MediatorDNN: Contention Mitigation for
Co-located DNN Inference Jobs

Seyed Morteza Nabavinejad
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA
snabavinejad @ wpi.edu

Abstract—With the increase in computing power of cutting-
edge hardware platforms, it is a common practice to run multiple
jobs on a single machine for improved resource utilization
and throughput. However, this leads to inevitable resource
contention among co-located jobs, impacting their performance.
The resource contention can worsen due to fluctuations in
resource utilization of jobs caused by variations in their input
workload. To tackle the co-location contention for DNN inference
jobs, we propose MediatorDNN, which considers contention and
resource utilization variation when co-locating DNN inference
jobs. It profiles each DNN, monitors microarchitectural metrics
such as memory bandwidth and cache access pattern, and
high-level resource utilization like CPU utilization. Based on
profiling results and leveraging Modern Portfolio Theory (MPT),
MediatorDNN decides on the co-location of jobs. Experimental
results with various DNNs on two hardware platforms show that
MediatorDNN improves throughput by up to 108% (21% on
average) compared to an approach only considering contention
and ignoring resource utilization variation.

Index Terms—deep neural networks, contention, co-location,
throughput

I. INTRODUCTION

Employment of Deep Neural Networks (DNNs) in different
domains is on the increase. To quench the thirst of DNNs
for high computing resources and achieve high performance,
various hardware platforms such as ASICs [1], FPGA-based
accelerators [2], CPU-based servers [3] and GPU-based accel-
erators [4] are employed. Since the resource requirement of
DNNs might be less than the hardware resource capacity, it
is a common approach to co-locate several DNNs on a single
machine to improve resource utilization [5]-[7].

When multiple DNNs are co-located, performance con-
tention arises due to competition for shared resources like
memory bandwidth or cache. This contention impacts overall
performance and challenges achieving maximum throughput.
Prior research has addressed this issue across different hard-
ware platforms [8]-[11]. Some passive approaches aim to miti-
gate the impact of contention after co-locating the applications
and during runtime [10]-[13]. Another category proactively
profiles the applications and co-locates them accordingly to
avoid or mitigate contention [14], [15].

While these approaches consider the effect of contention on
performance, they overlook the resource utilization variation
of DNN inference jobs originating from their input. Batching

Sherief Reda
School of Engineering
Brown University
Providence, RI
sherief reda@brown.edu

Tian Guo
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA
tian@wpi.edu

is a widely used method to achieve high throughput for DNN
inference [3], [16]-[18]. It allows reusing the DNN model
parameters for several inputs and reduces the overhead of
copying input data to the memory of hardware accelerators
such as GPUs [16], [19]. The size of batches and their inter-
arrival time varies over time, affecting resource utilization.
Ignoring this variation can lead to over/under-utilization, re-
sulting in degraded performance.

To fill this gap and consider the contention and the re-
source utilization variation simultaneously, we introduce Me-
diatorDNN. It aims to minimize the low-level contention while
avoiding the over/under-utilization of computing resources due
to resource utilization variation. To this end, MediatorDNN
profiles the jobs for a short period to monitor their microarchi-
tectural level metrics such as cache access pattern, as well as
high-level resource utilization, e.g., CPU utilization. Based on
the profiling results, MediatorDNN decides on the co-location
of DNN inference jobs. We make the following contributions
in this paper:

« Employing several DNNs with varying architectures and
two hardware platforms, we study the impact of con-
tention on the performance of DNN inference jobs, as
well as the impact of input workload on the resource
utilization variation. We show that the impact of con-
tention on the latency of jobs significantly depends on
the computational complexity of DNNs. Furthermore,
we show that depending on input workload, jobs can
experience significant resource utilization variation.

¢ We introduce two metrics to quantify the contention and
resource utilization variation of DNN inference jobs: 1)
ConScore that quantifies the low-level contention be-
tween every two jobs based on microarchitectural metrics
profiling, using Euclidean Distance (ED). 2) RUVScore
to quantify the Resource Utilization Variation (RUV)
proximity of each pair of jobs by profiling the resource
utilization of each DNN for a short period.

o We design and implement the MediatorDNN approach
to mitigate the impact of contention on the performance
of co-located DNN inference jobs. MediatorDNN uses
the ConScore and RUVScore to calculate the ColoScore
and co-locate the jobs based on that. It also leverages

l:‘ InceptionVA. Co-located DNN

45% - 46%

S o S

Latency (ms)
Latency (ms;

n
a

l:‘ InceplionV4. Co-located DNN

76% 84%

Q\

&

12
s 48% 50%
60 __1o0| 33% 81%)
7
40 77%
5
70%
20 I I 96% d
. m W 0
° S © \Z S
F N N & & (@ & N

70%
o
Ny N

@ CPU ®)

<

63% 69%
40| 269
69%
2 o | oo | 34%| RE”
®60 > v S \Q\

€ €

Latency (ms)
- n
o o o
% |
L, -
%
e, |
%, | I
R
||
7, |
Latency (ms;
o o

& ®

© GPU @

Fig. 1: The impact of co-location contention on inference latency of different DNNs on CPU and GPU. The numbers on top
of the bars indicate the percentage of increase in latency of DNNs when co-located, compared with the case when they are

running individually.

the Modern Portfolio Theory (MPT) to decrease the total
RUYV of co-located jobs, resulting in improved through-
put.

We use several DNNs and datasets from different domains
and conduct experiments on two hardware platforms (CPU
and GPU) to evaluate MediatorDNN. Our experimental results
show that MediatorDNN can improve the throughput by up
to 108% (21% on average) compared to Horus [15] which
considers the low-level contention but ignores the resource
utilization variation.

The rest of the paper is organized as follows: In Section II,
we motivate our approach by showing the impact of contention
on the latency of different DNNs, as well as the impact of
varying batch sizes and arrival time on resource utilization.
Then, we introduce our proposed approach, MediatorDNN, in
Section III and present the experimental results in Section IV.
Related works are discussed in Section V, and the paper is
concluded in Section VI.

II. MOTIVATION
A. Co-location Contention

With the increase in computing power and memory ca-
pacity of hardware used in clusters and data centers, it is a
common practice to co-locate several applications on a single
machine to improve resource utilization and throughput. This
section examines how co-location affects the performance of
DNN inference jobs. We assess the performance contention
resulting from various co-location combinations of six DNNs
(MobileNetV1-1, Inception-V1, Inception-V2, Inception-V4,
ResNetV2-50, ResNetV2-101) on two hardware platforms: a
server with Intel Xeon CPUs and a Tesla P40 GPU. Initially,

TABLE I: Specification of the DNN models and their work-
loads (batch size and inter-arrival time distributions) used for
RUV experiments.

Complexity Batch Size Inter-Arrival Time

DNN Name (MFLOPs) Distribution Distribution (ms)
Mean (1) SD (o) Mean () SD (o)

Inception-V3 54.25 31.52 2.03 206.85 14.47
NASNet-Large 177.11 23.08 14.05 382.89 19.66
PNASNet-Mobile 10.06 13.23 14.82 195.02 13.93

we run each DNN individually to measure their average
inference latency (time needed to process one input) on both
CPU and GPU (Fig 1 (a) and (c)). Next, we select Inception-
V4 as a pivot and co-locate it with each of the other DNNs
(e.g., Inception-V4 and MobileNetV1-1) to measure average
latency again (Fig 1 (b) and (d)). This analysis aims to identify
any significant differences in latency among different co-
location combinations.

As expected, co-locating the Inception-V4 with another
DNN results in increased latency in both CPU and GPU.
However, the amount of latency increase varies from one
DNN to another. The hardware also affects the amount of
contention and latency increase. Co-location of Inception-V4
and MobileNetV1-1 (Mob) leads to 26% and 1.5% latency
increase, respectively using GPU accelerator. However, the co-
location of Inception-V4 with ResNetV2-101 (Res101) leads
to a significant latency increase (84% for Inception-V4 and
69% for ResNetV2-101). The root of this difference is the
varying performance contention raised in the presence of
various combinations of DNNs co-located together. Finally, the
amount of latency increase in the CPU differs from the GPU.
We conclude that while all the co-located DNNs experience a
level of contention, its intensity depends on which DNNs are
co-located. Moreover, the hardware platform has a significant
role in the contention.

B. Resource Utilization Variation

In DNN inference systems, requests usually arrive at dif-
ferent batch sizes and varying inter-arrival times [3], [20].
This varying input size and arrival time results in resource
utilization fluctuation. This fluctuation directly affects the
overall resource utilization of co-located jobs and can lead
to over/under-utilization, and consequently, degraded perfor-
mance or power efficiency. To study the impact of request
fluctuation on resource utilization of DNN inference jobs, we
deploy DNNs on the hardware platform one by one (no co-
location) and feed them with an input workload with varying
batch sizes and inter-arrival times. For each DNN, a different
workload is generated using the workload generator from
DeepRecSys [3]. The specifications of DNNs and their input
workload are presented in Table I. The resource utilization
results are shown in Fig. 2.

Resource Utilization Variation - CPU
DNNs — Inception-V3 - -

NASNet-Large —- PNASnet-Mobile

Resource Utilization Variation - GPU
DNNs — Inception-V3 -- NASNet-Large —- PNASnet-Mobile

@
S

CPU Utilization (%)
n »
o o

o

100

75

50

25

SMs Utilization (%)

Fig. 2: Fluctuating workload leads to significant RUV for each DNN on both hardware platforms.

We see that the significance of fluctuation depends on the
computational complexity of the DNN model, batch size and
inter-arrival time distributions, and the hardware platform.
For example, while the average batch size (31.52) in the
Inception-V3 is larger than that of NASNet-Large (23.08), its
maximum CPU utilization is lower due to its lower computa-
tional complexity. On the other hand, since the batch size in
Inception-V3 has a low standard deviation (SD) of 2.03, the
fluctuation in CPU utilization of Inception-V3 is lower than
both NASNet-Large and PNASNet-Mobile with SD of 14.05
and 14.82, respectively. Furthermore, comparing the CPU and
GPU results indicates that the significance of fluctuation is a
function of the hardware platform.

The results reveal that the key to improving the performance
of DNN co-location is considering the contention among co-
located DNNs and RUV of each DNN, simultaneously. The
contention can increase the latency of DNNs which results in
degraded overall throughput. Moreover, RUV can lead to over-
utilization which exacerbates the contention since it leads to
competition for high-level resources (e.g., SMs), in addition
to low-level ones (e.g., cache and memory bandwidth).

III. METHODOLOGY

In this section, we present the design and implementation
of MediatorDNN, which aims to maximize the throughput of
DNN co-location. We start with the problem statement and
then describe the MediatorDNN in detail. The overall flow of
our approach is depicted in Fig. 3.

A. Problem Statement

The problem we address in this work is as follows: We
have a set of DNN inference jobs and we want to divide them
into several groups and co-locate each group to maximize the
overall throughput of jobs. DNN jobs belong to best-effort
applications with no quality of service (QoS) requirement, i.e.,
no latency constraint [21]. The DNNs have various architec-
tures and sizes, which means their computational complexity
is different from one another. When co-locating jobs, they
compete for hardware resources that affect their throughput.
Moreover, the input workload of each job is in the form of
a sequence of batches with different sizes and inter-arrival
times. This fluctuating workload results in RUV in each job.
When co-locating the jobs, the RUV can be another source
of contention. In this problem, we can profile each job for a

short period to collect microarchitectural level metrics, as well
as monitor its RUV pattern.

B. Low-level Profiling: ConScore

To mitigate the impact of contention, the first step is to
quantify its intensity between each two jobs. To this end, we
propose gathering low-level metrics and estimating the amount
of relative contention between each two jobs accordingly.
The metrics that can be gathered depend on the hardware
platform and the tool used for profiling. For the CPU, we use
the Perf tool to instrument CPU performance counters and
gather our desired microarchitectural metrics such as cache
access. For the GPU, NVIDIA offers a profiling tool called
nvprof [22]. The kernels launched by an application on the
GPU are profiled by this tool to instrument various low-level
metrics. After profiling each job for a short time, we have its
profiling vector pv. The size of this vector depends on the
number of gathered metrics. Having the pt¢ for all the jobs,
we proceed to the next stage which is quantifying the level
of contention between each pair of jobs. In this stage, we
calculate the Euclidean Distance (ED) of each two profiling
vectors. Denoting the set of DNN jobs with DS, and the
number of low-level metrics profiled with n, we have:

> (PBiy, — ;)% . V(i) € DS
k=1

ED;; =

(€]

For each job, its ED with the rest of the jobs is standardized
to obtain its ConScore with others. We use standardization as
the ConScore and the RUVScore, which we discuss in the
next section, have different scales and their sum is used for
co-location. For standardization, the mean (x) and standard
deviation (o) of the ED of a job with the rest of the jobs
are calculated. Then, by subtracting the mean from the ED
and dividing it by the standard deviation, the standardized
value that is the ConScore is obtained as (2). For each job, its
ConScore is calculated against all the other jobs.

Vie DS,Vj£i€ DS, u;= %

1
oi = \j ¥ Z(ED«L,]‘ — ui)?,

J

(@)

ED;j — ps

ConScore; j =
T

f Low-Level Profiling
DNN 1

T @ @ @ @ S R)
§ DH DD DHD @ \Mem, IPC, Cache,) | conScore I Modern |
5 é D o | e ConScore;, ConScore;s ConScore;s » + I portfolio |
Z = DNN 2 e — %m RUVScore;, RUVScore;; RUVScore; | RUVSCcore | | Theory)
£ [Euclidean Distance 00,& SEmEl SEEss
4 B = T I O Y R S > @ T 2 ittt ConScorezy ConScore,3 ConScore; 4
= ‘f RUVScore; 1 RUVScore;3 RUVScore; s
T 8 DNN 3 High-Level Profiling
o c
=N Onnn AR [\ T
a E ‘ L N (9@ ConScore; 1 ConScore;, ConScores 4
gy | CPU/SMs Utilization | &~ RUVScore;; RUVScores, RUVScore; 4
Sg S|
5 DNN 4 I
= ~ TResource Ut — ConScores s ConScores, ConScoress Hardware Hardware

(L) RUVScores; RUVScores, RUVScores Platform Platform

K / ~_ _Variation__ _ ~

Fig. 3: Overall flow of MediatorDNN.

Algorithm 1 ConScore

Input: set of DNN jobs (DS), n (number of metrics to be profiled)

Profiling
for i in DS do
pv; = profile-low-level-metrics (i)
for i € DS do
for j € DS do
if ¢ # j then
ED;; = \/

for i € DS do
calculate p;, 0

9: for i € DS do

10: for j € DS do

11: if ¢ # j then

12: ConScore; j =

Zh=1 (PTig — pU5)?

e I RO T

ED;,j—pi

gq

In this way of calculating the ConScore, two jobs with sim-
ilar profiling vectors have low ConScore, while jobs with very
diverse profiling vectors have high ConScore. It is preferred
to co-locate the DNN jobs with high ConScore together, so
the high access of one to low-level resources (e.g., cache)
is mitigated by low access of the other one, and hence, the
overall contention is reduced. The pseudo-code for calculating
ConScore is shown in Algorithm 1.

C. High-level Profiling: RUVScore

As shown in Section II, due to fluctuation in the input
workload of DNN inference jobs, variation in their resource
utilization over time is inevitable. Fluctuation in resource
usage of co-located jobs directly affects the total resource
utilization of the system. Therefore, adopting a RUV-oblivious
approach can result in either under-utilization and poor power
efficiency, or over-utilization and poor performance. To ad-
dress this challenge, we first profile a job with its workload
for a short time and monitor its resource utilization (e.g., CPU
utilization or SMs utilization). Then, we derive the normal
distribution of its resource utilization to have the mean and SD.
Having the resource utilization standard deviation (RUSD) of
all the jobs, we are ready to calculate the RUVScore of each
job to the rest of them, considering Modern Portfolio Theory.
In the following, we introduce this theory and describe how
to obtain RUVScore.

1) Mitigating RUV by Modern Portfolio Theory: Modern
Portfolio Theory (MPT), a theory of finance introduced by
Harry Markowitz [23], helps investors to select the assets of
their portfolio considering the individual risk of each one such
that the risk of the portfolio for a certain expected return is
minimized. Using the normal distribution to model the return
of assets, the risk of an asset is the standard deviation of the
distribution. The portfolio effect used by MPT is as follows:
the risk of the returns of a collection of assets in a portfolio is
less than the sum of the risk of returns of each asset, separately.
We use X; to denote an asset, and p; and o; to indicate the
mean and standard deviation (risk) of its return, respectively.
Hence, for the portfolio Y, which is a collection of N assets,
the portfolio effect can be formulated as follows [24]:

N N N
Py =Y ux, oy =4|> 0%, <D ox, 3)
i=1 i=1 i=1

In our study, we consider the DNN jobs submitted by users
as assets and the computing capacity of the hardware platform
as a portfolio. The return is the resource utilization mean and
risk is the resource utilization standard deviation of each job.
We aim to leverage the portfolio effect to improve the resource
utilization of the hardware platform, as well as mitigate the
RUYV of jobs when co-locating them on it. The equation (3)
assumes there is no correlation between resource utilization
of jobs, which means their high-level resource utilization
patterns should be independent. For instance, increasing the
resource utilization of one job, should not increase the resource
utilization of another. As the input workloads of the jobs
are independent and uncorrelated, their resource utilization is
uncorrelated as well, which means we can use (3).

The illustrative example in Fig. 4 shows the impact of
portfolio effect on the total resource utilization of co-located
DNNs. Assume that we have four DNN jobs that have the
same mean resource utilization (30%), but different standard
deviations (two of them 20%, two of them 2%), and we want to
co-locate them in pairs. If we co-locate them as the left form,
the sum of resource utilization of both hardware platforms
would be more than when we co-locate them as the right
form. In both co-locations, the sum of the mean of resource
utilization is equal. However, the portfolio effect decreases the

Resource Utilization Distribution of each Individual DNN

p1=30 p2=30 p3=30 p4=30 p1=30 pu3=30 p2=30 p4=30

ol=2 02=20 03=2 o4 =20 ol=2 03=2 02=20 04=20
Hardware Hardware Hardware Hardware
Platform 1 Platform 2 Platform 1 Platform 2
p1+p2 =60 u3 + u4 =60 u1+u3 =60 M2 + p4 =60

Jol? +627 =20.09 o3? + o4 =20.09 Jolr + 037 =2.82 o2 + 04> =28.28

80.09 + 80.09 > 62.82 + 88.28
- J
e

Total Resource Utilization of Hardware Platform

Fig. 4: Illustrative example that shows the impact of portfolio
effect on the resource utilization of co-located DNNs. The
numbers show the mean and standard deviation of each job.
The left figure shows a co-location that does not consider the
portfolio effect, while the right one shows a co-location that
factors it in.

standard deviation of resource utilization from 40 (the sum
of both platforms in left co-location) to 31 (the sum of both
platforms in right co-location).

2) RUVScore Calculation: From MPT, we conclude that
it is best to co-locate the jobs with high RUSD with each
other, to reduce the total resource utilization. Therefore, if
we sort the jobs by their RUSD, we prefer to co-locate the
ones that are next to each other, i.e., the ones with the lowest
distance between their SD. Hence, we calculate the RUVScore
as follows: for each job 7 in the set of DNN jobs, calculate
the difference between its RUSD and the RUSD of all the
other jobs as (4). Then, calculate the mean and SD of all
those RUSD differences. Finally, subtract each RUSD from
their mean and divide by SD to achieve the RUVScore as (5).
Similar to ConScore, RUVScore is calculated for each pair of
jobs. The higher RUVScore means that the RUSD of the two
jobs is closer to each other, and it is preferred to co-locate them
together. Note that RUVScore;; is not equal to RUVScore;;
and they should be calculated separately. The pseudo-code for
calculating RUVScore is shown in Algorithm 2.

RUSDD, ; = RUSD; — RUSD; , ¥(i,j) € DS “

-RUSDD,; ;

Vi€ DS,Vj#£i€ DS, p;= p,

N -1
1
o = J N Z(RUSDDi,j — pi)?,)
J
DD j — p;
RUV Score; ; = M
o

D. MediatorDNN Design

MediatorDNN aims to optimize resource utilization and
reduce contention when co-locating jobs. To find a trade-off

Algorithm 2 RUVScore

Input: set of DNN jobs (DS), resource utilization profiling results of
each job (RU Profile)

Profiling
for i € DS do
RUSD; = SD (RU Profile;)
for i € DS do
for j € DS do
if ¢ # j then
RUSDD; ; = RUSD; — RUSD;
for i € DS do
calculate 5, 0; for RUSDD; ;
9: fori € DS do
10: for j € DS do
11: if ¢ # j then
12: RUV Score; j =

A e e

RUSDD; j—p;

T4

between contention and resource utilization, it considers the
sum of ConScore and RUVScore, which we call ColoScore.
MediatorDNN works as follows (shown in Algorithm 3):
Initially, it sorts the jobs based on their RUSD in descending
order. Then, it selects the one with the highest RUSD and adds
it to the co-location group. After that, the ColoScore of this
job with all the other jobs is calculated, and they are sorted in
descending order by the resulting ColoScores. MediatorDNN
selects the job with the highest ColoScore and examines it with
the currently selected job to see if its total resource utilization
is less than or equal to the resource capacity of the hardware
platform. If so, this job is selected and added to the group.
Otherwise, the job is skipped, and MediatorDNN probes the
next one with the highest ColoScore. When the co-location
group size is greater than one, MediatorDNN calculates the
ColoScore of a job by all the jobs in the group, and not only the
first one (the sum of ColoScore of a job with all the members
of the group is considered and jobs are sorted accordingly).
This process continues until all the jobs are checked or the
hardware reaches its maximum capacity. Then, the current
group is finalized and ready for co-location, and MediatorDNN
moves to the next group. It repeats these steps until there is
no job left and all of them are assigned to a co-location group.

When MediatorDNN calculates the total resource utilization
of a co-location group to ensure it is less than the computing
capacity of hardware, it takes into account the RUV of each
job through portfolio effect, in addition to its average resource
utilization:

Total ResUtilGroup = Z i + Z o? 6)
i€Egroup 1Egroup

IV. EVALUATION
A. Experimental Setup

Platform. We run experiments on two platforms to show the
generality of our approach: 1) A dual-socket Xeon server that
has two E5-2680 v4 Xeon chips, each with 28 cores running
at 2.4 GHz, and 128 GB of DDR4 memory. 2) A Nvidia Tesla
P40 GPU Accelerator that leverages Nvidia Pascal architecture

Algorithm 3 MediatorDNN

Input: set of DNN jobs (DS), RUVScore, ConScore
RD: Resource Demand (based on profiling)
HRC: Hardware Resource Capacity

1: for i,j € DS do
2: ColoScore; ; = RUV Score; j + ConScore; ;
3: grouplD =1
4: while DS is not empty do
5: DS.Sort (based on RUV in descending order)
6: Group(grouplD) = []
7: Group.add(DS[0]) // job with highest RUV
8: DS.remove(0)
9: while TRUE do
10: for i € DS do
11: for j € Group do
12: TotalColoScore;+ = ColoScore; ;
13: DS.Sort(based on TotalColoScore in descending order)s
14: for i € DS do
15: if Group.RD + RD; < HRC' then
16: Group.add(DS[i]), DS.remove(i), Go to line 9
17: No more job can be added to group
18: groupID = groupdID + 1
19: create new group
20: Break while loop in line 8 and go to line 3

and has 3840 CUDA cores. The total memory capacity of GPU
is 24 GB GDDRS5 memory.

Networks and Dataset. We use DNNs from different domains
with varying sizes and computational complexity. From image
classification, we employ 16 models with two datasets in
our experiments. One is the widely used ImageNet dataset
[25], and the other one is Caltech-256 [26]. For these DNNs,
throughput is defined as the number of images processed per
second (image/second). From the natural language processing
(NLP), we employ a DNN for text classification [27], which
we call TextClassif. For the input data of this DNN, we use
Sentiment140 [28] and IMDB Reviews [29] datasets. For this
DNN, the throughput is defined as the number of sentences
processed per second. DeepVS [30] is another DNN we use
in our experiments that targets video saliency prediction and
the throughput is defined as the number of frames processed
per second. The list of networks and datasets is presented in
Table II. !

System Comparison. To evaluate the performance of Media-
torDNN, we use two approaches for comparison:

Bin Packing (BP) co-locates the jobs based on available
information on their average resource utilization and ignores
both contention and RUV. It only aims at maximizing the
resource utilization of hardware by selecting the jobs such
that the sum of their average utilization would be as close as
possible to the hardware capacity.

Horus [15] aims to improve the performance of DNNs
through co-location and considers both contention and re-
source utilization. It considers the effect of low-level con-
tention when co-locating the DNNSs. It uses resource utilization
prediction for co-location as well; however, it only relies on
average resource utilization and does not take into account

INote that for TextClassif and DeepVS DNNs we could not obtain
computational complexity as the tool we used does not support them.

TABLE II: List of DNNs and Datasets Used in the Experi-
ments

Computationl
DNN (Abbreviation) Domain Dataset (Size) Complexity
(Mega FLOPs)
Inception-V1 (Inc-V1) [31] 13.22
Inception-V2 (Inc-V2) [32] s 22.34
Inception-V3 (Inc-V3 [33] ﬁ, 54.25
Inception-V4 (Inc-V4) [34] E 91.95
MobilenetV1-1 (MobV1-1) [35] =4 8.42
MobilenetV1-05 (MobV1-05) [35] § s 2.64
MobilenetV1-025 (MobV1-025) [35] é ° 0.93
MobilenetV2-1 (MobV2-1) [36] g ﬁ 6.94
MobilenetV2-14 (MobV2-14) [36] @) 3 12.12
NASNET-A-Large (NAS-Large) [37] % 5; 177.12
NASNET-Mobile (NAS-Mob) [37] £ < 10.51
PNASNET-Large (PNAS-Large) [38] g 171.77
PNASNET-Mobile (PNAS-Mob) [38] e 10.06
ResNet-V2-50 (ResV2-50) [39] g 51.01
ResNet-V2-101 (ResV2-101) [39] B 88.89
ResNet-V2-152 (ResV2-152) [39] 120.08
TextClassif (-) [27] NLp Semtimentld0
IMDB
Video LEDOV [30]

DeepVs (- B
cepVS () [30] Saliency DHFIK [40], [41]

TABLE III: Specification of Sample Jobs Used in the Exper-
iments

Input Workload

Job # DNN Dataset ~ Avg. Arrival Time (ms) Avg. Batch Size
1 Inc-V1 ImageNet 168 17
4 Inc-V4 ImageNet 299 39
8 MobV2-1 ImageNet 295 28
12 PNAS-Large ImageNet 111 36
19 Inc-V3 CalTech 459 6
20 Inc-V4 CalTech 439 11
24 MobV2-1 CalTech 357 1
30 ResV2-50 CalTech 202 32
36 TextClassif ~ IMDB 64 512
40 DeePVS LEDOV 299 4

the variation in resource utilization of DNNs over time in its
co-location scheme.

Jobs and Workloads. There are 40 jobs in the experiments:
32 image classification jobs (the combination of 16 image
classification DNNs with two respective datasets), plus 4
NLP jobs (combination of TextClassif with the two datasets,
each of which repeated two times) and 4 video saliency jobs
(combination of DeepVS DNN with the two datasets, each of
which repeated two times). For each of these jobs, a workload
is generated using the workload generator of DeepRecySys [3],
which consists of a series of batches with different sizes and
inter-arrival times. The specifications of sample jobs are shown
in Table III. Also, detailed workload distribution is shown in
Fig. 5 for five representative jobs that cover different batch
sizes and inter-arrival times. We see significant batch size and
inter-arrival time variation within each job and across different
jobs.

Batch Size Distribution

BL — Job8
== Job12

- Job19
Job 24

+ Job 30

Fraction of Batches

40 60 80
Batch Size

Batch Inter-Arrival Time Distribution

0.75

0.50 '

Fraction of Batches

0.00 fmsn=
100 200 300 400 500
Batch Inter—Arrival Time

Fig. 5: Distribution of batch size and inter-arrival time of input
workloads for representative jobs.

B. Profiling Results

As mentioned in Section III, first we profile jobs to identify
the resource utilization patterns, as well as the access pattern of
microarchitectural metrics. The resource utilization results are
shown in Fig. 6a for the CPU server and Fig. 6b for the GPU
accelerator. We have profiled each job with its input workload
(presented in Table III for sample jobs) for 200 seconds. This
period is enough to cover the input workload variation. We
can see the RUV in the form of SD for each job, in addition
to its mean resource utilization. The mean and SD of resource
utilization vary from job to job, depending on the DNN and the
workload distribution. While some jobs have very close mean
resource utilization, there is a huge gap between their resource
utilization SD. It clearly emphasizes the importance of RUV
in the co-location process, as solely considering mean value
for resource utilization can be misleading and result in poor
performance. Moreover, the resource utilization pattern of the
jobs is different on CPU and GPU (for the same workloads)
which emphasizes the dependency of RUV on the hardware
platform. In general, we see higher RUV in GPU than CPU,
due to the copying time of data from host to GPU, which
results in zero SMs utilization during that time.

Moreover, the detailed resource utilization of profiling re-
sults (the cumulative distribution) for sample jobs on CPU is
depicted in Fig. 7. It can clearly show how the RUV of the jobs
varies over time, as well as the difference between the amount
of the resource utilization of various jobs. Furthermore, the
low-level profiling results for some representative jobs are
shown in Table IV. We see a significant difference between
the access pattern of jobs to low-level metrics (up to four
orders of magnitude), which depends on DNN and workload.
These results further emphasize the importance of considering
low-level metrics for mitigating contention.

C. Throughput Comparison

In this section, we study the throughput improvement of
MediatorDNN compared with other approaches. Fig. 8a and
Fig. 8b show the throughput improvement of MediatorDNN
compared with Horus and BP for each job on CPU and GPU,
respectively. On CPU, MediatorDNN improves the throughput
by up to 30% and 55% (10% and 22% on average) com-
pared with Horus and BP, respectively. For GPU, the average
improvement is 21% and 31% and the maximum is 108%
and 79%. Since Horus considers the contention among the
jobs, its performance is better than BP and can achieve higher
throughput than that. However, since it ignores the RUV of
jobs, its throughput is lower than MediatorDNN. Among the
approaches, BP has the poorest performance as it ignores both
contention and RUV and only considers the resource capacity
of the hardware and average resource utilization of jobs.

The amount of throughput improvement of MediatorDNN
varies from job to job. The jobs have different request arrival
patterns and computing requirements, so their throughput
improvement is different. Moreover, the way the jobs are
grouped differs between approaches. One job in Horus or
BP might be grouped by other jobs with low computational
complexity, while the same job might be grouped by jobs with
high computational complexity in MediatorDNN. Therefore,
the ultimate goal of MediatorDNN is to increase the total
throughput of entire jobs instead of focusing on each job,
separately.

We can also observe that the amount of throughput im-
provement depends on the hardware platform. It originates
from different resource utilization patterns of jobs on other
platforms, the computing power of the platforms, and the co-
location of jobs for each platform. For the CPU server, as
the memory capacity is very high, the total CPU utilization
determines the number of jobs that can be co-located (their
total CPU utilization should be less than the capacity of the
server). For the GPU on the other hand, in addition to SMs
utilization, the memory capacity should be considered as well.
To estimate the memory requirement of different DNNs, the
approach introduced in Horus [15] can be used. When co-
locating the jobs on the GPU, both their total SMs utilization
and memory requirement should be less than the total capacity
of the hardware.

To show the impact of considering RUV on the performance
of different approaches, we depict the resource demand pattern
of the jobs for one of the co-location groups for each approach.
Fig. 9 shows the resource demand pattern for each job in
the group that is obtained in the profiling step. The green
line shows the sum of the resource demand of all the jobs
over time, and the red line shows the maximum resource
capacity of the server. The green line crossing the red line
means that the resource demand of the jobs in the group is
more than the total capacity of hardware, and hence, the jobs
would compete for the resources. As mentioned before, both
Horus and BP ignore RUV when co-locating the DNNs and
only consider the average resource demand of jobs from the

=75
a3
c
S
% 50
N
5
225
’ i i pilRu. . i
0 He® i [—— Ha -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Job
(a) CPU server
100-
< 75
c
S
g 50
=
- 25
>
n 0 I = + :TL_. & e = O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Job
(b) GPU accelerator
Fig. 6: Mean and SD of resource utilization of jobs profiled by their input workloads for each platform.
TABLE IV: Low-level Profiling Result of DNNs on CPU server for Selected Jobs
Microarchitectural Metrics
Job # DNN Dataset cache-references Ll-dcache-loads Ll-dcache-stores LLC-load LLC-stores dTLB-loads dTLB-stores iTLB-loads
1 Inc-V1 ImageNet 7.1509¢+6 1.9167¢+8 1.7818¢+7 1.5885¢+6 7.3889e+5 3.8333e+7 7.129le+6 1.7095¢+4
12 PNAS-Large ImageNet 1.0503¢+8 3.1079e+9 8.5082¢+8 2.6382e+7 8.9077e+6 9.1602e+8 4.5014e+8 1.4249e+4
20 Inc-V4 CalTech 3.1681e+7 1.1991e+9 7.4299e+7 8.1900e+6 2.1976e+6 3.5313e+8 3.9290e+7 6.3411e+3
30 ResV2-50 CalTech 1.2147e+7 4.0935¢+8 2.7103e+7 3.2720e+6 1.0126e+6 1.0635¢+8 1.2432e+7 3.7221e+3
36 TextClassif ~ IMDB 5.4490c+4 1.6658¢+6 3.4124e+5 1.2256e+4 6.3303e+3 6.2752e+5 1.5717e+5 2.6653¢+2
40 DeepVS LEDOV 9.7234e+7 3.0751e+9 2.3128e+8 3.2953¢+7 6.0958e+6 6.1472e+8 9.2679e+7 3.690le+4

0.75

~—Job3 — Job 32
~—Job8 — Job 34
— Job 11 Job 36
— Job 23 — Job 37
— Job 28 — Job 40

Fraction of Time
o
()l
o

o
o
a

| W

0 25 50 75
CPU Utilization (%)

100

Fig. 7: Distribution of CPU utilization
selected jobs.

profiling results of

profiling step. Therefore, the total resource demand of the
jobs they have selected for co-location is frequently higher
than the computing capacity of the hardware (Fig 9(b)(c)).
Therefore, the jobs suffer from resource shortage and yield

lower throughput. On the other hand, considering RUV and
leveraging MPT to mitigate its effect helps MediatorDNN to
co-locate the jobs more efficiently compared with Horus and
BP. We see in Fig. 9(a) that the number of times the sum of
the resource demand of jobs exceeds the maximum capacity
is lower than Horus and BP. Consequently, the jobs would
achieve higher throughput.

As MediatorDNN utilizes more resources than Horus and
BP to serve the jobs, it increases the power consumption.
Therefore, to have a fair comparison, we compare the power
efficiency of MediatorDNN with other approaches. We define
power efficiency as the amount of throughput per power
for each job. Since it is not possible to measure the power
consumption of jobs in each co-location group separately,
we divide the power consumption by the number of jobs in
each group to estimate the power consumption per job in that
group. Having the power consumption and throughput, we
calculate the power efficiency for each job. The average and
maximum power efficiency improvement of MediatorDNN is
shown in Table V. These results indicate that while Media-
torDNN resource usage is higher than other approaches, its

. MediatorDNN vs Horus . MediatorDNN vs BS
40

2

o

o

Throughput Improvement (%)

uJhl.JJHJHJHuhmlh.h”l.,.uh\l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Job

(a) CPU server

. MediatorDNN vs Horus D MediatorDNN vs BS
80

4

o

Wagd__oolplabli

o

Throughput Improvement (%)

TL 1 T L R Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Job

(b) GPU accelerator

Fig. 8: Throughput improvement of MediatorDNN compared with other approaches. The negative value indicates lower
throughput in MediatorDNN compared with other approaches. For most of the jobs, MediatorDNN improves the throughput,
and the amount of improvement is more significant in BP compared with Horus.

(a) MediatorDNN

o
o

— Job9

— Job 11

— Job 17
Job 18
Job 30

RIS AR RE LSy — T
20 40 60 80 100 120 140 160 180

~
(4]

n
[&)]

CPU Utilization (%)
(42
o

Time (s)
(b) Horus
g — Job7
< 100 — Job 14
= — Job 16
< 5 Job 20
g e P A YT T W W R e A Job 25
E‘) PN A NS Y AP N A NAAL A A e T Sum
— Max
20 40 60 80 100 120 140 160 180
Time (s)
15 (c) BP
S A AM Rﬁ‘-\' i\ Amuﬁy_/\ﬁ‘_“”ﬂ#— Job 7
~ 100
S — Job 10
= 75 — Job 14
% 50 Job 17
5 AN MAAAPUAMN MWW NA N
E—) 25 A i, AU A A T A e A WS = Sum
0 ! ! ’ * ! — Max

20 40 60 80 100 120 140 160 180
Time (s)

Fig. 9: Resource utilization pattern of jobs in a group for each
approach.

TABLE V: Comparing the Power Efficiency Improvement of
MediatorDNN with Horus and BP

CPU GPU
Average(%) Max (%) Average(%) Max (%)
MediatorDNN vs Horus 4.74 105.68 8.05 276.98
MediatorDNN vs BP 17.06 244.09 7.42 100.80

power consumption increase is compensated with significant
throughput improvement.

V. RELATED WORK

A large body of research has focused on challenges and op-
portunities of co-location of DNNs [14], [42], [43]. PERSEUS
[44] and Jain et. al. [45] studied the impact of co-location on
the performance, cost, and latency of co-located DNN models.
They showed that while co-location can help to improve
the throughput and resource utilization, it degrades latency.
VELTAIR [7] and Xu et al. [46] develop contention models
for co-located DNN jobs on CPUs and GPUs using linear and
random forest regression.

Baymax [12] and C-Laius [47] try to mitigate the impact
of co-location on the latency of interactive jobs that share
the resources with throughput-oriented jobs. They aim to
maximize the latter’s throughput while meeting the former’s
latency by reallocating time slots [12] or computing resources
[47]. COLTI [48] targets the high-bandwidth memory (HBM)
co-location in GPU accelerators to improve the throughput
and resource utilization of DNN inference and training jobs.

SODA [5] targets clusters that host GPU accelerators for
deep neural network (DNN) tasks alongside traditional CPU
jobs. it uses a passive approach to eliminate the contention
among jobs in real-time. DeepRecSys [3], Clockwork [49],
and Nexus [50] consider the fluctuating batch sizes, along with
different inter-arrival time for batches. However, they assume
the models are already co-located. Therefore, they focus on
resource allocation techniques to improve the performance of
co-located jobs. unlike MediatorDNN, these approaches do
not offer any mechanism for methodically selecting the DNNs
for co-location in the first place. They can only be applied
after the co-location has happened to reduce the contention.
MediatorDNN approach is complementary to them and they
can be used together.

iGniter [6] is a proactive GPU resource provisioning frame-
work for DNNSs in the cloud. It uses a DNN contention perfor-
mance model to capture performance contention and a cost-
efficient GPU resource provisioning strategy. This strategy
optimizes GPU resource allocation and uses batching based on
the contention model. iGniter ensures predictable performance
for DNN workloads while minimizing expenses. It relies
on its adaptive batching and resource allocation to mitigate
the contention and does not consider the resource utilization
fluctuation originating from pre-determined batch sizes in
the input workload. Horus [15] and Themis [14] are two
approaches that co-locate the DNNs considering the slowdown
they will experience from co-location, and try to mitigate
the impact of contention on performance. However, similar
to iGniter, none of them takes into account the fluctuating
workloads and resulting RUV of DNN jobs as our approach
does.

VI. CONCLUSION

In this paper, we introduced the MediatorDNN to enhance
the throughput of co-located DNN jobs. Our observations
underscore that the contention between co-located jobs di-
rectly affects their throughput. Moreover, the fluctuating input
workload of jobs contributes to resource utilization variation.
Therefore, only relying on average resource utilization is
insufficient for co-location decisions. MediatorDNN considers
this variation, along with the access pattern of jobs to low-level
resources of the hardware platform, when co-locating them.
Leveraging MPT to mitigate the impact of resource utilization
variation on total resource utilization helps MediatorDNN
achieve higher throughput and power efficiency than previous
approaches. The experimental results show that MediatorDNN
can improve the throughput by 31% on average compared with
the Bin Packing approach that does not consider contention
and RUV, and 21% on average compared to the Horus ap-
proach, which considers the average resource demand of DNN
jobs and contention among them but ignores RUV.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants #2105564
and #2236987, and a VMWare grant.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

S. D. Manasi, S. Banerjee, A. Davare, A. A. Sorokin, S. M. Burns,
D. A. Kirkpatrick, and S. S. Sapatnekar, “Reusing gemm hardware for
efficient execution of depthwise separable convolution on asic-based dnn
accelerators,” in Proceedings of the 28th Asia and South Pacific Design
Automation Conference, 2023, pp. 475-482.

W. Zhao, Q. Dang, T. Xia, J. Zhang, N. Zheng, and P. Ren, “Optimiz-
ing fpga-based dnn accelerator with shared exponential floating-point
format,” IEEE Transactions on Circuits and Systems I: Regular Papers,
2023.

U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for
optimizing end-to-end at-scale neural recommendation inference,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 982-995.

D. Luo, T. Yu, Y. Wu, H. Wu, T. Wang, and W. Zhang, “Split: Qos-aware
dnn inference on shared gpu via evenly-sized model splitting,” in Pro-
ceedings of the 52nd International Conference on Parallel Processing,
2023, pp. 605-614.

H. Zhao, W. Cui, Q. Chen, J. Leng, D. Zeng, and M. Guo, “Improving
cluster utilization through adaptive resource management for dnn and
cpu jobs co-location,” IEEE Transactions on Computers, 2023.

F. Xu, J. Xu, J. Chen, L. Chen, R. Shang, Z. Zhou, and F. Liu, “ig-
niter: Interference-aware gpu resource provisioning for predictable dnn
inference in the cloud,” IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 3, pp. 812-827, 2022.

Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo, “Veltair: towards
high-performance multi-tenant deep learning services via adaptive com-
pilation and scheduling,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 388—401.

U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee,
A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang,
“The architectural implications of facebook’s dnn-based personalized
recommendation,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 1EEE, 2020, pp. 488—
501.

T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 193-206.

G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software
framework for enabling effficient preemptive scheduling of gpu,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2017, pp. 3—16.

W. Zhang, Q. Chen, N. Zheng, W. Cui, K. Fu, and M. Guo, “Towards
qos-awareness and improved utilization of spatial multitasking gpus,”
IEEE Transactions on Computers, 2021.

Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681-696, 2016.
F. Guo, Y. Li, J. C. Lui, and Y. Xu, “Dcuda: Dynamic gpu schedulingith
live migration support,” in Proceedings of the ACM Symposium on Cloud
Computing, 2019, pp. 114-125.

M. Wei, W. Zhao, Q. Chen, H. Dai, J. Leng, C. Li, W. Zheng, and
M. Guo, “Predicting and reining in application-level slowdown on spatial
multitasking gpus,” Journal of Parallel and Distributed Computing, vol.
141, pp. 99-114, 2020.

G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based scheduling in
deep learning systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 1, pp. 88-100, 2022.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,”
in 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17), 2017, pp. 613-627.

S. Zhang, W. Li, C. Wang, Z. Tari, and A. Y. Zomaya, “Dybatch:
Efficient batching and fair scheduling for deep learning inference on
time-sharing devices,” in 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). 1EEE, 2020, pp.
609-618.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Batchsizer: Power-
performance trade-off for dnn inference,” in Proceedings of the 26th
Asia and South Pacific Design Automation Conference, 2021, pp. 819—
824.

Y. Shen, M. Ferdman, and P. Milder, “Escher: A cnn accelerator with
flexible buffering to minimize off-chip transfer,” in IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2017, pp. 93-100.

J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “Model-
switching: Dealing with fluctuating workloads in machine-learning-as-a-
service systems,” in 12th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 20), 2020.

P. Pang, Q. Chen, D. Zeng, C. Li, J. Leng, W. Zheng, and M. Guo,
“Sturgeon: Preference-aware co-location for improving utilization of
power constrained computers,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 1EEE, 2020, pp. 718-727.
Nvidia, “Cuda profiler,” https://docs.nvidia.com/cuda/profiler-users-
guide/index.html, 2022, accessed: April 25, 2022.

H. M. Markowitz, Portfolio selection: efficient diversification of invest-
ments. Yale university press, 1968, vol. 16.

I. Hwang and M. Pedram, “Portfolio theory-based resource assignment
in a cloud computing system,” in [EEE International Conference on
Cloud Computing (CLOUD), 2012, pp. 582-589.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211-252, 2015.

G. Griffin, A. Holub, and P. Perona, “The caltech-256: Caltech technical
report,” vol, vol. 7694, p. 3, 2007.

Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/
abs/1408.5882

“Sentiment140,” http://help.sentiment140.com/, 2022, accessed: April
25, 2022.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, June 2011, pp. 142-150. [Online].
Available: http://www.aclweb.org/anthology/P11-1015

L. Jiang, M. Xu, T. Liu, M. Qiao, and Z. Wang, “Deepvs: A deep
learning based video saliency prediction approach,” in Proceedings of
the european conference on computer vision (ECCV), 2018, pp. 602—
617.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1-9.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818-2826.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 4510-4520.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 8697-8710.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision

(ECCV), 2018, pp. 19-34.
K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep

residual networks,” in European conference on computer vision (ECCV).
Springer, 2016, pp. 630-645.

W. Wang, J. Shen, F. Guo, M.-M. Cheng, and A. Borji, “Revisiting
video saliency: A large-scale benchmark and a new model,” in /EEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
W. Wang, J. Shen, J. Xie, M. Cheng, H. Ling, and A. Borji, “Revisiting
video saliency prediction in the deep learning era,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant {GPU} clusters for
{DNN} training workloads,” in USENIX Annual Technical Conference
(ATC’19), 2019, pp. 947-960.

Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in 2020 [EEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 220-233.

M. LeMay, S. Li, and T. Guo, “Perseus: Characterizing performance and
cost of multi-tenant serving for cnn models,” in 2020 IEEE International
Conference on Cloud Engineering (IC2E). 1EEE, 2020, pp. 66-72.

P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv:1901.00041, 2018.

X. Xu, N. Zhang, M. Cui, M. He, and R. Surana, “Characterization
and prediction of performance interference on mediated passthrough
{GPUs} for interference-aware scheduler,” in /1th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19), 2019.

W. Zhang, Q. Chen, N. Zheng, W. Cui, K. Fu, and M. Guo, “Toward
qos-awareness and improved utilization of spatial multitasking gpus,”
IEEE Transactions on Computers, vol. 71, no. 4, pp. 866-879, 2022.
J. Mobin, A. Maurya, and M. M. Rafique, “Colti: Towards concurrent
and co-located dnn training and inference,” in Proceedings of the 32nd
International Symposium on High-Performance Parallel and Distributed
Computing, 2023, pp. 309-310.

A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vig-
fusson, and J. Mace, “Serving {DNNs} like clockwork: Performance
predictability from the bottom up,” in I4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp.
443-462.

H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: A gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 322-337.

