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ABSTRACT

Neural networks for computer vision extract uninterpretable features despite
achieving high accuracy on benchmarks. In contrast, humans can explain their
predictions using succinct and intuitive descriptions. To incorporate explainabil-
ity into neural networks, we train a vision model whose feature representations are
text. We show that such a model can effectively classify ImageNet images, and
we discuss the challenges we encountered when training it.

1 INTRODUCTION

In recent years, there has been a surge of interest in vision-language models (VLMs) that combine
the power of computer vision and natural language processing to perform tasks such as image cap-
tioning, visual question answering, and image retrieval (Alayrac et al., 2022; Radford et al., 2021; Li
et al., 2022b; Wang et al., 2022; Zeng et al., 2021; Singh et al., 2022). These models leverage both
visual and textual signals to reason about their contents and generate meaningful outputs (Li et al.,
2022a; Xu et al., 2015; Anderson et al., 2018; Li et al., 2019; Zhou et al., 2020; Li et al., 2020).

One popular approach to building VLMs is through self-supervised learning (SSL), which involves
training a model to make predictions about a given input without any human-labeled annotations.
SSL has shown great promise in achieving state-of-the-art performance on various tasks in computer
vision and natural language processing (Balestriero et al., 2023; Devlin et al., 2018).

Prior work has explored generating text descriptions from images using a variety of approaches.
(Liu et al., 2023) encode images into text tokens using a pretrained codebook, but their generated
text may lack semantic meaning. (Wickramanayake et al., 2021) use CNNs to associate visual
features with human-annotated word phrases but require a manual definition of those phrases. Our
work differs by employing an image-grounded language model decoder, eliminating the need for
a codebook. This allows us to generate text descriptions that are semantically meaningful without
relying on predefined word phrases.

In this paper, we take a stab at implanting a language bottleneck in traditional image classification
pipelines (see Figure 1). By converting image features into words and using the words to classify the
image, our proposed method can provide insights into the interpretability of classification models, as
the language bottleneck serves as a “universal interface” between the visual and textual modalities.
Extracting human-readable language features can also help us better understand how these models
learn and reason about the content of images.

2 METHOD

We use BLIP (Li et al., 2022b), a fine-tuned image-to-text caption model as the basis of our pipeline.
The model has two modules, a visual transformer (Dosovitskiy et al., 2020), which transforms input
images into embedding vectors, and a language model (Devlin et al., 2018) that generates hard
tokens by incorporating the signals from image embeddings with the help of the cross-attention
layer.

To ensure that the pipeline remains end-to-end and differentiable, we feed n trainable soft prompts
as gold input to the text encoder instead of sampling to generate hard tokens. After that, the decoder
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Table 1: Validation Results on ImageNet.

\ Method | ImageNet | +Gaussian | +Impulse | +Shot | +Defocus |
| BLIPCaption | 42819 | 40.185 | 38.874 | 39.866 | 39.147 |
Ours 67.117 64.799 63.201 64.784 64.287
+ Token similarity 68.894 66.444 64.961 66.466 65.774
+ LLM loss 64.035 62.162 60.89 62.195 61.602

+ No repetition sampling 62.050 59.935 58.39 59.952 59.721

produces n logits, we normalize them with softmax and perform a matrix-matrix multiplication with
the word embedding matrix. This multiplication results in n word embeddings for the image. To
obtain a single vector, we mean pool the n word embedding vectors. Finally, we pass the pooled
vector through a linear classification head to predict the class.

Note that we only train the soft prompt and the linear head parameters. Also, during validation, we
use argmax on the logits to retrieve the word embeddings of hard tokens. As a result, the linear head
only “sees the words” to make its predictions.

Training such a model yields a challenging optimization problem and often leads to a model that
mostly outputs non-human-readable text and repeated words. Therefore, we also design three vari-
ants to produce more diverse and human-readable image descriptions:

Token similarity loss: We compute the cosine similarity between all token pairs in the sequence,
then calculate the average to get the sequence word similarity. This number tells us how much the
generated tokens are similar to each other, and we minimize this loss to get more diverse tokens in
the sequence.

LLM loss: In order to get human-readable text, we feed the generated tokens that we get from our
language bottleneck through the language model again to get the likelihood of those tokens (bad
language text should produce low likelihood).

No repetition sampling: This is a sampling procedure we use during inference, where we perform
auto-regressive sampling but skip the tokens that were already generated in the sequence.

3 RESULTS

We test our pipeline on ImageNet (Deng et al., 2009) as well as ImageNet test sets with common
corruptions (Hendrycks & Dietterich, 2019). We train the soft prompt and linear head for 5 epochs
with learning rate 1Te~! and 5e 3 respectively. A natural candidate for a baseline is a system that
uses the caption from the fine-tuned BLIP model, the motivation behind this is that BLIP has learned
through the supervision of human captions on images, so it describes images the way a human might.
But as the results show in Table 1, we do not get the optimal classification results with this baseline.
Our method substantially improves the baseline accuracy. Meanwhile, adding token similarity loss
produces the best validation accuracy. From our manual evaluation, training with token similarity
loss drives the model to produce text tokens that have the best balance of being human-readable and
helpful for the classifier. We provide sample generations in Appendix Figure 2.

4 CONCLUSIONS

In this paper, we proposed a method for implanting a language bottleneck in traditional image clas-
sification pipelines and investigated the performance of such a model. We found that incorporating
language into the pipeline produces non-trivial classification accuracy on the ImageNet dataset. Our
results suggest that language can serve as a universal interface and models can learn to express visual
features through words alone. This kind of pipeline may provide insights into the interpretability
and performance of vision-language models. Future work might explore better ways to make the
language bottleneck produce more salient and human-readable words, and use this kind of pipeline
to experiment on out-of-domain image samples. It would also be valuable to investigate how this
approach can handle more complex images with multiple objects or scenes, and to consider its im-
plications for model transparency and accountability.
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Figure 1: Architecture
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Figure 2: Sample Generations
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