Cramming: Training a Language Model on a Single GPU in One Day

Jonas Geiping! Tom Goldstein '

Abstract

Recent trends in language modeling have focused
on increasing performance through scaling, and
have resulted in an environment where training
language models is out of reach for most re-
searchers and practitioners. While most in the
community are asking how to push the limits of
extreme computation, we ask the opposite ques-
tion: How far can we get with a single GPU in
just one day?

We investigate the downstream performance
achievable with a transformer-based language
model trained completely from scratch with
masked language modeling for a single day on a
single consumer GPU. Aside from re-analyzing
nearly all components of the pretraining pipeline
for this scenario and providing a modified pipeline
with performance close to BERT, we investigate
why scaling down is hard, and which modifica-
tions actually improve performance in this sce-
nario. We provide evidence that even in this
constrained setting, performance closely follows
scaling laws observed in large-compute settings.
Through the lens of scaling laws, we categorize
a range of recent improvements to training and
architecture and discuss their merit and practi-
cal applicability (or lack thereof) for the limited
compute setting.

We provide code to reproduce all experiments at
github.com/JonasGeiping/cramming.

1. Scaling Up and Scaling Down

Large-scale training of machine learning models with trans-
former architectures has lead to ground-breaking improve-
ments in many sub-fields of natural language processing
including language understanding and natural language gen-
eration (, ; s ;

"Dep. of Computer Science, University of Maryland, College
Park. Correspondence to: Jonas Geiping <jgeiping@umd.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

,). The nowadays accepted (but historically
surprising) key behavior of these systems is that they re-
liably scale — they continuously improve in performance
when the number of model parameters and amount of data
grow. These increases in performance are well-described by

various power laws as studied by (). This
sets up a dominant paradigm in which scaling is the key to
performance improvement (,).

The power of scale has set off a race to produce extremely
large models, which in turn has created an environment
where few researchers or practitioners feel that they are
capable of training a language model. The original BERT
model (), which became a cornerstone
transformer for many practical applications in natural lan-
guage understanding, already required a significant amount
of computation to train. Yet, the reproduction and improve-
ments in () further increased its performance
by cranking up the level of computation by orders of mag-
nitude. As these pre-trained checkpoints became popular
for a range of downstream applications (,),
the competition for the largest language model became a
focal point for industrial labs. This led to training runs that
improved the performance of pretrained language models at
the expense of computation at the zettaFLOP scale (

s ; s ; s) and later
at the extremely large yottaFLOP scale (, ;

) ;) ; ;)

Our goal is to turn this trend on its head and investigate how
to best scale down language model training and what trade-
offs emerge when doing so: What downstream performance
can be achieved by a modest researcher when training from
scratch with a single GPU for a single day? The ability to
train a language model to the performance level of BERT
with such modest resources has several interesting implica-
tions. For one, if scaled-down model pretraining is a viable
analogue of large-compute pretraining, then this opens up
a host of further academic investigations that are currently
hard to realize for large-scale models. For example, research
questions about the differences between existing and new
pre-training tasks, tracing model predictions to data points
(,), security questions such as membership
inference (,) and data poisoning (

,), and a wide range of empirical investigations
into topics such as stability or generalization that arise

github.com/JonasGeiping/cramming

Training a Language Model on a Single GPU in One Day.

during training (, ; ,
). At the same time, we can imagine situations in
which legal requirements make it unclear whether models
trained on public data with uncertain origin are permissible,
and where a practitioner is interested in retraining their
language models using a specialized or trustworthy data
source (s ; s).

In addition, we are motivated to benchmark the overall
conceptual progress of research in this area over the last
years, beyond simply turning the scaling knob. The goal
of achieving BERT-like performance with modest training
resources would have seemed unthinkable in 2018, and yet
with modern advances and transformer training techniques
this may now be possible.

To answer these questions, we consider a challenge we call
“Cramming” — learning a whole language model the day
before the test. Our studies begin by investigating many
facets of the training pipeline to see which modifications
actually improve performance in the scaled-down scenario.
We provide evidence that even in this constrained setting,
performance closely follows scaling laws observed in
large-compute settings (,). An unsur-
prising consequence of these laws is that scaling down is
hard; while smaller model architectures enable speeding up
gradient computations, overall rates of model improvement
over time remain nearly constant. Nonetheless, we can
find changes to the training recipe that exploit scaling
laws to yield improvements by improving the effective rate
of gradient computations without compromising model
size. In the end, we are able to train models that achieve
respectable performance — often close to and sometimes
exceeding BERT on GLUE tasks — on a shoestring budget.

2. Tying our hands behind our back: A setup
with limited compute

Before we start this investigation, we want to outline the
extent of limitations we are interested in. The rules for
cramming are as follows:

* A transformer-based language model of arbitrary size
is trained with masked-language modeling, completely
from scratch.

 Existing pretrained models cannot be included in any
part of the pipeline.

* Any raw text (excluding downstream data) can be in-
cluded for training. This means that one can achieve
speedups by making judicious choices about how and
when to sample data, provided the sampling mecha-
nism does not require a pre-trained model.

* The downloading and pre-processing of raw data is ex-
empted from the total compute budget. Pre-processing
may include CPU-based tokenizer construction, tok-
enization, and filtering, but cannot include represen-

tation learning (e.g. pre-training a word embedding
is not allowed, unless it is counted towards the final
runtime).

* Training proceeds on a single GPU for 24 hours.

e Downstream performance is evaluated on GLUE
(,). Downstream finetuning on GLUE
is limited to brief training with only the training data of
the downstream task (we consider 5 epochs or less) and
needs to work with hyperparameters set globally for
all GLUE tasks. Downstream finetuning is excluded
from the total compute budget.

In our implementation, we analyze a setup with a classical
rtx2080ti GPU (released September 2018) and separate
setups with a more modern rtxa4000 or a rtxa6000
GPU, 48GB version (released October 2020). We pair each
unit with 4 CPU cores and 32GB of RAM.

Why these limitations? We are principally interested in
re-investigating the original BERT setup of

() with limited compute. The optimal architecture of
the transformer is not fixed, as the optimal size and shape
depends on scaling laws (,). The limita-
tions on usage of existing models rule out distillation from
an existing model (s ; s ;

; ; ; ; ;)
and data filtering based on existing large models (

s), both of which ultimately answer questions
about compression and transfer of already processed infor-
mation. Further, we do not want to limit data to the original
dataset used to train BERT, wanting to allow for possible
improvements through better data curation and quality. The
rtx2080ti GPU is a natural candidate for this experi-
ment, given that it was released before (),
but the more recent rtxa4000 is also interesting, as a
more recent consumer-grade workstation variant. Finally
we also test the rtxa6000, being arguably the (current)
upper limit of a single-user workstation. At the finetuning
stage we want to mimic the original BERT finetuning and
evaluation setup, but provide additional limits to prevent
gains based on tuning of only the downstream procedure, for
example via computationally extensive downstream training
(s), use of multiple downstream datasets
(for example continued pretraining with MNLI before fine-
tuning other tasks (,), and extended hyper-
parameter optimization for each GLUE task (,

k) ’ > 2)‘

3. Related Work on Efficient Transformers

How long does it take to train BERT? In general, this
question is hard to answer, due to wildly varying hardware
and software setups and differing measures of efficiency
(,). An upper bound on the compute of

Training a Language Model on a Single GPU in One Day.

Table 1. Maximal Throughput available for select training runs of large language models. FLOP Counts for BERT reproductions and
related models. Large-scale LMs included only for reference. rt xa4000 compute estimated. See Appendix F.1 for details.

Group Target Accelerator Time Limit | Total exaFLOP
(Devlin et al., 2019) BERT 16 TPU 4 days 680
(Dettmers, 2018) BERT 8Vv100 11 days 950
(Narasimhan, 2019) BERT-large 1472v100 47 min 519
(Raffel et al., 2020) T5-base 16 TPUV3 1 day 170
(Iandola et al., 2020) squeezeBERT | 8§ Titan RTX 4 days 361
(Narang et al., 2021) TS variations 16 TPUV3 1.75 days 298
(Tay et al., 2021) TS5-small-L16 16 TPUV3 11.2 hours 82
(Izsak et al., 2021) BERT variation 8Vv100 1 day 86
(Liu et al., 2019) roBERTa-base 1024 v100 1.25 day 13824
(Chowdhery et al., 2022) PaLM 6144 TPUV4 50 days 7299072
Our Setup 1 BERT variation | 1 rtx2080ti 1 day 5
Our Setup 2 BERT variation | 1 rtxa4000 1 day 8*
Our Setup 3 BERT variation 1 rtxa6000 1 day 13

a training run can be established by finding the total number
of (low-precision) floating point operations available over
the wallclock budget of the run. This peak of total FLOPs
in a given time interval is generally not reached in actual
compute, even for highly optimized models (Chowdhery
et al., 2022), but represents the paid budget required to
realize a training run. We summarize budgets for a few
select training runs in Table 1. After the original training
run for BERT on TPU, initial reactions estimated up to 11
days of compute for comparable results on GPUs (Dettmers,
2018). However, sustained improvements, especially
in software, have reduced the upper limit significantly
(You et al., 2019; Narasimhan, 2019). Yet, recipes and
implementations generally require entire server nodes (for
GPUs) or TPU slices and target larger BERT architectures.

Other work discussing improvements to BERT targets com-
pute settings closer to the original BERT, for example
SqueezeBERT (landola et al., 2020) employs 8 Titan
RTX cards for four days. Sellam et al. (2022) note that
the original BERT training run is an outlier and doubling its
training time more reliably reproduces the original results.

Our central point of comparison for BERT training with
limited resources is the work of [zsak et al. (2021) who also
attempt the goal of training BERT within 24 hours with
overall similar limitations, but use a full server node with
8 V100 GPUs. lIzsak et al. (2021) choose a BERT ArGE
architecture variant and train with sequence length of 128,
including a range of tweaks such as modified learning rates
schedules, large batch sizes, sparse prediction and packed se-
quences. We re-evaluate this setup as a key baseline setting
for our own compute budget (which is about 15x smaller).

Studies of Efficient Transformers. Recent years have
seen a flurry of research working to improve and modify
the transformer architecture proposed in Vaswani et al.
(2017) and we refer to Treviso et al. (2022) for a recent
categorization and review of research in this area. Several

meta-studies have investigated proposed improvements and
modifications: Narang et al. (2021) evaluate a large range of
architectural modifications applied to the TS5 model pipeline
of Raffel et al. (2020) on tasks in both language understand-
ing and translation. The encoder-decoder structure of TS
is closer in spirit to the original transformer setup, but is
understood to behave similarly to BERT when using the
encoder component (Liu et al., 2021a). Evaluating modifica-
tions with 1.75 days of compute on TPU slices they find that
most improvements do not reliably materialize gains in final
accuracy. Tay et al. (2021) work in the same setting and
evaluate the optimal shape of TS derived architectures and
its relative effects on downstream performance as models
are scaled. Further exploration of the scaling behavior of
various architectural improvements in Tay et al. (2022a)
find that only few modifications outperform the original
architecture of Vaswani et al. (2017) at all scales, especially
when evaluating downstream accuracy. The meta-study
investigating improvements in preparation for extreme-scale
training in Scao et al. (2022) focuses on minor modifications
to layout, positional embeddings and data sources for autore-
gressive models, and other extremely-large scale training
runs have so far been similarly conservative in their settings
(Brown et al., 2020; Black et al., 2022; Rae et al., 2022).

In general, these evaluations target larger compute settings
than we intend to use and therefore we are concerned with
whether improvements (often from academic sources and
proposed with evaluations on small scales) translate to larger
scales. In this work, we set aside the question of (up)scaling
and focus only on limited compute.

Scaling Laws. The difficulty in finding tangible improve-
ments is echoed in the scaling laws of Kaplan et al. (2020).
Over a wide range of transformer model shapes, Kaplan et al.
(2020) find that only model size (as number of parameters
in non-embedding layers) strongly predicts performance.
Further, for a fixed compute budget, an optimal model size
can be derived, but performance is only mildly connected to

Training a Language Model on a Single GPU in One Day.

model size - larger models process less data per unit of com-
pute, but improve faster by almost the same margin. While
the precise coefficients of these scaling laws continue to
be iterated on (s) and adapted (

R] s ; ,), their
overall logic appears hard to escape, even if power laws fit
observations somewhat less well on small scales.

4. Investigations

For our experimental evaluation we implement and test
a considerable number of proposed modifications to the
setup of () for their merits in our limited
compute setting as described in . We first clarify
the common implementation and initial data setup, and then
investigate architectural, training and dataset improvements.

4.1. Implementation Details

We implement everything in PyTorch (,)
and to limit our gains from the “’software lottery” (,

) we do not use specialized implementations, which
would further bias results towards well-established compo-
nents. We keep everything on the implementation level of
the PyTorch framework, allowing only automated operator
fusion (s) via compilation that can be
applied equally to all components. After choosing a final
architecture variant, we then re-enable specialized optimiza-
tions, such as efficient kernels (s). We run
all experiments and ablation studies with automated mixed
precision (s).

Initial Data Setup We start our investigation with a close
analogue to the original raw text sources of
(), using a recent dump of the English Wikipedia
(20220301 .en) and English bookcorpus, noting the
commentary of (); (). We
force all text into lower-case, strip accents and non-ascii
characters and create an English tokenizer from scratch
based only on this data. We choose WordPiece with a vo-
cabulary size of 215 = 32768 (,). We pack
tokenized data into randomized sequences of length 128
and separate unrelated fragments by <sep>. The shorter se-
quence length is sufficient for the downstream applications
that we are targeting and simplifies attention computations.
Packing data into full sequences limits us to simpler se-
quence losses, but uses the available compute optimally
(); (). For the targeted compute
settings, this sequence length results in micro-batch sizes
of 64 to 96 for most variations of the base BERT architec-
ture on the gt x2080t i, which we will accumulate into
larger batch sizes. With our limited compute budget, this
produces enough samples to run single-epoch training (
s ;)) where no data

point is revisited.

4.2. Modifying the Architecture

The most obvious way to efficiently scale down training
is by modifying the model architecture; intuitively, it seems
likely that lower-capacity models will be optimal in the
cramming regime, or that some modification or would
provide significant gains when tailored to this setting. In
this section, we study the relationship between model type
and final efficiency. We find that scaling laws create a strong
barrier to scaling down. Per-token efficiency of training de-
pends strongly on model size, but not on transformer shape.
Furthermore, smaller models learn less efficiently, and this
largely mitigates any throughput gains. Fortunately, the
fact that training efficiency is nearly constant across models
of the same size means that we can boost performance by
finding architecture modifications that speed up gradient
computation while keeping the parameter count nearly
constant. This makes architecture selection fairly straight-
forward as we can make design choices based primarily on
how they affect computation time for a single gradient step.

Scaling laws are a roadblock to quick wins. A large cor-
pus of research in recent years has developed architectural
improvements to speed up the original transformer. Yet,
many of these methods have not been found to improve
training, see for example meta-studies for TS5 architectures
in (); (). But, in the low
compute setting where data throughput is of utmost impor-
tance, maybe this is the way forward? Scaling laws hold
strongly in the limit as resources grow. However, these laws
also hold reliably in the low-resource regime. We exten-
sively test recently published architecture variations, but find
that none can escape the conclusion of ()
that model shape does not significantly affect performance.

We exemplify the effect of scaling laws for many trans-
former variants from the literature in , where we
train each architecture variant with optimized training hy-
perparameters as described below in Section 4.3. We apply
these architecture variants to a shared baseline model that
incorporates Pre-Normalization and rotary embedding.

visualizes the progress of masked-language modeling
(MLM) loss versus the number of tokens ingested in total
and all architectures run with the same time budget.

We observe that varying the transformer shape has only
minimal impact on the final loss after 24 hours. Models with
more parameters learn more efficiently, as their MLM loss
decreases faster on a per-gradient basis. However, smaller
architectures make up for their slower learning efficiency by
higher throughput, and thus process more tokens over the
limited budget. shows that different architectures
are unpredictable throughout an initial stage of training (the
first 1B tokens), after which the per-token efficiencies differ
by only a multiplicative constant (a horizontal shift due to
the log axis). This constant depends almost entirely on the

Training a Language Model on a Single GPU in One Day.

Architecture
=== Bert-Base
=== Funnel
= 6 Layers
=== 8 Layers
16 Layers
24 Layers

Thin (H=512)
Wide(H=1024)
Embedding E=128

=== 24 Heads

=== 6 Heads

= 3 Heads

=== 1 Head
FFN every 2L
FFN every 4L

MLM Loss

DeepNarrow (24L)| &

9 2 3 456789 2 3 456789 2 3 4 567
10M 100M 1B

Total Tokens Ingested

2B 2.5B 3B 3.5B 4B 4.5B
Total Tokens Ingested

5B 55B 6B 6.5B 7B

Figure 1. Various Transformer architectures and shapes, showing MLM loss versus number of tokens ingested. Left: Global view. Right:
Zoom onto 10e8 or more tokens. All models trained with the same budget. We see that improvements through architectural reshaping are
minimal; while there are some fluctuations in loss early in training, the rates of loss decay during most of training differ by a multiplicative
constant (horizontal shift due to logarithmic horizontal axis) that depends strongly on the model size and not model shape.

model size, not model shape, so that all choices reach a
MLM loss around 1.9 at the end of training. As in Kaplan
et al. (2020) we observe an optimal model size for this
compute budget (at a budget of around 4B tokens), but gains
from model size optimization are small at this compute
scale.

Exploiting the scaling law. The scaling laws seem to
bar us from making large gains via major changes to the
transformer size and shape, as per-token performance is
tightly coupled to model size. While this principle closes
one door for scaling down efficiently, it opens another;
Because per-gradient efficiency remains nearly constant
for all models of the same size, we can exploit scaling
laws by searching for architectural choices that speed up
computation while keeping model size roughly constant.

A number of obvious optimizations fall into this category,
and we describe them below, in addition to several other
tweaks that provide marginal but worthwhile/free gains. We
note that, for each modification, we tabulate gains in MLM
loss and downstream accuracy in separation in the appendix,
and focus on aggregate changes in the main body.

Attention Block: We disable all QKV biases (Dayma et al.,
2021). This exploits the scaling law by removing a layer of
computation, making the forward and backward pass some-
what faster, while keeping the model size nearly constant.
We find that we could decrease gradient costs by reduc-
ing the number of attention heads (Merity, 2019; Araabi
& Monz, 2020; Liu et al., 2021b; Javaheripi et al., 2022),
as this parallelizes better on the GPU and provides a slight
performance boost. Yet, reducing the amount of heads also
decreases finetuning performance, so we ultimately keep
all 12 heads. We further keep the original multi-head self-
attention mechanism.

Feedforward Block: We find empirical gains from dis-

abling all linear layer biases (Dayma et al., 2021). Just as
for the attention layers, this leverages the scaling law by ac-
celerating gradient computation without noticeable impacts
on model size. As a result, we get higher throughput without
compromising the rate at which the model improves. We
keep the original feedforward block largely unchanged. We
do see small improvements from re-ordering the block into
a gated linear unit (Dauphin et al., 2017). In contrast to
other work, e.g. (Black et al., 2022), we do not increase the
number of parameters in the FFN block to compensate for
the halving of the hidden dimensionality due to gating.

Embedding: We implement scaled sinusoidal positional
embeddings as in Hua et al. (2022), finding incremental
benefits over learned or unscaled sinusoidal embeddings.
We include normalization at the end of the embedding block.

Layer Structure: As observed in many studies, we find
that pre-normalization with Layer Norms is beneficial over
post Layer Norms (Baevski & Auli, 2018; Xiong et al.,
2020). We note that the key effect of pre-normalization
is to stabilize training and enable larger learning rates
and reduced warmup, pre-normalization by itself has no
effect on performance. Further, we find minimal gains by
increasing the number of layers to 16.

Head Block: We find that we can remove the nonlinear
head without ill effect. We can further drop the decoder
bias (Radford et al., 2019) and gain in memory using sparse
token prediction (Liu et al., 2019; Izsak et al., 2021). We
add a final Layer Norm to stabilize training further.

4.3. Modifying the Training Setup

We study the impact of training hyper-parameters on the
BERT-base architecture. The original BERT training recipe
understandably results is poor model performance in the

Training a Language Model on a Single GPU in One Day.

11 2.25
10 Schedule
9l === Triangular 2.2
8 — -
| One-Cycle 215
7 === Linear with Warmup
6 === Cosine Decay with Warmup 2.1
@ 5 Constant with Warmup/Cooldown g 205
; InvSqrt with Cooldown ;
g 4 4 2
= =
3 1.95
S 1.9
2 \——_ 1.85

0.001

0.0008 |

0.0004

0.0002

140k

0 50k 100k 150k 160k

Microbatch Steps

200k

Microbatch Steps

180k 200k 220k 240k 0 50k 100k 150k

Microbatch Steps

200k

Figure 2. Learning Rate Schedules, for optimal peak step size for each scheduler. Although globally many schedule result in similar
behavior, we see in the zoom in the middle, that differences do exist. The right side shows the scheduled step sizes. Triangular- and
trapezoidal one-cycle schedules have better end-time behavior, possibly due to the quick annealing and overall greater progress.

cramming setting, and so we revisit a number of choices.

Objective: We train with only masked language modeling
on fully packed blocks of tokens with a masking rate of
25% and the original setup of Devlin et al. (2019) where
10% of all masks are filled with random words and 10%
unchanged. We find the increased masking rate provides
benefits at almost no extra cost, as the original 15% results
in inopportune tensor shapes, whereas 25% of micro-batch
size and sequence length neatly falls on the next power of 2.

Choice of Optimizer: We keep Adam (Kingma & Ba, 2015)
as the optimizer of choice, with weight decay of 0.01 as
described in (Loshchilov & Hutter, 2017) (i.e. “AdamW”),
B1 =0.9,85 = 0.98 and ¢ = 1072 To stabilize training
at no extra cost, we include gradient clipping at 0.5.

Learning Rate Schedule and Peak: Following the advice
of [zsak et al. (2021), we re-scale the learning rate schedule
so that it is tied to our budget and the learning rate decays
as the budget reduces to zero. Interestingly, we observe in
Figure 2 that while globally a large number of learning rate
shapes lead to similar reductions in loss, we find that we can
make some gains through the choice of schedule. We find
that a simple one-cycle learning schedules (Smith & Topin,
2018), with a peak learning rate of 10~3 lead to minimal
pretraining loss within our budget, with the optimum being
a triangular shape (denoted “triangular” in Figure 2) that
mimics a long warmup period with a quick decay.

Batch Size Schedule: A particularity of our setting is that,
due to being limited to a single GPU, the micro-batch size
that finds its way onto this GPU (96 for most experiments)
is several times smaller than the optimal batch size. We
find that the optimal batch size in this setting is around
2048 for minimal pretraining loss, but around 8192 for
maximal downstream performance, see Figure 3. We

=== MLM Loss

1.96 | == MNLI Accuracy (m) /\ 0.816

MLM Loss
o
[oc]
N
MNLI Accuracy

0.8125

1.935

6789 2 3
1000

Final Batch Size

4 5678

Figure 3. Optimal batch sizes for pretraining and downstream per-
formance (measured on MNLI) are different.

accumulate gradients and only perform an update every 85
forward/backward passes. For the larger A4000 and A6000
cards, this corresponds to micro-batch sizes of 128 and 512
for the same batch size of 8192, which we again accumulate.

Fortunately, we can find small speedups by using an ag-
gressive batch size schedule; we increase the number of
averaged micro-batches linearly over the course of training,
reaching the full batch size of 8192 after 60% of training.
This results in more progress earlier in training, and leads
to a small benefit to performance.

Dropping Dropout The original BERT model of Devlin
et al. (2019) includes dropout as in Vaswani et al. (2017),
which prevents overfitting when training data is small
relative to total compute budget. While it can be helpful
as a regularizer, dropout effectively reduces the number of
gradient updates seen by each parameter, as updates do not
occur when the associated feature is dropped. At the same

Training a Language Model on a Single GPU in One Day.

Table 2. Interactions between sorting, deduplication and filtering
strategies from Section 4.1 for several data sources measured in
GLUE performance. The first row corresponds to the original
BERT data. bw denotes bookcorpus-wikipedia, c4 is C4
(colossal-cleaned-common-crawl) (Raffel et al., 2020), oscar is
the 2019 release of the OSCAR dataset (Sudrez et al., 2019). pile
is the subset of The Pile (Gao et al., 2020). pile-N is the subset
drawn only from the natural sources in the Pile. For additional
details see Table 7.

Source Filtered Sorted Dedup. GLUE
bw X X X 78.1
bw v X X 78.7
bw v v X 78.8
c4d X X X 75.9
c4d v X X 79.3
c4d v v X 79.0
oscar X X X 79.1
oscar v X X 79.2
oscar v v X 79.2
oscar v v v 80.1
pile X X X 78.2
pile v X X 79.3
pile v v X 80.1
pile v v v 80.0
pile-N X X X 79.2
pile-N v X X 79.8
pile-N v v X 80.1

time, update runtime is not strongly effected by the presence
of dropout, and so dropout results in a net reduction in
updates per second. In the cramming setting, training data
is large compared to compute. Overfitting is not possible
due to the single epoch schedule, and we disable dropout
during pretraining (Brown et al., 2020) to maximize the
number of parameter updates. We re-enable dropout during
downstream fine-tuning with a dropout value of 0.1.

4.4. Optimizing the Dataset

We found above that scaling laws create a barrier to mak-
ing major gains (beyond computational efficiencies) with
architectural modifications. However, scaling laws do not
preclude us from training on better data. Once we have
exhausted our ability to train on more tokens per second, we
should seek to train on better tokens.

We consider two data based pathways to better down-
scaling. First, we can filter, process, or sort the exist-
ing data in various ways. Second, we can swap our data
source. To this end, we experiment with replacements for
the bookcorpus-wikipedia dataset. We test several
subsets of The Pile (Gao et al., 2020). We draw random
subset from all sources, denoted pile and one containing
raw text from only Gutenberg, Books3 and Wikipedia (en),
denoted pile—N. From these Pile datasets we tokenize the
first 4 x 10° entries to generate enough tokens for our single

0.815
N
0.81
>, 0.805
g
2 08 !
o
<
= 0.795
Z
2 0.79
0.785
N / === MNLI Accuracy
0.78 GLUE Score
5 10k 2 5 100k

Vocabulary Size
Figure 4. Vocabulary Size versus GLUE Score and MNLI
Accuracy for models trained in the cramming regime on
bookcorpus-wikipedia data.

pass. Another popular source of data is C4, the colossal,
cleaned version of Common Crawl (Raffel et al., 2020),
from which we stream the first 20 x 10° entries. Finally, we
also include the 2019 release of the OSCAR dataset (Sudrez
et al.,, 2019), denoted by oscar. For each data source
we regenerate its own WordPiece tokenizer as described in
Section 4.1.

Of these four sources, we find the natural split of The Pile
to perform best in terms of downstream GLUE performance
out-of-the-box. However, we can further improve perfor-
mance through additional processing. We evaluate dedupli-
cation as described in [ee et al. (2022) via exact substring
deduplication (of substrings of length 75), but find this not
to reliably help in downstream performance in our case, see
Table 2. We then test filtering for incompressible data. We
use the tokenizer itself to remove all training sequences from
each data source that cannot be compressed well; we simply
set a threshold ¢, here t = 0.25, and drop all entries from
the dataset where the number of tokens in the entry is larger
than ¢ times the number of raw characters. This removes, for
example, sequences consisting of hard-to-compress HTML.

Finally we experiment with sorting, where we re-order all
tokenized sequences by some metric. We find the optimal
metric to be sentence length and we sort so that sequences
containing short sentences come first. This is empirically
beneficial over e.g. sorting all sequences by their average
(unigram) token prevalence.

Overall, wins from post-processing in this manner are no-
ticeable, leading in aggregate to an improvements of 2%
over the original dataset and we choose The Pile with both
filtering and sorting as our new dataset going forward.

Vocabulary Size We also check whether the original vo-
cabulary size of 30522 described in (Devlin et al., 2019) is
optimal in the crammed regime. A priori, this might not
hold: The smaller the vocabulary, the fewer, unique tokens

Training a Language Model on a Single GPU in One Day.

Table 3. Comparison in GLUE-dev performance of baseline BERT to the crammed model. Note that all runs abide by the finetuning

protocol described in

with fixed hyperparameters for all tasks and an epoch limit of 5. Missing values are NaN. The protocol

of (s) is designed for an 8 GPU server blade, and is crammed onto a single GPU here. T denotes the number of tokens
ingested during training in billions. The MNLI column shows evaluation results for both matched and mismatched sets. The GLUE
column depicts the full average over the same tasks as in ().
T(10%) MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA ‘ GLUE
BERT-base (Fully trained) - 83.3/83.5 92.0 86.7 58.8 90.6 87.8 89.3 56.9 81.0
BERT-base (No Pretraining) 0 34.1/34.1 79.9 17.8 473 50.0 68.6 77.9 0.0 455
Trained for 1 day on a 2080ti:
BERT (orig. run, stopped early) 34 64.7/64.6 78.8 18.8 504 572 75.1 74.7 8.7 54.8
BERT (,) 1.2 74.9/75.7 - - 523 84.6 844 82.2 335 69.7
crammed BERT 43 82.5/82.8 91.6 86.2 56.7 89.1 87.1 88.3 48.3 79.2
Trained for 1 day on an A4000:
BERT (orig. run, stopped early) 3.8 66.1/66.1 78.2 18.1 50.5 58.1 75.1 73.5 8.7 54.9
BERT (,) 1.4 58.9/59.9 - - - - - 81.4 329 58.3
crammed BERT 45 82.7/83.1 91.5 86.4 565 88.8 86.9 88.2 48.6 79.2
Trained for 1 day on an A6000:
BERT (orig. run, stopped early) 7.3 64.4/63.9 79.3 20.8 4938 583 751 74.2 7.7 54.8
BERT (,) 25 76.7/76.9 87.4 78.7 509 859 845 81.8 39.8 73.6
crammed BERT 8.7 84.0/84.4 92.3 87.0 574 90.0 877 89.0 51.8 80.4

and relationships between unique tokens have to be learned
during training. On the other hand, increasing the vocabu-
lary size compresses data further (albeit vanishingly after
some point), which would allow for more information to
be compressed into the fixed number of tokens that can be
ingested during the crammed training run. In , we
find that for bookcorpus-wikipedia data, larger vo-
cabulary sizes correlate with larger average GLUE score,
although the effect is plateauing for the MNLI task around
the original 32768 vocabulary size. Moving forward, we
hence keep this vocabulary size.

5. Finetuning Performance on GLUE

Finally, we systematically evaluate performance on the
GLUE benchmark of (), minus WNLI
as in (). We note that we only use MNLI
(m) during the previous sections and do not tune hyperpa-
rameters based on the full GLUE scores. We finetune both
the pretrained BERT-base checkpoint and our models un-
der the same constraints laid out in , namely that
downstream hyperparameters have to be fixed over all down-
stream tasks and train for 5 epochs or less. For BERT-base,
we finetune all datasets for 5 epochs with a batch size of
32 and learning rate of 2 X 10~2. For the crammed models,
we find that this is not optimal and minor improvements
can be gained from a batch size of 16 and learning rate of
4 x 1075 with cosine decay (this change does not improve
the pretrained BERT checkpoint).

and describe the performance of this setup
on the GLUE downstream tasks (as median over 5 down-
stream trials). There we compare the original BERT-base
checkpoint, a reproduction of the BERT pretraining settings

stopped after our budget limit is reached, the setup described
in (,), and the modified recipe, trained for a
single day for each GPU setup.

Overall, the performance of the crammed model recipe is
surprisingly decent, especially for the larger datasets of
MNLI, QQP, QNLI and SST-2, where downstream fine-
tuning can smooth out the remaining differences between
the full BERT model and the crammed variants. Further,
we find substantial gains over both a naive BERT training
with limited budget, and over the recipe described in

(). For (), the described recipe
was originally designed for a full 8 GPU server blade, and
squeezing the BERT-large model therein onto the smaller
GPUs in this experiment is responsible for most of the per-
formance degradation and instability of this recipe in our
scenario.

The crammed model mostly works, even for smaller datasets,
such as STSB and MRPC. The largest difference is observed
on CoLA, the corpus of linguistic acceptability (

s), see . This behavior is intriguing and
we offer two hypotheses. First, it is conceivable that the cho-
sen global hyperparameters for finetuning are a bad fit for

Table 4. GLUE-dev performance of baseline BERT to crammed
model. T is the number of tokens ingested during training in
billions. Avg. Score is all scores excluding CoLA, GLUE is the

full avg. over the same tasks as in ().
T(109) CoLA Avg. Score GLUE
Bert-Base - 56.5 84.0 80.9
Crammed (2080ti) 4.3 48.3 83.1 79.2
Crammed (A4000) 4.5 48.6 83.0 79.2
Crammed (A6000) 8.7 51.8 84.0 80.4

Training a Language Model on a Single GPU in One Day.

Table 5. Ablation study, which improvements were most important? The first group shows an ablation where one component of the final
combination of training, architecture, and data modifications (the crammed BERT model) is replaced by the original setup. Here, we find
that modifications in training and architecture have to co-occur, as returning to the original training setup or architecture each results in
failure. As such we also include a row with minimal training modifications (dropout disabled, cosine decay to zero within budget with
warmup, fixed batch size of 8192) and a row with minimal architecture modifications (Pre-normalization, sparse activations, Layer Norm
e = 1079). This ablation is for the A6000 variant, see other results in

MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA | GLUE
crammed BERT 84.0/84.4 92.3 87.0 574 90.0 87.7 89.0 51.8 80.4
+ original data 82.6/83.2 91.7 86.0 556 90.1 87.0 85.6 454 78.6
+ original train 50.9/49.9 82.2 156 498 58.6 66.4 73.6 7.5 50.5
+ original arch. -/- - - - - - - - -
+ minimal train mod. ~ 80.8/81.6 90.6 86.6 545 882 86.6 88.6 443 78.0
+ minimal arch. mod. ~ 83.1/83.6 91.6 853 570 89.9 87.0 85.7 41.8 78.3

CoLA in particular. CoLa performance can be brittle with
respect to hyperparameter, with () training
longer only on CoL A or () training less only
on CoLA. Nevertheless, for BERT, a set of global hyper-
parameters exists, pointing at a deficiency in the crammed
model. As a second hypothesis, the improvements across
GPUs imply that these models need to process more text
before they memorize enough data to do well on CoLA.
This would be in contrast to (), who find
that CoLA is learned relatively quickly compared to other
downstream tasks when probing intermediate BERT check-
points. Finally, deficiencies on CoLA in particular are also
common in approaches that distill BERT into smaller ar-
chitectures (R ; s ;

,), which might come with limited capacity for
linguistic acceptability.

Ablation - Which Changes Really Mattered? In

we provide an ablation study summarizing all changes
discussed in this work. We group modifications, as in
previous sections into the three groups of architecture,
training and data and ablate each group by resetting all
modifications to the original BERT recipe. Here, we
find that we first have to make minimal modifications
in any case, as modifications to architecture, such as
PreNorm layer structures also in turn allow the more
aggressive learning rate described in the training setup -
without both, training fails when going back to either the
original architecture or results in a model close to random
performance when going back to the original training.

Taking this into account, we also include an ablation with
minimal training modifications (dropout disabled, cosine
decay to zero within budget with warmup, fixed batch
size of 8192) and with minimal architecture modifications
(Pre-normalization, sparse activations, Layer Norm
¢ = 107%). Comparing these variants, we ultimately find
about two percentage points gained in average GLUE
score through either architectural changes, data changes,
or training modifications.

6. Conclusions

We discuss what performance a transformer-based language
model can achieve when crammed into a setting with very
limited compute, finding that several strands of modification
lead to decent downstream performance on GLUE. Overall
though, cramming language models is hard, as we empir-
ically find many implications of () to
still hold in this regime, e.g. improvements through larger
models are nearly evened out by their slower speed, and
different architecture types and transformer shapes have
limited impact.

We hope that this work can provide a baseline for explo-
rations of the question of cramming we formalize in

and cast an additional light on a number of improve-
ments and tricks proposed for transformer architectures in
recent years. We do not believe that results in this work
represent the limit that is achievable within the cramming
compute budget, and hope for further research and develop-
ments in this direction.

7. Acknowledgements

This work was made possible by the ONR MURI program,
DARPA GARD (HR00112020007), the Office of Naval
Research (N000142112557), and the AFOSR MURI
program. Commercial support was provided by Capital
One Bank, the Amazon Research Award program, and
Open Philanthropy. Further support was provided by the
National Science Foundation (IIS-2212182), and by the
NSF TRAILS Institute (2229885).

References

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.
Scalable Second Order Optimization for Deep Learning.
arXiv:2002.09018 [cs, math, stat], March 2021. URL
http://arxiv.org/abs/2002.09018.

http://arxiv.org/abs/2002.09018

Training a Language Model on a Single GPU in One Day.

Araabi, A. and Monz, C. Optimizing Transformer for Low-
Resource Neural Machine Translation. In Proceedings of
the 28th International Conference on Computational Lin-
guistics, pp. 3429-3435, Barcelona, Spain (Online), De-
cember 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.304.
URL https://aclanthology.org/2020.co
ling-main.304.

Artetxe, M., Du, J., Goyal, N., Zettlemoyer, L., and Stoy-
anov, V. On the Role of Bidirectionality in Language
Model Pre-Training. arxiv:2205.11726[cs], May 2022.
doi: 10.48550/arXiv.2205.11726. URL http:
//arxiv.org/abs/2205.11726.

Baevski, A. and Auli, M. Adaptive Input Representations for
Neural Language Modeling. In International Conference
on Learning Representations, September 2018. URL
https://openreview.net/forum?id=Byx7Z
X20gFQ.

Bahri, D., Mobahi, H., and Tay, Y. Sharpness-Aware
Minimization Improves Language Model Generaliza-
tion. arXiv:2110.08529 [cs], October 2021a. URL
http://arxiv.org/abs/2110.08529.

Babhri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U. Ex-
plaining Neural Scaling Laws. arxiv:2102.06701 [cond-
mat, stat], February 2021b. doi: 10.48550/arXiv.2102.06
701. URL http://arxiv.org/abs/2102.067
01.

Bajaj, P, Xiong, C., Ke, G., Liu, X., He, D., Tiwary, S.,
Liu, T.-Y., Bennett, P., Song, X., and Gao, J. METRO:
Efficient Denoising Pretraining of Large Scale Autoen-
coding Language Models with Model Generated Sig-
nals. arXiv:2204.06644 [cs], April 2022. URL http:
//arxiv.org/abs/2204.06644.

Bandy, J. and Vincent, N. Addressing ’Documentation
Debt” in Machine Learning: A Retrospective Datasheet
for BookCorpus. NeurIPS 2021 Track Datasets and
Benchmarks, November 2021. URL https://open
review.net/forum?id=Qd_eUlwvJeu.

Bansal, Y., Ghorbani, B., Garg, A., Zhang, B., Krikun, M.,
Cherry, C., Neyshabur, B., and Firat, O. Data Scaling
Laws in NMT: The Effect of Noise and Architecture.
arXiv:2202.01994 [cs], February 2022. URL https:
//arxiv.org/abs/2202.01994v1.

Bao, H., Dong, L., Wei, F., Wang, W., Yang, N., Liu, X,,
Wang, Y., Piao, S., Gao, J., Zhou, M., and Hon, H.-W.
UniLMv2: Pseudo-Masked Language Models for Unified
Language Model Pre-Training. arXiv:2002.12804 [cs],
February 2020. URL http://arxiv.org/abs/20
02.12804.

10

Beltagy, 1., Peters, M. E., and Cohan, A. Longformer: The
Long-Document Transformer. arXiv:2004.05150 [cs],
December 2020. URL http://arxiv.org/abs/
2004.05150.

Bender, E. M. The #BenderRule: On Naming the Languages
We Study and Why It Matters, September 2019. URL
https://thegradient.pub/the-benderrul
e—-on—-naming-the-languages-we-study-a
nd-why—-it-matters/.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds,
L., Tow, J., Wang, B., and Weinbach, S. GPT-NeoX-
20B: An Open-Source Autoregressive Language Model.
arXiv:2204.06745 [cs], April 2022. URL http://ar
xiv.org/abs/2204.06745.

Bollapragada, R., Byrd, R., and Nocedal, J. Adaptive Sam-
pling Strategies for Stochastic Optimization. SIAM Jour-
nal on Optimization, 28(4):3312-3343, January 2018a.
ISSN 1052-6234. doi: 10.1137/17M1154679. URL
https://epubs.siam.org/doi/abs/10.11
37/17M1154679.

Bollapragada, R., Mudigere, D., Nocedal, J., Shi, H.-J. M.,
and Tang, P. T. P. A Progressive Batching L-BFGS
Method for Machine Learning. May 2018b. URL
http://arxiv.org/abs/1802.05374.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
Models are Few-Shot Learners. In 34th Conference on
Neural Information Processing Systems (NeurlPS 2020),
December 2020. URL https://papers.nips.cc
/paper/2020/hash/1457c0d6bfcb4967418
bfb8acld42f6da—-Abstract.html.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramer, F. Membership Inference Attacks From First
Principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897-1914, May 2022. doi: 10.1109/
SP46214.2022.9833649.

Chelombieyv, 1., Justus, D., Orr, D., Dietrich, A., Gress-
mann, F., Koliousis, A., and Luschi, C. GroupBERT: En-
hanced Transformer Architecture with Efficient Grouped
Structures. arxiv:2106.05822 [cs], June 2021. URL
https://arxiv.org/abs/2106.05822v1.

https://aclanthology.org/2020.coling-main.304
https://aclanthology.org/2020.coling-main.304
http://arxiv.org/abs/2205.11726
http://arxiv.org/abs/2205.11726
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
http://arxiv.org/abs/2110.08529
http://arxiv.org/abs/2102.06701
http://arxiv.org/abs/2102.06701
http://arxiv.org/abs/2204.06644
http://arxiv.org/abs/2204.06644
https://openreview.net/forum?id=Qd_eU1wvJeu
https://openreview.net/forum?id=Qd_eU1wvJeu
https://arxiv.org/abs/2202.01994v1
https://arxiv.org/abs/2202.01994v1
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2004.05150
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.06745
https://epubs.siam.org/doi/abs/10.1137/17M1154679
https://epubs.siam.org/doi/abs/10.1137/17M1154679
http://arxiv.org/abs/1802.05374
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2106.05822v1

Training a Language Model on a Single GPU in One Day.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P, Duke, T., Levskaya, A., Ghemawat, S.,
Deyv, S., Michalewski, H., Garcia, X., Misra, V., Robin-
son, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D.,
Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Do-
han, D., Agrawal, S., Omernick, M., Dai, A. M., Pil-
lai, T. S., Pellat, M., Lewkowycz, A., Moreira, E.,
Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X.,
Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J.,
Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and
Fiedel, N. PalLM: Scaling Language Modeling with
Pathways. arXiv:2204.02311 [cs], April 2022. URL
http://arxiv.org/abs/2204.02311.

Chung, H. W,, Fevry, T., Tsai, H., Johnson, M., and Ruder,
S. Rethinking Embedding Coupling in Pre-trained Lan-
guage Models. In International Conference on Learn-
ing Representations, September 2020. URL https:
//openreview.net/forum?id=xpFFI_NtgpW.

Clark, A., de las Casas, D., Guy, A., Mensch, A., Paganini,
M., Hoffmann, J., Damoc, B., Hechtman, B., Cai, T.,
Borgeaud, S., van den Driessche, G., Rutherford, E., Hen-
nigan, T., Johnson, M., Millican, K., Cassirer, A., Jones,
C., Buchatskaya, E., Budden, D., Sifre, L., Osindero, S.,
Vinyals, O., Rae, J., Elsen, E., Kavukcuoglu, K., and Si-
monyan, K. Unified Scaling Laws for Routed Language
Models. arXiv:2202.01169 [cs], February 2022. URL
http://arxiv.org/abs/2202.01169.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. In International Conference
on Learning Representations, September 2019. URL
https://openreview.net/forum?id=r1xM
H1BtvB.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. Pre-
Training Transformers as Energy-Based Cloze Models.
arXiv:2012.08561 [cs], December 2020. URL http:
//arxiv.org/abs/2012.08561.

Dai, Z., Lai, G., Yang, Y., and Le, Q. Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Lan-
guage Processing. In Advances in Neural Information
Processing Systems, volume 33, pp. 4271-4282. Curran
Associates, Inc., 2020. URL https://papers.nip
s.cc/paper/2020/hash/2cd2915e6954690
4dedebd4a2ac9elb52-Abstract.html.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C.
FlashAttention: Fast and Memory-Efficient Exact At-

11

tention with IO-Awareness. arxiv:2205.14135[cs], May
2022. doi: 10.48550/arXiv.2205.14135. URL
http://arxiv.org/abs/2205.14135.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage Modeling with Gated Convolutional Networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning, pp. 933-941. PMLR, July 2017. URL
https://proceedings.mlr.press/v70/da
uphinl7a.html.

Dayma, B., Patil, S., Cuenca, P., Saifullah, K., Abraham,
T., Lé Khac, P, Melas, L., and Ghosh, R. DALL-E Mini,
July 2021. URL https://github.com/borisda
yma/dalle-mini.

De, S., Yadav, A., Jacobs, D., and Goldstein, T. Big Batch
SGD: Automated Inference using Adaptive Batch Sizes.
arxiv:1610.05792[cs, math, stat], April 2017. URL ht
tp://arxiv.org/abs/1610.05792.

Dehghani, M., Tay, Y., Arnab, A., Beyer, L., and Vaswani, A.
The Efficiency Misnomer. In International Conference
on Learning Representations, September 2021. URL
https://openreview.net/forum?id=iulEk
MLYh1uR.

Dettmers, T. TPUs vs GPUs for Transformers (BERT),
October 2018. URL https://timdettmers.com/
2018/10/17/tpus-vs—gpus—for-transform
ers—bert/.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv:1810.04805 [cs], May 2019.
URL http://arxiv.org/abs/1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv:2010.11929 [cs], June 2021.
URL http://arxiv.org/abs/2010.119209.

Fusco, F., Pascual, D., and Staar, P. pNLP-Mixer:
An Efficient all-MLP Architecture for Language.
arxiv:2202.04350 [cs], February 2022. URL https:
//arxiv.org/abs/2202.04350v1.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800GB Dataset of
Diverse Text for Language Modeling. arXiv:2101.00027
[cs], December 2020. URL http://arxiv.org/ab
s/2101.00027.

http://arxiv.org/abs/2204.02311
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=xpFFI_NtgpW
http://arxiv.org/abs/2202.01169
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
http://arxiv.org/abs/2012.08561
http://arxiv.org/abs/2012.08561
https://papers.nips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://papers.nips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://papers.nips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
http://arxiv.org/abs/2205.14135
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://github.com/borisdayma/dalle-mini
https://github.com/borisdayma/dalle-mini
http://arxiv.org/abs/1610.05792
http://arxiv.org/abs/1610.05792
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2202.04350v1
https://arxiv.org/abs/2202.04350v1
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027

Training a Language Model on a Single GPU in One Day.

Geiping, J., Fowl, L. H., Huang, W. R., Czaja, W., Taylor,
G., Moeller, M., and Goldstein, T. Witches’ Brew: In-
dustrial Scale Data Poisoning via Gradient Matching. In
International Conference on Learning Representations,
April 2021. URL https://openreview.net/f
orum?id=01olnfLIbD.

Golchin, S., Surdeanu, M., Tavabi, N., and Kiapour, A.
A Compact Pretraining Approach for Neural Language
Models. arxiv:2208.12367[cs], August 2022. doi: 10.4
8550/arXiv.2208.12367. URL http://arxiv.org/
abs/2208.12367.

Gold, Z. and Latonero, M. Robots Welcome: Ethical and
Legal Considerations for Web Crawling and Scraping.
Washington Journal of Law, Technology & Arts, 13(3):
275-312,2017. URL https://heinonline.org
/HOL/P?h=hein. journals/washjoltal3s&i
=283.

Gu, X, Liu, L., Yu, H., Li, J., Chen, C., and Han, J. On
the Transformer Growth for Progressive BERT Train-
ing. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 5174—
5180, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.406.
URL https://aclanthology.org/2021.na
acl-main.406.

He, P, Gao, J., and Chen, W. DeBERTaV3:
Improving DeBERTa using ELECTRA-Style Pre-
Training with Gradient-Disentangled Embedding Shar-
ing. arXiv:2111.09543 [cs], December 2021. URL
http://arxiv.org/abs/2111.09543.

Hernandez, D., Brown, T., Conerly, T., DasSarma, N.,
Drain, D., El-Showk, S., Elhage, N., Hatfield-Dodds,
Z., Henighan, T., Hume, T., Johnston, S., Mann, B., Olah,
C., Olsson, C., Amodei, D., Joseph, N., Kaplan, J., and
McCandlish, S. Scaling Laws and Interpretability of
Learning from Repeated Data. arxiv:2205.10487[cs],
May 2022. URL http://arxiv.org/abs/2205
.10487.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals, O., and
Sifre, L. Training Compute-Optimal Large Language
Models. arXiv:2203.15556 [cs], March 2022. URL
http://arxiv.org/abs/2203.15556.

Hooker, S. The hardware lottery. Communications of the
ACM, 64(12):58-65, November 2021. ISSN 0001-0782.

12

doi: 10.1145/3467017. URL https://doi.org/10
.1145/3467017.

Hou, L., Pang, R. Y., Zhou, T., Wu, Y., Song, X., Song,
X., and Zhou, D. Token Dropping for Efficient BERT
Pretraining. arXiv:2203.13240 [cs], March 2022. URL
http://arxiv.org/abs/2203.13240.

Hua, W., Dai, Z., Liu, H., and Le, Q. Transformer Qual-
ity in Linear Time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pp. 9099-9117.
PMLR, June 2022. URL https://proceedings.
mlr.press/v162/hua22a.html.

Hui, L. and Belkin, M. Evaluation of Neural Architectures
Trained with Square Loss vs Cross-Entropy in Classifica-
tion Tasks. arXiv:2006.07322 [cs, stat], October 2021.
URL http://arxiv.org/abs/2006.07322.

Iandola, F. N., Shaw, A. E., Krishna, R., and Keutzer, K. W.
SqueezeBERT: What can computer vision teach NLP
about efficient neural networks? arXiv:2006.11316 [cs],
June 2020. URL http://arxiv.org/abs/2006
.11316.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting Predictions from Training
Data. arxiv:2202.00622[cs, stat], February 2022. doi:
10.48550/arXiv.2202.00622. URL http://arxiv.
org/abs/2202.00622.

Izsak, P., Berchansky, M., and Levy, O. How to Train BERT
with an Academic Budget. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pp. 10644—-10652, Online and Punta Cana,
Dominican Republic, November 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emn
Ip-main.831. URL https://aclanthology.org
/2021 .emnlp-main.831.

Javaheripi, M., Shah, S., Mukherjee, S., Religa, T. L.,
Mendes, C. C. T., de Rosa, G. H., Bubeck, S., Koushanfar,
F., and Dey, D. LiteTransformerSearch: Training-free
On-device Search for Efficient Autoregressive Language
Models. arXiv:2203.02094 [cs], March 2022. URL
http://arxiv.org/abs/2203.02094.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic Generalization Measures and Where
to Find Them. arXiv:1912.02178 [cs, stat], December
2019. URL http://arxiv.org/abs/1912.021
78.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L.,
Wang, F., and Liu, Q. TinyBERT: Distilling BERT for
Natural Language Understanding. arXiv:1909.10351 [cs],
October 2020. URL http://arxiv.org/abs/19
09.10351.

https://openreview.net/forum?id=01olnfLIbD
https://openreview.net/forum?id=01olnfLIbD
http://arxiv.org/abs/2208.12367
http://arxiv.org/abs/2208.12367
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=283
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=283
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=283
https://aclanthology.org/2021.naacl-main.406
https://aclanthology.org/2021.naacl-main.406
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2205.10487
http://arxiv.org/abs/2203.15556
https://doi.org/10.1145/3467017
https://doi.org/10.1145/3467017
http://arxiv.org/abs/2203.13240
https://proceedings.mlr.press/v162/hua22a.html
https://proceedings.mlr.press/v162/hua22a.html
http://arxiv.org/abs/2006.07322
http://arxiv.org/abs/2006.11316
http://arxiv.org/abs/2006.11316
http://arxiv.org/abs/2202.00622
http://arxiv.org/abs/2202.00622
https://aclanthology.org/2021.emnlp-main.831
https://aclanthology.org/2021.emnlp-main.831
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/1912.02178
http://arxiv.org/abs/1912.02178
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351

Training a Language Model on a Single GPU in One Day.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer,
L., and Levy, O. SpanBERT: Improving Pre-training
by Representing and Predicting Spans. Transactions of
the Association for Computational Linguistics, 8:64-77,
2020. doi: 10.1162/tacl_.a_.00300. URL https://ac
lanthology.org/2020.tacl-1.5.

Kaliamoorthi, P., Siddhant, A., Li, E., and Johnson, M.
Distilling Large Language Models into Tiny and Effective
Students using pQRNN. arxiv: 2101.08890 [cs], January
2021. URL https://arxiv.org/abs/2101.0
8890v1.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling Laws for Neural Language Models.
arxiv:2001.08361[cs, stat], January 2020. doi: 10.48550
/arXiv.2001.08361. URL http://arxiv.org/ab
s/2001.08361.

Ke, G., He, D., and Liu, T.-Y. Rethinking Positional En-
coding in Language Pre-training. In International Con-
ference on Learning Representations, September 2020.
URL https://openreview.net/forum?id=
09-528y2Fgf.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations (ICLR), San Diego, May 2015. URL
http://arxiv.org/abs/1412.6980.

Komatsuzaki, A. One Epoch Is All You Need.
arXiv:1906.06669 [cs, stat], June 2019. URL http:
//arxiv.org/abs/1906.066609.

Kudo, T. Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Can-
didates. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 66-75, Melbourne, Aus-
tralia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1007. URL https:
//aclanthology.org/P18-1007.

Kudo, T. and Richardson, J. SentencePiece: A simple and
language independent subword tokenizer and detokenizer
for Neural Text Processing. In EMNLP (Demonstration),
July 2019. URL https://openreview.net/for
um?id=S1EyQGf_bH.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P, and Soricut, R. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations. In
International Conference on Learning Representations,
September 2019. URL https://openreview.net
/forum?id=HleA7AEtvS.

13

Laurengon, H., Saulnier, L., Wang, T., Akiki, C., del Moral,
A. V., Scao, T. L., Von Werra, L., Mou, C., Ponferrada,
E. G., Nguyen, H., Frohberg, J., §a§k0, M., Lhoest, Q.,
McMillan-Major, A., Dupont, G., Biderman, S., Rogers,
A., allal, L. B., De Toni, F., Pistilli, G., Nguyen, O.,
Nikpoor, S., Masoud, M., Colombo, P., de la Rosa, J.,
Villegas, P., Thrush, T., Longpre, S., Nagel, S., Weber,
L., Mufioz, M., Zhu, J., Van Strien, D., Alyafeai, Z.,
Almubarak, K., Vu, M. C., Gonzalez-Dios, 1., Soroa, A.,
Lo, K., Dey, M., Suarez, P. O., Gokaslan, A., Bose, S.,
Adelani, D., Phan, L., Tran, H., Yu, L., Pai, S., Chim, J.,
Lepercq, V., Ilic, S., Mitchell, M., Luccioni, S. A., and
Jernite, Y. The BigScience ROOTS Corpus: A 1.6TB
Composite Multilingual Dataset. arxiv:2303.03915[cs],
March 2023. doi: 10.48550/arXiv.2303.03915. URL
http://arxiv.org/abs/2303.03915.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating Train-
ing Data Makes Language Models Better. In Proceedings
of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 8424—
8445, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.577.
URL https://aclanthology.org/2022.ac
1-long.577.

Lee-Thorp, J., Ainslie, J., Eckstein, 1., and Ontanon,
S. FNet: Mixing Tokens with Fourier Transforms.
arxiv:2105.03824 [cs], May 2021. URL https://
arxiv.org/abs/2105.03824v3.

Lei, T., Tian, R., Bastings, J., and Parikh, A. P. Sim-
ple Recurrence Improves Masked Language Models.
arxiv:2205.11588/[cs], May 2022. URL http://arxi
v.org/abs/2205.11588.

Li, C., Zhang, M., and He, Y. Curriculum Learning: A
Regularization Method for Efficient and Stable Billion-
Scale GPT Model Pre-Training. arXiv:2108.06084 [cs],
February 2022. URL http://arxiv.org/abs/21
08.06084.

Liu, F., Shakeri, S., Yu, H., and Li, J. EncT5:
Fine-tuning TS5 Encoder for Non-autoregressive Tasks.
arxiv:2110.08426/cs], October 2021a. doi: 10.48550/a
rXiv.2110.08426. URL http://arxiv.org/abs/
2110.08426.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the Variance of the Adaptive Learning Rate
and Beyond. In International Conference on Learning
Representations, March 2020a. URL https://open
review.net/forum?id=rkgz2aEKDr.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Understand-
ing the Difficulty of Training Transformers. In Proceed-

https://aclanthology.org/2020.tacl-1.5
https://aclanthology.org/2020.tacl-1.5
https://arxiv.org/abs/2101.08890v1
https://arxiv.org/abs/2101.08890v1
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1906.06669
http://arxiv.org/abs/1906.06669
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
https://openreview.net/forum?id=S1EyQGf_bH
https://openreview.net/forum?id=S1EyQGf_bH
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/2303.03915
https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
https://arxiv.org/abs/2105.03824v3
https://arxiv.org/abs/2105.03824v3
http://arxiv.org/abs/2205.11588
http://arxiv.org/abs/2205.11588
http://arxiv.org/abs/2108.06084
http://arxiv.org/abs/2108.06084
http://arxiv.org/abs/2110.08426
http://arxiv.org/abs/2110.08426
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr

Training a Language Model on a Single GPU in One Day.

ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747-5763,
Online, November 2020b. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.463.
URL https://aclanthology.org/2020.em
nlp-main.463.

Liu, L., Liu, J., and Han, J. Multi-head or Single-head?
An Empirical Comparison for Transformer Training.
arxiv:2106.09650(cs], June 2021b. doi: 10.48550/a
rXiv.2106.09650. URL http://arxiv.org/abs/
2106.09650.

Liu, X., Su, J., and Huang, F. Tuformer: Data-driven
Design of Transformers for Improved Generalization
or Efficiency. In International Conference on Learn-
ing Representations, September 2021c. URL https:
//openreview.net/forum?id=V0A5g83gdQ_.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs], July 2019. URL
http://arxiv.org/abs/1907.11692.

Liu, Z., Wang, Y., Kasai, J., Hajishirzi, H., and Smith, N. A.
Probing Across Time: What Does RoBERTa Know and
When? In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 820-842, Punta Cana,
Dominican Republic, November 2021d. Association for
Computational Linguistics. doi: 10.18653/v1/2021.fin
dings-emnlp.71. URL https://aclanthology.o
rg/2021.findings—-emnlp.71.

Loshchilov, 1. and Hutter, F. Decoupled Weight Decay
Regularization. arXiv:1711.05101 [cs, math], November
2017. URL http://arxiv.org/abs/1711.051
01.

Merity, S. Single Headed Attention RNN: Stop Thinking
With Your Head. arXiv:1911.11423 [cs], November 2019.
URL http://arxiv.org/abs/1911.11423.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed Precision Training. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum
?id=r1gs9JgRZ.

Mindermann, S., Brauner, J., Razzak, M., Sharma, M.,
Kirsch, A., Xu, W., Holtgen, B., Gomez, A. N., Morisot,
A., Farquhar, S., and Gal, Y. Prioritized Training on
Points that are Learnable, Worth Learning, and Not
Yet Learnt. arxiv:2206.07137[cs], June 2022. doi:
10.48550/arXiv.2206.07137. URL http://arxi
v.org/abs/2206.07137.

14

Mukherjee, S., Awadallah, A. H., and Gao, J. XtremeDis-
tilTransformers: Task Transfer for Task-agnostic Dis-
tillation. arXiv:2106.04563 [cs], June 2021. URL
http://arxiv.org/abs/2106.04563.

Miiller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://papers.nips.cc/paper
/2019/hash/f1748d6b0£fd9d439£f71450117
eba2725-Abstract.html.

Nagarajan, V. and Kolter, J. Z. Generalization in Deep
Networks: The Role of Distance from Initialization.
arXiv:1901.01672 [cs, stat], January 2019. URL http:
//arxiv.org/abs/1901.01672.

Narang, S., Chung, H. W., Tay, Y., Fedus, L., Fevry, T.,
Matena, M., Malkan, K., Fiedel, N., Shazeer, N., Lan, Z.,
Zhou, Y., Li, W, Ding, N., Marcus, J., Roberts, A., and
Raffel, C. Do Transformer Modifications Transfer Across
Implementations and Applications? In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5758-5773, Online and Punta
Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.e
mnlp-main.465. URL https://aclanthology.o
rg/2021.emnlp-main.465.

Narasimhan, S. NVIDIA Clocks World’s Fastest BERT
Training Time and Largest Transformer Based Model,
Paving Path For Advanced Conversational Al, August
2019. URL https://developer.nvidia.com
/blog/training-bert-with—-gpus/.

Nawrot, P, Tworkowski, S., Tyrolski, M., Kaiser, L.,
Wu, Y., Szegedy, C., and Michalewski, H. Hierarchi-
cal Transformers Are More Efficient Language Mod-
els. arxiv:2110.13711[cs], April 2022. URL http:
//arxiv.org/abs/2110.13711.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS 2017
Autodiff Workshop, Long Beach, CA,2017. URL https:
//openreview.net/forum?id=BJJIsrmfCZ.

Peng, B. RWKV-LM. Zenodo, August 2021. URL https:
//zenodo.org/record/5196577.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcad-
inho, S., Cao, H., Cheng, X., Chung, M., Grella, M.,
GV, K. K., He, X., Hou, H., Kazienko, P., Kocon, J.,
Kong, J., Koptyra, B., Lau, H., Mantri, K. S. I., Mom,
F., Saito, A., Tang, X., Wang, B., Wind, J. S., Woz-
niak, S., Zhang, R., Zhang, Z., Zhao, Q., Zhou, P,
Zhu, J., and Zhu, R.-J. RWKYV: Reinventing RNNs

https://aclanthology.org/2020.emnlp-main.463
https://aclanthology.org/2020.emnlp-main.463
http://arxiv.org/abs/2106.09650
http://arxiv.org/abs/2106.09650
https://openreview.net/forum?id=V0A5g83gdQ_
https://openreview.net/forum?id=V0A5g83gdQ_
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2021.findings-emnlp.71
https://aclanthology.org/2021.findings-emnlp.71
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1911.11423
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
http://arxiv.org/abs/2206.07137
http://arxiv.org/abs/2206.07137
http://arxiv.org/abs/2106.04563
https://papers.nips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
https://papers.nips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
https://papers.nips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
http://arxiv.org/abs/1901.01672
http://arxiv.org/abs/1901.01672
https://aclanthology.org/2021.emnlp-main.465
https://aclanthology.org/2021.emnlp-main.465
https://developer.nvidia.com/blog/training-bert-with-gpus/
https://developer.nvidia.com/blog/training-bert-with-gpus/
http://arxiv.org/abs/2110.13711
http://arxiv.org/abs/2110.13711
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://zenodo.org/record/5196577
https://zenodo.org/record/5196577

Training a Language Model on a Single GPU in One Day.

for the Transformer Era. arxiv:2305.13048[cs], May
2023. doi: 10.48550/arXiv.2305.13048. URL
http://arxiv.org/abs/2305.13048.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners. OpenAl, pp. 24, 2019.

Rae, J. W, Borgeaud, S., Cai, T., Millican, K., Hoffmann, J.,
Song, F., Aslanides, J., Henderson, S., Ring, R., Young,
S., Rutherford, E., Hennigan, T., Menick, J., Cassirer,
A., Powell, R., van den Driessche, G., Hendricks, L. A.,
Rauh, M., Huang, P.-S., Glaese, A., Welbl, J., Dathathri,
S., Huang, S., Uesato, J., Mellor, J., Higgins, 1., Creswell,
A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S.,
Buchatskaya, E., Budden, D., Sutherland, E., Simonyan,
K., Paganini, M., Sifre, L., Martens, L., Li, X. L., Kun-
coro, A., Nematzadeh, A., Gribovskaya, E., Donato, D.,
Lazaridou, A., Mensch, A., Lespiau, J.-B., Tsimpoukelli,
M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M.,
Pohlen, T., Gong, Z., Toyama, D., d’ Autume, C. d. M.,
Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark, A.,
Casas, D. d. L., Guy, A., Jones, C., Bradbury, J., Johnson,
M., Hechtman, B., Weidinger, L., Gabriel, 1., Isaac, W.,
Lockhart, E., Osindero, S., Rimell, L., Dyer, C., Vinyals,
0., Ayoub, K., Stanway, J., Bennett, L., Hassabis, D.,
Kavukcuoglu, K., and Irving, G. Scaling Language
Models: Methods, Analysis & Insights from Training
Gopher. arXiv:2112.11446 [cs], January 2022. URL
http://arxiv.org/abs/2112.11446.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. arXiv:1910.10683 [cs, stat], July 2020.
URL http://arxiv.org/abs/1910.10683.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
Speed: System Optimizations Enable Training Deep
Learning Models with Over 100 Billion Parameters. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD 20, pp. 3505-3506, New York, NY, USA, August
2020. Association for Computing Machinery. ISBN 978-
1-4503-7998-4. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406
703.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. {ZeRO-Offload}:
Democratizing {Billion-Scale} Model Training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551-564, 2021. ISBN 978-1-939133-23-6. URL
https://www.usenix.org/conference/at
c2l/presentation/ren-Jjie.

15

Richter, O. and Wattenhofer, R. Normalized Attention With-
out Probability Cage. arXiv:2005.09561 [cs, stat], May
2020. URL http://arxiv.org/abs/2005.095
61.

Roy, A., Anil, R., Lai, G., Lee, B., Zhao, J., Zhang, S., Wang,
S., Zhang, Y., Wu, S., Swavely, R., Tao, Yu, Dao, P, Fifty,
C., Chen, Z., and Wu, Y. N-Grammer: Augmenting
Transformers with latent n-grams. arxiv:2207.06366[cs],
July 2022. doi: 10.48550/arXiv.2207.06366. URL
http://arxiv.org/abs/2207.06366.

Sarofeen, C., Bialecki, P, Jiang, J., Stephano, K., Kozuki,
M., Vaidya, N., and Bekman, S. Introducing nvFuser, a
deep learning compiler for PyTorch, August 2022. URL
https://pytorch.org/blog/introducing

-nvfuser—-a-deep-learning-compiler-for
-pytorch/.

Scao, T. L., Wang, T., Hesslow, D., Saulnier, L., Bekman,
S., Bari, M. S., Biderman, S., Elsahar, H., Phang, J.,
Press, O., Raffel, C., Sanh, V., Shen, S., Sutawika, L.,
Tae, J., Yong, Z. X., Launay, J., and Beltagy, I. What
Language Model to Train if You Have One Million GPU
Hours? In Challenges {\ &, April 2022. URL https:
//openreview.net/forum?id=rI7BL3fHIZq.

Schwarzschild, A. Easy-To-Hard, October 2021. URL
https://github.com/aks2203/easy-to-h
ard.

Sellam, T., Yadlowsky, S., Tenney, 1., Wei, J., Saphra, N.,
D’Amour, A., Linzen, T., Bastings, J., Turc, I. R., Eisen-
stein, J., Das, D., and Pavlick, E. The MultiBERTs: BERT
Reproductions for Robustness Analysis. In International
Conference on Learning Representations, March 2022.
URL https://openreview.net/forum?id=
KOE_FOgFDgA.

Sennrich, R., Haddow, B., and Birch, A. Neural Machine
Translation of Rare Words with Subword Units. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp- 1715-1725, Berlin, Germany, August 2016. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/P1
6-1162. URL https://aclanthology.org/P16
-1162.

Shazeer, N. and Stern, M. Adafactor: Adaptive Learning
Rates with Sublinear Memory Cost. arxiv:1804.04235]cs,
stat], April 2018. doi: 10.48550/arXiv.1804.04235. URL
http://arxiv.org/abs/1804.04235.

Shen, S., Walsh, P., Keutzer, K., Dodge, J., Peters, M., and
Beltagy, I. Staged Training for Transformer Language
Models. arXiv:2203.06211 [cs], March 2022. URL
http://arxiv.org/abs/2203.06211.

http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/1910.10683
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
http://arxiv.org/abs/2005.09561
http://arxiv.org/abs/2005.09561
http://arxiv.org/abs/2207.06366
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://openreview.net/forum?id=rI7BL3fHIZq
https://openreview.net/forum?id=rI7BL3fHIZq
https://github.com/aks2203/easy-to-hard
https://github.com/aks2203/easy-to-hard
https://openreview.net/forum?id=K0E_F0gFDgA
https://openreview.net/forum?id=K0E_F0gFDgA
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/2203.06211

Training a Language Model on a Single GPU in One Day.

Shleifer, S., Weston, J., and Ott, M. NormFormer: Im-
proved Transformer Pretraining with Extra Normaliza-
tion. arXiv:2110.09456 [cs], November 2021. URL
http://arxiv.org/abs/2110.09456.

Smith, L. N. and Topin, N. Super-Convergence: Very Fast
Training of Neural Networks Using Large Learning Rates.
arXiv:1708.07120 [cs, stat], May 2018. URL http:
//arxiv.org/abs/1708.07120.

So, D., Marke, W., Liu, H., Dai, Z., Shazeer, N., and Le,
Q. V. Searching for Efficient Transformers for Language
Modeling. In Advances in Neural Information Processing
Systems, May 2021. URL https://openreview.n
et/forum?id=bzpkxS_JVsI.

Sridhar, S. N., Sarah, A., and Sundaresan, S. TrimBERT:
Tailoring BERT for Trade-offs. arXiv:2202.12411 [cs],
February 2022. URL http://arxiv.org/abs/22
02.12411.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. RoFormer:
Enhanced Transformer with Rotary Position Embedding.
arxiv:2104.09864 [cs], April 2021. URL https://ar
xiv.org/abs/2104.09864v2.

Suérez, P. J. O., Sagot, B., and Romary, L. Asynchronous
Pipeline for Processing Huge Corpora on Medium to
Low Resource Infrastructures. In 7th Workshop on the
Challenges in the Management of Large Corpora (CMLC-
7). Leibniz-Institut fiir Deutsche Sprache, July 2019. doi:
10.14618/IDS-PUB-9021. URL https://inria.ha
l.science/hal-02148693.

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin,
A. Adaptive Attention Span in Transformers.
arXiv:1905.07799 [cs, stat], August 2019. URL http:
//arxiv.org/abs/1905.07799.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient Knowl-
edge Distillation for BERT Model Compression. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 4323-4332, Hong Kong,
China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1441. URL
https://aclanthology.org/D19-1441.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou,
D. MobileBERT: A Compact Task-Agnostic BERT for
Resource-Limited Devices. arXiv:2004.02984 [cs], April
2020. URL http://arxiv.org/abs/2004.029
84.

Sutton, R. The Bitter Lesson. Incomplete Ideas (blog), pp.
1, March 2019. URL http://www.incompleteid
eas.net/IncIdeas/BitterLesson.html.

Tan, L. What the bookcorpus?, December 2019. URL
https://gist.github.com/alvations/4d
2278e5a5fbcf2e07f49315cd4ecl1110.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P, Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
Range Arena: A Benchmark for Efficient Transformers.
arXiv:2011.04006 [cs], November 2020a. URL http:
//arxiv.org/abs/2011.04006.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
Transformers: A Survey. arXiv:2009.06732 [cs], Septem-
ber 2020b. URL http://arxiv.org/abs/2009
.06732.

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S., Chung,
H. W., Narang, S., Yogatama, D., Vaswani, A., and Met-
zler, D. Scale Efficiently: Insights from Pretraining and
Finetuning Transformers. In International Conference
on Learning Representations, September 2021. URL
https://openreview.net/forum?id=f20Y
VDyfIB.

Tay, Y., Dehghani, M., Abnar, S., Chung, H. W., Fedus, W.,
Rao, J., Narang, S., Tran, V. Q., Yogatama, D., and Met-
zler, D. Scaling Laws vs Model Architectures: How does
Inductive Bias Influence Scaling? arxiv:2207.10551[cs],
July 2022a. doi: 10.48550/arXiv.2207.10551. URL
http://arxiv.org/abs/2207.10551.

Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Bahri,
D., Schuster, T., Zheng, H. S., Houlsby, N., and
Metzler, D. Unifying Language Learning Paradigms.
arxiv:2205.05131[cs], May 2022b. URL http://ar
xiv.org/abs/2205.05131.

Treviso, M., Ji, T., Lee, J.-U., van Aken, B., Cao, Q., Ciosici,
M. R., Hassid, M., Heafield, K., Hooker, S., Martins,
P. H., Martins, A. F. T., Milder, P., Raffel, C., Simpson,
E., Slonim, N., Balasubramanian, N., Derczynski, L., and
Schwartz, R. Efficient Methods for Natural Language
Processing: A Survey. arxiv:2209.00099[cs], August
2022. URL http://arxiv.org/abs/2209.000
99.

Turc, 1., Chang, M.-W., Lee, K., and Toutanova, K. Well-
Read Students Learn Better: On the Importance of
Pre-training Compact Models. arXiv:1908.08962 [cs],
September 2019. URL http://arxiv.org/abs/
1908.08962.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
Is All You Need. arXiv:1706.03762 [cs], December 2017.
URL http://arxiv.org/abs/1706.03762.

http://arxiv.org/abs/2110.09456
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
https://openreview.net/forum?id=bzpkxS_JVsI
https://openreview.net/forum?id=bzpkxS_JVsI
http://arxiv.org/abs/2202.12411
http://arxiv.org/abs/2202.12411
https://arxiv.org/abs/2104.09864v2
https://arxiv.org/abs/2104.09864v2
https://inria.hal.science/hal-02148693
https://inria.hal.science/hal-02148693
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/1905.07799
https://aclanthology.org/D19-1441
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://gist.github.com/alvations/4d2278e5a5fbcf2e07f49315c4ec1110
https://gist.github.com/alvations/4d2278e5a5fbcf2e07f49315c4ec1110
http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2011.04006
http://arxiv.org/abs/2009.06732
http://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=f2OYVDyfIB
https://openreview.net/forum?id=f2OYVDyfIB
http://arxiv.org/abs/2207.10551
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2209.00099
http://arxiv.org/abs/2209.00099
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1706.03762

Training a Language Model on a Single GPU in One Day.

Wang, A., Singh, A., Michael, J., Hill, F, Levy, O., and
Bowman, S. R. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding.
In International Conference on Learning Representations,
September 2018. URL https://openreview.net
/forum?id=rJ4km2R5t 7.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F,, Levy, O., and Bowman, S. Su-
perGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems. In Advances in Neural
Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.ne
urips.cc/paper/2019/hash/4496bf24afe
Tfab6f046bf4923da8deb—-Abstract.html.

Wang, S. and Kanwar, P. BFloat16: The secret to high
performance on Cloud TPUs, August 2019. URL https:
//cloud.google.com/blog/products/ai-m
achine-learning/bfloatl6-the-secret-t
o—high-performance-on-cloud-tpus/.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma,
H. Linformer: Self-Attention with Linear Complexity.
arxiv:2006.04768v3 [cs], June 2020a. URL https:
//arxiv.org/abs/2006.04768v3.

Wang, T., Roberts, A., Hesslow, D., Scao, T. L.,
Chung, H. W., Beltagy, 1., Launay, J., and Raffel,
C. What Language Model Architecture and Pretrain-
ing Objective Work Best for Zero-Shot Generalization?
arXiv:2204.05832 [cs, stat], April 2022. URL http:
//arxiv.org/abs/2204.05832.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and
Zhou, M. MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Trans-
formers. arXiv:2002.10957 [cs], April 2020b. URL
http://arxiv.org/abs/2002.10957.

Warstadt, A., Singh, A., and Bowman, S. R. Neural Network
Acceptability Judgments. arxiv:1805.12471[cs], October
2019. doi: 10.48550/arXiv.1805.12471. URL http:
//arxiv.org/abs/1805.12471.

Wettig, A., Gao, T., Zhong, Z., and Chen, D. Should
You Mask 15% in Masked Language Modeling? arxiv:
2202.08005 [cs], February 2022. URL https://ar
xiv.org/abs/2202.08005v1.

Wies, N., Levine, Y., Jannai, D., and Shashua, A. Which
transformer architecture fits my data? A vocabulary bot-
tleneck in self-attention. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pp. 11170-
11181. PMLR, July 2021. URL https://proceedi
ngs.mlr.press/v139/wies2la.html.

17

Wilka, R., Landy, R., and McKinney, S. A. How Machines
Learn: Where Do Companies Get Data for Machine
Learning and What Licenses Do They Need. Washington
Journal of Law, Technology & Arts, 13(3):217-244, 2017.
URL https://heinonline.org/HOL/P?h=h
ein.journals/washjoltal3&i=226.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P, Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. M. Hugging-
Face’s Transformers: State-of-the-art Natural Language
Processing. arXiv:1910.03771 [cs], July 2020. URL
http://arxiv.org/abs/1910.03771.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G, Patil, N., Wang, W., Young, C., Smith, J.,
Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M., and Dean, J. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine
Translation. arxiv:1609.08144[cs], October 2016. URL
http://arxiv.org/abs/1609.08144.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T.-Y. On
Layer Normalization in the Transformer Architecture.
arXiv:2002.04745 [cs, stat], June 2020. URL http:
//arxiv.org/abs/2002.04745.

Yadav, A. Making L-BFGS Work with Industrial-Strength
Nets. In BMVC 2020, pp. 13, 2020.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,
and Le, Q. V. XLNet: Generalized Autoregressive Pre-
training for Language Understanding. arXiv:1906.08237
[cs], January 2020. URL http://arxiv.org/ab
s/1906.08237.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large Batch Optimization for Deep Learning: Training
BERT in 76 minutes. In International Conference on
Learning Representations, September 2019. URL http
s://openreview.net/forum?id=Syx4wnEt
vH.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti,
C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang,
L., and Ahmed, A. Big Bird: Transformers for Longer
Sequences. arXiv:2007.14062 [cs, stat], January 2021.
URL http://arxiv.org/abs/2007.14062.

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus/
https://arxiv.org/abs/2006.04768v3
https://arxiv.org/abs/2006.04768v3
http://arxiv.org/abs/2204.05832
http://arxiv.org/abs/2204.05832
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/1805.12471
http://arxiv.org/abs/1805.12471
https://arxiv.org/abs/2202.08005v1
https://arxiv.org/abs/2202.08005v1
https://proceedings.mlr.press/v139/wies21a.html
https://proceedings.mlr.press/v139/wies21a.html
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=226
https://heinonline.org/HOL/P?h=hein.journals/washjolta13&i=226
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2002.04745
http://arxiv.org/abs/2002.04745
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
http://arxiv.org/abs/2007.14062

Training a Language Model on a Single GPU in One Day.

Zhang, B. and Sennrich, R. Root Mean Square Layer Nor-
malization. arXiv:1910.07467 [cs, stat], October 2019.
URL http://arxiv.org/abs/1910.07467.

Zhu, C., Ni, R., Xu, Z., Kong, K., Huang, W. R., and Gold-
stein, T. GradInit: Learning to Initialize Neural Networks
for Stable and Efficient Training. arxiv:2102.08098/cs],
November 2021. doi: 10.48550/arXiv.2102.08098. URL
http://arxiv.org/abs/2102.08098.

18

http://arxiv.org/abs/1910.07467
http://arxiv.org/abs/2102.08098

Training a Language Model on a Single GPU in One Day.

Appendix Table of Contents

1. Appendix A: Broader Impact

2. Appendix B: Reproducibility Statement
3. Appendix C: Negative Results

4. Appendix D: Limitations

5. Appendix F: Additional Results

A. Broader Impact

Overall, we hope that this type of inquiry can aid in the democratization of machine learning. Whereas the current paradigm
for most users of models like BERT is to download the existing checkpoint, and tune it for their own purposes, they
might now be able to train their own model. The reduced reliance on public checkpoints trained with semi-unknown data
distributions is beneficial both for reasons of data provenance, as well as for reasons of model security.

On the other hand, we only provide evidence in this work that these crammed models are similarly useful on existing
classical downstream tasks, such as GLUE and superGLUE. It is unclear whether other properties that have been extensively
studied in the literature for the existing public BERT checkpoint, such as robustness, out-of-distribution generalization,
fairness or inherent biases, carry over to the crammed model. More research is needed here to find out whether there are
inopportune trade-offs arising from the modified training procedure.

B. Reproducibility Statement

We provide code to reproduce all experiments at github.com/JonasGeiping/cramming.

C. Negative Results

This section collects negative results for each paragraph in the main body. The overall paragraph structure follows the main
body directly.

C.1. Implementation Details

We run all experiments and ablation studies with the same setup of automated mixed precision (Micikevicius et al., 2018) for
standard 16- and 32-bit floating point precision over full 32-bit float, scaled 16-bit (Rasley et al., 2020) and pure bfloat16
(Wang & Kanwar, 2019). We find no benefit from offloading (Ren et al., 2021; Rasley et al., 2020) in our setting.

Initial Data Setup The used language is English (Bender, 2019). We found no significant change in performance with BPE
(Sennrich et al., 2016) or SentencePiece with Unigrams (Kudo, 2018; Kudo & Richardson, 2019). Smaller vocabulary sizes
(212,213 214) resulted in worse performance, while larger vocabulary sizes (2') we not reliably better. We pack tokenized
data into randomized sequences of length 128 and separate unrelated fragments by <sep>.The performance impact from
dropping this separator was minimal. No impact was observed from including a <c1s> token in pretraining.

C.2. Modifying the Architecture

Exploiting the scaling law. We find no improvements when using a funnel-transformer architecture (Dai et al., 2020;
Nawrot et al., 2022), when dropping FFN layers (Sridhar et al., 2022), or when using recurrent layers (Lan et al., 2019),
even when trained with BPTT as in Schwarzschild (2021). Rescaling architectures to be deep-narrow (Tay et al., 2021; Wies
et al., 2021) provides no gains.

Attention Block: We find no benefits from replacements to the softmax operation (Richter & Wattenhofer, 2020). We further
keep the original multi-head self-attention mechanism. A large amount of work has been focused on efficient attention
(Sukhbaatar et al., 2019; Beltagy et al., 2020; Wang et al., 2020a; Liu et al., 2021c¢) and studies of efficient attention (Tay
et al.,, 2020a;b). But, because we set the maximal sequence length to 128, attention complexity is less of a concern in our
setting. To verify this, we implement the recently proposed FLASH mechanism (Hua et al., 2022), but find no benefits. We

19

github.com/JonasGeiping/cramming

Training a Language Model on a Single GPU in One Day.

further experiment with Fourier attention as proposed in Lee-Thorp et al. (2021), but find no improvements. We find rotary
embeddings (Su et al., 2021; Black et al., 2022), to provide small benefits, but these are evened out by the drop in speed, so
we ultimately decide against these.

Feedforward Block: We keep the original feedforward block largely unchanged, finding no benefits from changing to
another activation than GELU.

Embedding: We see no improvements from decoupling the input and output embeddings (Chung et al., 2020). The
suggestion from [Lan et al. (2019) to factorize the input embedding provides no gains in our setting.

Layer Structure: We see no additional benefit from other variants of this modification, such as (Liu et al., 2020b; Shleifer
et al., 2021). Further, replacing Layer Normalization with RMS Normalization provides no gains (Zhang & Sennrich, 2019).

C.3. Modifying the Training Setup

Objective: We see no improvement from masking at larger rates, e.g. at 40% as proposed in (Wettig et al., 2022), see
Appendix. We see no difference enabling or disabling the mentioned 20% rule. We evaluate other functions for the
masked-language objective, such as mean-squared error (Hui & Belkin, 2021) or L1 loss, but find no benefits.

Choice of Optimizer: We find no noticeable change in varying these parameters in reasonable amounts, e.g. ¢ = 107,
B1 = 0.9, B2 = 0.999. We test other first-order adaptive optimizers (Shazeer & Stern, 2018; Liu et al., 2020a) but find no
advantages in our setting. We further find no advantages using higher-order optimizers (Yadav, 2020; Anil et al., 2021), but
note that especially for higher-order optimizers there is a greater amount of variability in implementation.

Batch Size Schedule: We also experiment with automatic and adaptive batching rules (De et al., 2017; Bollapragada et al.,
2018a;b), but find that the best results from these adaptive schedules resemble the fixed linear schedule. For simplicity we
just stick to the simpler linear schedule.

Dropping Dropout Further, we experiment with length curricula (Li et al., 2022) (see appendix) and token dropping (Hou
et al., 2022), but find no gains in our setting.

D. Limitations

In this work, we limited our investigation to transformer-based architectures trained with MLM objectives. However, we
do think that the general task of cramming posed in Section 2 is interesting even when relaxing these constraints. There
have been a number of modifications proposed to the objective in particular (Joshi et al., 2020; Bao et al., 2020; Bajaj et al.,
2022; Tay et al., 2022b). While Artetxe et al. (2022) and Wang et al. (2022) find MLM still to hold up well as a pretraining
objective, other suggestions such as ELECTRA (Clark et al., 2019; 2020; He et al., 2021) could be employed which might
be beneficial for crammed models. Also, the optimal architecture might not be transformer-based (Merity, 2019; Fusco
et al., 2022; Peng, 2021; Peng et al., 2023).

Other Modifications A few recent developments not included in this study are Roy et al. (2022), Shen et al. (2022),
and Mindermann et al. (2022). Modifications further not included in this study are more involved initialization (Zhu et al.,
2021), additional objective modifications (Miiller et al., 2019), progressive growth (Gu et al., 2021; Shen et al., 2022),
convolutional variants (landola et al., 2020; Chelombiev et al., 2021; So et al., 2021), sequence recurrence (Lei et al., 2022)

and TUPE embeddings (Ke et al., 2020).

Relationship between MLM Loss and Downstream Performance Improvements in pretraining loss do not have to
correspond to improved downstream performance (Tay et al., 2021; Wang et al., 2022). In the presentation of this work,
we have chosen not to make this a focus of our discussion. We show results with improved pretraining loss, e.g. Figure |
along-side results for downstream performance, e.g. Figure 4, and only comment on the discrepancy between MLM
pretraining loss and downstream GLUE performance in a few locations.

Nevertheless, we have cross-checked most improvements discussed in this work for their utility in downstream applications,
even when only results for pretraining loss are shown. Additional results, showing both pretraining loss and downstream
performance on MNLI can be found in Table 11 for architectural changes and Table 12 for training modifications. For
data modifications, changes in pretraining loss not very meaningless, so we always compare data modifications in terms of
their effect on downstream performance. In Figure 5 we show a scatter plot of downstream versus pretraining performance,

20

Training a Language Model on a Single GPU in One Day.

0.84 0.84
0.82 Y 0.82
@ NS
08| e 08| W aDoe
- . ® > . . [N
9) < ®] ¢]
© 0.78 © 0.78 d e
= =1 &
S 0.76 ¢ S 0.76 °s (I
~ ~~ .
E 0.74 g 0.74
= 0.72 o = 0.72
p= p=
0.7 0.7
0.68 0.68
0.66 0.66
2 25 3 2 2.5 3

Masked Language Modeling Loss Masked Language Modeling Loss
Figure 5. Relationship between pretraining loss and downstream performance. Left: for all architecture variations considered (see Table 9
for details). Right: for all training variations considered (see Table 12 for details).

summarizing both tables.

E. SuperGLUE Comparisons

Do these results hold only for the GLUE benchmark? To investigate this question, we also compare against the superGLUE
benchmark (Wang et al., 2019). We evaluate downstream performance on this new set of tasks with the same (global)
hyperparameters used for GLUE, and within the same downstream epoch constraints. Tasks are solved as sequence
classification problems and other tasks that require feature engineering are skipped. We do this for both the original BERT
model and the crammed model, although noting that BERT numbers are accordingly sub-optimal, compared to numbers
achieved after hyperparameter-tuning and feature engineering in Wang et al. (2019). Nevertheless these results show that the
crammed model is similarly performant on new tasks as the original BERT model, when similar effort is applied. Both
models could be used as the starting point for an investigation of a new task.

Table 6. SuperGLUE results for the crammed model (A6000 variant) and the base BERT model from Devlin et al. (2019). Downstream
finetuning for both models uses the same hyperparameters as for GLUE without tuning. These hyperparameters follow the rules laid out
in Section 2 and not the usual, extensive tuning for superGLUE. Tasks are solved as sequence classification problems and other tasks that
require feature engineering are skipped.

AX-b AX-g CB(fl) CB(Acc) COPA MultiRC RTE WiC WSC BoolQ Avg.

Bert-Base (Fully trained) 10.8 50.3 60.8 75.0 49.0 60.5 58.8 64.7 63.5 72.4 56.6
crammed BERT 10.4 50.6 49.3 70.5 51.5 61.5 574 6138 55.3 743 542
F. Additional Information
Additional results concerning architecture modifications can be found in Table 10 and Table 11. Additional results for

training modifications can be found in Table 12. An extended version of the comparison of different data sources and
processing options, separated into scores for each GLUE task can be found in Table 7. Other, miscellaneous, variations for
data can be found in Table &.

Not all results remarked on in Appendix C are accompanied by raw results in this appendix, but can be computed using the

21

Training a Language Model on a Single GPU in One Day.

Table 7. Variations of data source and data processing. Shown are GLUE scores for all tasks and in aggregate. bw denotes
bookcorpus-wikipedia, c4 is C4 (colossal-cleaned-common-crawl) (Raffel et al., 2020), oscar is the 2019 release of the
OSCAR dataset (Suarez et al., 2019), (https://oscar-project.org/) and owt is the opens-source replication of the open-
webtext corpus (https://huggingface.co/datasets/openwebtext). pile is a random subset of The Pile (Gao et al,,
2020). pile-Nis the subset drawn only from the natural sources in the Pile (Gutenberg, books3, wikipedia). roots is a subset of the
English portions of the ROOTS dataset (Laurencon et al., 2023). Filtering denotes a removal of hard-to-tokenize sequences at t = 0.25 as
described in the main body. Sorting denotes sorting by number of sentences per sequence. DD is deduplication as in Lee et al. (2022) with
a substring length of 75. All values are based on runs on A6000 GPUs.

Source Filt. Sort. DD | MNLI (m/mm) SST-2 STSB RTE QNLI QQP MRPC CoLA | GLUE

bw X X X 82.8/82.9 91.8 854 538 90.0 869 853 43.9 78.1
bw 4 X X 82.9/83.4 91.6 86.0 51.8 90.0 872 86.3 493 78.7
bw v 4 X 82.7/83.3 91.7 855 52.0 90.2 87.0 87.8 48.6 78.8
c4 X X X 83.8/84.1 92.7 87.0 538 90.1 87.6 87.5 16.0 75.9
c4 4 X X 84.1/84.7 91.7 86.7 549 904 87.6 88.6 44.9 79.3
c4 v 4 X 83.7/84.5 923 87.0 549 90.1 874 88.8 423 79.0
oscar X X X 83.9/84.2 92.4 873 549 89.8 878 88.0 43.9 79.1
oscar 4 X X 83.9/84.3 92.7 87.0 545 90.0 87.7 88.5 44.6 79.2
oscar v 4 X 83.7/84.1 92.5 86.6 56.5 899 874 89.3 425 79.2
oscar v v 4 84.0/84.2 925 872 56.7 89.7 875 88.1 50.6 80.1
owt X X X 84.2/84.3 92.8 872 549 90.2 87.6 88.9 48.2 79.8
owt 4 X X 84.4/84.7 92.8 86.7 55.6 90.6 875 88.7 45.9 79.7
owt v 4 X 84.3/84.6 92.2 874 552 90.0 874 88.8 46.9 79.6
owt v v 4 84.6/84.6 923 86.0 552 90.5 875 87.9 51.0 80.0
pile X X X 83.0/83.1 91.6 852 549 893 873 87.5 41.9 78.2
pile 4 X X 84.1/84.5 92.1 86.1 56.0 902 877 88.5 44.7 79.3
pile v v X 84.2/84.5 92.5 87.0 53.6 90.0 87.6 89.9 52.1 80.1
pile v v v 83.9/84.5 92.0 872 563 89.4 87.6 89.4 49.9 80.0
pile-N X X X 83.3/83.5 92.2 84.6 563 899 873 86.2 49.9 79.2
pile-N vV X X 83.9/84.3 92.5 859 545 90.5 875 88.2 50.9 79.8
pile-N vV 4 X 83.8/83.9 92.1 86.5 534 902 872 89.1 54.8 80.1
roots X X X 83.8/84.1 92.1 86.3 543 902 875 88.6 34.8 78.0

provided implementation. Note that baseline settings and implementation details change between tables, making each result
only comparable to other results within the same table.

F.1. References for Table 1
The maximal floating point operations referenced in Table | are based on the following published numbers.
» For TPU specs, according to cloud.google.com/tpu/docs/system-architecture-tpu—-vm we find

275 TFLOP/s in bf 1oat 16 precision for the TPUv4 and 123 TFLOP/s for the TPUV3, each per chip.

* The V100 peak performance is given as 125 TFLOP/s in images.nvidia.com/content/volta-archite
cture/pdf/volta-architecture-whitepaper.pdf in "TFLOPS of mixed precision”. Some NVIDIA
datasheets also reference TFLOP/s with sparsity, which are not applicable in the context of this work.

¢ The Titan RTX comes out at 130.5 TFLOP/s, in ”Peak FP16 Tensor TFLOPS with FP32 Accumulate” as described in

Table 8. Miscellaneous Variations of the Data Processing setup, using pile data, filtered and sorted, as a baseline. All values are from
runs on RTXA6000 cards.

MNLI (m/mm) SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE Score

Baseline 83.8/84.3 923 87.0 552 89.8 87.6 88.7 473 79.6
65336 tokens in vocab. 83.6/84.1 91.6 872 56.0 89.8 87.6 88.9 441 79.2
Include [CLS] in pretrain 84.4/84.8 92.3 86.3 545 90.5 87.7 86.8 44.5 79.1
SentencePieceBPE 83.4/83.7 91.5 84.8 53.1 89.7 875 86.8 473 78.6
Sort by num. chunks in seq. 83.9/84.4 92.0 84.7 542 90.1 87.7 87.7 43.3 78.7
Sort by unigram prob. 83.2/83.7 91.9 86.2 538 88.7 87.6 87.5 44.9 78.6

22

https://oscar-project.org/
https://huggingface.co/datasets/openwebtext
cloud.google.com/tpu/docs/system-architecture-tpu-vm
images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Training a Language Model on a Single GPU in One Day.

11
10 Schedule 0.001
9 === Triangular
8 === Linear
0.0008
7 === Constant
6 === [nvSqrt
2 One-Cycle a ¥ 0.0006
Q5 ¥ =} N
= === Ramp — n
E 4 === Cosine Decay E @
S Dive = v 0.0004
3 —
0.0002
1.9
2
1.85 0
0 50k 100k 150k 200k 140k 160k 180k 200k 220k 0 50k 100k 150k 200k
Microbatch Steps Microbatch Steps Microbatch Steps

Figure 6. Extended version of Figure 2, including additional learning rate schedules.

11
10 Schedule 2.15 0.001
9 === Triangular
8 m—Li ith Wz 2.1
1ne.ar Wi arl:nup 0.0008
7 === Cosine Decay with Warmup
6 === InvSqrt with Cooldown 2.05
g . 4 Y 0.0006
| a &
o
2 . 2 8
= = 1.95 v 0.0004
3
1.9 0.0002
2
1.85 0
0 50k 100k 150k 200k 140k 160k 180k 200k 220k 240k 0 50k 100k 150k 200k
Microbatch Steps Microbatch Steps Microbatch Steps

Figure 7. Variant version of Figure 2, including additional learning rate schedules with warmup and cooldown.

images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-G
A102-GPU-Architecture-Whitepaper-V1.pdf.

For the A6000, we find 154.8 ”Peak BF16 Tensor TFLOPS with FP32 Accumulate” also in nvidia.com/content
/PDF/nvidia—ampere-ga—-102-gpu-architecture-whitepaper-v2.pdf.

A4000 performance is actually less clear. Its datasheet at nvidia.com/content/dam/en-zz/Solutions/
gtcs21l/rtx-a4000/nvidia-rtx—-a4000-datasheet .pdf only describes 153.4 TFLOPS “using the new
sparsity feature” - which is not applicable in our context and does not reflect the card’s actual performance. We estimate
its actual numbers to be 88.45 TFLOP/s, based on it containing 192 tensor cores, compared to 336 for the A6000.

For the RTX2080ti, the whitepaper at images.nvidia.com/aem-dam/en—-zz/Solutions/design-vis
ualization/technologies/turing—architecture/NVIDIA-Turing-Architecture-White
paper.pdf reports 53.8 "peak FP16 Tensor TFLOPS with FP32 Accumulate” for the reference edition.

All total exaFLOP numbers are then computed based on these TFLOP/s numbers over the training time period described in
each work.

23

images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf
nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

Training a Language Model on a Single GPU in One Day.

11 0.005
10 Schedule
9 === Triangular
8 === Multi-Cycle 0.004
7 === Cosine Annealing
6 === Constant with Warmup/Cooldown
@ s Inverse Cosine with Cooldown @ 0.003
~ Ramp with Cooldown 7]
= =9
=]
s o 0.002

OAﬂﬂl%v—Vm
0
0 50k 100k 150k 200k 140k 160k 180k 200k 220k 240k 0 50k 100k 150k 200k

Microbatch Steps Microbatch Steps Microbatch Steps

Figure 8. Variant version of Figure 2, including periodical learning rate schedules, as well as “ramping” schedules with cooldown.

MLM Loss

4 56789 2 3 456789 4 56789 2 3 4 56789
1000 10k 1000 10k

Batch Size Batch Size

Figure 9. Partial variations of batch sizes with and without linear ramp-up in extension of Figure 3. All experiments run with
the training setup described in Section 4.3 for a day on a single GPU with mixed precision. Batch size is 4036 and dataset is
bookcorpus-wikipedia. Downstream evaluation as described in Section 5. All values for pretraining on an A4000. Note the
discrepancy between optimal pretraining batch size and optimal batch size for evaluation on MNLI when ramp-up is used, but also note

that differences are overall barely significant.

Table 9. Extension of Table 5, including results on the other GPU types.
MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA | GLUE

Trained for 1 day on a 2080ti

crammed BERT 82.5/82.8 91.6 86.2 56.7 89.1 8&7.1 88.3 48.3 79.2
+with original data 81.5/82.1 91.2 85.6 53.1 88.5 86.8 87.5 44.7 7179
+with original train 51.6/50.7 82.5 105 52.0 58.7 66.1 72.2 3.8 49.8
+with original arch. 32.7/33.0 50.9 -0.0 50.0 49.5 0.0 81.2 0.0 33.0

+with minimal train mod. ~ 79.2/79.4 89.9 84.5 547 859 855 87.3 41.1 76.4
+with minimal arch. mod. 82.1/82.4 91.1 852 558 88.5 869 87.6 43.8 78.2
Trained for 1 day on an A4000

crammed BERT 82.6/83.2 91.9 86.6 56.7 889 8&7.1 88.9 46.4 79.1
+with original data 81.6/82.1 91.2 852 531 88.6 86.7 86.9 44.3 77.8
+with original train 50.9/50.0 81.9 175 505 58.8 647 74.2 8.5 50.8
+with original arch. 32.3/32.4 50.9 -4.1 473 50.3 0.0 81.2 0.0 32.3

+with minimal train mod. ~ 79.4/79.2 89.3 844 552 855 851 87.0 40.8 76.2
+with minimal arch. mod. 81.8/82.5 91.6 84.7 558 88.9 86.7 87.8 422 78.0
Trained for 1 day on an A6000

crammed BERT 84.0/84.4 92.3 87.0 574 90.0 87.7 89.0 51.8 80.4
+ original data 82.6/83.2 91.7 86.0 55.6 90.1 87.0 85.6 454 78.6
+ original train 50.9/49.9 82.2 156 498 58.6 664 73.6 7.5 50.5
+ original arch. -/- - - - - - - - -
+ minimal train mod. 80.8/81.6 90.6 86.6 545 88.2 86.6 88.6 443 78.0
+ minimal arch. mod. 83.1/83.6 91.6 853 570 899 87.0 85.7 41.8 78.3

24

Training a Language Model on a Single GPU in One Day.

Table 10. Additional raw results for experiments considered in the main body. This table contains architecture variants for a prelimary
architecture setup which contained 4 heads in the attention block, 12 layers and included rotary embeddings. First two blocks: Architectural
variants as discussed in Section 4.2 (but for this preliminary variant). Third block: Ablation study of this model. All experiments run
with the training setup described in Section 4.3 for a day on a single GPU with mixed precision. Batch size is 4032 and dataset is
bookcorpus-wikipedia. Downstream evaluation as described in Section 5. All values for pretraining on an A4000.

Name MLM Loss MNLI-m MNLI-mm Tokens/Second
Modified Transformer 1.89 81.02 81.35 50946
DeepNarrow (12 Layers) 1.94 80.90 80.97 78396
DeepNarrow (24 Layers) 1.98 80.78 81.14 41289
E =128 2.14 76.68 77.62 53267
FFN every 2 blocks 1.93 80.43 80.97 64774
FFN every 3 blocks 1.97 80.44 80.93 71634
FFN every 4 blocks 2.00 80.03 79.67 73319
H =512 1.93 80.61 80.93 83718
H =1024 1.95 80.07 80.68 32004
4 Layers 2.00 78.45 79.00 137127
6 Layers 1.93 79.49 79.82 96156
8 Layers 1.89 81.11 81.08 74248
10 Layers 1.89 81.02 81.21 61431
16 Layers 1.92 81.39 82.10 39406
24 Layers 2.01 80.64 80.97 26927
Recurrent (1-12) 2.40 77.46 77.81 52405
Recurrent (2-6) 2.04 80.45 80.73 53148
Recurrent (3-4) 2.00 80.78 81.33 51634
Recurrent (4-3) 1.98 80.95 81.26 51952
BERT-tiny 3.30 56.71 57.21 914694
BERT-mini 2.49 72.22 73.21 429593
BERT-Large (Izsak variant) 2.38 76.93 77.47 13448
Original BERT 7.54 3545 3522 41978
With decoder bias 1.89 80.97 81.20 51155
With ¢ = 107° in Layer Norm 1.90 80.49 81.35 51728
Learned Embedding 1.88 80.51 81.03 52601
No Norm after Embedding 1.94 79.65 80.34 52175
No Final Norm 1.89 80.40 80.89 51207
No Skip of Head Transform 1.88 80.49 81.19 51728
No Rotational Embedding 1.88 80.91 81.52 53526
Post-LN 7.54 31.82 31.82 52270
With QKV bias 1.89 80.70 80.88 51112
With bias in Linear Layers 1.89 80.64 81.49 50584
12 Heads 1.88 81.75 81.99 47967

25

Training a Language Model on a Single GPU in One Day.

Table 11. Additional raw results for experiments considered in the main body for the final architecture variant. First two blocks:
Architectural variants as discussed in Section 4.2. Third block: Ablation study of finally adopted model. All experiments run with
the training setup described in Section 4.3 for a day on a single GPU with mixed precision. Batch size is 4096 and dataset is
bookcorpus-wikipedia. Downstream evaluation as described in Section 5. All values for pretraining on an A4000.

Name MLM Loss MNLI MNLI-mm Tokens/Second
Modified Transformer 1.84 81.79 82.14 46431
DeepNarrow (12 Layers) 191 80.97 81.30 99717
DeepNarrow (24 Layers) 1.91 81.39 81.61 52558
E =128 2.04 - - 48468
FFN every 2 blocks 1.84 81.40 81.65 62134
FFN every 3 blocks 1.87 80.90 81.53 70685
FFN every 4 blocks 1.88 81.10 81.42 75163
H =512 1.87 81.34 82.20 79116
H =1024 1.94 80.63 80.97 28511
4 Layers 1.94 79.13 79.51 161034
6 Layers 1.87 80.48 80.84 115037
8 Layers 1.84 81.22 81.62 88652
10 Layers 1.82 81.25 82.31 71414
12 Layers 1.85 81.68 82.18 59346
18 Layers 1.90 81.02 81.82 40577
24 Layers 1.97 80.81 81.26 30455
Recurrent (1-12) 2,13 79.23 79.78 62318
Recurrent (2-6) 2.00 80.86 81.24 62677
Recurrent (3-4) 1.94 80.95 81.48 61772
Recurrent (4-3) 191 81.43 81.84 61596
BERT-Tiny Variant 351 56.10 56.60 1018443
BERT-Mini Variant 246 7230 73.47 523061
BERT-Large Variant 212 79.50 79.84 17688
BERT-Large (Izsak variant) 2.37 76.81 77.56 13522
Original BERT 7.53 3545 35.22 41362
With decoder bias 1.84 81.71 81.91 45996
With ¢ = 107° in Layer Norm 1.83 81.55 82.13 45841
Learned Embedding 1.83 81.31 81.79 46608
No Norm after Embedding 1.89 81.38 81.15 46267
No Final Norm 1.85 80.67 80.87 46598
No Skip of Head Transform 1.83 82.03 82.19 46324
With QKV Bias 1.83 81.89 82.28 46469
With bias in Linear Layers 1.84 81.88 82.16 45629
4 Heads 1.88 81.22 81.77 40551
With Rotary Embedding 1.86 81.16 81.94 42257
Post-LN 7.54 3521 35.17 46324
Fourier Attention 2.65 68.97 69.06 46634
GELU 1.83 81.94 82.17 47779

26

Training a Language Model on a Single GPU in One Day.

Table 12. Additional raw results for experiments considered in the main body for the final training variant, not otherwise mentioned. Batch
size is 4096 and dataset is bookcorpus-wikipedia. Downstream evaluation as described in Section 5. All values for pretraining on
an A4000.

Name MLM MNLi-m MNLI-mm Tokens/Second
Original training recipe 7.28 60.65 60.31 49264
With Izsak Training recipe 2.06 79.90 80.30 46869
Minimal Modifications 2.03 78.78 79.36 47346
+Larger LR 1.99 80.25 80.50 46524
+One Cycle, +Larger LR 1.84 82.12 82.55 46843
+One Cycle, +Larger LR, +Clipping 1.84 81.79 82.14 46303
Sequence Curriculum (10%,20%,30%,50%,75 %) 3.02 70.06 70.77 29359
Sequence Curriculum (+unfolding) 1.87 80.13 80.04 46014
Sequence Curriculum (20%,35%,50%,65%,85%) 1.90 79.86 79.80 45804
Adafactor 1.86 81.36 82.22 45997
Adam (classic WD formulation) 7.44 32.28 32.39 49598
SGD 7.46 59.30 58.02 47678
RADAM 7.50 32.74 32.95 48812
With Dropout activated 1.97 80.95 80.98 45198
With MLM masking 20% 2.06 80.76 81.48 45944
With MLM masking 40% 2.70 81.11 81.30 43467
With MLM masking 60% 3.41 80.62 80.88 40756

27

