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Abstract

Data attribution methods play a crucial role in understanding machine learning
models, providing insight into which training data points are most responsible for
model outputs during deployment. However, current state-of-the-art approaches
require a large ensemble of as many as 300,000 models to accurately attribute
model predictions. These approaches therefore come at a high computational cost,
are memory intensive, and are hard to scale to large models or datasets. In this
work, we focus on a minimalist baseline that relies on the image features from
a pretrained self-supervised backbone to retrieve images from the dataset. Our
method is model-agnostic and scales easily to large datasets. We show results on
CIFAR-10 and ImageNet, achieving strong performance that rivals or outperforms
state-of-the-art approaches at a fraction of the compute or memory cost. Contrary
to prior work, our results reinforce the intuition that a model’s prediction on one
image is most impacted by visually similar training samples. Our approach serves
as a simple and efficient baseline for data attribution on images.

1 Introduction

The effectiveness of a machine learning system’s performance hinges on the quality, diversity, and
relevance of the data it is trained on (Halevy et al., 2009; Sun et al., 2017). In various real-world
machine learning systems, for example in healthcare or finance, we often ask questions like, “Which
training samples influenced this prediction?" or “How sensitive is this model’s prediction to changes
in the training data?" Counterfactual insights enable us to assess the impact of hypothetical changes
in the data distribution, which in turn helps us understand the basis of the model’s decisions and how
to change the decision in the event of an error.

These questions motivate research on data attribution methods, which focus on understanding which
data points most strongly influence a model’s outputs. Data attribution methods have been applied to
applications such as debugging model biases (Ilyas et al., 2022; Park et al., 2023; Shah et al., 2023),
fairness assessment (Black & Fredrikson, 2021), and active learning (Liu et al., 2021).

In principle, data attribution can be done perfectly by a brute-force leave-k-out strategy; simply train
the model from scratch many times, removing k data points each time. The user can then examine
the impact of each data point by examining how the corresponding ablated model differs from the
original. Clearly, this procedure is intractable for any realistic problem as there are innumerable
subsets, and training even a single machine learning model can be almost prohibitively expensive.
The goal of data attribution research therefore is to approximate this gold standard metric as closely
as possible while simultaneously using as little computation as possible. As such, the field of data
attribution is all about trade-offs between accuracy, runtime, and memory.
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Figure 1: Our proposed baseline approach for data attribution achieves high performance while
improving computational efficiency and storage requirements. The wall clock time is computed
on an RTX A6000 GPU and memory requirements is computed in GBs (see Appendix A.1). Mislabel
and Removal Support AUC are used to measure the method’s accuracy to make counterfactual
predictions (see details in Section 2.1).

Existing data attribution approaches gain insights into model behaviors by scraping information from
the learning algorithm, such as logits (Ilyas et al., 2022) or gradients (Koh & Liang, 2017; Park et al.,
2023). Despite this, these techniques still require re-training multiple models on different data subsets,
or other compute and memory intensive strategies for better efficacy (Ilyas et al., 2022; Feldman &
Zhang, 2020; Koh & Liang, 2017; Park et al., 2023). Current data attribution approaches quickly
become intractable as datasets become larger (Basu et al., 2021; Park et al., 2023) and applications
become more realistic, such as attribution for LLMs (Grosse et al., 2023).

In this work, we present a simple approach that outperforms the current state of the art in terms
of compute-accuracy trade-offs, and often in terms of raw performance numbers as well. Given a
test image, we use the feature space of a single self-supervised model to retrieve similar images,
revealing a compelling association between data attribution and visual similarity. In contrast to
existing methods that involve unwieldy model ensembles and extensive computation, our approach
shifts the spotlight directly onto the data. Building on prior research, we focus on counterfactual
prediction (Ilyas et al., 2022; Park et al., 2023) for evaluating data attribution techniques. Based on
the intuition that data inherently shapes model behavior, our method does not use any information
about the model training process, and yet still rivals the performance of state-of-the-art approaches
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that do, while using a tiny fraction of the computational resources. Our work shows that contrary
to previous work (Ilyas et al., 2022; Park et al., 2023), feature representations can serve as a robust
baseline for data attribution methods. Our code is available at https://github.com/vasusingla/
simple-data-attribution

2 Problem Setting

We first define our notation and then discuss evaluation criteria used for data attribution approaches.
We borrow notation and evaluation criteria from Ilyas et al. (2022) and Park et al. (2023).

Notation: Let S = {z1, z2, . . . zn} denote a set of training samples. Each sample zi ∈ S represents
zi = (xi, yi), where xi signifies the input image and yi represents the associated ground truth label.
We use zt to denote an arbitrary evaluation sample not present in the training set.

We denote a data attribution approach as a function τ(z, S) ∈ Rn. This function operates on any
sample z and a training set S, generating a score for each sample within the set S. These scores
highlight the relative positive or negative impact of individual training samples on the classification
of the input sample z.

2.1 Evaluating Attribution Methods

Obtaining ground truth for data attribution has been a challenging problem. Several works have
focused on evaluating data attribution methods using alternatives such as Shapley values or leave-
one-out influences (Koh & Liang, 2017; Lundberg & Lee, 2017; Jia et al., 2021). These approaches
however do not scale beyond modest dataset sizes. An alternate line of work evaluates the utility of
attribution methods for auxiliary tasks such as active learning or identifying mislabeled or poisoned
data samples (Liu et al., 2021; Jia et al., 2021).

Recent research primarily concentrates on evaluating the performance of data attribution methods
through the lens of their capacity to provide accurate counterfactual predictions (Park et al., 2023; Ilyas
et al., 2022). While these metrics can be computationally demanding, they represent a straightforward,
yet valuable, proxy for assessing the effectiveness of attribution approaches. In our work, we
replicate the approach presented in Ilyas et al. (2022) and focus on data brittleness. Data brittleness
metrics leverage attribution techniques to answer the following question: “To what extent are model
predictions sensitive to modifications in the training data?” Hence, these metrics serve as a means of
estimating counterfactual scenarios. To quantify data brittleness, we focus on two distinct types of
data support for a validation sample zt. We explain these below:

Data Removal Support: The smallest subset Rr, that when removed from the training set S, causes
an average training run of the model to misclassify zt.

Data Mislabel Support: The smallest training subset Rm, whose mislabeling causes an average
training run of the model to misclassify zt. For each training sample in Rm, we change the labels to
the second-highest predicted class for zt.

Intuitively, a better data attribution approach should be able to find a smaller subset of training
samples that can misclassify zt. We estimate these metrics over a set of validation samples and plot
the cumulative distribution (CDF), which represents the probability that a sample’s label can be
flipped as a function of the data subset size. In Section 1, we compare the Area Under Curve (AUC)
of the CDF for the metrics described above across our approach and other attribution methods.

For a validation sample zt and a data attribution approach τ(z, S), we rank the training samples based
on decreasing order of positive influence on zt. Then, based on the ranking, we iteratively select
and modify a subset of training data. We perform this search, over different subsets to compute the
smallest training subset that can cause zt to be misclassified. Naively, checking all possible subsets
would be computationally expensive. Ilyas et al. (2022) check only subsets with certain discrete sizes
to keep costs manageable. We instead propose to perform a bisection search to approximate the
search for the smallest subset, yielding more accurate results. The bisection search approximation is
supported by the observation that several data attribution approaches are additive (Park et al., 2023).
The exact algorithm and details are discussed in Appendix A.5.
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Linear Datamodeling Score (LDS) is another related metric used for the evaluation of data attribution
methods (Ilyas et al., 2022; Park et al., 2023). Note that the LDS metric focuses on counterfactual
predictions for arbitrary changes in training data. In contrast, data brittleness serves to quantify the
accuracy of counterfactual predictions using targeted changes to training data based on a specific
validation sample. Thus, the latter metric serves as a better proxy for the data attribution method’s
usefulness as a debugging tool. In this work, we emphasize performance on data brittleness and
provide results for the LDS metric in Appendix A.6.

3 Our Approach & Baselines

Our approach utilizes the feature space of a neural network to extract features from a validation
sample zt and each training sample in S. We then compute the attribution scores by measuring the
distance in feature space between zt and each training sample in S. Prior works have tried similar
approaches and claimed them to be ineffective for counterfactual estimation (Park et al., 2023; Ilyas
et al., 2022). In the next sections, we describe the details of our approach and discuss our baselines.

0 200 400 600 800 1,000 1,200

0

0.2

0.4

0.6

Number of Training Samples Removed

Fr
ac

.o
fC

IF
A

R
-1

0
M

is
cl

as
si

fie
d

ℓ2 MoCo
ESVM MoCo
ESVM MoCo (ResNet-18)
ℓ2 Supervised
ESVM Supervised

Figure 2: Self-supervised features are more effective than supervised and are best compared
using an ESVM. Self-supervised features from MoCo can be used to find smaller data support than
standard supervised features. For a larger fraction of test samples, ESVM distance is more effective
than ℓ2 distance at ranking train images to select smaller data removal support.

3.1 Design Choices

Our data attribution approach relies on the comparison of image embeddings, and in doing so, we
make decisions regarding the choice of feature extractor, the subset of training images to compare,
and the distance function.

Feature extractor. We find that the learning paradigm used to train a feature extractor heavily
influences the estimation of data support. For example, embeddings from a ResNet-9 trained using a
self-supervised learning objective (MoCo, (He et al., 2020)) can be used to find smaller support sets
than the same model trained in a supervised manner (See ℓ2 MoCo vs ℓ2 Supervised in Fig. 2). With
the exception of DINO (Caron et al., 2021), all self-supervised feature extractors perform better than
their supervised counterpart (see Appendix A.2 Fig. 8). We found that MoCo features outperform
other self-supervised approaches in both data removal support and mislabeling support scenarios,
leading us to select a MoCo model as our preferred feature extractor. We find that the ResNet-18
backbone provides better support estimates than ResNet-9, and hence use it as default for all our
experiments.

Subset of train images. In Appendix A.3 Fig. 11, we show that choosing a support set from training
images of class the same class y as the target zt = (x, y) is critical, i.e. given a target image of an
airplane, we only rank airplane training images.

Distance function. When measuring the distance between two embeddings, Euclidean distance (ℓ2)
is a common choice (Ilyas et al., 2022; Park et al., 2023). Cosine distance and Mahalanobis distance
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Figure 3: Our baseline approach uses only a single model and outperforms TRAK and Data-
models using 20 and 10,000 models for data brittleness metrics. We estimate data removal and
data mislabel support for 100 random CIFAR-10 test samples using a ResNet-9 model and plot the
cumulative distribution using our approach and other baselines. The number of models used by each
approach is also shown. For data removal support, using only a single model our proposed approach
outperforms TRAK (Park et al., 2023) using 20 models and Datamodels (Ilyas et al., 2022) using
10,000 models. For data mislabel support, we outperform TRAK using 100 models and perform
equivalent to Datamodels using 300,000 models.

have also been used to measure similarity, but these were found to perform similarly to Euclidean
distances in previous work (Hanawa et al., 2021; Ilyas et al., 2022; Park et al., 2023).

However, we find that measuring distance as distance to the hyperplane of an Exemplar SVM
(ESVM) improves image similarity (Malisiewicz et al., 2011). To compute this metric, we train
a linear SVM using one positive sample (the target embedding) and treat all other samples (the
remaining embeddings of the same class) as negative samples. In this way, the decision boundary,
and consequently the distance function, is defined largely by unique dimensions of the target with
respect to all embeddings of the same class. In Fig. 2, we demonstrate how using distance to the
hyperplane of an ESVM yields better removal support estimates than ℓ2 distance.

3.2 Baselines

Datamodels (Ilyas et al., 2022): In the Datamodeling framework, the end-to-end training and evalua-
tion of deep neural networks is approximated with a parametric function. Surprisingly, optimizing a
linear function is enough to predict model outputs reasonably well, when given a training data subset.
By collecting a large dataset of subset-output pairs, Ilyas et al. (2022) demonstrate that such a linear
mapping can accurately predict the correct-class margin. Among other use-cases, these Datamodels
are shown to be effective at counterfactual predictions and identifying visually similar train-test
samples. But Datamodeling is prohibitively expensive, requiring the training of hundreds of thousands
of models (300,000 in the original work) to generate optimal subset-output data. Unfortunately, this
limitation makes Datamodeling intractable for all but small toy problems.

TRAK (Park et al., 2023): By approximating models with a kernel machine, Tracing with the
Randomly-projected After Kernels (TRAK) makes progress toward reducing the computational
cost of data attribution by reducing dimensionality with random projections and ensembling over
independently trained models. However, the method tends to only work well with more than a dozen
model checkpoints and a large projection dimension for the model gradients, the storage of which
can surpass 80GB when using a ResNet-9 on CIFAR-10. Compared to Datamodels, TRAK gains in
runtime are paid for in storage space.
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4 Counterfactual Estimation

We evaluate these approaches and our proposed baseline data attribution for a number of classification
examples in computer vision, focusing on datasets such as CIFAR-10 and ImageNet, which are small
enough to allow for some comparison with the more expensive approaches of TRAK and Datamodels.

4.1 Experimental Setup

Training Setup: We estimate the approximate data removal and data mislabel support for CIFAR-10
and ImageNet. As computing the data support for even a single validation sample requires training
multiple models, we restrict ourselves to a reasonably small set of validation samples. We use the
same validation samples across all attribution methods. To accelerate the training of these models,
we use the FFCV library (Leclerc et al., 2023).

For CIFAR-10 (Krizhevsky et al., 2009), we train ResNet-9 1 and MobileNetV2 (Sandler et al., 2018)
models for 24 epochs using a batch size of 512, momentum of 0.9, label smoothing of 0.1, with a
cyclic learning schedule, with a maximum value of 0.5. The test accuracy for these models without
any modification to training data is above 92%. We randomly selected 100 validation samples, in
a class-balanced manner for our brittleness metrics. We remove or mislabel a maximum of 1280
training samples for each validation sample. Our training setup is similar to Ilyas et al. (2022).

For ImageNet (Deng et al., 2009), we train ResNet-18 (He et al., 2015) models for 16 epochs, using a
batch size of 1024. We train on 160×160 resolution images for the first 11 epochs and increase the
training resolution to 192×192 for the last 5 epochs. The other hyperparameters are kept the same
as CIFAR-10. These models achieve a top-1 validation accuracy of 67%. We randomly selected 30
validation samples, from a subset of validation samples that are not misclassified by 4 ResNet-18
models on average. We removed or mislabeled a maximum of 1000 training samples for each
validation sample.

Baselines and Our Setup: To estimate TRAK scores on CIFAR-10, we train 100 ResNet-9 models
and use a projection dimension of 20480. To estimate scores on ImageNet, we train 4 ResNet-18
models and use a projection dimension of 4096. Computing TRAK scores using 4 models already
requires 160 GB of storage space, hence we refrain from using a larger ensemble of models.

For Datamodels, we download the pre-trained weights optimized using outputs from 300K ResNet-9
models with 50% random subsets.2 We also download the binary masks and margins to train our
own Datamodels on outputs from 10K and 50K ResNet-9 models, using another 10K models for
validation. Since Datamodels are extremely compute-intensive and require training hundreds of
thousands of models, we cannot include them as a baseline on ImageNet.

For our baseline approach to train self-supervised models, we use the Lightly library (Susmelj et al.,
2020). We train a ResNet-18 model using MoCo (He et al., 2020) for 800 epochs on CIFAR-10,
using the Lightly benchmark code.3 On ImageNet, we download a pre-trained ResNet-50 model
trained using MoCo.4 For our approach, we always use a single model. We denote Datamodels using
N models as Datamodels (N), and similarly for TRAK.

4.2 CIFAR-10 Data Brittleness

In Fig. 3, we present the distribution of estimated data removal values for CIFAR-10. Our findings
reveal that employing a single model with a MoCo backbone (He et al., 2020) for data removal
support proves more effective than employing Datamodels with 10,000 models and TRAK with 20
models. Our approach and Datamodels (10K) identify that 23% samples can be misclassified by
removing fewer than 500 (example-specific) training samples while TRAK (20) can only identify
16%. For support sizes up to 1280 images, our approach identifies 55% of validation samples, whereas
TRAK (20) and Datamodels (10K) can only identify 28% and 31% samples respectively.

1https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
2https://github.com/MadryLab/datamodels-data
3https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html
4https://github.com/facebookresearch/moco
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Figure 4: Compared to instances of Datamodels and TRAK, we check whether our data support
estimates are smaller, equal, or larger for all 100 validation samples. For 32 samples, our proposed
method can find smaller data mislabel support compared to Datamodels (300k models). Even for
the data removal case, our approach can find an equivalent support estimate to Datamodels (300k
models) for 14 samples.

In the same figure, we also depict the distribution of estimated data mislabel support for CIFAR-10.
Here, our approach outperforms TRAK (100) and approaches the performance of Datamodels (300K).
Here, our approach identifies 47% of CIFAR-10 validation samples that can be misclassified by
mislabeling less than 30 training samples! In contrast, TRAK (100) performs poorly identifying
only 20% of these samples. DataModels (300K) can identify 50% of validation samples marginally
surpassing our performance.

In Fig. 4, we further inspect how well our baseline approach works for each validation sample. We
compare the individual estimated support sizes for all 100 samples using our approach versus other
baselines. Our results show that for data removal support, across 16% of validation samples, our
estimated data removal support is smaller than those of Datamodels (50K). For 44% of the samples
our data removal estimates match TRAK and Datamodels (50K). For data mislabel support, our
approach finds a smaller support estimate than Datamodels and TRAK for 32% and 79% of the
validation samples.

While our baseline approach cannot outperform Datamodels (300K) on data removal, our performance
on the data mislabel support is nearly the same. Our baseline approach of using a single self-
supervised model can thus serve as a simple, compute, and storage-efficient alternative to estimate
data brittleness.

4.3 ImageNet Data Brittleness

In Fig. 5, we show our results for data removal on ImageNet. Our results show that for 4 and 16
of the 30 validation samples our estimated data removal support is less than 16 and 130 training
samples respectively. In contrast, TRAK (1) and TRAK (4) do not scale well to ImageNet at all
and provide much looser data removal estimates. We again emphasize that even scaling to TRAK
with 10 models would require around 400 GB of storage space, by our estimate. This highlights the
scalability of our baseline approach where a single self-supervised MoCo backbone can provide more
accurate data removal estimates than other existing data attribution methods.

4.4 Transfer to different architecture

Datamodels and TRAK utilize information tied to the model architecture such as gradients or logits
from an ensemble of models. However, different neural network architectures are known to exploit
similar biases and output similar predictions (Mania et al., 2019; Toneva et al., 2018). In order to
better understand how data may be shaping these biases we test how well attribution scores from
these approaches transfer to other architectures. Since our approach does not use any information
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Figure 5: Our method yields better upper bounds on support size compared to TRAK-4, which
requires more storage than the ImageNet dataset itself. We estimate data removal support for 30
random ImageNet validation samples and plot the CDF of estimates.

0 200 400 600 800 1,000 1,200

0

0.5

1

Number of Training Samples Removed

Fr
ac

.o
fC

IF
A

R
-1

0
M

is
cl

as
si

fie
d

Datamodels (300K models)
Datamodels (50K models)
Datamodels (10K models)
TRAK (100 models)
TRAK (20 models)
TRAK (10 models)
Ours (1 model)

Figure 6: Our baseline approach is model agnostic and performs well across different architec-
tures. We evaluate how attribution scores transfer from one architecture transfer to another. We use
ResNet-9 scores for TRAK and DataModels and estimate data removal support for MobileNetV2.
For our approach, we use the same ResNet-18 backbone.

about the model architecture and only leverages the data, we expect our baseline approach to transfer
across different architectures.

In Fig. 6, we compare TRAK, Datamodels, and our attribution scores and evaluate them on a
MobileNetV2 architecture (Sandler et al., 2018). The results show that our approach using ResNet-18
continues to predict accurate data removal estimates surpassing TRAK (100) and Datamodels (50K),
which suffer a large degradation in performance. Datamodels (300K) also suffer degradation in
performance but provide tighter estimates than our approach. This suggests that while simply relying
on visual similarity may be useful for efficiently predicting counterfactuals, additional biases within
the architecture may also have an influence.

5 Discussion

5.1 Role of Visual Similarity

In Fig. 7, we plot the most similar training images according to Datamodels, TRAK, and our method.
Given that our approach relies on comparing MoCo features from the same class as the target image,
it makes sense that the closest training images are visually similar. On the other hand, the most similar
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Figure 7: Our attribution method consistently selects the most visually similar training images
by design. In each row, we plot the same target test image (Index 31), followed by ten most similar
training images according to each attribution method.

training images found by Datamodels (Ilyas et al., 2022) and TRAK (Park et al., 2023) show more
variability. Despite the variability of most similar train images, Datamodels (300K) outperforms all
other methods in the counterfactual tasks assessed in Fig. 3, hinting at the importance of additional
contributing factors. Still, our method underscores the significant impact of relying solely on visual
similarity, essentially showing that a significant fraction of data attribution can be achieved without
knowledge of the learning algorithm, based only on knowledge of the training set.

5.2 Other Related Work

Data attribution methods should produce accurate counterfactual predictions about model outputs.
Although a counterfactual can be addressed by retraining the model, employing this straightforward
approach becomes impractical when dealing with large models and extensive datasets. To address
this problem, data attribution methods perform various approximations.

The seminal work on data attribution of Koh & Liang (2017) proposes attribution via approximate
influence functions. More specifically, Koh & Liang (2017) identify training samples most responsible
for a given prediction by estimating the effect of removing or slightly modifying a single training
sample. But being a first-order approximation, influence function estimates can vary wildly with
changes to network architecture and training regularization (Basu et al., 2021). Nevertheless, ap-
proximating influence functions is reasonably inexpensive and has recently also been attempted for
multi-billion parameter models Grosse et al. (2023).

Measuring empirical influence has also been attempted through construction of subsets of training
data that include/exclude the target sample (Feldman & Zhang, 2020). In a related approach, TracIn
(Pruthi et al., 2020) and Gradient Aggregated Similarity (GAS) (Hammoudeh & Lowd, 2022a,b)
estimate the influence of each sample in training set S on the test example zt by measuring the
change in loss on zt from gradient updates of mini-batches. While TracIn can predict class margins
reasonably well, the method struggles at estimating data support. Other methods for influence
approximation include metrics based on representation similarity (Yeh et al., 2018; Charpiat et al.,
2019). Another related line of work has utilized Shapley values to ascribe value to data, but since
Shapley values often require exponential time to compute, approximations have been proposed
(Ghorbani & Zou, 2019; Jia et al., 2019). In general, there seems to be a recurring tradeoff: methods
that are computationally efficient tend to be less reliable, whereas sampling-based approaches are
more effective but require training thousands (or even tens of thousands) of models.
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6 Conclusion

Data attribution approaches are computationally expensive and can be prone to inaccuracy. While
these approaches exhibit promise and capability, their scalability to large-scale models remains
uncertain. Our work highlights the importance of visual similarity as a baseline for counterfactual
estimation, providing valuable insights into data attribution. Our approach demonstrates scalability
and accuracy, particularly in attributions for ImageNet, where it outperforms other state-of-the-
art methods while maintaining manageable compute and storage requirements. Remarkably, our
approach achieves these results without any reliance on training setup details, target model parameters,
or architectural specifics. Our work shows that strong data attribution can be achieved solely based
on knowledge of the training set.
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A Appendix

A.1 Compute Time and Storage Requirements

For our compute time estimates, we use NVIDIA RTX A6000 GPUs and 4 CPU cores. We describe
how we estimate the wall-clock time, and storage requirements for each method below -

• Datamodels: We only take into account the storage and compute cost of training models.
The additional cost of estimating datamodels from the trained models, requires solving
linear regression whose computational costs are negligible compared to training the models.
For compute and storage requirement estimates, we train 100 ResNet-9 models on random
50% subsets of CIFAR-10 and extrapolate to estimate the training time and storage required
for 10,000 and 50,000 models shown in Section 1.

• TRAK: We use the authors’ original code 5 to train, and compute the projected gradients
for CIFAR-10 using ResNet-9 Models using a projection dimension of 20480. For storage
requirements, we take into account storage used by model weights, and the projected
gradients. The results in Section 1, show the compute and storage using 10, 20 and 100
models.

• Ours: We use Lightly library 6 benchmark code to train a MoCo model using a ResNet-18
backbone on CIFAR-10 for 800 epochs. The results in Section 1 show the wall-clock training
time for the model, and extracting the features from CIFAR-10 and the storage requirements
for model weights.

To calculate the storage requirements, we factor in the storage space necessary for retaining the
trained model weights, as they are essential for computing influence on new validation samples across
all attribution methods.

A.2 Additional Self-Supervised Features
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Figure 8: We estimate data removal support for 100 random CIFAR-10 test samples and plot the CDF
of estimates.

In addition to utilizing features from MoCo in Section 3, we test our choice of distance function
on ResNet-18 features from other self-supervised learning (SSL) methods trained on CIFAR-10. In
particular, we evaluate BYOL (Grill et al., 2020), SimCLR (Chen et al., 2020), and DINO (Caron
et al., 2021) at estimating data removal support in Fig. 8 and mislabel support in Fig. 9. With the
exception of DINO, self-supervised features from BYOL and SimCLR outperform the supervised
baseline at estimating data removal support. Additionally, we see that in all cases using ESVM
distance is more effective than using ℓ2 distance to compare features.

5https://github.com/MadryLab/trak
6https://github.com/lightly-ai/lightly
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Figure 9: We estimate data mislabel support for 100 random CIFAR-10 test samples and plot the
CDF of estimates.

A.2.1 Self-Supervised ImageNet Features

We also consider using ImageNet features from MoCo v3 (Chen et al.) and DINO (Caron et al.,
2021) to estimate data removal support in Fig. 10. We use publicly available MoCo v3 and DINO
checkpoints from the vissl library’s model zoo (Goyal et al., 2021). It is worth noting that this
approach places significant emphasis our primary hypothesis, which asserts the importance of visual
similarity in data attribution. Utilizing ImageNet features means that the dataset, architecture, and
learning objectives are completely different from the system we are trying to attribute predictions for:
a ResNet-9 trained normally on CIFAR-10. This is in contrast to our main method (ESVM MoCo)
which utilizes a ResNet-18 architecture and the CIFAR-10 dataset.
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Figure 10: ImageNet features from MoCo v3 and DINO are able to perform very well despite using
different architecture (i.e. ViT), dataset (i.e. ImageNet), and learning objectives (i.e. SSL) from the
system that we are trying to attribute predictions for: a ResNet-9 trained normally on CIFAR-10.

A.3 Additional Justification for Chosen Subset of Train Images

For a target sample zt, data attribution approaches rank the training samples based on decreasing
order of positive influence on zt. For our method, a design choice was whether to rank training
samples from all classes or from a selected subset of the training data. One reasonable subset was
to select training samples from the same class as the target test sample. In Fig. 11, we show that
selecting from the same class is more effective when estimating britteness scores. We maintain this
choice for all our experiments.
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Figure 11: Choosing removal support from all training images is less effective than selecting from
the same class as the target image.

A.4 Additional Justification for Distance Function

In Section 3.1, we describe choices for measuring similarity of embeddings: Euclidean distance,
cosine distance, and our selection of Exemplar SVM. However, there are a range of other metrics that
have been evaluated in prior work. By no means have we exhausted the space of possible metrics, but
it relevant to look at recommendations by related work.

A.4.1 Gradient Cosine Similarity

Hanawa et al. (2021) define a set of tests that a similarity metric should satisfy and find that gradient
cosine similarity (Grad-Cos) is the only one that passes all tests. Given that Grad-Cos is their overall
recommendation for measuring similarity, we evaluate data removal support on CIFAR-10 in Fig. 12.
Note that unlike other methods considered, we do not filter images to be of the same class as the
target because Grad-Cos already provides a higher ranking to images from the same target class.
While we find that Grad-Cos is better than ESVM comparison of supervised features, it still lags
behind our main method (ESVM MoCo) from Section 3. Interestingly, in the low data support regime,
where fewer than 200 training samples can be removed to misclassify, Grad-Cos is more effective
than ESVM MoCo.
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Figure 12: While comparing images with Gradient Cosine Similarity (using a supervised ResNet-9)
is better than ESVM on supervised features, it still lags behind our main method (ESVM MoCo).
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A.4.2 Human Visual Similarity & DreamSim

Fu et al. (2023) study perceptual metrics and find that large vision models like OpenCLIP (Cherti
et al., 2023) and DINO (Caron et al., 2021) are more aligned with human perceptual judgements than
other learned metrics like LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2020). They further
improve performance of OpenCLIP and DINO by finetuning with LoRA (Hu et al., 2021) on a dataset
of human two-alternative forced choice (2AFC) judgments, called NIGHTS. The best approach on
the dataset uses an ensemble of DINO, CLIP, and OpenCLIP features and is called DreamSim. While
the ensemble gets 96.2% accuracy on NIGHTS, only utilizing OpenCLIP (with LoRA) gets 95.5%
and is 3× faster. Hence, we use this metric in our data removal support evaluation. Here, we also
select images from the same training class. In Fig. 13, for every target image, we select the closest
training images according to DreamSim to remove. Surprisingly, DreamSim does not improve over
our approach using ESVM MoCo.
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Figure 13: We use DreamSim (OpenCLIP-ViTB/32) to select data removal support on CIFAR-10.

A.5 Computing Data Support

We use bisection search to estimate data support. The use of bisection search is supported by
the observation that several data attribution approaches are additive (Park et al., 2023), where the
importance of a subset of training samples is defined as the sum of each of the samples in the subset.
To compute data removal support, we remove M samples (chosen using each attribution method)
from the training data and log whether the resulting model misclassifies the target sample. For data
mislabeling support, we mislabel M samples (chosen using each attribution method) from the training
data and assign a new label corresponding to the highest incorrect logit.

A detailed summary of our bisection search is in Algorithm 1. A key step is
CounterfactualTest(f, S, Iattr[: M ]) which returns the average classification of Ntest indepen-
dent training runs where fθ is trained on the subset R = {zi|zi ∈ S and i /∈ Iattr[: M ]}. In other
words, for computing data removal support, fθ is trained on a subset of S that does not include the
first M indices of Iattr. For computing mislabeling data support, the only difference is that rather
than removing the first M indices of Iattr, we relabel those samples with the class of the highest
incorrect-class logit, following (Ilyas et al., 2022).

For bisection search across all attribution methods, we use a search budget of 7. For the CIFAR-10
data brittleness metrics, we aggregate predictions over 5 independently trained models. Thus, to
evaluate a single validation sample, we train 35 models (7 budget × 5 models) for a total of 3500 (35
× 100 samples) models for a data brittleness metric. On ImageNet, we don’t aggregate predictions
and only train a single model. Hence, to evaluate a single validation sample on Imagenet, we train
7 models per sample, and a total of 210 models for evaluating a data brittleness metric. Due to the
large training cost on ImageNet, we only show results for data removal support. We explicitly point
out that these costs are incurred only for analysis of these data attribution methods (see Section 2).
Our attribution approach is in comparison, extremely cheap to compute.
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Algorithm 1 Bisection Search for Computing Data Support
Input: Target sample, zt = (xt, yt)
Input: Training set, S, and a list of top k training set indices Iattr ordered by the attribution method
τ(z, S)
Input: Model fθ
Input: Search budget, Nbudget

Input: Number of times to test classification, Ntest

Output: Nsupport, size of the smallest training subset R ⊂ S such that fθ misclassifies xt on average
1: L← 0
2: H← |Iattr|
3: M← H
4: Cavg ← CounterfactualTest(f, S, Iattr[: M ])
5: if Cavg > 0.5 then
6: return -1 ▷ Nsupport is larger than k
7: end if
8: Nsupport ←M
9: while Nbudget > 0 do

10: Nbudget ← Nbudget − 1
11: M ← (L+H)/2
12: Cavg ← CounterfactualTest(f, S, Iattr[: M ])
13: if Cavg > 0.5 then
14: L←M
15: else
16: H ←M
17: Nsupport ← min(M,Nsupport)
18: end if
19: end while
20: return Nsupport

A.6 Linear Datamodeling Score

Let τ(z, S) : Z ×Zn → Rn be a data attribution method that, for any sample z ∈ Z and a training
set S assigns a score to every training sample indicating its importance to the model output. Consider
a training set S = {z1, z2 . . . zn}, and a model output function fθ(z). Let {S1, ..., Sm|Si ⊂ S} be m
random subsets of the training set S, each of size α · n for some α ∈ (0, 1). The linear datamodeling
score (LDS) is defined as:

LDS(τ(z, S)) = ρ({fθ(Sj)(z) | j ∈ [m]}, {τ(z, S) · 1Sj
| j ∈ [m]}) (1)

where ρ denotes Spearman rank correlation (Kokoska & Zwillinger, 2000), θ(Sj) denotes model
parameters after training on subset Sj , and 1Sj

is the indicator vector of the subset Sj . Unlike data
brittleness metrics, LDS accounts for samples with positive as well as negative influence.

To compute LDS scores, for our model output function fθ(z), we use the correct class margin. This
is defined as:

fθ(z) = (logit for correct class)− (highest incorrect logit)

Our approach cannot directly be applied to compute LDS scores, as for a validation sample zt we
only focus on training samples with the most positive impact. We propose a simple modification to
our approach. We assign a score to each training data based on the inverse of signed l2 distance. The
sign is based on whether the label for the training sample matches zt. We then threshold our scores,
such that all scores beyond the top-5% are zero leading to sparser attribution scores. The sparsity
prior has been shown to be effective for data attribution (Ilyas et al., 2022; Park et al., 2023).

In Table 1, we present a comparison of LDS scores using our baseline approach, TRAK and
Datamodels. Although our baseline was not initially designed for direct LDS score approximation, a
simple adaptation demonstrates comparable performance to TRAK (5) on CIFAR-10. TRAK with a
larger ensemble of models can achieve higher LDS scores. The Datamodels framework was optimized
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Models Used LDS Scores

Datamodels
300,000 0.56
50,000 0.43
10,000 0.24

TRAK

100 0.22
20 0.15
10 0.12
5 0.08

Ours 1 0.08

Table 1: We compare LDS scores for our approach with other baselines on CIFAR-10. Our proposed
approach can perform equivalent to TRAK with 5 models.

for this objective and trained as a supervised learning task, using tens of thousands of models. Hence,
it achieves a better correlation with LDS.

It is important to highlight that while Datamodels and TRAK outperform our baseline in terms
of LDS with extensive model ensembles, this metric provides limited insights into understanding
machine learning models. Our baseline approach excels in data brittleness metrics, offering a faithful
representation of which training samples provide the most positive influence for a test sample.
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