

Science and Mathematics Teacher Retention: A Collective Analysis and Comparison between Master Teachers and other Teachers

Mahtob Aqazade, Rice University; Michael Daley, University of Rochester

PIs: Adem Ekmekci (DUE 1950019), Cindy Callard (University of Rochester; DUE 1950001), David Gibson & Karen Renzaglia (Southern Illinois University-Carbondale, DUE 1949969), Guershon Harel (University of California, San Diego, DUE 1949985), Rebecca McGraw (University of Arizona, DUE 1950002), Greg Rushton (Middle Tennessee State University, DUE 1949925), Peter Sheppard (University of Louisiana-Lafayette, DUE 1949927)

Project

A collaborative research project (NSF NOYCE Track 4) to study the impact of Noyce MTF programs on teacher retention through motivation, leadership, and social networks. Eight universities are involved.

Problem Statement

Teacher turnover presents significant challenges for U.S. public schools for over decades, particularly for science and mathematics in high-need schools¹. Factors such as self-efficacy, leadership, autonomy, and social networks may help mitigate the adversities feeding into teacher turnover.

Theoretical Framework

Teachers' Self-efficacy for Teaching

Teachers' self-efficacy beliefs is an important factor in fostering constructive learning, student motivation, and higher academic performance², which impact job satisfaction and retention or attrition in the profession³.

Teacher Leadership Skills

Opportunities to develop leadership skills and engage in collaborative school-work environment to improve school culture and instruction can support and sustain high-qualified teacher in the profession⁴.

Principal Support and Teacher-school Fit

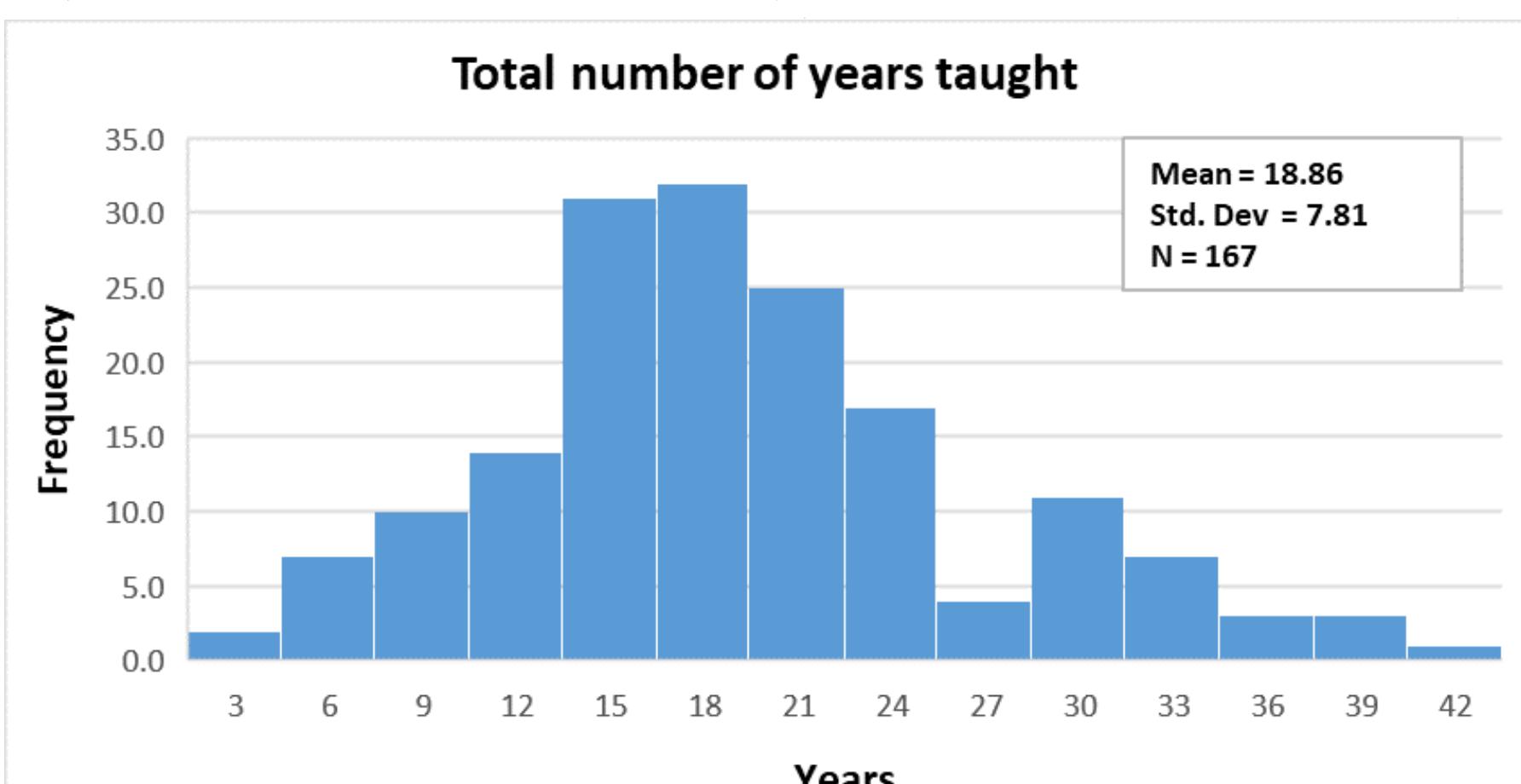
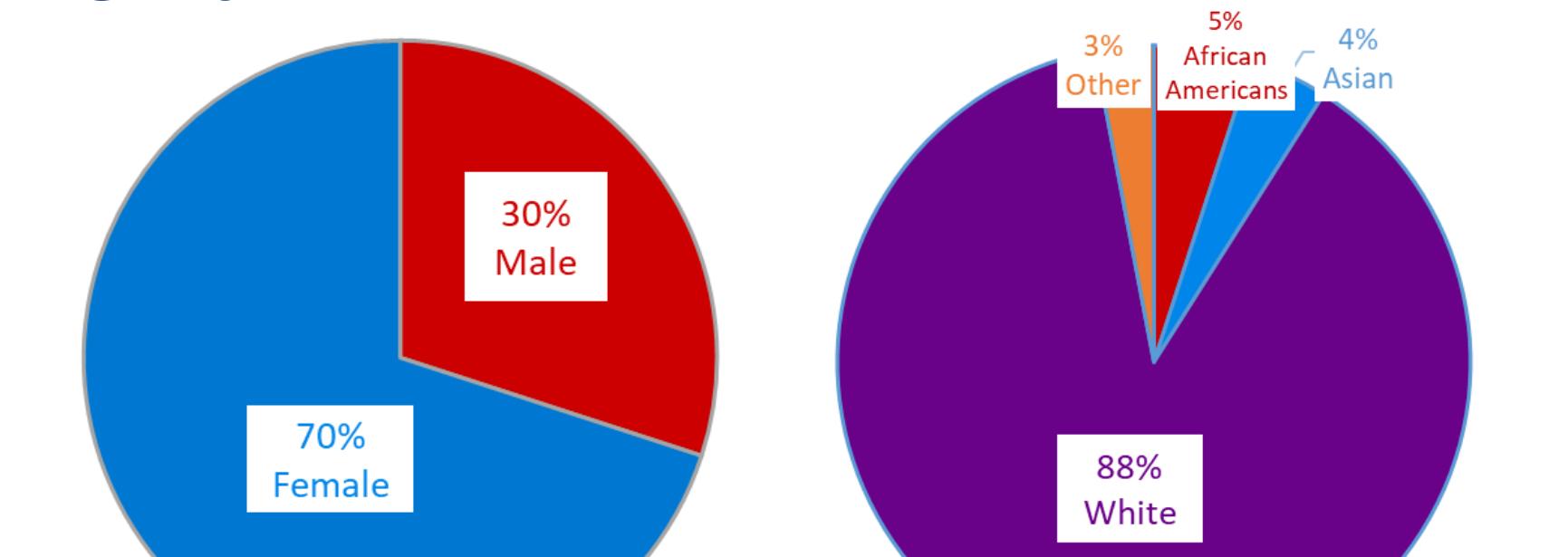
Most of the teachers leave the profession for reasons including dissatisfaction, lack of support, autonomy, and lack of collaboration opportunities⁵.

Diversity Dispositions

Positive diversity dispositions are associated with persisting in teaching in high-need schools⁶.

Professional Social Networks

Some features of teachers' social network (e.g., density) support their persistence and correlated with their self-efficacy^{7,8}.



Research Questions

- (1) How do Master Teaching Fellows (MTFs) compare to non-MTFs in terms of their self-efficacy, leadership engagement, diversity dispositions, school-work environment, social network characteristics, and retention?
- (2) To what extent do these factors relate to their retention? Is there a difference between MTFs and non-MTFs regarding this relation?

Methods

- Survey of 167 science and mathematics teachers (85 MTFs and 82 non-MTFs)
- Multinomial logistics regression analysis on retention as the outcome (3-levels)

Demographics

Role	Retention status				Total
	Non-MTF	Stayer ^a	Shifter	Leaver	
Non-MTF	67	13	2	82	
MTF	51	24	10	85	
Total	118	37	12	167	

^aImplies staying in teaching and includes mover teachers (~12%).

Results

Comparison (MTFs and non-MTFs)

Variables	t	df	p	Mean dif.	S.E.	95% C.I.	
						Low.	Up.
Self-efficacy	2.32	165	.02	0.18	0.08	0.03	0.33
Leadership engagement	1.13	165	.26	0.12	0.10	-0.08	0.32
Teacher-school fit	-0.83	165	.41	-0.10	0.12	-0.33	0.13
Diversity dispositions	1.81	165	.27	0.06	0.03	-0.01	0.12
Community connections	0.40	165	.69	0.05	0.11	-0.18	0.27
Teaching network (TN) size	0.65	165	.52	0.45	0.69	-0.92	1.81
Leadership network (LN) size	3.18	165	.00	1.91	0.60	0.72	3.10
TN geographic reach	3.52	165	.00	0.21	0.06	0.09	0.33
LN geographic reach	2.91	165	.01	0.28	0.10	0.09	0.46
LN bridging	2.72	165	.01	0.44	0.16	0.12	0.77
Retention							
Staying	-3.22	165	.00	-0.24	0.07	-0.38	-0.09
Shifting	2.24	165	.03	0.14	0.06	0.02	0.27
Leaving	1.42	165	.16	0.06	0.04	-0.02	0.14

- MTFs' self-efficacy, leadership network size, and leadership bridging role are significantly higher than those of non-MTFs.
- MTFs' geographic area of networks is significantly greater than that of non-MTFs.
- MTFs are more likely to assume leadership roles.

Regression Results

Variables	Shifter ^a			Leaver ^a		
	B	S.E.	Exp (B)	B	S.E.	Exp (B)
Intercept	-14.38	7.25		1.88	7.01	
Experience	-0.09	0.05	0.91*	0.06	0.05	1.06
Self-efficacy	0.96	0.58	2.60	1.77	0.98	5.88
Leadership engagement	1.31	0.34	3.67	0.88	0.52	2.40
Teacher-school fit	0.77	0.52	2.16	-1.33	0.53	0.27
Diversity dispositions	-0.97	1.39	0.38	-3.63	2.41	0.03
Community connections	-0.51	0.38	0.60	0.92	0.76	2.50
Teaching network (TN) size	0.32	0.15	1.37*	-0.15	0.13	0.86
Leadership network (LN) size	0.30	0.10	1.12	0.14	0.11	1.15
LN geographic reach	0.90	0.42	2.46	0.10	0.63	1.11
TN bridging	0.34	0.20	1.40*	1.07	0.38	2.87
LN bridging	0.94	0.26	2.50	0.99	0.40	2.70

^aThe reference category: Stayer. *Only for MTFs

- MTFs tend to move to a leadership position at a younger age than non-MTFs.
- Shifters and leavers have slightly higher levels of self-efficacy compared to stayers.
- Higher level of leadership activities were associated with shifting to a leadership position.
- Leavers have lower degrees of teacher-school fit compared to stayers.
- Leadership network size is positively associated with shifting to a leadership position. (Same holds for TN for MTFs only).
- Shifters and leavers have more bridging roles in their networks.

Discussion & Conclusions

- More positive outcomes for MTFs from six Noyce programs compared to non-MTFs.
- Teacher-school fit has a negative impact on teacher retention.
- Engagement in leadership activities and having larger networks attracts shifting (leaving the classroom).
- Open-ended responses indicate that shifters feel having more impact.

References

- [1] Cross, F. (2017, June). *Teacher shortage areas nationwide listing 1990–1991 through 2017–2018*. U.S. Department of Education Office of Postsecondary Education.
- [2] Stipek, D. J., Givvin, K. B., Salmon, J. M., & MacGyvers, V. L. (2001). Teachers' beliefs and practices related to mathematics instruction. *Teaching and Teacher Education*, 17(2), 213–226.
- [3] Yost, D. S. (2006). Reflection and self-efficacy: Enhancing the retention of qualified teachers from a teacher education perspective. *Teacher Education Quarterly*, 33, 59–76.
- [4] Dauksas, L., & White, J. (2010). Should I stay or should I go? How teacher leadership can improve teacher retention. *AASA Journal of Scholarship and Practice*, 7(2), 27–32.
- [5] Carver-Thomas, D., & Darling-Hammond, L. (2019). The trouble with teacher turnover: How teacher attrition affects students and schools. *Education Policy Analysis Archives*, 27(36), 1–27.
- [6] Williams, D. L., Edwards, B., Kuhel, K. A., & Lim, W. (2016). Culturally responsive dispositions in prospective mathematics teachers. *Discourse and Communication for Sustainable Education*, 7(2), 17–33.
- [7] Ofem, B., Polizzi, S. J., Rushton, G. T., Beeth, M., Couch, B., Doering, J., ... Sheppard, K. (2021). Looking at our STEM teacher workforce: How to model self-efficacy. *Economic Development Quarterly*, 35(1), 40–52.
- [8] Polizzi, S. J., Zhu, Y., Reid, J. W., Ofem, B., Salisbury, S., Beeth, M., ... & Rushton, G. T. (2021). Science and mathematics teacher communities of practice: social influences on discipline-based identity and self-efficacy beliefs. *International Journal of STEM Education*, 8(1), 1–18.