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Abstract
Spatio-temporal deep learning has drawn a lot of attention since many downstream real-world applications can bene�t from accurate
predictions. For example, accurate prediction of heavy rainfall events is essential for e�ective urban water usage, �ooding warning, and
mitigation. In this paper, we propose a strategy to leverage spatially connected real-world features to enhance prediction accuracy.
Speci�cally, we leverage spatially connected real-world climate data to predict heavy rainfall risks in a broad range in our case study. We
experimentally ascertain that our Trans-Graph Convolutional Network (TGCN) accurately predicts heavy rainfall risks and real estate
trends, demonstrating the advantage of incorporating external spatially-connected real-world data to improve model performance, and
it shows that this proposed study has a signi�cant potential to enhance spatio-temporal prediction accuracy, aiding in e�cient urban
water usage, �ooding risk warning, and fair housing in real estate.
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Figure 1: An example of spatial and temporal features in the
case study of precipitation prediction.

1. Introduction
Spatio-temporal predictions have been extensively studied
due to their impact on real-world applications [1, 2, 3, 4, 5].
For example, heavy rainfall events can cause signi�cant
damage to infrastructure and pose serious threats to human
safety. Predicting these events with greater accuracy allows
better preparation and response [6], ultimately saving lives
and reducing the economic impact of such events.
Deep learning methods, such as deep spatio-temporal

prediction models [7, 8], have improved the performance
of rainfall forecasting over the years. However, the role of
external data in enhancing the prediction accuracy is still
controversial. Some argue that external data can provide
more useful information for the prediction model, while
others claim that external data can introduce more noise
and complexity to the learning process. In this study, we
propose to improve spatio-temporal predictions by combin-
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ing spatially-linked external real-world data along with a
TGCN to learn the spatio-temporal dependencies from the
combined data. As it has been proven that utilizing more
multi-source real-world data is more likely to lead to higher
accuracy [9], our study aims to introduce a fresh perspective
on integrating external real-world data into the proposed
framework. We use heavy rainfall prediction as a case study
for our proposed method, and overall we aim to provide
accurate spatio-temporal predictions by leveraging as much
information as possible, enabling better decision-making
for a broad range of spatio-temporal applications and at the
same time o�ering a novel angle and a comprehensive evalu-
ation to demonstrate the feasibility of integrating additional
external real-world data without the necessity of customiz-
ing transformer attention mechanisms. Our approach is
experimentally validated by predicting heavy rainfall events
and real estate hotspots.
The traditional method for predicting heavy rainfall in-

volves manually engineering features from weather data,
including temperature, pressure, humidity, etc. Meteorolo-
gists rely on their expertise to interpret this data and fore-
cast future weather patterns. This process entails observing
and analyzing atmospheric factors to predict weather pat-
terns. However, this traditional approach is time-consuming,
labor-intensive, and susceptible to human error, especially
when dealing with large datasets. As data grows, it becomes
increasingly challenging to analyze large amounts of infor-
mation by hand.
Previous research has investigated using deep learning

for precipitation prediction [10, 11] with promising results.
However, some limitations can be signi�cantly improved to
enhance deep model performance. One area with room for
enhancement is leveraging spatial dependencies. To tackle
this challenge, we propose a model that integrates both
Graph Convolution Networks (GCNs) and a Transformer.
This model enables combining external spatially-linked data
for spatio-temporal predictions.
Speci�cally, we employ a GCN to analyze the adjacency

matrix on a grid level and generate correlations between
each grid element. The GCN captures the spatial relation-
ships and dependencies among neighboring grid points,
allowing for a comprehensive understanding of the data’s
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spatial dynamics. We then utilize a Transformer model to
encode the temporal precipitation data and combine it with
the spatial correlations obtained from the GCNs. By com-
bining the GCNs and the Transformer within the proposed
TGCN model, we create a framework that harnesses both
the spatial and temporal dimensions of the data.

2. Related Work
2.1. Graph Neural Networks
Graph Convolutional Networks (GCNs) are a type of deep
learning model designed to process data represented in a
graph structure, such as social or sensor networks [12].
GCNs have demonstrated their e�ectiveness in various ap-
plications, including node classi�cation, link prediction, and
recommendation systems [13, 14, 15, 16]. The concept of
Graph Neural Networks (GNNs) was initially introduced
in [17] and further expanded upon in subsequent research
by [18]. GNNs, a type of recurrent neural network (RNN),
iteratively propagate information from neighboring nodes
until reaching a stable �xed point. This iterative process has
traditionally been computationally expensive, but recent
studies, such as [19], have made signi�cant improvements
in this area. Inspired by the success of Convolutional Neural
Networks (CNNs) in computer vision, which extract high-
level features from images using convolution and pooling
layers, current models aim to adapt these layers to directly
process graph inputs. GCNs can be categorized into two
types of graph convolution layers: spectral graph convolu-
tion and localized graph convolution, as discussed in [20].
Early research primarily focused on spectral graph convolu-
tions, pioneered by [21]. The current state-of-the-art model,
GCN, further simpli�ed the graph convolution operation by
employing a localized �rst-order approximation. However,
spectral methods require operations on the entire graph
Laplacian during training, which can be computationally
expensive. Several subsequent works, such as FastGCN [22]
have aimed to alleviate this issue.
Recently, researchers have explored the application of GCNs
in time series prediction. For example, spatio-temporal GCN-
based approaches have been proposed for tra�c �ow pre-
diction [23], and the integration of time-aware topological
information into GCNs using the mathematical framework
of zigzag persistence [24].

2.2. Spatial Temporal Prediction
In this section, we discuss various existing temporal and
spatial-temporal forecasting methods. For example, Recur-
rent Neural Networks (RNNs), especially long-short-term
memory (LSTM) [25], have gained popularity in time series
forecasting [26]. Convolutional Neural Networks (CNN)
and its variant Temporal Convolutional Neural Networks
(TCN) are another option for sequence prediction [27], of-
fering parallel computations compared to RNNs [28]. In
recent years, researchers have explored Transformers and
its variants in time series forecasting, achieving state-of-
the-art performance in tasks like energy consumption and
stock market [29, 30, 31]. Designing a model capable of
comprehensively capturing both spatial and temporal pat-
terns represents another emerging trend in spatial-temporal
prediction tasks [32, 33]. For example, [33] introduced a
spatial-temporal graph neural network for predicting tra�c

�ow.

3. Methodology
In this section, we detail our model architecture and the
bene�ts of our design.

3.1. Overview
The architecture we propose, illustrated in Figure 2, incorpo-
rates a combination of techniques to enhance the prediction
model. We begin by utilizing a transformer encoder to ef-
fectively encode the time series precipitation data, and then
integrate local climate features into the model, enabling
a comprehensive understanding of the factors in�uencing
heavy rainfall.

To address spatial dependencies and relationships among
grid points, a GCN is introduced. This GCN learns the spa-
tial dependencies within the dataset, considering the inter-
connectedness of grids based on their spatial locations. By
leveraging the GCN, the model becomes capable of captur-
ing and integrating spatial information, thereby enhancing
prediction accuracy.

The latent code, which combines the encoded time series
precipitation data and the spatially connected local climate
features learned through the GCN, is fed into a multi-layer
perceptron (MLP) for prediction. This integrated architec-
ture allows the MLP model to leverage the fused informa-
tion, including temporal precipitation data, other climate
features, and spatial factors, to e�ectively learn and infer
future heavy rainfall areas.

3.2. Model Architecture
3.2.1. Preliminaries

Our proposed TGCNmodel consists of Encoder,GCNs and
Multi-layer Perceptron (MLP) layers. The major compo-
nent in the transformer is theMulti-head self-attention.

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

Where the K and V are matrices that store the keys and
values. Q is the query that will map against a set of keys.

3.2.2. Transformer-based Encoder

We have developed a predictive model using the Trans-
former architecture, tailored for heavy rainfall forecasts.
Unlike traditional methods that only use past rainfall data,
our model factors in numerous external variables to boost
accuracy. We examine local features, including geography,
atmospheric conditions (pressure, temperature, wind), hu-
midity, and topography, all of which in�uence heavy rainfall
likelihood in a speci�c area. Therefore, we have developed a
transformer-based prediction model [34] that incorporates
GCNs to process the spatial features. By doing so, our model
can capture the spatial relationships among various features
in a graph structure, such as the dependencies between grid
point locations and their corresponding climate data. The
integration of the GCNs enhances our model’s ability to
capture both temporal and spatial information. Our model
design starts with a transformer encoder capturing tempo-
ral precipitation patterns, followed by embedding this data
and merging it with local climate data like moisture and



Figure 2: Design Flow of the Trans-Graph Convolutional Prediction Model: The Trans-Graph Convolutional Prediction Model
incorporates a transformer layer for time-series precipitation data, a GCN for local climate features and spatial relationships
among grid points, and a four-layer MLP model for the final prediction.

humidity. We enhance prediction accuracy with this added
context.

3.2.3. Graph Convolutional Networks

Figure 3: Graph Convolutional Network Architecture: The input
data consists of the spatial relationmatrix and spatially connected
climate data. The nodes in the figure are for illustrative purposes.

GCNs have received considerable attention in recent
years and have shown impressive performance in various ap-
plications. In this study, we aim to improve the performance
of our model by integrating a GCN on top of a Transformer
encoder model. The GCN model is speci�cally designed to
capture the spatial relationships between each node in the

graph and enhance the overall representation of the input
data.

As illustrated in Figure 3, GCNs involve learning a linear
transformation of the feature vectors of each node in a graph,
which is then used to update the node features by aggregat-
ing information from the node’s neighbors. Mathematically,
this can be expressed as:

h
(l+1)
vi = �

0

@
X

vj2N (vi)

1
cij

W
(l+1)

h
(l+1)
vj

1

A (2)

In the equation, h(l+1)
vi represents the feature vector

of node vi at layer l + 1, W (l+1) denotes the learnable
weight matrix for layer l + 1, N (vi) represents the set of
neighbors of node vi, and cij is a normalization constant
that ensures proper scaling of the aggregated information.
The function � denotes a non-linear activation function,
which introduces non-linearity into the model. In our
speci�c case, we utilize the ReLU activation function. This
equation can be interpreted as calculating a weighted sum
of the feature vectors of the neighbors of node vi at layer
l + 1, where the weights are determined by the learned
weight matrix W

(l+1). Then, a non-linear activation
function is applied to obtain the updated feature vector
h
(l+1)
vi for node i at layer l + 1. This process is repeated

across multiple layers to learn expressive representations
of the graph data.

For the �nal prediction, we utilize a four-layer MLPmodel
that combines time series data with other features, e�ec-
tively leveraging both temporal and spatial information
captured by our model for more accurate predictions.

By leveraging the transformer architecture, incorporating
GCNs, and utilizing a four-layer MLP model, our approach
enables the e�ective integration of temporal and spatial
information for improved prediction accuracy.

3.2.4. Jointly Learning

As illustrated in Figure 2, we propose to map temporal data
and non-temporal data into the same latent space and merge
the latent vectors for the subsequent prediction task.



To encode the local climate features and capture the spa-
tial dependencies among the grid points for data xc, we
employ a GCN to learn the relationships and dependencies
within the spatial domain. The output hidden features at
a speci�c layer L can be denoted as h(L)

c . Equation 2 is
applied in this context. Assuming we use Lc layers in total,
and we use the �nal layer to summarize climate information,
which is de�ned as:

hc = h
(Lc)
v (3)

where h(0)
v = xc

In this equation, hc represents the hidden features at layer
L, which are obtained by applying the ReLU activation func-
tion to the sum of the weighted input featuresW (L)

c h
(L�1)
c

and the bias term b
(L)
c from Equation 2.

We encode temporal precipitation data using a trans-
former encoder [34],

ht = TransformerEncoder(xt) (4)

ht 2 Rdt (5)

. Since xt and xc are encoded as ht and hc, we de�ne the
merged hidden state as hm

hm = CONCAT (ht,hc) (6)

To further process the merged information, we use another
multi-layer perceptron speci�cally trained for the predic-
tion task. Similarly, we de�ne the l-th layer network as
(assuming L

n layers in total)

h
(l)
n = ReLu(W (l)

n h
(l�1)
n + b

(l)
n ) (7)

where h(0)
n = hm, and h

(l�1)
n is the input of the (l-1)-th

layer in the i-th position. W (l)
n and b

(l)
n are model parame-

ters.
We use the output from the last layer for prediction

ȳ = sigmoid(h(Ln)
n ) (8)

Loss is measured with the Binary Cross-Entropy loss (BCE)

loss = BCEloss(ȳ, y) (9)

The binary cross entropy (BCE) loss can be formulated as
follows:

BCEloss = � 1
N

NX

i=1

[yi log(pi) + (1� yi) log(1� pi)]

(10)
where: N is the total number of samples, yi is the true label
for sample i, pi is the predicted probability i, log denotes
the natural logarithm.

4. Experimental Validation
4.1. Datasets
Our data and code are publicly available1. In our dataset,
the train and test split ratio is 7:3.

1 https://github.com/jiang28/Deep-Spatio-Temporal-Encoding

4.1.1. Precipitation Dataset

Our precipitation dataset is sourced from the NOAA HRRR
dataset2, o�ering real-time climate data at a 3 km spatial
resolution and 1-hour temporal resolution. This dataset [35]
encompasses total precipitation, precipitation rate, and nine
additional climate variables, including humidity (%), mois-
ture availability (%), pressure (Pa), wind speed (m/s), and
total cloud cover (%). Simulated brightness temperature data
is acquired from the GOES 11 satellite 3. The precipitation
data consist of the following three types:

• Temporal precipitation data, denoted as xt, as shown
in Table 1 and Figure 5. It captures the historical
patterns and �uctuations in precipitation over time.
Speci�cally, we de�ne the temporal precipitation
rate and total accumulated precipitation over the
past 6 hours as xh, which consists ofN timestamps:

xt = {x1
t , x

2
t , ..., x

N
t }

x
i
t i2{1..N} represents the average price for the i-th

timestamp.
• Local climate data xc: The dataset comprises twelve
local climate variables, including temperature, hu-
midity, wind speed, atmospheric pressure, and vari-
ous other meteorological factors.

• Spatial location data xs: Each grid point in the
dataset represents a speci�c location within the
study area, such as a region or a cell. To represent the
relationships between these grid points, we used an
adjacency matrix. In the adjacency matrix, a value
of 0 indicates that two grid points are not neigh-
bors, while a value of 1 denotes their neighboring
relationship.

4.1.2. Real-estate Dataset

The real estate dataset captures the dynamics of the U.S. real
estate market by collecting spatially correlated data from
multiple sources. It consists of 7,436 neighborhoods, 567
cities, 304 counties, 225 metros, and 50 states across the U.S.
The data are connected through spatial locations, forming a
multi-level spatial hierarchy. The dataset consists of three
main components: census data, pricing history, and school
district information. Here are some statistics about the real
estate dataset:

• Spatial Hierarchy Levels: The dataset includes a
multi-level spatial hierarchy, including information
at the state, metro, county, city, and neighborhood
levels.

• Census Data: The census data consists of 16 vari-
ables related to various aspects of housing prices,
personal income, demographics, and spatial infor-
mation.

• Pricing History: The dataset includes temporal hous-
ing price history for each neighborhood, spanning
from 1996 to 2019.

• School District Information: The dataset incorpo-
rates school district information. It provides details
on the number of school districts present in each
county within the studied area. Additionally, the
dataset includes information on the top school dis-
trict(s) within the region.

2 https://rapidrefresh.noaa.gov/hrrr/
3 https://www.goes.noaa.gov/



GridID Longitude Latitude Grid Points Grid Spacing Vertical Level
1 122.71 21.13 1799 ⇥ 1059 3 km 50

Time Stamps 2022/09/23 00:00 2022/09/23 01:00 2022/09/23 02:00 ... 2022/10/02 00:00
Precipitation rate (mm/hour) 0.0 0.72 0.94 ... 0
Total Precipitation (mm) 0.01 1.88 4.3 ... 31.61

Table 1
Temporal data format. It has data on the grid id, longitude, latitude, grid points, grid spacing, vertical level, timestamps, total
precipitation, and precipitation rate.

To facilitate the task of predicting real estate hotspots, the
dataset is classi�ed into two classes based on the house price
increase rate for each neighorhood: 1 for hotspots and 0
for non-hotspots. The detailed settings of the Real-estate
Dataset can be found in [36].

4.2. Evaluation Metrics
We evaluate the performance of a classi�cation system us-
ing various metrics, including Accuracy, Recall, Precision,
F1-score, and ROC. These metrics are calculated based on
the number of true positives (tp), false positives (fp), false
negatives (fn), and true negatives (tn). Accuracy measures
the proportion of observations, both positive and negative,
that were correctly classi�ed by the system, and can be
computed using the formula:

acc =
tp + tn

tp + fp + tn + fn

Recall measures the proportion of true positives that were
correctly identi�ed by the system, and can be computed
using the formula:

recall =
tp

tp + fn

Precision measures the proportion of identi�ed positives
that were actually true positives, and can be computed using
the formula:

precision =
tp

tp + fp

F1-score is a weighted average of precision and recall,
and provides a single measure of the system’s accuracy on
the dataset, and can be computed using the formula:

F1 = 2 ⇤ precision ⇤ recall
precision+ recall

ROC (Receiver Operating Characteristic) curve is a graph-
ical plot that illustrates the performance of a binary classi�er
system. It is created by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR), which can be computed
using the formulas:

TPR =
tp

tp + fn

FPR =
fp

fp + tn

Overall, these metrics provide a comprehensive evalua-
tion of a classi�cation system’s performance and can help
identify areas for improvement.

4.3. Heavy Rainfall Prediction
Study Area: Figure 4 presents the location of the study area
in this study. It consists of 10,000 grids across the state of
Florida in the U.S.

Figure 4: The study area consists of 10,000 grids across South
Florida in the United States. The figure shows the observed
precipitation values in each county within this area.

Figure 5: Study Area Precipitation Rate Heatmap: 100x100 grid
region on September 28, 2022, at 13:00 (mm/s).

Our study identi�es heavy rainfall risk areas based on
precipitation rate. Following the United States Geological
Survey (USGS) standard4, we de�ne the heavy rainfall risk
as follows:

Class =

(
0, if R < 4 mm/hr
1, if R � 4 mm/hr

Recognizing the signi�cance of precipitation rate as a
critical factor, our objective is to pinpoint areas that are
susceptible to encountering heavy rainfall within the next
hour. The classi�cation into two classes simpli�es the
problem and provides a clear distinction between areas with
di�erent levels of heavy rainfall risk. Using a 4 mm/hour
4 https://www.usgs.gov/



Model Accuracy Precision Recall F1-score ROC0 1 0 1 0 1

RF 81% 0.79 0.84 0.79 0.81 0.87 0.81 0.813
SVM 77.2% 0.77 0.78 0.76 0.78 0.77 0.78 0.772
DT 76.5% 0.73 0.77 0.77 0.73 0.75 0.75 0.754
LR 90% 0.91 0.90 0.90 0.91 0.91 0.90 0.904
MLP 87.8% 0.82 0.94 0.93 0.84 0.87 0.89 0.879
LSTM 86.6% 0.79 0.96 0.96 0.79 0.86 0.87 0.874

Transformer 93.5% 0.88 0.98 0.98 0.90 0.93 0.94 0.941
TGCN (Ours) 95.6% 0.93 0.97 0.97 0.94 0.95 0.96 0.954

Table 2
When comparing model performance on the Real Estate dataset, the proposed model has achieved an accuracy of 95.6%.

Model Accuracy Precision Recall F1-score ROC0 1 0 1 0 1

RF 74.4% 0.65 0.78 0.56 0.84 0.60 0.81 0.701
SVM 54.1% 0.28 0.63 0.20 0.73 0.23 0.67 0.461
DT 80.5% 0.91 0.74 0.69 0.93 0.78 0.82 0.807
LR 78.8% 0.85 0.74 0.70 0.87 0.77 0.80 0.87
MLP 80.3% 0.83 0.78 0.77 0.84 0.80 0.81 0.804
LSTM 83.1% 0.87 0.80 0.79 0.88 0.83 0.84 0.832

Transformer 83.4% 0.85 0.82 0.82 0.85 0.83 0.83 0.835
TGCN (Ours) 86.6% 0.90 0.83 0.82 0.91 0.86 0.87 0.867

Table 3
When comparing model performance on the Precipitation dataset, the proposed model has achieved an accuracy of 86.6%.

threshold, we classify areas as either low-risk (labeled as 0)
or high-risk (labeled as 1). For example, out of 10,000 grid
points in the study area, 4,798 have a potential for heavy
rain risk, while 5,202 do not. This classi�cation simpli�es
decision-making and resource allocation.

4.4. Baselines
We use the following baseline methods:

• Random Forest (RF) [37]
• Support Vector Machine (SVM) [38]
• Decision Tree (DT) [39]
• Linear Regression (LR) [40]
• Multilayer Perceptron (MLP) [41]
• Long Short Term Memory (LSTM) [25]
• Transformer [34]

5. Performance Analysis
Based on the results presented in Table 2 and Table 3, we
can analyze the performance of di�erent models on the Real
Estate dataset and the Precipitation dataset, respectively.

In Table 2, the proposed model outperforms all the base-
line models with an accuracy of 95.6%. The proposed model
also exhibits the highest precision for both classes (0 and
1), achieving 0.93 and 0.97, respectively. It demonstrates
high recall values for both classes as well. The F1 scores are
also higher for the proposed model compared to the base-
line models, indicating a better balance between precision
and recall. The TGCN model’s performance is further re-
�ected in the ROC score of 0.954, which indicates its ability
to discriminate between the two classes e�ectively.

Table 3 shows that the proposed model again achieves the
highest accuracy of 86.6%. Similar to the Real Estate dataset,
the TGCNmodel demonstrates superior precision and recall

values for both classes compared to the baseline models. It
achieves precision scores of 0.9 and 0.83 for classes 0 and
1, respectively, along with recall scores of 0.82 for class 0
and 0.85 for class 1. The F1 scores also indicate the TGCN
model’s overall better performance. The ROC score for the
TGCN model is 0.867.

These results demonstrate that the proposed TGCNmodel
consistently outperforms the other models on both datasets
in terms of accuracy, precision, recall, F1 score, and ROC
score. The TGCN model’s ability to capture temporal, non-
temporal, and spatial information through its integration
of the transformer layer and the graph convolutional net-
work contributes to its good performance in identifying and
predicting hotspots and heavy rainfall areas.

6. Conclusion
In conclusion, the accurate prediction of heavy rainfall
events is crucial for e�ective urban water usage, disaster
response, and mitigation e�orts. This paper proposed a pre-
diction model that leverages spatially connected features
and real-world climate data to predict heavy rainfall risks
across a broad range. Through extensive experimentation,
it was observed that the TGCN model outperformed the
other machine learning methods in forecasting both heavy
rainfall events and real estate trends.

7. Future Work and Limitations
While this study successfully demonstrated the e�ectiveness
of the proposed TGCN model in predicting heavy rainfall
risks, there are several avenues for future research and im-
provement.

We plan to incorporate more diverse and comprehensive
datasets, including additional meteorological and geograph-
ical features. This expansion has the potential to enhance



the accuracy and generalizability of the TGCN model. Fur-
thermore, we are considering the integration of real-time
data streams and the utilization of advanced data fusion
techniques to further enhance the model’s forecasting capa-
bilities.

Acknowledgement
This work was partially supported by the National Science
Foundation (NSF) under Grant No. 2318641. Any opinions,
�ndings, and conclusions or recommendations expressed in
this material are those of the authors and do not re�ect the
views of the National Science Foundation.

References
[1] A.-T. Kuo, H. Chen, W.-S. Ku, Bert-trip: E�ective and

scalable trip representation using attentive contrast
learning, in: 2023 IEEE 39th International Conference
on Data Engineering (ICDE), IEEE Computer Society,
2023, pp. 612–623.

[2] P.-Y. Ting, T. Wada, Y.-L. Chiu, M.-T. Sun, K. Sakai,
W.-S. Ku, A. A.-K. Jeng, J.-S. Hwu, Freeway travel
time prediction using deep hybrid model–taking sun
yat-sen freeway as an example, IEEE Transactions on
Vehicular Technology 69 (2020) 8257–8266.

[3] A. Datta, S. Banerjee, A. O. Finley, A. E. Gelfand, Hier-
archical nearest-neighbor gaussian process models for
large geostatistical datasets, Journal of the American
Statistical Association 111 (2016) 800–812.

[4] B. Gräler, E. J. Pebesma, G. B. Heuvelink, Spatio-
temporal interpolation using gstat., R J. 8 (2016) 204.

[5] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, S. He, Dy-
namic spatial-temporal graph convolutional neural
networks for tra�c forecasting, in: Proceedings of the
AAAI conference on arti�cial intelligence, volume 33,
2019, pp. 890–897.

[6] K. Kitchat, M.-H. Lin, H.-S. Chen, M.-T. Sun, K. Sakai,
W.-S. Ku, T. Surasak, A deep reinforcement learning
system for the allocation of epidemic prevention mate-
rials based on ddpg, Expert Systems with Applications
242 (2024) 122763.

[7] F. Amato, F. Guignard, S. Robert, M. Kanevski, A
novel framework for spatio-temporal prediction of
environmental data using deep learning, Scienti�c
reports 10 (2020) 22243.

[8] H. Liu, X. Mi, Y. Li, Smart deep learning based wind
speed prediction model using wavelet packet decom-
position, convolutional neural network and convo-
lutional long short term memory network, Energy
Conversion and Management 166 (2018) 120–131.

[9] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, Q. Tian, Ac-
curate medium-range global weather forecasting with
3d neural networks, Nature (2023) 1–6.

[10] A. Moraux, S. Dewitte, B. Cornelis, A. Munteanu, A
deep learning multimodal method for precipitation
estimation, Remote Sensing 13 (2021) 3278.

[11] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-
k. Wong, W.-c. Woo, Deep learning for precipitation
nowcasting: A benchmark and a newmodel, Advances
in neural information processing systems 30 (2017).

[12] T. N. Kipf, M. Welling, Semi-supervised classi�cation
with graph convolutional networks, arXiv preprint
arXiv:1609.02907 (2016).

[13] L. Cai, B. Yan, G. Mai, K. Janowicz, R. Zhu, Transgcn:
Coupling transformation assumptions with graph con-
volutional networks for link prediction, in: Proceed-
ings of the 10th international conference on knowl-
edge capture, 2019, pp. 131–138.

[14] L. Gan, X. Yang, N. Narisetty, F. Liang, Bayesian joint
estimation of multiple graphical models, Advances in
Neural Information Processing Systems 32 (2019).

[15] H. Gao, Z. Wang, S. Ji, Large-scale learnable graph
convolutional networks, in: Proceedings of the 24th
ACM SIGKDD international conference on knowledge
discovery & data mining, 2018, pp. 1416–1424.

[16] H. Wang, M. Zhao, X. Xie, W. Li, M. Guo, Knowledge
graph convolutional networks for recommender sys-
tems, in: The world wide web conference, 2019, pp.
3307–3313.

[17] M. Gori, G. Monfardini, F. Scarselli, A new model
for learning in graph domains, in: IEEE International
Joint Conference on Neural Networks, volume 2, IEEE,
2005, pp. 729–734.

[18] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,
G. Monfardini, The graph neural network model, IEEE
Trans. Neural Networks 20 (2009) 61–80.

[19] Y. Li, D. Tarlow, M. Brockschmidt, R. S. Zemel, Gated
graph sequence neural networks, in: ICLR, 2016.

[20] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamil-
ton, J. Leskovec, Graph convolutional neural networks
for web-scale recommender systems, in: SIGKDD,
ACM, 2018, pp. 974–983.

[21] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral
networks and locally connected networks on graphs,
in: ICLR, 2014.

[22] J. Chen, T. Ma, C. Xiao, Fastgcn: Fast learning with
graph convolutional networks via importance sam-
pling, in: ICLR, OpenReview.net, 2018.

[23] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolu-
tional networks: A deep learning framework for tra�c
forecasting, arXiv preprint arXiv:1709.04875 (2017).

[24] S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention
based spatial-temporal graph convolutional networks
for tra�c �ow forecasting, in: Proceedings of the
AAAI conference on arti�cial intelligence, volume 33,
2019, pp. 922–929.

[25] S. Hochreiter, J. Schmidhuber, Long short-term mem-
ory, Neural computation 9 (1997) 1735–1780.

[26] S. McNally, J. Roche, S. Caton, Predicting the price of
bitcoin using machine learning, in: 2018 26th Euromi-
cro International Conference on Parallel, Distributed
and Network-based Processing (PDP), IEEE, 2018, pp.
339–343.

[27] S. D. Yeddula, C. Jiang, B. Hui, W.-S. Ku, Tra�c acci-
dent hotspot prediction using temporal convolutional
networks: A spatio-temporal approach, in: Proceed-
ings of the 31st ACM International Conference on
Advances in Geographic Information Systems, 2023,
pp. 1–4.

[28] A. Borovykh, S. Bohte, C. W. Oosterlee, Conditional
time series forecasting with convolutional neural net-
works, arXiv preprint arXiv:1703.04691 (2017).

[29] S. Wu, X. Xiao, Q. Ding, P. Zhao, Y. Wei, J. Huang,
Adversarial sparse transformer for time series fore-
casting, Advances in neural information processing
systems 33 (2020) 17105–17115.

[30] J. Yoo, Y. Soun, Y.-c. Park, U. Kang, Accurate multi-
variate stock movement prediction via data-axis trans-



former with multi-level contexts, in: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 2037–2045.

[31] Y. Liu, S. Wang, J. Chen, B. Chen, X. Wang, D. Hao,
L. Sun, Rice yield prediction and model interpreta-
tion based on satellite and climatic indicators using a
transformer method, Remote Sensing 14 (2022) 5045.

[32] Z. Lin, M. Li, Z. Zheng, Y. Cheng, C. Yuan, Self-
attention convlstm for spatiotemporal prediction, in:
Proceedings of the AAAI conference on arti�cial in-
telligence, volume 34, 2020, pp. 11531–11538.

[33] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang,
C. Jia, J. Yu, Tra�c �ow prediction via spatial temporal
graph neural network, in: Proceedings of the web
conference 2020, 2020, pp. 1082–1092.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Atten-
tion is all you need, arXiv preprint arXiv:1706.03762
(2017).

[35] C. Jiang, W. Wang, N. Pan, W.-S. Ku, A multimodal
geo dataset for high-resolution precipitation forecast-
ing, in: Proceedings of the 31st ACM International
Conference on Advances in Geographic Information
Systems, 2023, pp. 1–4.

[36] C. Jiang, J. Li, W. Wang, W.-S. Ku, Modeling real estate
dynamics using temporal encoding, in: Proceedings
of the 29th International Conference on Advances in
Geographic Information Systems, 2021, pp. 516–525.

[37] T. K. Ho, Random decision forests, in: Proceedings
of 3rd international conference on document analysis
and recognition, volume 1, IEEE, 1995, pp. 278–282.

[38] B. E. Boser, I. M. Guyon, V. N. Vapnik, A training
algorithm for optimal margin classi�ers, in: Proceed-
ings of the �fth annual workshop on Computational
learning theory, 1992, pp. 144–152.

[39] W.-Y. Loh, Classi�cation and regression trees, Wiley
interdisciplinary reviews: data mining and knowledge
discovery 1 (2011) 14–23.

[40] J. A. Nelder, R. W. Wedderburn, Generalized linear
models, Journal of the Royal Statistical Society: Series
A (General) 135 (1972) 370–384.

[41] L. B. Almeida, C1. 2 multilayer perceptrons, Handbook
of Neural Computation C 1 (1997).


	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Spatial Temporal Prediction

	3 Methodology
	3.1 Overview
	3.2 Model Architecture
	3.2.1 Preliminaries
	3.2.2 Transformer-based Encoder
	3.2.3 Graph Convolutional Networks
	3.2.4 Jointly Learning


	4 Experimental Validation
	4.1 Datasets
	4.1.1 Precipitation Dataset
	4.1.2 Real-estate Dataset

	4.2 Evaluation Metrics
	4.3 Heavy Rainfall Prediction
	4.4 Baselines

	5 Performance Analysis
	6 Conclusion
	7 Future Work and Limitations

