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Abstract

Natural intelligences (NIs) thrive in a dynamic
world — they learn quickly, sometimes with only
a few samples. In contrast, artificial intelligences
(Als) typically learn with a prohibitive number of
training samples and computational power. What
design principle difference between NI and Al
could contribute to such a discrepancy? Here,
we investigate the role of weight polarity: de-
velopment processes initialize NIs with advanta-
geous polarity configurations; as NIs grow and
learn, synapse magnitudes update, yet polarities
are largely kept unchanged. We demonstrate with
simulation and image classification tasks that if
weight polarities are adequately set a priori, then
networks learn with less time and data. We also
explicitly illustrate situations in which a priori set-
ting the weight polarities is disadvantageous for
networks. Our work illustrates the value of weight
polarities from the perspective of statistical and
computational efficiency during learning.

1. Introduction

Natural intelligences (NIs), including those of animals and
humans, are able to learn and adapt rapidly in real world
environments with limited samples. Artificial intelligences
(Als), specifically deep neural networks (DNNs), can now
compete with or even surpass humans in certain tasks, e.g.,
the game GO (Silver et al., 2017), object recognition (Rus-
sakovsky et al., 2015), protein folding analysis (Jumper
et al., 2021), etc. However, a DNN is only capable of such
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achievements when prohibitive amounts of data and training
resources are available. Such gaps in learning speed and
data efficiency between NI and Al have baffled and moti-
vated many Al researchers. A subfield of Al is dedicated to
achieving few-shot learning using DNNs (Hoffer & Ailon,
2015; van der Spoel et al., 2015; Vinyals et al., 2016; Snell
et al., 2017; Finn et al., 2017). Many research teams have
achieved high performance on benchmark datasets (Lazarou
et al., 2022; Bendou et al., 2022). However, the products
of such engineering efforts greatly deviate from the brain.
What are the design principle differences between NIs and
Als that contribute to such a gap in learning efficiency? In
this paper, we propose two possible design differences under
one theme: weight polarity.

NIs are blessed with hundreds of millions of years of op-
timization through evolution. Through trial and error, the
most survival-advantageous circuit configurations emerge,
refine, and slowly come into the form that can thrive in an
ever-changing world. Such circuit configurations are embed-
ded into genetic code, establishing a blueprint to be carried
out by development. It is hypothesized that such canonical
circuits provide an innate mechanism that facilitates rapid
learning for NIs (Zador, 2019). Unlike transfer learning for
Als where the entirety of the weights is adopted as a form
of prior knowledge, NIs pay substantial, if not exclusive,
attention to polarity patterns (excluding magnitudes) when
transferring such canonical circuits across generations. On
the one hand, polarity is a more compressed knowledge
carrier than weight, rendering it a genetic-code-saving de-
sign choice. On the other hand, is polarity alone enough
to transfer knowledge between networks? NIs suggest yes;
Als’ answers are yet to be explored.

Furthermore, post-development neuronal connections in the
brain rarely see polarity switch (Spitzer, 2017). After devel-
opment, NIs learn and adapt through synaptic plasticity — a
connection between a pair of neurons can change its strength
but rarely its excitatory or inhibitory nature; on the contrary,
a connection (weight) between a pair of units in a DNN can
freely change its sign (polarity). For the rare times polarity
switching is observed in the brain, they never appeared in
sensory and motor cortices (Spitzer, 2017) where visual,
auditory and motor processing take place. It seems a rather
rigid design choice to fix a network’s connection polarity.
Is it a mere outcome of an implementation-level constraint?
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Perhaps it is quite difficult for synapses to switch polarities.
Or could it be that fixing polarity is a more efficient learning
strategy? This is yet another unexplored design principle
Als may borrow from NIs.

This paper provides some thoughts and evidence in apply-
ing these two design principles to DNNs. We first discuss
the trade-off between representation capacity and learning
speed when weight polarity is fixed for networks (Section 2).
We experimentally show that if the weight polarities are ad-
equately set a priori, then networks can learn with less time
and data (simulated task (Section 2) + two image classifi-
cation tasks (Section 3)). We also discuss how the quality
of the polarity configuration affects a DNN’s learning effi-
ciency (Section 2-3). We further find transferring + fixing
polarities is even superior to transferring weights (Section 4).
Our results point to an unexplored direction in the machine
learning community: polarity, not weight, may be the more
effective and compressed medium for transferring knowl-
edge between networks. To complete our discussion, we
further discuss what we may lose when weight polarities
are set a priori (Section 5).

By discussing both the advantages and disadvantages of
setting polarity a priori, we provide some insights on how
to make Al more statistically and computationally efficient.

2. What do we gain by setting weight polarity
a priori?

Networks need both positive and negative weights to func-
tion (Wang et al., 2023) - a DNN with all non-negative
weights is not a universal approximator. Even when both
polarities are present in a network, constraining a network’s
weight polarity pattern limits its representation capacity:
when only half of the range is available to each connec-
tion, the reduction in total possible network patterns grows
exponentially with more edges in the network. It seems
counterintuitive for any network to have willingly chosen
to give up on a vast portion of its representation capacity.
Are they gaining elsewhere? Our thought is: maybe they
learn faster. We write down the representation capacity
and speed trade-off concisely in Lemma 2.1 and prove it in
a constrained setting. We provide experimental evidence
afterwards.

Lemma 2.1 (capacity-speed trade-off). If the weight polar-
ities are set a priori, such that the function is still repre-
sentable, then the network can learn faster.

We prove Lemma 2.1 for single-hidden-layer networks, with
the following assumptions:

Assumption 1: The weights take on discrete values.
This is essentially true for all DNNs implemented on
silicon chips where all continuous variables are dis-
cretized.

Assumption 2: Exhaustive search is the learning algo-
rithm.

See proof on page 19.

Next, we use simulation to show that when trained with
the Freeze-SGD (Algorithm 1), networks indeed learn more
quickly when polarities are set a priori in such a way that
the function is still representable (Def 2.2).

Definition 2.2 (representability). With input space X, we
say a function f is representable by a DNN F' when Vx €
X,e >0, 3F such that |f(z) — F(z)| < e.

Freeze-SGD We design our freeze training procedure to
be exactly the same as SGD (Adam optimizer) except for
one single step: after each batch, all weights are compared to
the preset polarity template, and if any weight has switched
polarity in the last batch, it is reverted back to the desired
polarity/sign (see Algorithm 1). As our goal is to see the
pure effect of fixing weight polarity, we did not adopt any
bio-plausible learning algorithms as they may introduce
confounding factors.

We compared four training procedures in general:

1. Frozen-Net Sufficient-Polarity: Weight polarities
were set a priori. The polarity pattern was chosen
based on a rule that ensures the configuration is ad-
equate for learning the task, i.e., the polarity pattern
carries expert knowledge about the data.

2. Frozen-Net RAND-Polarity: Weight polarities were
set a priori randomly: Bernoulli(0.5). The polarity
pattern does not carry any prior information about the
data.

3. Fluid-Net RAND-Polarity: Weights (containing po-
larities) were initialized randomly; weight polarities
were free to change throughout the training procedure.

4. Fluid-Net Sufficient-Polarity Weight polarities (not
magnitudes) were initialized with prior knowledge;
weight polarities were free to change throughout the
training procedure. This scenario will only be dis-
cussed in Section 3 on image classification tasks.

Controlled Experiments To see the pure effect of setting
weight polarity a priori, we require a suite of controlled
measures. We controlled the following factors across all
conditions: the weight magnitude distribution (Supplemen-
tary Figure C.6), network architecture, training samples (n
varies, see Figure 1), learning rate, batch sequence of the
training data, and the validation samples across all scenar-
ios. More details about the experiments can be found in the
Appendix Section B.
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Figure 1. Adequately setting weight polarity a priori allows networks learn faster (fewer epochs) and with less data (fewer training
samples). Single hidden layer networks with 64 hidden units were trained to learn XOR-5D (Section 2.1). In all scenarios, networks were
trained for 100 epochs. A) XOR-5D, a binary classification problem where only the first two dimensions are relevant to the task (XOR),
and the other three dimensions are noise following a normal distribution A/(1, 1). B) Statistical efficiency: At convergence, adequately
configured freeze networks (red) achieve the same level of performance (% error) with less data; randomly configured freeze networks
(green) use similar and oftentimes less data than fluid (blue), e.g., to reach 80% accuracy (20% error). C) Computational efficiency:
Setting weight polarity in a data-informed way (red) makes networks learn more quickly — this is true across all data-scarcity levels; when
weight polarities are randomly fixed (green), networks learn as fast as their fluid counterparts (blue), and sometimes faster (e.g., training
sample sizes = 80 and 92). For all experiments, n=50 trials. All curves correspond to medians with shaded regions 25"-75" percentiles.

2.1. XOR-5D Simulation Results

We used 5-dimensional XOR (XOR-5D) as the binary clas-
sification task for our simulation; only the first two dimen-
sions are relevant to the task, and the remaining three di-
mensions are noise following a normal distribution A(1,1)
(Figure 1 panel A). For Frozen-Net Sufficient-Polarity, the
polarity template is preset in this way: for each hidden unit,
the polarity of the output edge is the sign product of the first
two dimensions’ input weights.

We first tried four different weight reset methods (details in
Algorithm 1) and found they give us similar results and thus
did not matter for our primary questions (Supplementary
Figure C.1). For the rest of this paper, we chose the pos-
Rand method, whereby we reset weights to a small random
number of the correct sign.

When the polarities are fixed in such a way that it is sufficient
to learn the task (red), networks always learn faster than
networks without polarity constrains (blue) (Fig 1 panel B).
This advantage is true across all data scarcity levels and is
particularly valuable when data is scarce. When only 60 or
72 training samples were available, Frozen-Net Sufficient-
Polarity on average takes 58% and 48% of the standard
Fluid-Net training time, respectively, to reach the same
level of accuracy. When weight polarities are randomly
chosen (green), networks learn as fast as their Fluid-Net
counterparts (blue), and sometimes faster (e.g., training
samples = 80 and 92).

Frozen-Net Sufficient-Polarity not only saves time, but it

also requires less data (Figure 1 panel C). At convergence,
Frozen-Net Sufficient-Polarity (red) takes fewer samples
to reach the same level of accuracy when compared to the
standard Fluid-Net (blue). Randomly configured Frozen-
Net (green) uses similar and oftentimes less data than Fluid-
Net (blue) (e.g., to reach 80% accuracy, Frozen-Net RAND-
Polarity uses less data than Fluid-Net).

We showed that setting weight polarity a priori makes net-
works learn in less time, with less data, provided the function
is still representable. Even randomly configured Frozen-
Nets show comparable and sometimes better performance
than Fluid-Nets. Such a result is striking from an optimiza-
tion perspective: Frozen-Net is at a disadvantage by design
because the weight resetting step in Freeze-SGD (see Algo-
rithm 1) fights against the gradient update, and part of the
error update information is lost in this process. Regardless
of this disadvantage during optimization, our Frozen-Net
Sufficient-Polarity consistently outperforms Fluid-Net; even
Frozen-Net RAND-Polarity is never worse than Fluid-Net.
Combined, these results show we may be able to help Als
learn quickly and with fewer samples by doing two things:
1) fix weight polarities, and 2) choose the polarity pattern
wisely. We will tease apart the effect of these two factors in
the next section.

3. Effectiveness of setting weight polarity a
priori in image classification tasks

In this section, we extend the experiments in Figure 1 to
image classification tasks (Figure 2). Such complex learning
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Figure 2. DNNs with frozen ImageNet-Polarity (IN-Polarity) learn more quickly and with less data in image classification tasks. A)
Experiments on Fashion-MNIST image classification dataset. From left to right: 1) Statistical efficiency: Frozen-Nets with IN-Polarity
(red) always learn with fewer samples than Fluid-Net (blue); the majority of the gain is contributed by the knowledge transferred from
the initial polarity configuration (pink vs. blue); Frozen-Net RAND-Polarity (green) never performs worse than Fluid-Net (blue). 2)
Frozen-Net IN-Polarity always has a higher chance of reaching 80% validation accuracy than Fluid-Net; Frozen-Net RAND-Polarity has
comparable and sometimes a higher chance of reaching 80% validation accuracy than Fluid-Net. 3) Computational efficiency: Frozen-Net
IN-Polarity always takes less time than Fluid-Net to reach 80% validation accuracy; again, effective knowledge transfer from the preset
polarity pattern is the major contributing factor (pink vs. blue); Frozen-Net RAND-Polarity takes a similar number of computational
iterations as Fluid-Net. B) Same as A except experiments were on the CIFAR-10 dataset, and the validation accuracy threshold is at 50%.
Gray lines in the first column correspond to the validation accuracy thresholds used to plot the next two columns. For a comprehensive
view of performance at different thresholds, see Supplementary Figure C.2. For statistical significance of the difference, see Figure 3.
Both datasets: n=20 trials, 100 epochs, Ir=0.001. No data augmentation was performed.

tasks do not have simple and explicit polarity configuration
rules as in XOR-5D. We exploited an alternative strategy by
using ImageNet trained polarities (IN-Polarity). A Frozen-
Net IN-Polarity has its weight magnitudes initialized ran-
domly, with its weight polarities initialized and fixed to
match the IN-Polarity pattern. We also tested Fluid IN-
Polarity where networks were initialized to the exact same
pattern as Frozen-Net IN-Polarity, except polarities are free
to switch while learning the task. This comparison helps us
to understand which of the two factors contributed more to
the performance gain: fixing polarities or knowledge trans-
fer through the initial polarity pattern. We trained and tested
networks on the Fashion-MNIST (grayscale) and CIFAR-10
(RGB-color) datasets, using AlexNet network architecture
(Krizhevsky et al., 2017). For both datasets, we trained for
100 epochs, with Ir=0.001 (best out of [0.1,0.03,0.01,0.001]).
The AlexNet IN-weights were obtained here. Of note, we
controlled all conditions to follow the same weight magni-
tude distribution at initialization Supplementary Figure C.6).

Specifically, we randomly initialized the networks follow-
ing conventional procedures: we used Glorot Normal for
conv layers and Glorot Uniform for fc layers; we then either
fixed the polarities as-is (RAND-Polarity) or flipped the
polarities according to the ImageNet template (IN-Polarity),
introducing no change to the magnitude distributions.

Across the board, Frozen-Net IN-polarity (red) always
learns with fewer samples than Fluid-Net (blue) (Figure 2
first column). When only 100 training images were avail-
able (across the 10 classes), Frozen-Net IN-Polarity (red)
yields 7% less validation error at convergence compared
to Fluid-Net (blue) in the Fashion-MNIST task and 9.4%
less error for CIFAR-10. Such a gain is mostly brought by
knowledge transferred through the polarity pattern (pink vs.
blue, 6% gain for Fashion-MNIST; 8.4% gain for CIFAR-
10). Fixing the polarities can further bring performance gain:
for CIFAR-10, 1% gain at 100 training samples, and up to
3% at 50000 training samples. The improvement on valida-
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tion accuracy (less validation error) from Fluid IN-Polarity
to Frozen-Net IN-Polarity is often statistically significant
(Figure 3, column 1, pink line). When the polarities are
fixed randomly (RAND-Polarity, green), networks never
perform worse than Fluid-Net (blue).

Across the board, Frozen-Net IN-Polarity always learns with
less time than Fluid-Net (Figure 2 third column). The major-
ity of such a gain is brought by polarity pattern knowledge
transfer. Frozen-Net RAND-Polarity takes a comparable
number of computational iterations as Fluid-Net. Further-
more, not every network is able to reach the specified ac-
curacy threshold (Fashion-MNIST: 80%, CIFAR-10: 50%;
Figure 2 second column). Across the board, Frozen-Net IN-
Polarity has a higher chance of passing the specified accu-
racy threshold than Fluid-Net; Frozen-Net RAND-Polarity
has an equal and sometimes higher chance than Fluid-Net
(Fashion-MNIST 1000 & 2000 samples; CIFAR-10 10000 &
25000 samples). These observations are true across different
validation accuracy thresholds (Supplementary Figure C.2).

IN-Polarity-initialized networks in general show more con-
sistent performance across trials compared to the Fluid set-
ting for both Frozen-Net and Fluid-Net. This is especially
obvious for the statistical efficiency plots: across the board,
IN-Polarity always shows less variation in its performance
on validation error (shaded area marks 25%-75™ percentiles).

To provide a lens into the dynamics of polarity switching
throughout learning, we analyzed the ratio of weight pa-
rameters (excluding bias terms) that switched polarity be-
tween two epochs for Fluid RAND-Polarity for the first
50 epochs (first half of training) - indeed, there are more
polarity switches early on in training, and the ratio decays
throughout training (Figure C.5). Such a trend is true across
layers and across training sample sizes. This suggests po-
larities are mostly learned early on during training but also
remain dynamic throughout the learning process.

Taken together, Frozen-Net IN-polarity consistently learns
with less data and time and does so with a higher probabil-
ity of success compared to Fluid-Net; the majority of the
performance gain is brought by knowledge embedded in the
initialized polarity pattern, with further gain possible by fix-
ing weight polarities; Frozen-Net RAND-Polarity performs
as well as Fluid-Net RAND-Polarity, sometimes better.

4. Transferring and fixing polarity is superior
to transferring weights

From a transfer learning perspective, Frozen-Net IN-Polarity
essentially transfers weight polarities instead of weights per
se. How does polarity transfer compare to the traditional
finetune (weight transfer) strategy? This time, instead of
randomly initializing the weight magnitudes, we initial-
ized the weight magnitudes based on the ImageNet-trained

weights (IN-Weight). We compared them with Frozen-Net
IN-Polarity by plotting their differences (A={LEGEND}
- {Freeze IN-Polarity}) in Figure 3. The original curves
before taking the differences can be found in Supplementary
Figure C.3.

The orange curves compare weight transfer (Fluid-Net IN-
Weight) with our polarity transfer strategy (Frozen-Net IN-
Polarity). Across almost all data scarcity levels, our polarity
transfer strategy achieves lower validation error (higher ac-
curacy) than finetune (first column, orange > 0). Such a
superiority is statistically significant (Mann-Whitney U two-
tail; multiple comparisons corrected with Holm—Bonferroni
method) when training data is limited (Fashion-MNIST:
250 and 1000 samples; CIFAR-10: < 1000 samples except
250). Polarity transfer also allows the networks to learn
with higher probability (second column) and fewer epochs
(third column, curve > 0). Such faster learning occurs re-
gardless of the performance threshold value (Supplementary
Figure C.4). In sum, transferring and fixing polarity is al-
most always superior to weight transfer in terms of both
statistical and computational efficiency. Such an observa-
tion suggests polarity configuration is an effective medium,
if not superior to weight pattern, for transferring knowledge
between networks.

When networks were transferred with polarities but not
frozen (Fluid IN-Polarity pink), they almost always perform
better than Fluid IN-Weight (orange, Figure 3 & Supple-
mentary Figure C.3 to see variance), this is true except in
rare cases (e.g., CIFAR-10 2500 and 5000 samples) where
the difference is not significant due to the wide performance
variation of Fluid IN-Weight.

Surprisingly, when we initialized the Frozen-Net with IN-
Weight (cyan), there is some gain in performance, but to a
limited extent; in fact, it can sometimes be worse. When
training data is limited (Fashion-MNIST < 1000, CIFAR-
10 < 1000), Frozen-Net IN-Weight gained little in perfor-
mance (cyan ~ ) and could be worse at times (CIFAR-10
500 and 1000 samples). When training data is more abun-
dant, there is a more consistent accuracy gain by initializing
Frozen-Net with IN-Weight (Fashion-MNIST gain ~ 1%;
CIFAR-10 gain ~ 4%). Such a gain is discounted by more
training iterations (third column), and often a lower like-
lihood of reaching a high level of performance (second
column).

Furthermore, similar to random initialization, weight trans-
fers tend to have wider performance variations compared
to polarity transfers, for both Frozen and Fluid networks
(Supplementary Figure C.3). The exact reason behind this
observation remains to be explored; our current hypothesis
is the stochasticity of sample batching: by only transfer-
ring polarity while initializing the magnitudes randomly, the
learning process is more robust against such stochasticity.
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Figure 3. Across all sample sizes, Frozen-Net with ImageNet-Polarities (IN-Polarities) learns more quickly than Fluid-Net with
ImageNet-Weight (IN-Weight) initialization. In the first and third columns, curves are the median difference A={LEGEND} - {Freeze
IN-Polarity} (the second term is the red curve in Figure 2). Asterisks (*) indicate that the validation error is significantly higher than
Freeze IN-Polarity (Mann-Whitney U two-tailed test, «=0.05). Multiple comparisons are corrected with Holm—Bonferroni method. 1)
First column: Transferring and fixing polarity is more effective than transferring weights in terms of data efficiency. This is indicated by
the orange curve above zero across most sample sizes, meaning Fluid-Net IN-Weight on average has higher validation error than Freeze
IN-Polarity, and such differences are statistically significant for small sample sizes. Note the zero line here means LEGEND = Freeze
IN-Polarity. 2) Second column: Frozen-Net IN-Polarity has a higher chance of reaching 80% (Fashion-MNIST) / 50% (CIFAR-10)
validation accuracy compared to weight transfer (orange curve); 3) Third column: Frozen-Net IN-Polarity always takes fewer epochs to
reach high validation accuracy than weight transfer (orange curve). Both datasets: n=20 trials, 100 epochs, 1r=0.001. For the right two
columns, the validation accuracy thresholds are the same as in Figure 2.

An alternative contributing factor that cannot be ruled out 5. What do we lose by setting weight polarity a

yet is the difference in initialized magnitude distributions be- priori?
tween polarity transfer vs. weight transfer (Supplementary
Figure C.6). Intelligent agents have limited resources in 1) data, 2) time,

3) space (number of hidden units or other network size pa-
rameters), and 4) power (x time x space, number of flops).
most of the scenarios we tested, and such a superiority is In Sections 2, 3, and 4, we showed that fixing weight polar-
further secured by fixing the polarities throughout training. ity helps to save on two of these resources, time and data,
To a large extent, weight polarity alone, not weight per  py¢ with a condition — the polarity configuration must be
se, is enough to transfer knowledge between networks and  ,jequately set such that the network can still represent the
across tasks. Giving the additional magnitude information function. With fixed polarity, certain configurations will
to Frozen-Net can give some performance gain, but only  equ¢ in networks never being able to learn the task. What
when data and time is abundant; in all other scenarios (i.., s the probability of such unfortunate events happening? We

data-limited or time-limited), initializing Frozen-Net with jpyestigate this direction with our simulated task XOR-5D.
stereotypical weight magnitudes could be detrimental to the
learning performance. Assuming unlimited resources (i.e., perfect learning algo-

rithm, unlimited data and time), we deduced the theoretical
probability limit for a single-hidden-layer network to be
able to represent XOR (and its high-dimensional variants
with task-irrelevant higher dimensions) as a function of the

In sum, polarity transfer is superior to weight transfer in
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randomly. A) For a randomly configured Frozen-Net to learn XOR-5D, it has to be sufficiently large. In both the theoretical limit and
simulation results, it takes at least 15 hidden units for a Frozen-Net RAND-Polarity (green) to have > 99% chance of learning XOR-5D;
it takes three hidden units, in theory, for an adequately configured Frozen-Net (red) and Fluid-Net (blue) to learn XOR-5D. B) When a
Frozen-Net RAND-Polarity is not large enough, it has a much lower chance of learning XOR-5D, and when it does learn, it uses more
time and data. C) When Frozen-Net RAND-Polarity is sufficiently large, it shows at least the same level of performance as standard
Fluid-Nets. D) Frozen-Net Sufficient-Polarity shows an advantage over Fluid-Net (red + yellow) in almost all training sample sizes
(especially when data is limited) and across all network sizes. Randomly configured Frozen-Nets have an advantage over Fluid-Nets
(green + yellow), mostly when the network is sufficiently sized (> 15 hidden units). We ran 50 trials for all experiments. All curves

represent medians with shaded regions denoting 25"-75™ percentiles.

number of hidden units (Supplementary Theorem D.3). The
theoretical results are plotted in Figure 4 panel A (top). In
theory, it takes at least 3 units for Fluid-Net and Frozen-Net
Sufficient-Polarity to be able to learn XOR-5D on every
single trial. Such a probability will never be 100% for
Frozen-Net RAND-Polarity, no matter how large the net-
works are. Luckily, the probability grows exponentially
with the network size: having 15 hidden units is already
sufficient for a randomly configured Frozen-Net to learn
XOR with > 99% probability.

This is exactly what we see in our simulation results (Fig-
ure 4 panel A bottom). For a generous amount of data

(500 training samples) and learning time (100 epochs), the
Frozen-Net RAND-Polarity curve nicely matches the the-
oretical curve - networks with more than 15 hidden units
learn XOR-5D with very high probability, even though their
polarities are fixed randomly.

Both theory and simulation results show that we will lose
all advantages if weight polarities are fixed but not config-
ured adequately; an example of such is a small, randomly
configured Frozen-Net (e.g., 10 hidden units, Figure 4 panel
B). Notice that for the same network size, if we ensure the
configuration is adequately set (red), then the network learns
quickly and is data-efficient. By allowing more space (net-
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work size), Frozen-Net RAND-Polarity starts to pick up the
advantages in time and data efficiency (Figure 4 panel C).
In summary, we gain from setting weight polarity a priori
only if the polarity is configured adequately (Figure 4 panel
D); the adequacy can either be made more probable by hav-
ing a larger network or can be guaranteed by an explicit
configuration rule (e.g., through development for NIs, or
explicit rules in our simulations, or transferred polarities
from previously trained networks).

6. Discussion

We showed in this paper that 1) if the weight polarities
are adequately set a priori, then networks can learn with
less data and time; 2) polarity may be a more effective and
compressed medium of network knowledge transfer; and 3)
while we lose all advantages when the polarities are fixed
but not set adequately, we can regain these advantages by
increasing the size of the networks. Below we discuss the
novelty of our work and some future directions.

Transfer Learning In the transfer learning literature, to
the best of our knowledge, there has been no indication
that transferring polarity alone is sufficient for knowledge
transfer — ours is the first demonstration of such sufficiency.
Indeed, in a statistical learning framework, it is counter-
intuitive to disassemble a single parameter into magnitude
and sign. Previous work that vaguely took on a connec-
tionist’s view mostly focused on the existence or range of
connections (e.g., adding skip connections (He et al., 2016)),
but the polarity of such connections were essentially left out
of the discussion. Our work broke the stereotypical view
and studies weight polarity as an important factor all by
itself. A lesson we learned from this research is that when
designing network architectures, we should not only focus
on the existence of connections, but also pay attention to the
polarities of connections.

Lottery Ticket Hypothesis Our work also agrees with the
results in the lottery ticket hypothesis (LTH) literature. LTH
states that for a large, randomly initialized neural network,
there exists small sub-networks (lottery tickets) that can be
trained in isolation to match the test accuracy of the original
large network (Frankle & Carbin, 2019). It has been proven
that such lottery tickets exist with high probability provided
the large networks are wide enough (Burkholz et al., 2022).
In our work, instead of pruning connections, we pruned
half of the polarity for all connections by randomly initial-
izing and fixing polarities. Similar to LTH theory, we also
observe that larger networks enjoy a high probability of
learning XOR-5D (sec 5). Interestingly, it has been specifi-
cally shown that polarity is important in the pruning process
Zhou et al. (2019). In essence, Zhou et al. (2019) exper-
imentally showed that lottery tickets can no longer reach

the original test accuracy if their polarity information is
randomly initialized during the pruning process. Our study
agrees with them that polarity patterns contain important
task-related information and should be properly initialized.
Our work differs from Zhou et al. (2019) in key ways. Most
fundamentally, Zhou et al. (2019) demonstrate that properly
presetting a subset of the initial polarity pattern is sufficient
for a subnetwork to learn at all; we demonstrate that an
adequate set of polarity patterns are sufficient for a network
to learn and transfer efficiently. Furthermore, results in
Zhou et al. (2019) can only demonstrate that polarity alone
contains sufficient information to transfer knowledge across
networks within a given task; we show that polarity con-
tains sufficient information to transfer knowledge across
different tasks (Sec 4).

Constrained Weight Distribution In the computational
neuroscience literature, the discussion on sign-constrained
weights is done under the frame of constraining weight dis-
tributions. The discussion focuses on the memory capacity
of recurrent neural networks, where the memory capacity
is measured using random input-output pattern associations
(Amit et al., 1989; Brunel et al., 2004). A more recent treat-
ment of the topic of constrained weight distribution and
capacity is done on a single-hidden-unit network and the
network capacity is measured by packing number (Zhong
et al., 2022). None of the existing work can yet relate weight
distribution constraints to representation capacity of general
feedforward neural networks in general task settings. This
is an interesting line of work that may be useful to define
the limitations of setting weight polarity a priori in more
general task settings.

Bio-Plausible AI In the literature of bio-plausible artifi-
cial neural networks (ANNs), the most related work is on
Dale’s principle: a single unit’s output weights are exclu-
sively excitatory or inhibitory. An exciting attempt at apply-
ing such a principle to ANNs achieved performance compa-
rable to multi-layer perceptrons (gray-scale image classifica-
tion tasks) and VGG16 (CIFAR-10) (Cornford et al., 2021).
Our approach differs in several ways; the most fundamental
one is ours does not require exclusivity of a unit’s weight
polarity, we only ask the polarity configuration to stay fixed
throughout training. Because we made fewer assumptions
on the architecture and network properties, we were able to
reveal the true power of weight polarities - polarity-fixed
networks can not only perform as well as the traditional
approaches when the polarities are set adequately, but they
can also learn more quickly with smaller training samples.
Additionally, we revealed that polarities, not weights, may
be a more effective and compressed knowledge transfer
medium. Furthermore, our Freeze-SGD Algorithm 1 is eas-
ily applicable to any existing network architecture and any
learning mode, be it transfer learning or de novo learning,
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thus enjoying a wider application range.

Realization of the Bias-Variance Trade-off Our work
is a realization of learning theory. Our way of explicitly
setting the weight polarities provides a strong prior for the
networks. This is in line with the bias-variance trade-off
theorem (Geman et al., 1992; Tibshirani & Friedman, 2001).
The Frozen-Net sufficient-Polarity strategy has a high induc-
tive bias — by trading representation capacity, they gain in
time and data efficiency through discounting parameter vari-
ances. Indeed, the performance gain we observe from fixing
polarities might be explained by preventing over-fitting and
thus achieving better generalization to the validation data.

Future Direction: Frozen-Polarity-Compatible Learn-
ing Algorithm We engineered our Freeze-SGD algorithm
entirely based on SGD because we are interested in the pure
effect of fixing polarity during learning. As discussed in
Section 2, such an approach intrinsically put Frozen-Net in a
disadvantageous position by resetting weights to the correct
polarity after each learning iteration, effectively fighting
against the gradient update direction. As quantified in Sup-
plementary Figure C.5, we indeed observe polarities are
dynamic throughout the learning process for a Fluid net-
work trained de novo. It is an interesting next step to adopt
a more polarity-freeze-compatible learning algorithm, pos-
sibly allowing us to further improve learning performance.
One possibility is adapting the primal-dual interior-point
method (Vogelstein et al., 2010) or Hebbian learning (Amit,
2019), as well as a host of bio-plausible learning algorithms
(Miconi, 2017; Boopathy & Fiete, 2022; Dellaferrera &
Kreiman, 2022).

Future Direction: Theories and Beyond In this work,
we showed experimental evidence (simulation and image
classification) that if the weight polarities are adequately
set a priori, then networks can learn with less data and
time. The experimental results are interesting yet largely
lack theoretical explanations. As a future direction, we are
planning to work on theoretically proving polarity, com-
pared to weights, to be a more efficient knowledge transfer
medium. Our demonstration that polarity is potentially all
you need to transfer knowledge across networks and tasks
was done in two settings: ImageNet to Fashion-MNIST
and ImageNet to CIFAR-10. It is an important next step
to test more exhaustively in different transfer settings; it is
especially interesting to apply a ‘stress test’ to the polarity
transfer idea and calibrate how dissimilar two tasks have to
be for polarity transfer to not work well. We also look for-
ward to applying our Frozen-Net approach to more tasks to
see if we can empirically extend our results to more diverse
scenarios. This paper is a first step toward the development
of supporting theory and diverse experimental tests, poten-
tially illuminating the structure of the hypothesized "innate

circuit" that enables NIs to learn rapidly.

Software and Data

Code for running all experiments and analysis may be found
on GitHub. All data presented in the paper may be found
here.
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A. Freeze-SGD Algorithm

Algorithm 1 Freeze-SGD

for! =1,2,...,Ldo
Get weight polarity template 7(") based on the config-
uration rules. Match W to 71,

end for

for epoch =1,2,...do
for batch = 1,2, ... do
SGD updates all weights.

for(=1,2,...,Ldo
Compare signs of the weights W) to the tem-
plate 7",

get checker = T x sign(W®),

for (i, j) where T()(i, j) < 0 do
Make W (i, j) in compliance with () (i, j) by
one of the following four ways:
Case posCon W (i, j) = T (4, j) x e where
e>0
Case posRand W (i, j) = TW(i,5) *
rand([0, €]) where € > 0
Case zero W) (i,j) = 0
Case flip W (i, j) = — WO (i, §)

end for

end for
end for
end for
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B. Methods

XOR-5D Data were prepared by sampling from the XOR-
5D distribution as described in the main text, the training
data size varied, validation set is always 1000 samples across
all scenarios. A single hidden layer network (64 hidden
units for Figure 1, various for Figure 4) was trained for 100
epochs; in total 50 randomly seeded initializations (trials)
were ran. To have the best controlled experiments, we fixed
the magnitude distribution, architecture, training samples (n
varies), learning rate, batch sequence of the training data,
and the validation samples across all tested scenarios.

Image classification Experiments were done essentially
the same as XOR-5D in a tightly controlled fashion.
Across all scenarios, we controlled for the same magni-
tude distribution, batch sequence (batch size = 1000), learn-
ing rate, and training data. 1r=0.001 was chosen from
[0.1,0.03,0.01,0.001] based on the most accuracy gain after
50 epochs across all scenarios. Networks were trained for
100 epochs, 20 trials in total. We did not do any image
augmentation.

Statistical efficiency was quantified by plotting valida-
tion error rate at convergence across different training data
scarcity levels.

Computational efficiency was quantified by plotting the
number of epochs to reach certain level of validation accu-
racy. We note not all trails could reach the same level of
validation accuracy cut-off, to present the whole picture, we
1) plotted the percentage of trials that reached the validation
accuracy cut-off (success rate); 2) showed results across a
range of cut-off selections (Supplementary Figure C.2, C.3,
C4).

All experiments were run on 2 RTX-8000 GPUs.
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C. Supplementary Figures
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Figure C.1. Different reset methods in the Freeze-SGD algorithm yield similar results. The meaning of different reset methods is
described in Algorithm 1. A) Freeze-informed consistently reaches higher validation accuracy after the same amount of training time.
This is especially evident when training sample is scarce. B) Same curves as in Figure 4, panels B & C first column, plotted for different
reset methods. C) & D) Same curves as in Figure 1, panels B & C, plotted for different reset methods. We run 20 trials for all experiments
in this figure. All curves correspond to medians with shaded regions representing the 25™ and 75™ percentiles.
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Figure C.2. Related to Figure 2. Regardless of validation accuracy threshold, Frozen-Net IN-Polarity always learns more quickly.
Same curves as in Figure 2 right two columns, plotted for different validation accuracy thresholds.
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Figure C.4. Related to Figure 3. Regardless of validation accuracy threshold, transferring and fixing polarities help networks learn
faster than traditional weight transfer strategy. Same curves as in Figure 3 right two columns, plotted for different validation accuracy
thresholds.
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Figure C.5. Tracking number of polarity flips. Weight polarity flips were analyzed for Fluid RAND-Polarity (SGD with random
initialization) and measured the ratio of weight parameters (excluding bias terms) that flipped sign between two consecutive epochs.
The first 50 epochs were analyzed and plotted, separately across layers and training data size. Curves are median with shaded area
representating the 25™ and 75" percentiles out of the 20 trials.
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D. XOR Theorems related to Sec 5

Lemma D.1 (minimum XOR solution, 2D). For any single-
hidden-layer network to be able to solve XOR, it is suf-
ficient to have 3 different XOR-compatible hidden units.
The weight pattern for each unit can be given by a triplet
( n 1) (2

1 z,jij;)’ where j is the unit index, j € {1,...,n},
n is the number of hidden units. An XOR compatible hid-
den unit is one where the weight pattern triplet have their

polarities satisfy szgn(w§21)) = szgn(wglj)) X szgn(wélj))

See proof on page 20.

Lemma D.2 (can learn XOR probability, 2D). For a sin-
gle hidden layer network with n hidden units (n € Z%),
randomly initialize each weight with its polarity following
P(polarity) ~ Bernoulli(0.5), then the probability that
this randomly initialized network can learn XOR without
changing any of the weight polarity is lower bounded by

Qu%m)1§jﬂ”§§&&”x ezt
k-1 m
p=0

Q here is a helper function for counting, it is defined in
more detail in the proof.

See proof on page 20.

Theorem D.3 (can learn XOR probability, high dimen-
sional). For a single hidden layer network with n hidden
units, randomly initialize each weight with its polarity fol-
lowing P(polarity) ~ Bernoulli(0.5), then the probabil-
ity that this randomly initialized network can learn high-
dimensional XOR (first two dimensions are relevant, the rest
(d — 2) dimensions are irrelevant) without changing any of
the weight polarities is lower bounded by

Zi:o Q(ka 2d7 2(1) TL)
(24+1)n ’

Q(P(n,d)) =1

k—1
Q(k,m, M,n) = [(M+k)"=> Qp,k,M,n)]
p=0

(+)

Q here is a helper function for counting, it is defined in
more detail in the proof.

See proof on page 21.

n,dezZt,d>?2
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E. Proofs

Lemma 2.1 (capacity-speed trade-off). If the weight polar-
ities are set a priori, such that the function is still repre-
sentable, then the network can learn faster.

Proof of Lemma 2.1. A feedforward DNN can be described
as a graph

G=WV,E),w: E—D.

Nodes of the graph correspond to neurons (units), where
each neuron is a function Uj(-l)(l‘) = U(Wj(l)x +b),5 €
[n;]. All the weights for the network take on values from
the set D = {—d,...,0,...,d} for some d € N. The
network is organized in layers. That is, the set of nodes
can be decomposed into a union of (nonempty) disjoint
subsets, V = L'JZLZOV, such that every edge in ' connects
some node in V;_; to some node in V}, for some [ € [L].
Assume we have fully connected layers. Then the number
of incoming edges per node is |V;_1|. Let |Vj| be the input
space dimensionality. All nodes in V{, (input layer) and V7,
(output layer) are distinct.

Let |G| denote the total number of distinct weight patterns
of the graph G. Then for a single hidden layer network
where L = 2, we have:

|G| = ‘D“E\ - ‘D|(\Vo\*|vll+|v1|*|v2\) (1)
Then
|G| _2d+1 (IVol|Val+[Vi|*|Val) .
|G polarityFrozen| d+1

Assume a different weight pattern represents a different
function (trivially holds in linear + full rank weight case),
then for every single representable function, there always
exists a set of weight polarity configurations G coprect Such
that Gcorrect - GpolarityF'rozen’ therefore

‘Gcor'r‘ect |
<
G|

|Gcorrect ‘

3)

| GpolarilyFrozen ‘

This means setting weight polarity a priori in an adequate
way constraints the combinatorial search space to have much
higher proportion of correct solutions, hence easier to learn
under exhaustive search algorithm (Lemma 2.1). O]

Lemma D.1 (minimum XOR solution, 2D). For any single-
hidden-layer network to be able to solve XOR, it is suf-
ficient to have 3 different XOR-compatible hidden units.
The weight pattern for each unit can be given by a triplet

(w%lj), wQJ,wj(Ql)) where j is the unit index, j € {1,...,n},

n is the number of hidden units. An XOR compatible hid-

den unit is one where the weight pattern triplet have their

polarities satisfy szgn(w§21)) = szgn(w&)) X Szgn(wélj))



Polarity Is All You Need to Learn and Transfer Faster

Proof of Lemma D.1. For each hidden unit, we can enumer-
ate all of its 8 possible weight polarity configurations, with
the index set Apojarities = {1,2,3,4,5,6,7,8}:

T B R
1 + + +
2 + + -
3 + - +
4 + - -
5 - + +
6 - + -
7 - - +
8 - - -

The set BXORfPolarities = {27 37 57 8} - APolarities con-
tains indexes of polarity patterns that follow XOR. To prove
Lemma D.1, we first consider the case of 3 hidden unit sin-
gle layer network. To prove a network of certain polarity
pattern is capable of solving XOR, it suffices to give a work-
ing solution. Below, we exhaust all possible 3-unit network
that satisfy the statement of Lemma D.1, i.e. having 3 differ-
ent XOR-compatible units; and list out their corresponding
working network solutions.

@)

{} #owp wgl]) b]( wjzl) working network F'(z,y)=
2 +1 +1 0 -1

{235} 3 1 0 0 1 sigmoid(—o(z +y) + o(x) + o(y))
5 0 1 0 1
2+l 0 0 -1

{238} 3 +1 -1 0 +1 sigmoid(—o(z) + o(z — y) — o(—y))
8§ 0 -1 0 -1
2 0 +1 0 -1

{258} 5 -1 +1 0 +1 sigmoid(—o(y) + o(y — ) — o(—x))
8§ -1 0 0 -1
30 -1 0 +1

{358} 5 -1 0 0 +1 sigmoid(o(—y) + o(—x) — o(—z — y))
8 1 -1 0 -1

For the case that single-hidden-layer network has more than
3 hidden units, if it satisfies the rule in Lemma D.1, we
can always construct a XOR-solvable network solution by
setting all other weights to zero except for 3 different XOR-
compatible units, then we arrive at one of the four situations
in the above table and we just proved they are XOR solu-
tions.

Therefore, for any single hidden layer network to solve
XOR, it is sufficient to have at least 3 of the 4 XOR polarity
patterned units. O

Lemma D.2 (can learn XOR probability, 2D). For a sin-
gle hidden layer network with n hidden units (n € Z1),
randomly initialize each weight with its polarity following
P(polarity) ~ Bernoulli(0.5), then the probability that
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this randomly initialized network can learn XOR without
changing any of the weight polarity is lower bounded by

_ Zi:o Q(ka 47 47 Tl)

Q(P(n)) =1 = , nezt
k—1 m
Q. m,2m) = [0+ 1" = 3 @k 0] (')
p=0

Q here is a helper function for counting, it is defined in
more detail in the proof.

Proof of Lemma D.2. For any network randomly initial-
ized, its weight polarity pattern is a set of n draws
with replacement from the polarities indexed by the
set APolaritiesv |APolarities| 3. Define H
(hla BERE) hm, SERE) hn)7 hm € APOlaTitieSa |H‘ = n, to be
the tuple of the indices of the observed weight patterns for
the hidden layer. h,, is the index of the weight polarity
pattern for unit m. For any network to be able to solve
XOR, it needs to have at least 3 units whose weight patterns
are distinct members of set Bxor—_ polarities (Lemma D.1).
That is, let J = {hm ‘hy, € H by, € BXOR—Polarities}-
Then we need that |J| > 3. We can define the probability of
having exactly k of the 4 XOR compatible weight patterns
present within the hidden layer as following (for brevity,
A= APolaritiesy B = BXOR—PolaT'ities):

None of the members in set B appears is given by:

Only one of the member in set B appeared in H, and that
member can appear more than once in H is given by:

(411) (5n _ 4n)
871

(ZY((B|+1)" —|B|")
A"

P(lJ|=1) =

This is explained by choosing one of 4 members of B (“13 |) ,

then multiply by the chosen member appears at least once
(B[ +1)" = [B[")

Only two of the members in set B appeared in H,
and both can appear more than once in H:

(UN(Bl+2)" — ) (1Bl +1)" - |B|") — |B[")

P(J]=2) = e

_B)E" = ()6 —4m) —4)
8n

To count two members appear at least once in H, we have

“23 ‘) ways of choosing the 2 members from set B, and
there are (| B| + 2)™ ways of choosing with replacement to
populate the tuple H, where each hidden unit can choose
from in total (| B| 4 2) possible patterns, and subtract the
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situation where only one of the two members appeared
(?)((|B| + 1)™ — |B|™) and the situation where neither
appeared |B|"™

The above equations can be put into a compact form

Q(kv ‘B|7 |A| _ ‘B|vn)

P(lJ =k)=

(11 = k) =
where  Q(k,m,M,n) = (M + k)™ —
ZI;;SQ(p,k,M,n)](ZL%k € {07...7m}7m e

1,...,|Bl,M €1,...,|A| — |B|,n € Z* is a helper func-
tion that gives exactly & of the m different XOR-compatible
polarity patterns appeared in n units, and in total m + M
options are considered for each unit.

Then, P(n) is counting at least 3 of the 4 set B patterns
appear:

Q(P(n))
— P(|J] 2 3)
—1-P(|J] = 0) - P(|J]

_ Zi:o Q(k7 47 4’ ’I’L)
87L

1) - P(lJ] = 2)

=1

=1-(=

2)"

8n 8"

O

Theorem D.3 (can learn XOR probability, high dimen-
sional). For a single hidden layer network with n hidden
units, randomly initialize each weight with its polarity fol-
lowing P(polarity) ~ Bernoulli(0.5), then the probabil-
ity that this randomly initialized network can learn high-
dimensional XOR (first two dimensions are relevant, the rest
(d — 2) dimensions are irrelevant) without changing any of
the weight polarities is lower bounded by

Zi:o Q(k7 2d7 Qdu n)
B (2+1)n ’

Q(P(n,d)) =1

k—1
Q. m, 2 = [0+ 1" = Y- Q. k0] ()
p=0

Q here is a helper function for counting, it is defined in
more detail in the proof.

Proof of Theorem D.3. We solve Theorem D.3 with the
exact same counting algorithm as in Lemma D.2, the
only difference is now |Apoiarities| 24+1 and
|BxOR—Polaritics] = 2%. We prove these two equalities
below.

| Apolaritics| = 271! because we have d input weights and
1 output weight for each unit.

I G & B [ 6 A DR O

ndeZv,d>2
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The weight pattern of a single hidden unit in this case
is given by a tuple (wglz, ... ,wglj).,wfl)),j e{1,...,n}
and n is the number of hidden units. Our conclusion in
Lemma D.1 trivially extends to the high dimensional case.
This is because high-dimensional-XOR-solvable network
solutions can be trivially constructed from Lemma D.1 by
setting the irrelevant input dimension weights to 0. We can
restate Lemma D.1 for high-dimensional XOR as following:

For any single-hidden-layer network to be able to solve high
dimensional XOR (only first two dimensions are relevant),
it is sufficient to have 3 different XOR-compatible hidden

units. A high dimensional XOR compatible unit polarity
(1) (1))

pattern is ruled by szgn(wﬁ) = sign(wy ;) x sign(wsy ;).

Therefore the irrelevant dimension input weights can be of
either polarities and there are 292 different combinations
of them. Therefore |BxoR— Polarities| = 4 x 2472 = 24,

Follow the steps in Lemma D.2, we have (for brevity, A =
APolarities7 B = BXORfPolarities)

. 7‘B|n . 2d n
P(J1=0) =2 = ()
P =1y <LEDWBI+ D"~ 1B1™)
R
RGO
- (2d+1)n
(1] = 2) <LEDWUBI+ 2" = ()UBI+ 1" = |B") — |BI")
R
_Gh@E@ 2" - )@+ )" - @) - YY)
- (2d+1)n

Therefore, we have

o Q(k, 24,24 n)

Q(P(n,d)) =1 — PEED

=1 ()"

CEhetr -
(2d+1)n

@hH™)

(2;)((2‘1 +2)" = et +nr - e2H) - @HM
- (2d+1)n ’

ndezt,d>2



