this is a larger sample regime where the SPEED has a good estimation of ⌃⇤ and the design matrix

estimation has also concentrated. Combining both the regimes we can show that for n � 2Cd
2 log(A/�)

� min2� the loss of
SPEED scales by

max

⇢
O2,H2

U ,�2
max,�

2
min

✓
d log(n)

n

◆
, O2,H2

U ,�2
max,�

2
min

✓
d3 log(n)

n

◆�
= O2,H2

U ,�2
max,�

2
min

✓
d3 log(n)

n

◆

which is the bound of Proposition 6. So in summary Proposition 6 is a more general bound for a larger regime
size than Theorem 1 and does not contradict the theorem statement.

C Regret Lower Bound

Theorem 2. (Lower Bound) Let |⇥| = 2d and ✓⇤ 2 ⇥. Then any �-PAC policy ⇡ following the design

b 2 4(A) satisfies R
0
n
= Ln(⇡, bb,⌃⇤)� Ln(⇡,b⇤,⌃⇤) � ⌦

✓
d2�d(V) log(n)

n3/2

◆
for the environment in (33).

Proof. Step 1 (Define Environment): We define an environment model Bj consisting of A actions and J

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

hypotheses with true hypothesis ✓⇤ = ✓j (j-th column) as follows:

✓ = ✓1 ✓2 ✓3 . . . ✓J
µ1(✓) = � �� �

J
�� 2�

J
. . . �� (J�1)�

J

µ2(✓) = ◆21 ◆22 ◆23 . . . ◆2J
...

...
µA(✓) = ◆A1 ◆A2 ◆A3 . . . ◆AJ

(33)

where, each ◆ij is distinct and satisfies ◆ij < �/4J . ✓1 is the optimal hypothesis in B1, ✓2 is the optimal hypothesis
in B2 and so on such that for each Bj and j 2 [J] we have column j as the optimal hypothesis.

Finally, assume that ⌃ = ✓✓> is a rank one matrix. To distinguish between the covariance matrix between two
distributions we denote ⌃✓ = ✓✓>. Therefore we have that �2

i
(✓) = x>

i
⌃✓xi = (x>

i
✓)2 = µ2

i
(✓). Hence for any

algorithm, identifying the co-variance matrix ⌃✓⇤ is the same as identifying the ✓⇤. Also assume that ⇡(a) = 1
A
.

Hence each action is equally weighted by the target policy.

This is a general hypothesis testing setting where the functions µa(✓) can be thought of as linear functions of ✓
such that µa(✓) = x(a)>✓. Assume that 0 < µa(✓)  1, and log(µa(✓)/µa(✓0)) > 1/4.

Now observe that between any two hypothesis ✓ and ✓0 we have the following

KL

✓
N (µi(✓),x

>
i
⌃✓xi))

����N (µi(✓
0),x>

i
⌃✓0xi))

◆
= 2 log(

�i(✓0)

�i(✓)
) +

�2
i
(✓) + (µi(✓)� µi(✓0))2

2�2
i
(✓0)

�
1

2

(a)
= 2 log(

µi(✓0)

µi(✓)
) +

µ2
i
(✓) + (µi(✓)� µi(✓0))2

2µ2
i
(✓0)

�
1

2

(a)
�

(µi(✓)� µi(✓0))2

8
(34)

where, (a) follows from the condition that 0 < µa(✓)  1, and log(µa(✓)/µa(✓0)) > 1/4.

Step 2 (Minimum samples to verify ✓⇤): Let, ⇤1 be the set of alternate models having a di↵erent optimal
hypothesis than ✓⇤ = ✓1 such that all models having di↵erent optimal hypothesis than ✓1 such as B2, B3, . . . BJ

are in ⇤1. Let ⌧� be the stopping time for any �-PAC policy b. That is ⌧� is the time that any algorithm stops
and outputs its estimate b✓⌧� . Let Tt(a) denote the number of times the action a has been sampled till round

t. Let b✓⌧� be the predicted optimal hypothesis at round ⌧�. We first consider the model B1. Define the event

⇠ = {b✓⌧� 6= ✓⇤} as the error event in model B1. Let the event ⇠0 = {b✓⌧� 6= ✓
0⇤
} be the corresponding error event

in model B2. Note that ⇠{ ⇢ ⇠0. Now since b is �-PAC policy we have PB1,b(⇠)  � and PB2,b(⇠
{)  �. Hence we

can show that,

2� � PB1,b(⇠) + PB2,b(⇠
{)

(a)
�

1

2
exp (�KL (PB1,b||PB2,b))

KL (PB1,b||PB2,b) � log

✓
1

4�

◆

1

8

AX

i=1

EB1,b[T⌧�(i)] ·
⇣
µi(✓⇤) � µi(✓

0

⇤)
⌘2 (b)
� log

✓
1

4�

◆

1

8

✓
� � � +

�

J

◆2

EB1,b[T⌧�(1)] +
1

8

AX

i=2

(◆i1 � ◆i2)
2EB1,b[T⌧�(i)]

(c)
� log

✓
1

4�

◆

1

8

✓
1

J

◆2

�2EB1,b[T⌧�(1)] +
1

8

AX

i=2

(◆i1 � ◆i2)
2EB1,b[T⌧�(i)] � log

✓
1

4�

◆

1

8

✓
1

J

◆2

�2EB1,b[T⌧�(1)] +
1

8

AX

i=2

�2

4J2
EB1,b[T⌧�(i)]

(d)
� log

✓
1

4�

◆
(35)

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

where, (a) follows from Lemma 10, (b) follows from Lemma 9, (c) follows from the construction of the bandit

environments and (34), and (d) follows as (◆ij � ◆ij0)2 
�
2

4J2 for any i-th action and j-th hypothesis.

Now, we consider the alternate model B3. Again define the event ⇠ = {b✓⌧� 6= ✓⇤} as the error event in model B1

and the event ⇠0 = {b✓⌧� 6= ✓
00

⇤ } be the corresponding error event in model B3. Note that ⇠{ ⇢ ⇠0. Now since b is
�-PAC policy we have PB1,b(⇠)  � and PB3,b(⇠

{)  �. Following the same way as before we can show that,

1

8

✓
2

J

◆2

�2EB3,b[T⌧�(1)] +
1

8

AX

i=2

�2

4J2
EB3,b[T⌧�(i)]

(d)
� log

✓
1

4�

◆
. (36)

Similarly, we get the equations for all the other (J � 2) alternate models in ⇤1. Now consider an optimization
problem (ignoring the constant factor of 1

8 across all the constraints)

min
ti:i2[A]

X
ti

s.t.

✓
1

J

◆2

�2t1 +
�2

4J2

AX

i=2

ti � log(1/4�)

✓
2

J

◆2

�2t1 +
�2

4J2

AX

i=2

ti � log(1/4�)

...
✓
J � 1

J

◆2

�2t1 +
�2

4J2

AX

i=2

ti � log(1/4�)

ti � 0, 8i 2 [A]

where the optimization variables are ti. It can be seen that the optimum objective value is J2��2 log(1/4�).
Interpreting ti = EB1,b[T⌧� (i)] for all i, we get that EB1,b[⌧�] =

P
i
ti = t1 � J2��2 log(1/4�) which gives us the

required lower bound to the number of pulls of action 1. Observe that the optimum objective value is reached by
substituting t1 = J2��2 log(1/4�) and t2 = . . . = tA = 0. It follows that for verifying any hypothesis ✓j 6= ✓⇤
the verification proportion is given by b✓j = (1, 0, 0, . . . , 0| {z }

(A-1) zeros

). Observe setting � = J
p
log(1/4�)/n recovers ⌧� = n

which implies that a budget of n samples is required for verifying hypothesis ✓j = ✓⇤. For the remaining steps we
take � = J

p
log(1/4�)/n.

Step 3 (Lower Bounding Regret): Then we can show that the MSE of any hypothesis ✓j = ✓⇤

ED

2

4

X

a

⇡(a)x(a)>(✓j � b✓n)
!2
3

5 =
1

n

X

a,a0

w(a)A�1
b✓j

,⌃✓⇤
w(a0) =

1

n
Tr

✓
A�1

b✓j
,⌃✓⇤

X

a,a0

w(a)w(a0)

| {z }
V

◆

where, b✓j (a) is the number of samples allocated to action a. First we will bound the loss of the oracle for this
environment given by Ln(⇡,b,⌃✓⇤) =

1
n
Tr(A�1

b✓j
,⌃✓⇤

V). Note that the oracle has access to the ⌃✓⇤ , so it only

need to verify whether ✓j = ✓⇤ by following b✓j . Then we have that

Ab✓j
,⌃✓⇤

=
X

a

b✓j (a)
x(a)x(a)>

�2(a)
=

w(1)w(1)>

(x(1)>✓j)2
=

w(1)w(1)>

(� � j�

J
)2

=) Tr(A�1
b✓j

,⌃✓⇤
) =

(� � j�

J
)2

Tr(w(1)w(1)>)

Now we will bound the loss of the algorithm that uses b⌃� to estimate bb. It then collects the D and uses it to
estimate ✓⇤ following the WLS estimation using ⌃✓⇤ .

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

Denote the number of times the algorithm samples each action i be T 0
n
(i). Let the algorithm allocate T 0

n
(1) =

J2��2 log(1/4�)� d samples to action 1 and to any other action i0 it allocates T 0
n
(i0) = d samples such that d � 1.

WLOG let i0 = 2. Finally let T 0
n
(3) = . . . = T 0

n
(A) = 0. Hence the optimal action 1 is under-allocated and the

sub-optimal action 2 is over-allocated. The loss of such an algorithm now is given by

Ln(⇡, bb,⌃✓⇤) =
1

n
Tr(A�1

bb,⌃✓⇤
V).

Hence it follows by setting � = 1/(nJ) that

Abb,⌃✓⇤
=

1

n

X

a

nbb(a)x(a)x(a)
>

�2(a)
=

1

n

X

a

T 0
n
(a)

x(a)x(a)>

�2(a)

=
1

n
T 0
n
(1)

x(1)x(1)>

�2(1)
+

1

n
T 0
n
(2)

x(2)x(2)>

�2(2)| {z }
�0

�
1

n
T 0
n
(1)

w(1)w(1)>

(x(1)>✓j)2

(a)
=

J2��2 log(nJ)� d

n

w(1)w(1)>

(� � j�

J
)2

where, (a) follows by substituting the value of T 0
n
. Then we have that

Tr(A�1
bb,⌃✓⇤

) �
n

J2��2 log(nJ)� d

(� � j�

J
)2

Tr(w(1)w(1)>)
=

n

J2��2(log(nJ)� d

J2��2)

(� � j�

J
)2

Tr(w(1)w(1)>)

(a)
�

�2 log(nJ) + d

J2��2

J2

(� � j�

J
)2

Tr(w(1)w(1)>)

�
�2 log(nJ)

J2

(� � j�

J
)2

Tr(w(1)w(1)>)

where, (a) follows as for d � 1 we have that

n� (log(nJ))2 � �
d2

(J2��2)2
=) (log(nJ)�

d

J2��2
)�1
� log(nJ) +

d

J2��2
.

Step 4 (Lower Bound regret): Hence we have the regret for verifying any hypothesis ✓j = ✓⇤ as follows:

R
0
n
= Ln(⇡, bb,⌃✓⇤)� Ln(⇡,b

⇤,⌃✓⇤)

�
1

n
Tr

✓
A�1

bb,⌃✓⇤
V

◆
�

1

n
Tr

✓
A�1

b✓j
,⌃✓⇤

V

◆
=

1

n
Tr

✓✓
A�1

bb,⌃✓⇤
�A�1

b✓j
,⌃✓⇤

◆
V

◆

�
�d(V)

n
Tr

✓
A�1

bb,⌃✓⇤
�A�1

b✓j
,⌃✓⇤

◆

=
�d(V)

n


Tr

✓
A�1

bb,⌃✓⇤

◆
�Tr

✓
A�1

b✓j
,⌃✓⇤

◆�

=
�d(V)

n

"
�2 log(nJ)

J2

(� � j�

J
)2

Tr(w(1)w(1)>)
�

(� � j�

J
)2

Tr(w(1)w(1)>)

#

=
�d(V)�2(� � j�

J
)2

nTr(w(1)w(1)>)


log(nJ)

J2
� 1

�

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

(a)
�

�d(V)�2(� � j�

J
)2

nTr(w(1)w(1)>)


log(nJ)

2J2

�

(b)
�

d�d(V)�2

n3/2Tr(w(1)w(1)>)


log(nJ)

2J2

�

(c)
�

d2�d(V)�2

n3/2Tr(w(1)w(1)>)
log(2n)

= ⌦

✓
d2�d(V) log(n)

n3/2

◆

where, (a) follows as log(nJ)
J2 � 1 � log(nJ)

2J2 , (b) follows as gap (� � j�

J
)2 � dp

n
for any ✓j , and (c) follows by

substituting |⇥| = J = 2d.

Lemma 9. (Restatement of Lemma 15.1 in Lattimore and Szepesvári [2020a], Divergence Decom-
position) Let B and B0 be two bandit models having di↵erent optimal hypothesis ✓⇤ and ✓

0⇤ respectively. Fix
some policy ⇡ and round n. Let PB,⇡ and PB0,⇡ be two probability measures induced by some n-round interaction
of ⇡ with B and ⇡ with B0 respectively. Then

KL (PB,⇡||PB0,⇡) =
AX

i=1

EB,⇡[Tn(i)] ·KL(N (µi(✓), 1)||N (µi(✓⇤), 1))

where, KL (.||.) denotes the Kullback-Leibler divergence between two probability measures and Tn(i) denotes the
number of times action i has been sampled till round n.

Lemma 10. (Restatement of Lemma 2.6 in Tsybakov [2008]) Let P,Q be two probability measures on the
same measurable space (⌦,F) and let ⇠ ⇢ F be any arbitrary event then

P(⇠) +Q
⇣
⇠{
⌘
> 1

2
exp (�KL(P||Q))

where ⇠{ denotes the complement of event ⇠ and KL(P||Q) denotes the Kullback-Leibler divergence between P and
Q.

Environment E: Consider the environment E which consist of 3 actions in R2 such that x(1) = [1, 0] is along
x-axis, x(2) = [0, 1] is along y-axis and x(3) = [1/

p
2, 1/
p
2]. Let ✓⇤ = [1, 0] and so the optimal action is action 1.

Let the target policy ⇡ = [0.9, 0.1, 0.0]. Finally, let the variances be �2(1) = 5/100, �2(2) = 1.0 and �2(3) = 5/100.

Proposition 8. (On-policy regret) Let the On-policy algorithm have access to the variance in environment E.

Then the regret of On-policy scales as O

✓
�1(V)

n

◆
.

Proof. Recall that in E , there are 3 actions in R2 such that x(1) = [1, 0] is along x-axis, x(2) = [0, 1] is along
y-axis and x(3) = [1/

p
2, 1/
p
2]. The ✓⇤ = [1, 0] and so the optimal action is action 1. The target policy

⇡ = [0.9, 0.1, 0.0]. Finally, let the variances be �2(1) = 1.0, �2(2) = 1.0 and �2(3) = 5/100. Hence, PE-Optimal
design results in b⇤ = [0.5, 0.5, 0.0].

A
⇡,⌃✓⇤

=
X

a

⇡(a)
x(a)x(a)>

�2(a)
=

9

10
· x(1)x(1)> +

1

10
x(2)x(2)>

Ab⇤,⌃✓⇤
=
X

a

b⇤(a)
x(a)x(a)>

�2(a)
=

1

2
· x(1)x(1)> +

1

2
x(2)x(2)>

Recall that V =
P

a
w(a)w(a)>. Hence, the regret scales as

Rn = Ln(⇡,⇡,⌃✓⇤)� Ln(⇡,b
⇤,⌃✓⇤) 

1

n
Tr

✓
A�1

⇡,⌃✓⇤
V

◆
�

1

n
Tr

✓
A�1

b⇤,⌃✓⇤
V

◆
=

1

n
Tr

✓✓
A�1

⇡,⌃✓⇤
�A�1

b⇤,⌃✓⇤

◆
V

◆

(a)
 O

✓
�1(V)

n

◆

where, (a) follows by substituting the value of A
⇡,⌃✓⇤

and Ab⇤,⌃✓⇤
.

Subhojyoti Mukherjee
⇤
, Qiaomin Xie

⇤
, Josiah P. Hanna

⇤
, Robert Nowak

⇤

D Additional Experiments

In this section, we state additional experimental details.

Unit Ball: This experiment consists of a set of 4 actions that are arranged in a unit ball in R2, and kx(a)k = 1
for all a 2 A. We consider three groups of actions: a) the reward-maximizing action in the direction of ✓⇤, b)

the informative action (orthogonal to optimal action) that maximally reduces the uncertainty of b✓t and c) the
less-informative actions as shown in Figure 1 (Top-Left). The variance of the most informative action is chosen to
be high (0.35), but the target probability is set as low 0.1, which forces the on-policy algorithm to sample the
high variance action less. Figure 1 (Top-Right) shows that SPEED outperforms On-policy, G-Optimal , and
A-Optimal . Note that we experiment with A-Optimal design [Fontaine et al., 2021] because this criterion results
in minimizing the average variance of the estimates of the regression coe�cients and is most closely aligned with
our goal than G-, or, D-optimal designs [Jamieson and Jain, 2022].

Air Quality: We perform this experiment on real-world dataset Air Quality from UCI datasets. The Air quality
dataset consists of 1500 samples each of which consists of 6 features. We first select 400 samples which are the
actions in our setting. We then fit a weighted least square estimate to the original dataset and get an estimate of
✓⇤ and ⌃⇤. The reward model is linear and given by x>

It
✓⇤ + noise where xIt is the observed action at round

t, and the noise is a zero-mean additive noise with variance scaling as x>
It
⌃⇤xIt . Hence the variance of each

action depends on their feature vectors and ⌃⇤. Finally, we set a level ⌧ , such that 30 actions having variance
crossing ⌧ are set with low target probability, and the remaining probability mass is uniformly distributed among
the rest 370 action. Hence, again high variance actions are set with a low target probability, which forces the
on-policy algorithm to sample the high-variance action less number of times. We apply SPEED to this problem
and compare it to baselines A-Optimal , G-Optimal , and the On-policy algorithm.

Figure 2: 10 action unit ball environment

Red Wine Quality: The UCI Red Wine Quality dataset consist of 1600 samples of red wine with each sample i
having feature xi 2 R11. We first fit a weighted least square estimate to the original dataset and get an estimate
of ✓⇤ and ⌃⇤. The reward model is linear and given by xT

It
✓⇤ + noise where xIt is the observed action at round t,

and the noise is a zero-mean additive noise with variance scaling as x>
It
⌃⇤xIt . Note that we consider the 1600

samples as actions. Then we run each of our benchmark algorithms on this dataset and reward model. Finally, we
set a level ⌧ , such that 40 actions having variance crossing ⌧ are set with low target probability, and the remaining
probability mass is uniformly distributed among the rest 1560 action. Hence, again high variance actions are
set with a low target probability, which forces the on-policy algorithm to sample the high-variance action less
number of times. We apply SPEED to this problem and compare it to baselines A-Optimal , G-Optimal , and
the On-policy algorithm.

Movielens: We experiment with a movie recommendation problem on the MovieLens 1M dataset [Lam and
Herlocker, 2016]. This dataset contains one million ratings given by 6 040 users to 3 952 movies. We first apply a
low-rank factorization to the rating matrix to obtain 5-dimensional representations: ✓j 2 R5 for user j 2 [6 040]
and x(a) 2 R5 for movie a 2 [3 952]. In each run, we choose one user ✓j and 100 movies x(a) randomly, and they
represent the unknown model parameter and known feature vectors of actions, respectively.

Increasing Dimension: We perform this experiment to show how the MSE of SPEED scales with increasing
dimensions and number of actions. We choose dimension d 2 {15, 20, 25}. For each dimension d 2 {15, 20, 25} we
choose the number of actions |A| = d2 + 20. Hence we ensure that the number of actions are greater than d2

dimensions. We also choose the horizon as T 2 {13000, 18000, 25000} for each d 2 {15, 20, 25}. We choose the

SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits

same environment as the unit ball experiment. So the actions arranged in a unit ball in R2 and kx(a)k = 1 for all
a 2 A. Again we consider three groups of actions: a) the reward-maximizing action in the direction of ✓⇤, b)

the informative action (orthogonal to optimal action) that maximally reduces the uncertainty of b✓t and c) the
less-informative actions as shown in Figure 2 but scaled to a larger set of actions. For each case of dimension
d 2 {15, 20, 25}, the variance of the most informative actions along the directions orthogonal to the reward
maximizing action are chosen to be high, but the target probability is set as low, which forces the on-policy
algorithm to sample the high variance action less. We again show the performance in Figure 1 (Bottom-left). We
observe that with increasing dimensions d the SPEED outperforms on-policy. Also, observe that the oracle with
knowledge of ⌃⇤ performs the best.

E Table of Notations

Notations Definition
⇡(a) Target policy probability for action a
b(a) Behavior policy probability for action a
x(a) Feature of action a
✓⇤ Optimal mean parameter
b✓n Estimate of ✓⇤
µ(a) = x>✓⇤ Mean of action a

bµt(a) = x>b✓t Empirical mean of action a at time t
Rt(a) Reward for action a at time t
⌃⇤ Optimal co-variance matrix
b⌃t Empirical co-variance matrix at time t
�2(a) = x(a)>⌃⇤x(a) Variance of action a

b�2
t
(a) = x(a)> b⌃tx(a) Empirical variance of action a at time t

n Total budget
Tn(a) Total Samples of action a after n timesteps

Table 1: Table of Notations

	INTRODUCTION
	PRELIMINARIES
	OPTIMAL DESIGN FOR POLICY EVALUATION
	Computation of the optimal design b*
	Oracle Loss

	SPEED AND REGRET ANALYSIS
	Details of Algorithm SPEED
	Regret Analysis of SPEED
	Lower Bound

	EXPERIMENTS
	CONCLUSIONS AND FUTURE DIRECTIONS
	APPENDIX
	Related Works and Motivations
	Probability Tools
	Formulation for PE-Optimal Design to Reduce MSE
	Loss is convex
	Loss Gradient is Bounded
	Kiefer-Wolfowitz Equivalence

	Bandit Regret Proofs
	Loss of Bandit Oracle
	OLS-WLS Concentration Lemma
	Bounding the Loss of alg:linear-bandit
	Regret of alg:linear-bandit
	Regret Bound of SPEED

	Regret Lower Bound
	Additional Experiments
	Table of Notations

