
MediatorDNN: Contention Mitigation for

Co-located DNN Inference Jobs

Seyed Morteza Nabavinejad

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA

snabavinejad@wpi.edu

Sherief Reda

School of Engineering

Brown University

Providence, RI

sherief reda@brown.edu

Tian Guo

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA

tian@wpi.edu

Abstract—With the increase in computing power of cutting-
edge hardware platforms, it is a common practice to run multiple
jobs on a single machine for improved resource utilization
and throughput. However, this leads to inevitable resource
contention among co-located jobs, impacting their performance.
The resource contention can worsen due to fluctuations in
resource utilization of jobs caused by variations in their input
workload. To tackle the co-location contention for DNN inference
jobs, we propose MediatorDNN, which considers contention and
resource utilization variation when co-locating DNN inference
jobs. It profiles each DNN, monitors microarchitectural metrics
such as memory bandwidth and cache access pattern, and
high-level resource utilization like CPU utilization. Based on
profiling results and leveraging Modern Portfolio Theory (MPT),
MediatorDNN decides on the co-location of jobs. Experimental
results with various DNNs on two hardware platforms show that
MediatorDNN improves throughput by up to 108% (21% on
average) compared to an approach only considering contention
and ignoring resource utilization variation.

Index Terms—deep neural networks, contention, co-location,
throughput

I. INTRODUCTION

Employment of Deep Neural Networks (DNNs) in different

domains is on the increase. To quench the thirst of DNNs

for high computing resources and achieve high performance,

various hardware platforms such as ASICs [1], FPGA-based

accelerators [2], CPU-based servers [3] and GPU-based accel-

erators [4] are employed. Since the resource requirement of

DNNs might be less than the hardware resource capacity, it

is a common approach to co-locate several DNNs on a single

machine to improve resource utilization [5]–[7].

When multiple DNNs are co-located, performance con-

tention arises due to competition for shared resources like

memory bandwidth or cache. This contention impacts overall

performance and challenges achieving maximum throughput.

Prior research has addressed this issue across different hard-

ware platforms [8]–[11]. Some passive approaches aim to miti-

gate the impact of contention after co-locating the applications

and during runtime [10]–[13]. Another category proactively

profiles the applications and co-locates them accordingly to

avoid or mitigate contention [14], [15].

While these approaches consider the effect of contention on

performance, they overlook the resource utilization variation

of DNN inference jobs originating from their input. Batching

is a widely used method to achieve high throughput for DNN

inference [3], [16]–[18]. It allows reusing the DNN model

parameters for several inputs and reduces the overhead of

copying input data to the memory of hardware accelerators

such as GPUs [16], [19]. The size of batches and their inter-

arrival time varies over time, affecting resource utilization.

Ignoring this variation can lead to over/under-utilization, re-

sulting in degraded performance.

To fill this gap and consider the contention and the re-

source utilization variation simultaneously, we introduce Me-

diatorDNN. It aims to minimize the low-level contention while

avoiding the over/under-utilization of computing resources due

to resource utilization variation. To this end, MediatorDNN

profiles the jobs for a short period to monitor their microarchi-

tectural level metrics such as cache access pattern, as well as

high-level resource utilization, e.g., CPU utilization. Based on

the profiling results, MediatorDNN decides on the co-location

of DNN inference jobs. We make the following contributions

in this paper:

• Employing several DNNs with varying architectures and

two hardware platforms, we study the impact of con-

tention on the performance of DNN inference jobs, as

well as the impact of input workload on the resource

utilization variation. We show that the impact of con-

tention on the latency of jobs significantly depends on

the computational complexity of DNNs. Furthermore,

we show that depending on input workload, jobs can

experience significant resource utilization variation.

• We introduce two metrics to quantify the contention and

resource utilization variation of DNN inference jobs: 1)

ConScore that quantifies the low-level contention be-

tween every two jobs based on microarchitectural metrics

profiling, using Euclidean Distance (ED). 2) RUVScore

to quantify the Resource Utilization Variation (RUV)

proximity of each pair of jobs by profiling the resource

utilization of each DNN for a short period.

• We design and implement the MediatorDNN approach

to mitigate the impact of contention on the performance

of co-located DNN inference jobs. MediatorDNN uses

the ConScore and RUVScore to calculate the ColoScore

and co-locate the jobs based on that. It also leverages

0

20

40

60

M
ob

In
cV

1

In
cV

2

In
cV

4

R
es

50

R
es

10
1

(a)

L
a

te
n

c
y
 (

m
s
)

0

25

50

75

100

125

M
ob

In
cV

1

In
cV

2

R
es

50

R
es

10
1

(b)

L
a

te
n

c
y
 (

m
s
)

InceptionV4 Co−located DNN

0

10

20

M
ob

In
cV

1

In
cV

2

In
cV

4

R
es

50

R
es

10
1

(c)

L
a

te
n

c
y
 (

m
s
)

0

20

40

M
ob

In
cV

1

In
cV

2

R
es

50

R
es

10
1

(d)

L
a

te
n

c
y
 (

m
s
)

InceptionV4 Co−located DNN

26%

1.5%

63%

19%

69%

34%

76%

52%

84%

69%

33%
48% 50% 45% 46%

96% 70%
70%

77%

81%

CPU GPU

Fig. 1: The impact of co-location contention on inference latency of different DNNs on CPU and GPU. The numbers on top

of the bars indicate the percentage of increase in latency of DNNs when co-located, compared with the case when they are

running individually.

the Modern Portfolio Theory (MPT) to decrease the total

RUV of co-located jobs, resulting in improved through-

put.

We use several DNNs and datasets from different domains

and conduct experiments on two hardware platforms (CPU

and GPU) to evaluate MediatorDNN. Our experimental results

show that MediatorDNN can improve the throughput by up

to 108% (21% on average) compared to Horus [15] which

considers the low-level contention but ignores the resource

utilization variation.

The rest of the paper is organized as follows: In Section II,

we motivate our approach by showing the impact of contention

on the latency of different DNNs, as well as the impact of

varying batch sizes and arrival time on resource utilization.

Then, we introduce our proposed approach, MediatorDNN, in

Section III and present the experimental results in Section IV.

Related works are discussed in Section V, and the paper is

concluded in Section VI.

II. MOTIVATION

A. Co-location Contention

With the increase in computing power and memory ca-

pacity of hardware used in clusters and data centers, it is a

common practice to co-locate several applications on a single

machine to improve resource utilization and throughput. This

section examines how co-location affects the performance of

DNN inference jobs. We assess the performance contention

resulting from various co-location combinations of six DNNs

(MobileNetV1-1, Inception-V1, Inception-V2, Inception-V4,

ResNetV2-50, ResNetV2-101) on two hardware platforms: a

server with Intel Xeon CPUs and a Tesla P40 GPU. Initially,

TABLE I: Specification of the DNN models and their work-

loads (batch size and inter-arrival time distributions) used for

RUV experiments.

DNN Name
Complexity

(MFLOPs)

Batch Size

Distribution

Inter-Arrival Time

Distribution (ms)

Mean (µ) SD (σ) Mean (µ) SD (σ)

Inception-V3 54.25 31.52 2.03 206.85 14.47

NASNet-Large 177.11 23.08 14.05 382.89 19.66

PNASNet-Mobile 10.06 13.23 14.82 195.02 13.93

we run each DNN individually to measure their average

inference latency (time needed to process one input) on both

CPU and GPU (Fig 1 (a) and (c)). Next, we select Inception-

V4 as a pivot and co-locate it with each of the other DNNs

(e.g., Inception-V4 and MobileNetV1-1) to measure average

latency again (Fig 1 (b) and (d)). This analysis aims to identify

any significant differences in latency among different co-

location combinations.

As expected, co-locating the Inception-V4 with another

DNN results in increased latency in both CPU and GPU.

However, the amount of latency increase varies from one

DNN to another. The hardware also affects the amount of

contention and latency increase. Co-location of Inception-V4

and MobileNetV1-1 (Mob) leads to 26% and 1.5% latency

increase, respectively using GPU accelerator. However, the co-

location of Inception-V4 with ResNetV2-101 (Res101) leads

to a significant latency increase (84% for Inception-V4 and

69% for ResNetV2-101). The root of this difference is the

varying performance contention raised in the presence of

various combinations of DNNs co-located together. Finally, the

amount of latency increase in the CPU differs from the GPU.

We conclude that while all the co-located DNNs experience a

level of contention, its intensity depends on which DNNs are

co-located. Moreover, the hardware platform has a significant

role in the contention.

B. Resource Utilization Variation

In DNN inference systems, requests usually arrive at dif-

ferent batch sizes and varying inter-arrival times [3], [20].

This varying input size and arrival time results in resource

utilization fluctuation. This fluctuation directly affects the

overall resource utilization of co-located jobs and can lead

to over/under-utilization, and consequently, degraded perfor-

mance or power efficiency. To study the impact of request

fluctuation on resource utilization of DNN inference jobs, we

deploy DNNs on the hardware platform one by one (no co-

location) and feed them with an input workload with varying

batch sizes and inter-arrival times. For each DNN, a different

workload is generated using the workload generator from

DeepRecSys [3]. The specifications of DNNs and their input

workload are presented in Table I. The resource utilization

results are shown in Fig. 2.

0

20

40

60

0 10 20 30 40 50 60 70 80 90 100

Time (s)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

DNNs Inception−V3 NASNet−Large PNASnet−Mobile

Resource Utilization Variation − CPU

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100

Time (s)

S
M

s
 U

ti
liz

a
ti
o

n
 (

%
)

DNNs Inception−V3 NASNet−Large PNASnet−Mobile

Resource Utilization Variation − GPU

Fig. 2: Fluctuating workload leads to significant RUV for each DNN on both hardware platforms.

We see that the significance of fluctuation depends on the

computational complexity of the DNN model, batch size and

inter-arrival time distributions, and the hardware platform.

For example, while the average batch size (31.52) in the

Inception-V3 is larger than that of NASNet-Large (23.08), its

maximum CPU utilization is lower due to its lower computa-

tional complexity. On the other hand, since the batch size in

Inception-V3 has a low standard deviation (SD) of 2.03, the

fluctuation in CPU utilization of Inception-V3 is lower than

both NASNet-Large and PNASNet-Mobile with SD of 14.05

and 14.82, respectively. Furthermore, comparing the CPU and

GPU results indicates that the significance of fluctuation is a

function of the hardware platform.

The results reveal that the key to improving the performance

of DNN co-location is considering the contention among co-

located DNNs and RUV of each DNN, simultaneously. The

contention can increase the latency of DNNs which results in

degraded overall throughput. Moreover, RUV can lead to over-

utilization which exacerbates the contention since it leads to

competition for high-level resources (e.g., SMs), in addition

to low-level ones (e.g., cache and memory bandwidth).

III. METHODOLOGY

In this section, we present the design and implementation

of MediatorDNN, which aims to maximize the throughput of

DNN co-location. We start with the problem statement and

then describe the MediatorDNN in detail. The overall flow of

our approach is depicted in Fig. 3.

A. Problem Statement

The problem we address in this work is as follows: We

have a set of DNN inference jobs and we want to divide them

into several groups and co-locate each group to maximize the

overall throughput of jobs. DNN jobs belong to best-effort

applications with no quality of service (QoS) requirement, i.e.,

no latency constraint [21]. The DNNs have various architec-

tures and sizes, which means their computational complexity

is different from one another. When co-locating jobs, they

compete for hardware resources that affect their throughput.

Moreover, the input workload of each job is in the form of

a sequence of batches with different sizes and inter-arrival

times. This fluctuating workload results in RUV in each job.

When co-locating the jobs, the RUV can be another source

of contention. In this problem, we can profile each job for a

short period to collect microarchitectural level metrics, as well

as monitor its RUV pattern.

B. Low-level Profiling: ConScore

To mitigate the impact of contention, the first step is to

quantify its intensity between each two jobs. To this end, we

propose gathering low-level metrics and estimating the amount

of relative contention between each two jobs accordingly.

The metrics that can be gathered depend on the hardware

platform and the tool used for profiling. For the CPU, we use

the Perf tool to instrument CPU performance counters and

gather our desired microarchitectural metrics such as cache

access. For the GPU, NVIDIA offers a profiling tool called

nvprof [22]. The kernels launched by an application on the

GPU are profiled by this tool to instrument various low-level

metrics. After profiling each job for a short time, we have its

profiling vector p⃗v. The size of this vector depends on the

number of gathered metrics. Having the p⃗v for all the jobs,

we proceed to the next stage which is quantifying the level

of contention between each pair of jobs. In this stage, we

calculate the Euclidean Distance (ED) of each two profiling

vectors. Denoting the set of DNN jobs with DS, and the

number of low-level metrics profiled with n, we have:

EDi,j =

√

√

√

√

n
∑

k=1

(p⃗vik − p⃗vjk)
2 , ∀(i, j) ∈ DS (1)

For each job, its ED with the rest of the jobs is standardized

to obtain its ConScore with others. We use standardization as

the ConScore and the RUVScore, which we discuss in the

next section, have different scales and their sum is used for

co-location. For standardization, the mean (µ) and standard

deviation (σ) of the ED of a job with the rest of the jobs

are calculated. Then, by subtracting the mean from the ED

and dividing it by the standard deviation, the standardized

value that is the ConScore is obtained as (2). For each job, its

ConScore is calculated against all the other jobs.

∀i ∈ DS, ∀j ̸= i ∈ DS, µi =

∑

j EDi,j

N − 1
,

σi =

√

√

√

√

1

N

∑

j

(EDi,j − µi)2,

ConScorei,j =
EDi,j − µi

σi

(2)

ConScore1,2

RUVScore1,2

ConScore1,3

RUVScore1,3

ConScore1,4

RUVScore1,4

ConScore2,1

RUVScore2,1

ConScore2,3

RUVScore2,3

ConScore2,4

RUVScore2,4

ConScore3,1

RUVScore3,1

ConScore3,2

RUVScore3,2

ConScore3,4

RUVScore3,4

ConScore4,1

RUVScore4,1

ConScore4,2

RUVScore4,2

ConScore4,3

RUVScore4,3

W
o

rk
lo

a
d

s
o

f
B

a
tc

h
e

s
w

it
h

 V
a

ri
o

u
s

S
iz

e
s

a
n

d
 I

n
te

r-
A

rr
iv

a
l

T
im

e
s

DNN 2

DNN 3

DNN 4

DNN 1

Mem, IPC, Cache, ...

Euclidean Distance

Low-Level Profiling

CPU/SMs Utilization

Resource Util.

Variation

High-Level Profiling

Hardware

Platform

Hardware

Platform

ConScore

+

RUVScore

Modern

Portfolio

Theory

Fig. 3: Overall flow of MediatorDNN.

Algorithm 1 ConScore

Input: set of DNN jobs (DS), n (number of metrics to be profiled)

Profiling

1: for i in DS do

2: p⃗vi = profile-low-level-metrics (i)

3: for i ∈ DS do

4: for j ∈ DS do

5: if i ̸= j then

6: EDi,j =
√

∑n
k=1

(p⃗vik − p⃗vjk)
2

7: for i ∈ DS do

8: calculate µi, σi

9: for i ∈ DS do

10: for j ∈ DS do

11: if i ̸= j then

12: ConScorei,j =
EDi,j−µi

σi

In this way of calculating the ConScore, two jobs with sim-

ilar profiling vectors have low ConScore, while jobs with very

diverse profiling vectors have high ConScore. It is preferred

to co-locate the DNN jobs with high ConScore together, so

the high access of one to low-level resources (e.g., cache)

is mitigated by low access of the other one, and hence, the

overall contention is reduced. The pseudo-code for calculating

ConScore is shown in Algorithm 1.

C. High-level Profiling: RUVScore

As shown in Section II, due to fluctuation in the input

workload of DNN inference jobs, variation in their resource

utilization over time is inevitable. Fluctuation in resource

usage of co-located jobs directly affects the total resource

utilization of the system. Therefore, adopting a RUV-oblivious

approach can result in either under-utilization and poor power

efficiency, or over-utilization and poor performance. To ad-

dress this challenge, we first profile a job with its workload

for a short time and monitor its resource utilization (e.g., CPU

utilization or SMs utilization). Then, we derive the normal

distribution of its resource utilization to have the mean and SD.

Having the resource utilization standard deviation (RUSD) of

all the jobs, we are ready to calculate the RUVScore of each

job to the rest of them, considering Modern Portfolio Theory.

In the following, we introduce this theory and describe how

to obtain RUVScore.

1) Mitigating RUV by Modern Portfolio Theory: Modern

Portfolio Theory (MPT), a theory of finance introduced by

Harry Markowitz [23], helps investors to select the assets of

their portfolio considering the individual risk of each one such

that the risk of the portfolio for a certain expected return is

minimized. Using the normal distribution to model the return

of assets, the risk of an asset is the standard deviation of the

distribution. The portfolio effect used by MPT is as follows:

the risk of the returns of a collection of assets in a portfolio is

less than the sum of the risk of returns of each asset, separately.

We use Xi to denote an asset, and µi and σi to indicate the

mean and standard deviation (risk) of its return, respectively.

Hence, for the portfolio Y , which is a collection of N assets,

the portfolio effect can be formulated as follows [24]:

µY =

N
∑

i=1

µXi
, σY =

√

√

√

√

N
∑

i=1

σ2

Xi
≤

N
∑

i=1

σXi
(3)

In our study, we consider the DNN jobs submitted by users

as assets and the computing capacity of the hardware platform

as a portfolio. The return is the resource utilization mean and

risk is the resource utilization standard deviation of each job.

We aim to leverage the portfolio effect to improve the resource

utilization of the hardware platform, as well as mitigate the

RUV of jobs when co-locating them on it. The equation (3)

assumes there is no correlation between resource utilization

of jobs, which means their high-level resource utilization

patterns should be independent. For instance, increasing the

resource utilization of one job, should not increase the resource

utilization of another. As the input workloads of the jobs

are independent and uncorrelated, their resource utilization is

uncorrelated as well, which means we can use (3).

The illustrative example in Fig. 4 shows the impact of

portfolio effect on the total resource utilization of co-located

DNNs. Assume that we have four DNN jobs that have the

same mean resource utilization (30%), but different standard

deviations (two of them 20%, two of them 2%), and we want to

co-locate them in pairs. If we co-locate them as the left form,

the sum of resource utilization of both hardware platforms

would be more than when we co-locate them as the right

form. In both co-locations, the sum of the mean of resource

utilization is equal. However, the portfolio effect decreases the

Hardware

Platform 1

Hardware

Platform 2

µ1 = 30

σ1 = 2

µ2 = 30

σ2 = 20

µ3 = 30

σ3 = 2

µ4 = 30

σ4 = 20

Hardware

Platform 1

Hardware

Platform 2

µ1 = 30

σ1 = 2

µ3 = 30

σ3 = 2

µ2 = 30

σ2 = 20

µ4 = 30

σ4 = 20

µ1 + µ2 = 60

2 2
1 2 20.09 + =

µ3 + µ4 = 60

2 2
3 4 20.09 + =

µ1 + µ3 = 60

2 2
1 3 2.82 + =

µ2 + µ4 = 60

2 2
2 4 28.28 + =

Resource Utilization Distribution of each Individual DNN

Total Resource Utilization of Hardware Platform

80.09 + 80.09 > 62.82 + 88.28

Fig. 4: Illustrative example that shows the impact of portfolio

effect on the resource utilization of co-located DNNs. The

numbers show the mean and standard deviation of each job.

The left figure shows a co-location that does not consider the

portfolio effect, while the right one shows a co-location that

factors it in.

standard deviation of resource utilization from 40 (the sum

of both platforms in left co-location) to 31 (the sum of both

platforms in right co-location).

2) RUVScore Calculation: From MPT, we conclude that

it is best to co-locate the jobs with high RUSD with each

other, to reduce the total resource utilization. Therefore, if

we sort the jobs by their RUSD, we prefer to co-locate the

ones that are next to each other, i.e., the ones with the lowest

distance between their SD. Hence, we calculate the RUVScore

as follows: for each job i in the set of DNN jobs, calculate

the difference between its RUSD and the RUSD of all the

other jobs as (4). Then, calculate the mean and SD of all

those RUSD differences. Finally, subtract each RUSD from

their mean and divide by SD to achieve the RUVScore as (5).

Similar to ConScore, RUVScore is calculated for each pair of

jobs. The higher RUVScore means that the RUSD of the two

jobs is closer to each other, and it is preferred to co-locate them

together. Note that RUVScorei,j is not equal to RUVScorej,i

and they should be calculated separately. The pseudo-code for

calculating RUVScore is shown in Algorithm 2.

RUSDDi,j = RUSDi −RUSDj , ∀(i, j) ∈ DS (4)

∀i ∈ DS, ∀j ̸= i ∈ DS, µi =

∑

j RUSDDi,j

N − 1
,

σi =

√

√

√

√

1

N

∑

j

(RUSDDi,j − µi)2,

RUV Scorei,j =
RUSDDi,j − µi

σi

(5)

D. MediatorDNN Design

MediatorDNN aims to optimize resource utilization and

reduce contention when co-locating jobs. To find a trade-off

Algorithm 2 RUVScore

Input: set of DNN jobs (DS), resource utilization profiling results of
each job (RUProfile)

Profiling

1: for i ∈ DS do

2: RUSDi = SD (RUProfilei)

3: for i ∈ DS do

4: for j ∈ DS do

5: if i ̸= j then

6: RUSDDi,j = RUSDi −RUSDj

7: for i ∈ DS do

8: calculate µi, σi for RUSDDi,j

9: for i ∈ DS do

10: for j ∈ DS do

11: if i ̸= j then

12: RUV Scorei,j =
RUSDDi,j−µi

σi

between contention and resource utilization, it considers the

sum of ConScore and RUVScore, which we call ColoScore.

MediatorDNN works as follows (shown in Algorithm 3):

Initially, it sorts the jobs based on their RUSD in descending

order. Then, it selects the one with the highest RUSD and adds

it to the co-location group. After that, the ColoScore of this

job with all the other jobs is calculated, and they are sorted in

descending order by the resulting ColoScores. MediatorDNN

selects the job with the highest ColoScore and examines it with

the currently selected job to see if its total resource utilization

is less than or equal to the resource capacity of the hardware

platform. If so, this job is selected and added to the group.

Otherwise, the job is skipped, and MediatorDNN probes the

next one with the highest ColoScore. When the co-location

group size is greater than one, MediatorDNN calculates the

ColoScore of a job by all the jobs in the group, and not only the

first one (the sum of ColoScore of a job with all the members

of the group is considered and jobs are sorted accordingly).

This process continues until all the jobs are checked or the

hardware reaches its maximum capacity. Then, the current

group is finalized and ready for co-location, and MediatorDNN

moves to the next group. It repeats these steps until there is

no job left and all of them are assigned to a co-location group.

When MediatorDNN calculates the total resource utilization

of a co-location group to ensure it is less than the computing

capacity of hardware, it takes into account the RUV of each

job through portfolio effect, in addition to its average resource

utilization:

TotalResUtilGroup =
∑

i∈group

µi +

√

∑

i∈group

σ2

i (6)

IV. EVALUATION

A. Experimental Setup

Platform. We run experiments on two platforms to show the

generality of our approach: 1) A dual-socket Xeon server that

has two E5-2680 v4 Xeon chips, each with 28 cores running

at 2.4 GHz, and 128 GB of DDR4 memory. 2) A Nvidia Tesla

P40 GPU Accelerator that leverages Nvidia Pascal architecture

Algorithm 3 MediatorDNN

Input: set of DNN jobs (DS), RUVScore, ConScore
RD: Resource Demand (based on profiling)
HRC: Hardware Resource Capacity

1: for i, j ∈ DS do

2: ColoScorei,j = RUV Scorei,j + ConScorei,j

3: groupID = 1
4: while DS is not empty do

5: DS.Sort (based on RUV in descending order)
6: Group(groupID) = []
7: Group.add(DS[0]) // job with highest RUV
8: DS.remove(0)
9: while TRUE do

10: for i ∈ DS do

11: for j ∈ Group do

12: TotalColoScorei+ = ColoScorei,j

13: DS.Sort(based on TotalColoScore in descending order)s
14: for i ∈ DS do

15: if Group.RD +RDi ≤ HRC then

16: Group.add(DS[i]), DS.remove(i), Go to line 9

17: No more job can be added to group
18: groupID = groupdID + 1
19: create new group
20: Break while loop in line 8 and go to line 3

and has 3840 CUDA cores. The total memory capacity of GPU

is 24 GB GDDR5 memory.

Networks and Dataset. We use DNNs from different domains

with varying sizes and computational complexity. From image

classification, we employ 16 models with two datasets in

our experiments. One is the widely used ImageNet dataset

[25], and the other one is Caltech-256 [26]. For these DNNs,

throughput is defined as the number of images processed per

second (image/second). From the natural language processing

(NLP), we employ a DNN for text classification [27], which

we call TextClassif. For the input data of this DNN, we use

Sentiment140 [28] and IMDB Reviews [29] datasets. For this

DNN, the throughput is defined as the number of sentences

processed per second. DeepVS [30] is another DNN we use

in our experiments that targets video saliency prediction and

the throughput is defined as the number of frames processed

per second. The list of networks and datasets is presented in

Table II. 1

System Comparison. To evaluate the performance of Media-

torDNN, we use two approaches for comparison:

Bin Packing (BP) co-locates the jobs based on available

information on their average resource utilization and ignores

both contention and RUV. It only aims at maximizing the

resource utilization of hardware by selecting the jobs such

that the sum of their average utilization would be as close as

possible to the hardware capacity.

Horus [15] aims to improve the performance of DNNs

through co-location and considers both contention and re-

source utilization. It considers the effect of low-level con-

tention when co-locating the DNNs. It uses resource utilization

prediction for co-location as well; however, it only relies on

average resource utilization and does not take into account

1Note that for TextClassif and DeepVS DNNs we could not obtain
computational complexity as the tool we used does not support them.

TABLE II: List of DNNs and Datasets Used in the Experi-

ments

DNN (Abbreviation) Domain Dataset (Size)

Computationl

Complexity

(Mega FLOPs)

Inception-V1 (Inc-V1) [31]

Im
ag

e
C

la
ss

ifi
ca

ti
o
n

Im
g
ae

N
et

&
C

al
te

ch
-2

5
6

(2
0
0
0
0

Im
ag

es
)

13.22

Inception-V2 (Inc-V2) [32] 22.34

Inception-V3 (Inc-V3 [33] 54.25

Inception-V4 (Inc-V4) [34] 91.95

MobilenetV1-1 (MobV1-1) [35] 8.42

MobilenetV1-05 (MobV1-05) [35] 2.64

MobilenetV1-025 (MobV1-025) [35] 0.93

MobilenetV2-1 (MobV2-1) [36] 6.94

MobilenetV2-14 (MobV2-14) [36] 12.12

NASNET-A-Large (NAS-Large) [37] 177.12

NASNET-Mobile (NAS-Mob) [37] 10.51

PNASNET-Large (PNAS-Large) [38] 171.77

PNASNET-Mobile (PNAS-Mob) [38] 10.06

ResNet-V2-50 (ResV2-50) [39] 51.01

ResNet-V2-101 (ResV2-101) [39] 88.89

ResNet-V2-152 (ResV2-152) [39] 120.08

TextClassif (-) [27] NLP
Sentiment140

-
IMDB

DeepVS (-) [30]
Video

Saliency

LEDOV [30]
-

DHF1K [40], [41]

TABLE III: Specification of Sample Jobs Used in the Exper-

iments

Input Workload

Job # DNN Dataset Avg. Arrival Time (ms) Avg. Batch Size

1 Inc-V1 ImageNet 168 17

4 Inc-V4 ImageNet 299 39

8 MobV2-1 ImageNet 295 28

12 PNAS-Large ImageNet 111 36

19 Inc-V3 CalTech 459 6

20 Inc-V4 CalTech 439 11

24 MobV2-1 CalTech 357 1

30 ResV2-50 CalTech 202 32

36 TextClassif IMDB 64 512

40 DeePVS LEDOV 299 4

the variation in resource utilization of DNNs over time in its

co-location scheme.

Jobs and Workloads. There are 40 jobs in the experiments:

32 image classification jobs (the combination of 16 image

classification DNNs with two respective datasets), plus 4

NLP jobs (combination of TextClassif with the two datasets,

each of which repeated two times) and 4 video saliency jobs

(combination of DeepVS DNN with the two datasets, each of

which repeated two times). For each of these jobs, a workload

is generated using the workload generator of DeepRecySys [3],

which consists of a series of batches with different sizes and

inter-arrival times. The specifications of sample jobs are shown

in Table III. Also, detailed workload distribution is shown in

Fig. 5 for five representative jobs that cover different batch

sizes and inter-arrival times. We see significant batch size and

inter-arrival time variation within each job and across different

jobs.

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80

Batch Size

F
ra

c
ti
o

n
 o

f
B

a
tc

h
e

s

Job 8

Job 12

Job 19

Job 24

Job 30

Batch Size Distribution

0.00

0.25

0.50

0.75

1.00

100 200 300 400 500

Batch Inter−Arrival Time

F
ra

c
ti
o

n
 o

f
B

a
tc

h
e

s

Batch Inter−Arrival Time Distribution

Fig. 5: Distribution of batch size and inter-arrival time of input

workloads for representative jobs.

B. Profiling Results

As mentioned in Section III, first we profile jobs to identify

the resource utilization patterns, as well as the access pattern of

microarchitectural metrics. The resource utilization results are

shown in Fig. 6a for the CPU server and Fig. 6b for the GPU

accelerator. We have profiled each job with its input workload

(presented in Table III for sample jobs) for 200 seconds. This

period is enough to cover the input workload variation. We

can see the RUV in the form of SD for each job, in addition

to its mean resource utilization. The mean and SD of resource

utilization vary from job to job, depending on the DNN and the

workload distribution. While some jobs have very close mean

resource utilization, there is a huge gap between their resource

utilization SD. It clearly emphasizes the importance of RUV

in the co-location process, as solely considering mean value

for resource utilization can be misleading and result in poor

performance. Moreover, the resource utilization pattern of the

jobs is different on CPU and GPU (for the same workloads)

which emphasizes the dependency of RUV on the hardware

platform. In general, we see higher RUV in GPU than CPU,

due to the copying time of data from host to GPU, which

results in zero SMs utilization during that time.

Moreover, the detailed resource utilization of profiling re-

sults (the cumulative distribution) for sample jobs on CPU is

depicted in Fig. 7. It can clearly show how the RUV of the jobs

varies over time, as well as the difference between the amount

of the resource utilization of various jobs. Furthermore, the

low-level profiling results for some representative jobs are

shown in Table IV. We see a significant difference between

the access pattern of jobs to low-level metrics (up to four

orders of magnitude), which depends on DNN and workload.

These results further emphasize the importance of considering

low-level metrics for mitigating contention.

C. Throughput Comparison

In this section, we study the throughput improvement of

MediatorDNN compared with other approaches. Fig. 8a and

Fig. 8b show the throughput improvement of MediatorDNN

compared with Horus and BP for each job on CPU and GPU,

respectively. On CPU, MediatorDNN improves the throughput

by up to 30% and 55% (10% and 22% on average) com-

pared with Horus and BP, respectively. For GPU, the average

improvement is 21% and 31% and the maximum is 108%

and 79%. Since Horus considers the contention among the

jobs, its performance is better than BP and can achieve higher

throughput than that. However, since it ignores the RUV of

jobs, its throughput is lower than MediatorDNN. Among the

approaches, BP has the poorest performance as it ignores both

contention and RUV and only considers the resource capacity

of the hardware and average resource utilization of jobs.

The amount of throughput improvement of MediatorDNN

varies from job to job. The jobs have different request arrival

patterns and computing requirements, so their throughput

improvement is different. Moreover, the way the jobs are

grouped differs between approaches. One job in Horus or

BP might be grouped by other jobs with low computational

complexity, while the same job might be grouped by jobs with

high computational complexity in MediatorDNN. Therefore,

the ultimate goal of MediatorDNN is to increase the total

throughput of entire jobs instead of focusing on each job,

separately.

We can also observe that the amount of throughput im-

provement depends on the hardware platform. It originates

from different resource utilization patterns of jobs on other

platforms, the computing power of the platforms, and the co-

location of jobs for each platform. For the CPU server, as

the memory capacity is very high, the total CPU utilization

determines the number of jobs that can be co-located (their

total CPU utilization should be less than the capacity of the

server). For the GPU on the other hand, in addition to SMs

utilization, the memory capacity should be considered as well.

To estimate the memory requirement of different DNNs, the

approach introduced in Horus [15] can be used. When co-

locating the jobs on the GPU, both their total SMs utilization

and memory requirement should be less than the total capacity

of the hardware.

To show the impact of considering RUV on the performance

of different approaches, we depict the resource demand pattern

of the jobs for one of the co-location groups for each approach.

Fig. 9 shows the resource demand pattern for each job in

the group that is obtained in the profiling step. The green

line shows the sum of the resource demand of all the jobs

over time, and the red line shows the maximum resource

capacity of the server. The green line crossing the red line

means that the resource demand of the jobs in the group is

more than the total capacity of hardware, and hence, the jobs

would compete for the resources. As mentioned before, both

Horus and BP ignore RUV when co-locating the DNNs and

only consider the average resource demand of jobs from the

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Job

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

(a) CPU server

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Job

S
M

s
 U

ti
liz

a
ti
o

n
 (

%
)

(b) GPU accelerator

Fig. 6: Mean and SD of resource utilization of jobs profiled by their input workloads for each platform.

TABLE IV: Low-level Profiling Result of DNNs on CPU server for Selected Jobs

Microarchitectural Metrics

Job # DNN Dataset cache-references L1-dcache-loads L1-dcache-stores LLC-load LLC-stores dTLB-loads dTLB-stores iTLB-loads

1 Inc-V1 ImageNet 7.1509e+6 1.9167e+8 1.7818e+7 1.5885e+6 7.3889e+5 3.8333e+7 7.1291e+6 1.7095e+4

12 PNAS-Large ImageNet 1.0503e+8 3.1079e+9 8.5082e+8 2.6382e+7 8.9077e+6 9.1602e+8 4.5014e+8 1.4249e+4

20 Inc-V4 CalTech 3.1681e+7 1.1991e+9 7.4299e+7 8.1900e+6 2.1976e+6 3.5313e+8 3.9290e+7 6.3411e+3

30 ResV2-50 CalTech 1.2147e+7 4.0935e+8 2.7103e+7 3.2720e+6 1.0126e+6 1.0635e+8 1.2432e+7 3.7221e+3

36 TextClassif IMDB 5.4490e+4 1.6658e+6 3.4124e+5 1.2256e+4 6.3303e+3 6.2752e+5 1.5717e+5 2.6653e+2

40 DeepVS LEDOV 9.7234e+7 3.0751e+9 2.3128e+8 3.2953e+7 6.0958e+6 6.1472e+8 9.2679e+7 3.6901e+4

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

CPU Utilization (%)

F
ra

c
ti
o

n
 o

f
T

im
e

Job 3

Job 8

Job 11

Job 23

Job 28

Job 32

Job 34

Job 36

Job 37

Job 40

Fig. 7: Distribution of CPU utilization profiling results of

selected jobs.

profiling step. Therefore, the total resource demand of the

jobs they have selected for co-location is frequently higher

than the computing capacity of the hardware (Fig 9(b)(c)).

Therefore, the jobs suffer from resource shortage and yield

lower throughput. On the other hand, considering RUV and

leveraging MPT to mitigate its effect helps MediatorDNN to

co-locate the jobs more efficiently compared with Horus and

BP. We see in Fig. 9(a) that the number of times the sum of

the resource demand of jobs exceeds the maximum capacity

is lower than Horus and BP. Consequently, the jobs would

achieve higher throughput.

As MediatorDNN utilizes more resources than Horus and

BP to serve the jobs, it increases the power consumption.

Therefore, to have a fair comparison, we compare the power

efficiency of MediatorDNN with other approaches. We define

power efficiency as the amount of throughput per power

for each job. Since it is not possible to measure the power

consumption of jobs in each co-location group separately,

we divide the power consumption by the number of jobs in

each group to estimate the power consumption per job in that

group. Having the power consumption and throughput, we

calculate the power efficiency for each job. The average and

maximum power efficiency improvement of MediatorDNN is

shown in Table V. These results indicate that while Media-

torDNN resource usage is higher than other approaches, its

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Job

T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
m

e
n

t
(%

)
MediatorDNN vs Horus MediatorDNN vs BS

(a) CPU server

0

40

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Job

T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
m

e
n

t
(%

)

MediatorDNN vs Horus MediatorDNN vs BS

(b) GPU accelerator

Fig. 8: Throughput improvement of MediatorDNN compared with other approaches. The negative value indicates lower

throughput in MediatorDNN compared with other approaches. For most of the jobs, MediatorDNN improves the throughput,

and the amount of improvement is more significant in BP compared with Horus.

25

50

75

100

20 40 60 80 100 120 140 160 180

Time (s)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Job 9

Job 11

Job 17

Job 18

Job 30

Sum

Max

(a) MediatorDNN

0

50

100

20 40 60 80 100 120 140 160 180

Time (s)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Job 7

Job 14

Job 16

Job 20

Job 25

Sum

Max

(b) Horus

0

25

50

75

100

125

20 40 60 80 100 120 140 160 180

Time (s)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Job 7

Job 10

Job 14

Job 17

Job 19

Sum

Max

(c) BP

Fig. 9: Resource utilization pattern of jobs in a group for each

approach.

TABLE V: Comparing the Power Efficiency Improvement of

MediatorDNN with Horus and BP

CPU GPU

Average(%) Max (%) Average(%) Max (%)

MediatorDNN vs Horus 4.74 105.68 8.05 276.98

MediatorDNN vs BP 17.06 244.09 7.42 100.80

power consumption increase is compensated with significant

throughput improvement.

V. RELATED WORK

A large body of research has focused on challenges and op-

portunities of co-location of DNNs [14], [42], [43]. PERSEUS

[44] and Jain et. al. [45] studied the impact of co-location on

the performance, cost, and latency of co-located DNN models.

They showed that while co-location can help to improve

the throughput and resource utilization, it degrades latency.

VELTAIR [7] and Xu et al. [46] develop contention models

for co-located DNN jobs on CPUs and GPUs using linear and

random forest regression.

Baymax [12] and C-Laius [47] try to mitigate the impact

of co-location on the latency of interactive jobs that share

the resources with throughput-oriented jobs. They aim to

maximize the latter’s throughput while meeting the former’s

latency by reallocating time slots [12] or computing resources

[47]. COLTI [48] targets the high-bandwidth memory (HBM)

co-location in GPU accelerators to improve the throughput

and resource utilization of DNN inference and training jobs.

SODA [5] targets clusters that host GPU accelerators for

deep neural network (DNN) tasks alongside traditional CPU

jobs. it uses a passive approach to eliminate the contention

among jobs in real-time. DeepRecSys [3], Clockwork [49],

and Nexus [50] consider the fluctuating batch sizes, along with

different inter-arrival time for batches. However, they assume

the models are already co-located. Therefore, they focus on

resource allocation techniques to improve the performance of

co-located jobs. unlike MediatorDNN, these approaches do

not offer any mechanism for methodically selecting the DNNs

for co-location in the first place. They can only be applied

after the co-location has happened to reduce the contention.

MediatorDNN approach is complementary to them and they

can be used together.

iGniter [6] is a proactive GPU resource provisioning frame-

work for DNNs in the cloud. It uses a DNN contention perfor-

mance model to capture performance contention and a cost-

efficient GPU resource provisioning strategy. This strategy

optimizes GPU resource allocation and uses batching based on

the contention model. iGniter ensures predictable performance

for DNN workloads while minimizing expenses. It relies

on its adaptive batching and resource allocation to mitigate

the contention and does not consider the resource utilization

fluctuation originating from pre-determined batch sizes in

the input workload. Horus [15] and Themis [14] are two

approaches that co-locate the DNNs considering the slowdown

they will experience from co-location, and try to mitigate

the impact of contention on performance. However, similar

to iGniter, none of them takes into account the fluctuating

workloads and resulting RUV of DNN jobs as our approach

does.

VI. CONCLUSION

In this paper, we introduced the MediatorDNN to enhance

the throughput of co-located DNN jobs. Our observations

underscore that the contention between co-located jobs di-

rectly affects their throughput. Moreover, the fluctuating input

workload of jobs contributes to resource utilization variation.

Therefore, only relying on average resource utilization is

insufficient for co-location decisions. MediatorDNN considers

this variation, along with the access pattern of jobs to low-level

resources of the hardware platform, when co-locating them.

Leveraging MPT to mitigate the impact of resource utilization

variation on total resource utilization helps MediatorDNN

achieve higher throughput and power efficiency than previous

approaches. The experimental results show that MediatorDNN

can improve the throughput by 31% on average compared with

the Bin Packing approach that does not consider contention

and RUV, and 21% on average compared to the Horus ap-

proach, which considers the average resource demand of DNN

jobs and contention among them but ignores RUV.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants #2105564

and #2236987, and a VMWare grant.

REFERENCES

[1] S. D. Manasi, S. Banerjee, A. Davare, A. A. Sorokin, S. M. Burns,
D. A. Kirkpatrick, and S. S. Sapatnekar, “Reusing gemm hardware for
efficient execution of depthwise separable convolution on asic-based dnn
accelerators,” in Proceedings of the 28th Asia and South Pacific Design

Automation Conference, 2023, pp. 475–482.
[2] W. Zhao, Q. Dang, T. Xia, J. Zhang, N. Zheng, and P. Ren, “Optimiz-

ing fpga-based dnn accelerator with shared exponential floating-point
format,” IEEE Transactions on Circuits and Systems I: Regular Papers,
2023.

[3] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for
optimizing end-to-end at-scale neural recommendation inference,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2020, pp. 982–995.
[4] D. Luo, T. Yu, Y. Wu, H. Wu, T. Wang, and W. Zhang, “Split: Qos-aware

dnn inference on shared gpu via evenly-sized model splitting,” in Pro-

ceedings of the 52nd International Conference on Parallel Processing,
2023, pp. 605–614.

[5] H. Zhao, W. Cui, Q. Chen, J. Leng, D. Zeng, and M. Guo, “Improving
cluster utilization through adaptive resource management for dnn and
cpu jobs co-location,” IEEE Transactions on Computers, 2023.

[6] F. Xu, J. Xu, J. Chen, L. Chen, R. Shang, Z. Zhou, and F. Liu, “ig-
niter: Interference-aware gpu resource provisioning for predictable dnn
inference in the cloud,” IEEE Transactions on Parallel and Distributed

Systems, vol. 34, no. 3, pp. 812–827, 2022.
[7] Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo, “Veltair: towards

high-performance multi-tenant deep learning services via adaptive com-
pilation and scheduling,” in Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2022, pp. 388–401.
[8] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,

B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee,
A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang,
“The architectural implications of facebook’s dnn-based personalized
recommendation,” in 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2020, pp. 488–
501.

[9] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers,” in
2020 IEEE International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2020, pp. 193–206.
[10] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software

framework for enabling effficient preemptive scheduling of gpu,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 2017, pp. 3–16.
[11] W. Zhang, Q. Chen, N. Zheng, W. Cui, K. Fu, and M. Guo, “Towards

qos-awareness and improved utilization of spatial multitasking gpus,”
IEEE Transactions on Computers, 2021.

[12] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[13] F. Guo, Y. Li, J. C. Lui, and Y. Xu, “Dcuda: Dynamic gpu schedulingith
live migration support,” in Proceedings of the ACM Symposium on Cloud

Computing, 2019, pp. 114–125.
[14] M. Wei, W. Zhao, Q. Chen, H. Dai, J. Leng, C. Li, W. Zheng, and

M. Guo, “Predicting and reining in application-level slowdown on spatial
multitasking gpus,” Journal of Parallel and Distributed Computing, vol.
141, pp. 99–114, 2020.

[15] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based scheduling in
deep learning systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 33, no. 1, pp. 88–100, 2022.
[16] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

I. Stoica, “Clipper: A low-latency online prediction serving system,”
in 14th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 17), 2017, pp. 613–627.
[17] S. Zhang, W. Li, C. Wang, Z. Tari, and A. Y. Zomaya, “Dybatch:

Efficient batching and fair scheduling for deep learning inference on
time-sharing devices,” in 2020 20th IEEE/ACM International Symposium

on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp.
609–618.

[18] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Batchsizer: Power-
performance trade-off for dnn inference,” in Proceedings of the 26th

Asia and South Pacific Design Automation Conference, 2021, pp. 819–
824.

[19] Y. Shen, M. Ferdman, and P. Milder, “Escher: A cnn accelerator with
flexible buffering to minimize off-chip transfer,” in IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 93–100.
[20] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “Model-

switching: Dealing with fluctuating workloads in machine-learning-as-a-
service systems,” in 12th {USENIX} Workshop on Hot Topics in Cloud

Computing (HotCloud 20), 2020.
[21] P. Pang, Q. Chen, D. Zeng, C. Li, J. Leng, W. Zheng, and M. Guo,

“Sturgeon: Preference-aware co-location for improving utilization of
power constrained computers,” in 2020 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 718–727.
[22] Nvidia, “Cuda profiler,” https://docs.nvidia.com/cuda/profiler-users-

guide/index.html, 2022, accessed: April 25, 2022.
[23] H. M. Markowitz, Portfolio selection: efficient diversification of invest-

ments. Yale university press, 1968, vol. 16.
[24] I. Hwang and M. Pedram, “Portfolio theory-based resource assignment

in a cloud computing system,” in IEEE International Conference on

Cloud Computing (CLOUD), 2012, pp. 582–589.
[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer

vision, vol. 115, no. 3, pp. 211–252, 2015.
[26] G. Griffin, A. Holub, and P. Perona, “The caltech-256: Caltech technical

report,” vol, vol. 7694, p. 3, 2007.
[27] Y. Kim, “Convolutional neural networks for sentence classification,”

CoRR, vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/
abs/1408.5882

[28] “Sentiment140,” http://help.sentiment140.com/, 2022, accessed: April
25, 2022.

[29] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, June 2011, pp. 142–150. [Online].
Available: http://www.aclweb.org/anthology/P11-1015

[30] L. Jiang, M. Xu, T. Liu, M. Qiao, and Z. Wang, “Deepvs: A deep
learning based video saliency prediction approach,” in Proceedings of

the european conference on computer vision (ECCV), 2018, pp. 602–
617.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 1–9.
[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.
[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[34] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.
[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018, pp. 4510–4520.
[37] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable

architectures for scalable image recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 8697–8710.

[38] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision

(ECCV), 2018, pp. 19–34.
[39] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep

residual networks,” in European conference on computer vision (ECCV).
Springer, 2016, pp. 630–645.

[40] W. Wang, J. Shen, F. Guo, M.-M. Cheng, and A. Borji, “Revisiting
video saliency: A large-scale benchmark and a new model,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[41] W. Wang, J. Shen, J. Xie, M. Cheng, H. Ling, and A. Borji, “Revisiting

video saliency prediction in the deep learning era,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019.
[42] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and

F. Yang, “Analysis of large-scale multi-tenant {GPU} clusters for
{DNN} training workloads,” in USENIX Annual Technical Conference

(ATC’19), 2019, pp. 947–960.
[43] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling

algorithm for preemptible neural processing units,” in 2020 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2020, pp. 220–233.
[44] M. LeMay, S. Li, and T. Guo, “Perseus: Characterizing performance and

cost of multi-tenant serving for cnn models,” in 2020 IEEE International

Conference on Cloud Engineering (IC2E). IEEE, 2020, pp. 66–72.
[45] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,

J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv:1901.00041, 2018.

[46] X. Xu, N. Zhang, M. Cui, M. He, and R. Surana, “Characterization
and prediction of performance interference on mediated passthrough
{GPUs} for interference-aware scheduler,” in 11th USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 19), 2019.
[47] W. Zhang, Q. Chen, N. Zheng, W. Cui, K. Fu, and M. Guo, “Toward

qos-awareness and improved utilization of spatial multitasking gpus,”
IEEE Transactions on Computers, vol. 71, no. 4, pp. 866–879, 2022.

[48] J. Mobin, A. Maurya, and M. M. Rafique, “Colti: Towards concurrent
and co-located dnn training and inference,” in Proceedings of the 32nd

International Symposium on High-Performance Parallel and Distributed

Computing, 2023, pp. 309–310.
[49] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vig-

fusson, and J. Mace, “Serving {DNNs} like clockwork: Performance
predictability from the bottom up,” in 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20), 2020, pp.
443–462.

[50] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: A gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium

on Operating Systems Principles, 2019, pp. 322–337.

