
FairCIM: Fair Interference Mitigation by DNN
Switching for Latency-Sensitive Inference Jobs

Seyed Morteza Nabavinejad
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA
snabavinejad@wpi.edu

Sherief Reda
School of Engineering

Brown University
Providence, RI

sherief reda@brown.edu

Tian Guo
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA
tian@wpi.edu

Abstract—It is a common practice to co-locate several jobs,
such as DNN inference ones, on a single machine to improve
resource utilization, energy efficiency, and overall performance.
However, individual job performance might degrade when these
jobs compete for shared resources. This degradation can in
particular affect latency-sensitive jobs bound by Service Level
Agreements (SLA), and result in SLA violations. To tackle this
issue and mitigate the impact of interference on latency, we
design a system called FairCIM. For certain applications such
as image classification, various DNNs with varying accuracy and
computational complexity are proposed. Upon detection of SLA
violations, FairCIM dynamically switches between those DNNs to
maintain the latency in the presence of co-location interference.
To ensure fairness, FairCIM selects the jobs for DNN switching
based on their resource utilization. We conduct experiments using
diverse DNNs, datasets, and hardware platforms to evaluate the
FairCIM effectiveness. Compared to another approach that uses
a resource exchange mechanism, FairCIM’s flexibility achieved
by DNN switching substantially reduces SLA violations and
improves the effective accuracy by up to 244%.

Index Terms—deep neural networks, co-location, interference,
fairness

I. INTRODUCTION

Employment of powerful hardware platforms with enor-
mous computing capacity in data centers and the cloud is
on the increase. To gain high resource utilization and en-
ergy efficiency in such platforms, a common approach is
co-location, where several jobs are co-located on a single
machine. While co-location has certain benefits, a varying
amount of interference raised among co-located jobs can affect
their individual performance in the form of prolonged latency.
This increased latency has a particularly detrimental impact
on latency-sensitive jobs that need to meet a predefined SLA
stated in the form of a latency constraint. Moreover, the
interference among co-located jobs has a dynamic nature and
can change over time. Therefore, an offline approach that
determines the co-location of jobs periodically might not be
sufficient to mitigate the impact of interference on the latency
of co-located jobs. To address this problem, an approach is
needed that can dynamically monitor the latency of jobs and
make necessary decisions on the fly to satisfy the SLA.

A large body of prior works has tried to address the problem
of co-location interference in different hardware platforms
such as CPU-based servers [1], [2] and GPU accelerators [3]–

[6]. They are based on exchanging resources between jobs.
They assume there are jobs with extra resources and it is
possible to take some resources from them and give them
to others that experience lower-than-expected performance.
While these approaches can achieve promising results, they
show limited improvement when all the co-located jobs suffer
from low performance, and there is no room for resource
exchange.

To alleviate the impact of interference on such cases, e.g.,
when we have latency-sensitive jobs co-located and there is
no room for resource exchange, we need a different approach
other than leveraging the resource abundancy. Given that jobs
with higher resource utilization have a higher impact on
interference, such an approach should consider the resource
usage of each job to ensure fairness. To this end, we design and
implement Fair Co-location Interference Mitigation (FairCIM)
that leverages a new control knob to mitigate the interference
between co-located latency-sensitive jobs. This control knob is
switching between DNNs that belong to the same application
(e.g., image classification), but with various accuracy and
computational complexities.

FairCIM selects a candidate job and switches its DNN with
a less complex one to free resources for other jobs. To achieve
fairness when selecting the candidate job, FairCIM opts for the
one that has the highest resource consumption share, instead
of simply selecting the one that suffers from SLA violation.
To detect the job with the highest share, FairCIM considers
the features of the input workload of the job, in addition to the
computational complexity of its DNN. By switching the DNN
of the candidate job to a less accurate one, FairCIM trades-off
accuracy with latency to reduce the latency of job(s) that is
violating its SLA.

We make the following main contributions in this paper:
• Through preliminary experiments, we study the impact

of co-location on the latency of DNN inference jobs. We
identify two important factors that impact the resource
utilization of the jobs, and consequently, interference
among them: input workload and DNN computational
complexity.

• We introduce the Resource Utilization Score (RUS) met-
ric that quantifies the share of each co-located job from
total resource utilization. RUS is calculated based on the

computational complexity of the job’s DNN, as well as
the distribution of the size of batches and their inter-
arrival time in the input workload of the job.

• We design FairCIM approach to mitigate the impact of
interference on the latency of co-located jobs. FairCIM
uses DNN downgrading to maintain the latency, which
means replacing the DNN of the jobs with a less complex
one to free up some resources. In the case of SLA
violation, FairCIM selects the job with the highest RUS
for DNN downgrading. Since DNN downgrading can
affect accuracy, FairCIM selects the job with the highest
RUS to achieve fairness. We will open-source the relevant
research artifacts upon acceptance.

We implement FairCIM and deploy it on a CPU-based
server and a GPU accelerator to show its generality. We
conduct experiments using well-known DNNs and datasets
for image classification, video saliency, and natural language
processing to study the efficacy of FairCIM. We compare the
performance of FairCIM with two state-of-the-art approaches,
CLITE [2] for CPU-based server and C-Laius [4] for GPU
accelerator. The results show that compared with CLITE,
FairCIM can yield better performance. It can successfully
maintain the latency of jobs, and achieve up to 244% (98%
on average) improvement in effective accuracy.

The organization of the rest of the paper is as follows: In
Section II we provide background on the impact of co-location
on the latency of DNN inference and also study the impact
of input workload on the resource utilization of jobs. The
problem statement and formulation and our proposed approach
are described in Section III and Section IV respectively. We
present evaluation results in Section V and discuss the related
work in Section VI. Finally, we conclude the paper in Section
VII.

II. BACKGROUND AND MOTIVATION

A. Co-location Contention

The Computing power and memory capacity of hardware
platforms used in data centers and the cloud is increasing. Pop-
ular workloads, including DNN inference jobs, deployed on
these platforms might not fully utilize the available resources
all the time individually. Therefore, it is a common practice to
co-locate several jobs on a single machine to improve resource
utilization. Via preliminary experiments, we study the impact
of co-location on the performance of DNN inference jobs by
quantifying the latency increase resulting from interference
among them. We use six DNNs (Mobilenet-V1-1, Inception-
V1, Inception-V4, NASNet-Large, ResNetV2-101, ResNetV2-
152). First, we launch them individually (without co-location)
to measure their average latency (for processing one input at
a time). Then, we co-locate them all together and measure
the average latency again. We co-locate all six DNNs to
maximize resource utilization, resulting in resource saturation
and inevitable interference among them.

The results are shown in Fig 1. We observe that co-location
results in prolonged latency for all of them; however, the

1

10

100

1000

Inc
ep

tio
n−

V1

Inc
ep

tio
n−

V4

Mob
ile

V1−
1

NASNet−
La

rge

Res
NetV

2−
10

1

Res
NetV

2−
15

2

La
te

nc
y

(m
s)

Single Co−located

2.8x

3.8x

2.2x

3.4x
3.6x

4.1x

Fig. 1: Impact of co-location interference on latency of various
DNNs. The numbers on top of the bars show the latency
increase of co-location compared with a single deployment.
The Y-axis is shown in the base-10 log scale.

amount of latency increase varies from DNN to DNN. The
more complex and larger ones such as ResNet-V2-152 and
Inception-V4 experience higher latency increases than the
smaller and less complex ones such as Inception-V1 and
MobileNet.

B. DNN Input Workload

The input workload of DNN inference jobs typically com-
prises a continuous stream of request batches with varying
sizes and inter-arrival times [7], [8]. In addition to the com-
putational complexity of the jobs’ DNNs, these fluctuating
workloads also impact the resource utilization pattern of the
jobs. To illustrate this point, we examine two DNNs with sig-
nificantly different computational complexities: Inception-V1
with 13.22 MFLOPs and Inception-V4 with 91.94 MFLOPs
computational complexity. These DNNs are deployed on the
server individually (without co-location) and are fed with two
distinct input workloads. The batch size and inter-arrival time
distribution for each DNN’s input workload are shown in Fig.
2(a).

The input workload of Inception-V1 consists of bigger
batches arriving at higher rates (shorter inter-arrival time)
compared with Inception-V4. The average batch size for
Inception-V1 is 64 and for Inception-V4 is 4. The average
inter-arrival time for Inception-V1 is 150 ms and for Inception-
V4 is 750 ms. Analyzing the CPU utilization of each DNN’s
input workload reveals that while Inception-V4 is bigger
than Inception-V1 (around 7x more complex), its resource
utilization is lower due to its input workload. Therefore, we
conclude that the resource utilization of DNN inference jobs
depends on both the input workload and DNN’s computational
complexity.

III. PROBLEM STATEMENT

A. Effective Accuracy

Before presenting the problem formulation, we introduce the
performance metric we use in this work to evaluate the efficacy

0.00

0.25

0.50

0.75

1.00

0 50 100
Batch Size

Fr
ac

tio
n

of
 B

at
ch

es

Inception−V1 Inception−V4

0.00

0.25

0.50

0.75

1.00

200 400 600 800
Inter−Arrival Time (ms)

Fr
ac

tio
n

of
 B

at
ch

es

Inception−V1 Inception−V4

10

20

20 40 60 80 100 120 140 160 180
Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

Inception−V1 Inception−V4
(b) Resource Utilization of DNNs Over Time

(a) Distribution of Batch Size and Inter-Arrival Time of Batches in Input Workloads

Fig. 2: Impact of input workload on resource utilization of
DNNs. While Inception-V1 is smaller and less computation-
ally complex than Inception-V4, it utilizes CPU more since
its input workload consists of bigger batches that arrive at a
higher rate.

of different approaches. Zhang et. al. [8] argue that for ML-as-
a-Service (MLaaS) latency or accuracy alone cannot be used
to measure the satisfaction of users, but both of them should
be considered simultaneously. To his end, they introduce the
Effective Accuracy metric. Denoting the accuracy of results by
acc with a range from 0 (zero percent accuracy) to 1 (100%
accuracy) and the fraction of requests that meet their SLA
(latency constraint) by reqSLA, the effective accuracy (EA) is
obtained as follows:

EA = reqSLA × acc (1)

Our proposed approach can meet the latency constraint
by sacrificing accuracy. However, other approaches that we
compare FairCIM against, do not affect accuracy but violate
the SLA more frequently. Therefore, for the sake of fair com-
parison, we employ effective accuracy metric as it considers
both SLA violation and accuracy reduction.

B. Problem Formulation

There are several DNN inference jobs co-located on a single
machine. Each job has its latency SLA which is specified
by the user during job submission. For one or more job(s),
more than one DNN is available for application. The available
DNNs do the same task but with different computational
complexity (i.e., resource requirement) and accuracy. We can
change the DNN of those jobs during runtime to manage the
latency, but we should be aware of their impact on accuracy.
Therefore, we use effective accuracy metric to consider both
latency and accuracy. The objective function of the problem is
maximizing the average effective accuracy of all the co-located
jobs, subject to maintaining the SLA of each job:

Maximize

∑
i∈N EAi

N
S.T. ∀i ∈ N, Latencyi < SLAi

(2)

The number of co-located DNNs is denoted by N. The SLA
of jobs is defined in the form of tail latency. It means the jobs
can tolerate a certain amount of latency violation, as long as
their tail latency is less than or equal to the SLA.

IV. METHODOLOGY

In the following, we present our proposed approach to
address the problem stated and formulated in Section III. First,
we introduce Resource Utilization Score (RUS). After that,
we describe the architecture of FairCIM. The overall flow of
FairCIM is shown in Fig. 3 and its pseudo-code is presented
in Algorithm 1.

A. Resource Utilization Score

We observed in Section II-B that three parameters determine
the resource utilization intensity of a DNN inference job:
the average batch size of input workload (ABS), the average
time between the arrival of the batches (AAT), and the
computational complexity of the DNN (DNNCC). Therefore,
considering these three parameters, we can compare the re-
source utilization of different jobs co-located with each other.
To make the comparison comprehensive, we need a metric
that can estimate the resource utilization of jobs based on the
parameters mentioned above. The metric should be easy to
obtain and not impose significant overhead on the system. To
this end, we introduce Resource Utilization Score (RUS). RUS
can be calculated as follows:

RUS =
1

AAT
×ABS ×DNNCC (3)

In (3), the 1
AAT shows the number of batches received by

a job in time unit (assuming AAT is in seconds. 1000
AAT if

AAT is in milliseconds). The lower the AAT, the higher the
job’s load in the time unit (assuming the same ABS). RUS
allows us to consider the three aforementioned parameters
simultaneously to compare the resource utilization of different
jobs and identify the ones with more resource utilization than
others. While our observations show that RUS can successfully
estimate the resource utilization of jobs, it is possible to use
other metrics with different definitions for resource utilization
estimation and implement them in FairCIM. For example, it is
possible to consider different priorities for jobs and consider it
in the definition of RUS. In the current definition, we assume
the same priority for all the jobs.

B. FairCIM Design and Implementation

As mentioned earlier in Section I, the resource exchange
mechanism of previous approaches is not completely effective
when all the co-located jobs are latency-sensitive and there are
no extra resources to take from one job and give to another.
Therefore, we should employ a new control knob to manage
the resource utilization and maintain the latency. Of the three

parameters that affect resource utilization (AAT, ABS, and
DNNCC), the first two depend on input workload and we do
not have control over them. Therefore, the only remaining
option is controlling the DNN computational complexity.

For some popular applications such as image classification,
various DNNs are developed (e.g., Inception, ResNet, Mo-
bileNet) that do the same thing, but with different accuracy
and computation cost. If one (or more) of the jobs in the set
of co-located ones is executing an application with such a
feature (several DNNs), we can control its resource utilization
by changing its DNN. This is the control knob that we leverage
in the design of FairCIM. In the following, we discuss the
FairCIM design in detail.

FairCIM constantly checks the jobs’ latency. Upon detecting
a job with latency higher than SLA, the interference mitigation
mechanism is activated. At first, based on the history of the
input workload of each job, its AAT and ABS are calculated.
Different frameworks such as TensorFlow have their interface
For calculating the computational complexity of DNNs. Hav-
ing all the necessary parameters, FairCIM calculates the RUS
of each job according to (3). The job with the highest RUS
is a potential candidate for DNN downgrading (replacing its
DNN with a less complex one). FairCIM checks to see if
DNN downgrading is possible for this job. For some jobs,
there might be no alternative DNN to replace with their current
one. For some others, it is possible that the current DNN being
used is the least complex one. In these cases, FairCIM skips
the current candidate job and moves to the next one with the
highest RUS. It continues the search until there is one job with
the DNN downgrading possibility, or there is no more job to
check.

When finding the candidate job, it is time for DNN replace-
ment. Downgrading the DNN can reduce the accuracy of the
job as the less complex DNNs usually have less accuracy as
well. Therefore, when several less complex DNNs are avail-
able for replacement, FairCIM opts for the one with the closest
complexity to the DNN currently used. For instance, when
DNN1 and DNN2 with computational complexity (MFLOPs)
of 70 and 90 are available to be replaced by the current DNN,
FairCIM selects the DNN2 that has higher computational com-
plexity. In this way, FairCIM aims to minimize the accuracy
loss of the job. After changing the DNN of the candidate job,
FairCIM continues monitoring the latency of the jobs to detect
possible SLA violations, and if detected, repeats the steps.
Moreover, if FairCIM detects that the resource utilization is
very low and there is room for higher accuracy, it can upgrade
the DNN of job(s) to improve accuracy. We implemented
FairCIM using Python on top of TensorFlow. While we use
TensorFlow, FairCIM is compatible with other frameworks
too. FairCIM can also be deployed on any hardware platform
that supports co-location including CPU-based and GPU-based
servers.

A possible alternative to FairCIM is directly downgrading
the DNN of the job(s) facing SLA violations, ignoring resource
utilization of jobs. However, this approach lacks fairness,
as smaller jobs with lower resource utilization could suffer

Algorithm 1 FairCIM Pseudo-code
Input: set of DNN jobs (JS) and their SLAs

1: while True do
2: for i ∈ JS do
3: if Latencyi > SLAi then
4: SLAViolation = True
5: if SLAViolation == False // no job is violating its SLA then
6: Continue from line1

// Proceeding to this line means SLA violation has happened
7: for i ∈ JS do
8: AATi, ABSi = profile (input workload)
9: DNNCCi = profile (DNNi)

10: RUSi = 1
AATi

×ABSi× DNNCCi

11: JS.Sort(in descending order with respect to ”RUS”)
// Now the JS(1) contains the job with highest RUS

12: for i ∈ JS do
13: if DNNi is the smallest possible one then
14: continue //there is no room for downgrading the DNN of job
15: else
16: CJ = JS(i) // Candidate Job
17: break // break the for loop and go to next step
18: if Candidate == NULL then
19: There is no room for downgrading the DNN of any job
20: go to line 1
21: DNNCJ = MaxDNNCC (∀i ∈ DNNSet, DNNCCi < DNNCCCJ)

accuracy loss while larger jobs with high resource utilization
can evade consequences. FairCIM, prioritizing fairness, selects
jobs for DNN downgrading based on RUS, ensuring that
jobs with higher resource utilization experience more accuracy
loss in the presence of SLA violations. In other words,
FairCIM ensures fairness as follows: The jobs with higher
resource utilization would experience more accuracy loss in
the presence of SLA violations, even if they do not face SLA
violation themselves and it is the other jobs that suffer from it.
It is the price they should pay for consuming more resources
than others.

V. EVALUATION

In this section, we evaluate the effectiveness of FairCIM
regarding the effective accuracy improvement of co-located
DNN inference jobs. Specifically, we are interested in under-
standing how much the new control knob of changing the DNN
model can improve the effective accuracy compared with the
traditional approach of exchanging resources between jobs. To
this end, we implement FairCIM and two prior approaches,
CLITE [2] and C-Laius [4]; and deploy them on two different
hardware platforms and use several DNN models and datasets
for evaluation.

A. Experimental Setup

Hardware Platforms. We run experiments on two platforms,
CPU-based and GPU-based servers, to show the applicability
of our approach on different hardware: 1) A dual-socket server
equipped with two Xeon processors, each containing 28 cores
operating at 2.4 GHz, and 128 GB of DDR4 memory. 2) A
Tesla P40 GPU accelerator featuring 3840 CUDA cores with
a peak frequency of 1531 MHz and a total memory capacity
of 24 GB GDDR5.

Fluctuating Input Workloads with Varying
Batch Sizes and Inter-Arrival Times

Job 2 Job 3 Job 4Job 1

SLA Violation
Detection

Monitoring Latency of Co-located Jobs

Job 2

Job 3

Job 4

Job 1

DNN
Computational

Complexity
(MFLOPS)

Average
Batch Size

Average
Arrival Time

Profiling
DNN of Jobs

Input Workload
History

Interference Mitigation by Changing DNN of Jobs

Replacing the
DNN of Job 3
with a Less

Complex One
ABS

AAT

R
U

S
=

(1
/A

TT
)

×
 A

B
S

×
 D

N
N

C
C

RUS

Job 1: 420

Job 2: 290

Job 3: 910

Job 4: 750

DNNCC

Fig. 3: Overall flow of FairCIM.

Models and Datasets. We use DNNs from different domains,
from computer vision to natural language processing to video
saliency, with various computing requirements and datasets.
The networks and datasets are listed in Table I. Computer
vision, and in particular image classification, is a popular
field of study and numerous DNNs are designed for it with
varying computational complexities and accuracy. Therefore,
we can use them to show how FairCIM mechanism of
DNN downgrading works in practice. We employ 16 image
classification networks with two datasets in the experiments:
ImageNet [9] and CalTech-256 [10]. The computational com-
plexity (DNNCC) of image classification DNNs is also listed
in Table I. Note that for TextClassif and DeepVS DNNs, we
could not obtain computational complexity as the tool we used
does not support them.

From the natural language processing (NLP) domain, we
employ a DNN for text classification [11], which we call
TextClassif. For the input data of this DNN, we use Senti-
ment140 [12] and IMDB Reviews [13] datasets. DeepVS [14]
is another DNN we use in our experiments that targets video
saliency prediction. For these two DNNs (TextClassif and
DeepVS), we do not have alternative DNNs. Therefore, for
the jobs that use them, the DNN downgrading is not possible.
We use these DNNs in our experiments to show how FairCIM
acts as such DNNs are present among co-located jobs.

Workloads. We use eight co-location sets to evaluate the
efficacy of FairCIM and compare its performance against
other approaches. The sets are synthesized to cover various
scenarios, from low interference to high interference among
co-located jobs, and from jobs with many alternative DNN
models to jobs with few or no alternative DNN models. Five
co-located jobs are considered in each set to make sure that
the resource utilization reaches its maximum capacity and
interference among co-located jobs happens. The SLA of each
job is selected such that 1) it would be tight enough that some
of the jobs in a set cannot meet it and face SLA violation and
2) it would be relaxed enough that a modification approach
can help mitigate the impact of co-location and address the
SLA violation. The co-location sets are listed in Table II.

TABLE I: List of DNNs Used in the Experiments

DNN (Abbreviation) Domain Dataset (Size)
DNNCC

(MFLOPs)

Inception-V1 (Inc-V1) [15]

Im
ag

e
C

la
ss

ifi
ca

tio
n

Im
ga

eN
et

&
C

al
te

ch
-2

56

13.22
Inception-V2 (Inc-V2) [16] 22.34
Inception-V3 (Inc-V3 [17] 54.25
Inception-V4 (Inc-V4) [18] 91.95
MobilenetV1-1 (MobV1-1) [19] 8.42
MobilenetV1-05 (MobV1-05) [19] 2.64
MobilenetV1-025 (MobV1-025) [19] 0.93
MobilenetV2-1 (MobV2-1) [20] 6.94
MobilenetV2-14 (MobV2-14) [20] 12.12
NASNET-A-Large (NAS-Large) [21] 177.12
NASNET-Mobile (NAS-Mob) [21] 10.51
PNASNET-Large (PNAS-Large) [22] 171.77
PNASNET-Mobile (PNAS-Mob) [22] 10.06
ResNet-V2-50 (ResV2-50) [23] 51.01
ResNet-V2-101 (ResV2-101) [23] 88.89
ResNet-V2-152 (ResV2-152) [23] 120.08

TextClassif (-) [11] NLP
Sentiment140 [12]

-
IMDB [13]

DeepVS (-) [14]
Video

Saliency
LEDOV [14]

-
DHF1K [24], [25]

System Comparison. We compare the performance of
FairCIM against CLITE [2] for the CPU server. CLITE uses
the resource exchange mechanism to maintain the latency
by taking the resources from the one job(s) and allocating
them to other(s) that suffer from SLA violation. It takes
the resources from the job with the highest number of CPU
cores and allocates them to other jobs that experience SLA
violations. For the GPU accelerator, we compare FairCIM with
C-Laius [4] that has a similar mechanism to CLITE but for
GPUs.

B. Experimental Results

1) FairCIM vs. CLITE: Effective Accuracy Analysis: The
effective accuracy results of FairCIM and CLITE across var-
ious sets and their respective jobs are illustrated in Fig. 4.
Notably, FairCIM generally attains higher effective accuracy
than CLITE in most sets and jobs. On average, across all sets,

TABLE II: Specification of Co-location Sets Used in the Experiments

Set 1 Set 2 Set 3 Set 4
Job # DNN Dataset SLA (ms) Job # DNN Dataset SLA (ms) Job # DNN Dataset SLA (ms) Job # DNN Dataset SLA (ms)
1 Inc-V1 ImageNet 320 1 Inc-V2 ImageNet 240 1 MobV1-1 ImageNet 238 1 Inc-V1 CalTech 140
2 Inc-V4 ImageNet 1550 2 Inc-V3 ImageNet 510 2 MobV1-025 ImageNet 160 2 NAS-Mob ImageNet 290
3 MobV2-14 CalTech 420 3 MobV1-05 ImageNet 150 3 MobV2-1 CalTech 218 3 PNAS-Mob CalTech 260
4 PNAS-Large CalTech 1850 4 MobV2-14 ImageNet 310 4 NAS-Large CalTech 2746 4 ResV2-152 CalTech 1071
5 ResV2-101 CalTech 710 5 PNAS-Large CalTech 1600 5 ResV2-50 CalTech 285 5 MobV2-1 ImageNet 224

Set 5 Set 6 Set 7 Set 8
Job # DNN Dataset SLA (ms) Job # DNN Dataset SLA (ms) Job # DNN Dataset SLA (ms) Job # DNN Dataset SLA (ms)
1 Inc-V4 CalTech 620 1 Inc-V2 CalTech 220 1 Inc-V3 CalTech 400 1 ResV2-152 ImageNet 1542
2 MobV1-1 CalTech 206 2 MobV1-025 CalTech 105 2 MobV1-05 CalTech 126 2 Inc-V4 ImageNet 1654
3 NAS-Mob CalTech 309 3 NAS-Large ImageNet 2962 3 PNAS-Mob ImageNet 400 3 Inc-V3 CalTech 800
4 ResV2-50 ImageNet 568 4 PNAS-Large ImageNet 3690 4 ResV2-152 ImageNet 1399 4 TextClassif IMDB 82
5 ResV2-101 ImageNet 530 5 TextClassif Sentiment 55 5 DeepVS DHF1K 1750 5 DeepVS LEDOV 2064

0.00

0.25

0.50

0.75

1.00

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 1

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 2

0.00

0.25

0.50

0.75

1.00

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 3

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 4

0.0

0.2

0.4

0.6

0.8

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 5

0.00

0.25

0.50

0.75

1.00

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 6

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 7

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 8

FairCIM CLITE

Fig. 4: Effective Accuracy of Jobs in each Set

FairCIM improves the effective accuracy by 98% compared
with CLITE, with the highest improvement occurring in Set
7 with 244%. When FairCIM changes the DNN of a job,
the accuracy reduction is moderate. For example, based on
our measurements, Inception-V4 achieves 94.7% accuracy on
the ImageNet dataset, while Inception-V3 achieves 93.4%
accuracy, resulting in only a 1.3% accuracy loss. Downgrading
the DNN significantly enhances the number of requests meet-
ing the SLA, reqSLA. The significant improvement of reqSLA

compensates for moderate accuracy loss caused by DNN
downgrading, leading to high effective accuracy in FairCIM.

Unlike FairCIM, CLITE tries to address the SLA violation
by its resource exchange mechanism. This approach cannot be
effective all the time, especially when the other jobs can hardly
meet their SLA and have no extra resources. Consequently,
some jobs can only process a small number of requests within
their latency constraint, resulting in very low reqSLA. Although
CLITE skips DNN downgrading and the associated accuracy
loss faced by FairCIM, the low reqSLA diminishes the final
effective accuracy.

CLITE achieves slightly higher effective accuracy than
FairCIM in Sets 3 and 8 by less than 2%. In these Sets,
some jobs have surplus resources beyond their need to meet

SLA. It allows CLITE to redistribute these extra resources
to other jobs facing SLA violations. This resource exchange
procedure helps CLITE maintain the latency of all jobs.
FairCIM, however, needs to change the DNNs for specific
jobs (e.g., Job 1 and Job 2 in Set 8) to uphold the latency
for all the jobs, resulting in lower accuracy, and consequently,
lower effective accuracy.

In Sets 2 and 6, CLITE can achieve higher effective ac-
curacy in a couple of jobs, but its overall effective accuracy
is lower. In these sets, the resources are only sufficient for
a few jobs to meet their SLA, with no additional resources
for others. FairCIM downgrades the DNN of most jobs in
these sets, leading to lower accuracy in some jobs compared
to CLITE with the same reqSLA. In these jobs, the effective
accuracy of FairCIM is lower than CLITE. In Sets 6 and 7,
FairCIM can manage the latency of TextClassif and DeepVS
jobs (Job 5 in both sets) while they do not have alternative
DNN. It shows the effectiveness of FairCIM in the presence
of such jobs. Finally, in Set 1, no job violates its SLA and
both approaches achieve the same effective accuracy.

2) FairCIM’s Dyanmic DNN Adaptation: In this section,
we study the number of DNN changes in each set performed
by FairCIM to understand how it leverages DNN downgrading

to maintain latency. The detailed information is shown in
Table III. The numbers show how many times the DNN of
a job is downgraded over time. The number of changes in
Sets 2, 4, and 7 is very high. The reason is more significant
SLA violations in these sets: either one job with significant
SLA violations or several jobs with SLA violations. Therefore,
FairCIM changes the DNN of the jobs more frequently to
address the SLA violations. Unlike FairCIM, CLITE cannot
address the SLA violations in those sets as all of the jobs suffer
from it, and hence, CLITE achieves low effective accuracy.

Another observation is that some jobs experience more
DNN downgrading than others. For instance, the DNN of
Job 4 has been changed 10 times in Set 7, while Job 3 has
only experienced it twice, and the DNN of Jobs 2 and 5
has not changed at all. The reason for this excessive DNN
downgrading of some jobs is their high RUS. In Fig. 5, we
show the flow of DNN change for Set 5 to see how the DNNs
are changed over time, based on RUS of jobs. We use Set
5 as the number of changes is moderate and can be clearly
shown in a figure. In the first three steps, Job 1 has the highest
RUS, and hence, its DNN is changed. At step 4, the RUS of
Job 1 becomes less than Job 5. Therefore, at that step Job
5 is selected. At the final step, Job 1 again has the highest
RUS, and hence, it is selected for DNN downgrading. After
this step, all the jobs can meet their SLA and no further SLA
violation occurs. Note that since the input workload of jobs is
not changing, their ABS and AAT remain the same over time
and their RUS only changes when their DNN is changed (i.e.,
their DNNCC). Hence, after each DNN change, only RUS of
the job with DNN downgrading is changed and the RUS of
the other ones remains intact.

3) FairCIM and CLITE In-Depth Comparisons: In the fol-
lowing, we discuss the results for latency of jobs for FairCIM
and CLITE. Due to lack of space, we only show the results
for one set (Set 5). The latency of jobs under both approaches
and their SLA is shown in Fig. 6 for a period of time, and the

TABLE III: Job’s DNN Downgrading Frequency by FairCIM

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8
Job 1 - 6 - 6 4 - 8 3
Job 2 - 5 - 2 - - - 1
Job 3 - - - 3 - 2 2 -
Job 4 - 3 7 11 - 1 10 -
Job 5 - 8 - - 1 - - -
Total 0 22 7 22 4 3 20 4

Job 1

Job 2

Job 3

Job 4

Job 5

4803.31

315.99

581.79

2429.04

2699.92

4643.49

315.99

581.79

2429.04

2699.92

2834.04

315.99

581.79

2429.04

2699.92

2664.69

315.99

581.79

2429.04

2699.92

= DNN Downgrading Max RUSRUS

Step 1 Step 2 Step 3 Step 4

2664.69

315.99

581.79

2429.04

1647.83

Step 5

Fig. 5: FairCIM flow of DNN downgrading of jobs over time
for Set 5.

200

400

600

800

20 40 60 80 100 120 140 160 180
Monitoring Interval #

La
te

nc
y

(m
s)

FairCIM CLITE SLA

Job 1

150

175

200

225

20 40 60 80 100 120 140 160 180
Monitoring Interval #

La
te

nc
y

(m
s)

Job 2

300

350

20 40 60 80 100 120 140 160 180
Monitoring Interval #

La
te

nc
y

(m
s)

Job 3

450
500
550
600
650
700

20 40 60 80 100 120 140 160 180
Monitoring Interval #

La
te

nc
y

(m
s)

Job 4

400

500

600

20 40 60 80 100 120 140 160 180
Monitoring Interval #

La
te

nc
y

(m
s)

Job 5

Fig. 6: Impact of different approaches on the latency of jobs
and SLA violation for Set 5.

distribution of requests’ latency is shown in Fig. 7. FairCIM
effectively addresses the SLA violations occurring in jobs over
time by employing its DNN downgrading mechanism.

Downgrading the DNN of Job 1 (see Fig. 5 for details) not
only reduces its latency (as it uses less complex DNN) but also
affects the latency of other jobs, e.g., Job 5. While the latency
of Job 5 decreases as a result of DNN change in Job 1, it
still suffers from SLA violation. Therefore, after changing the
DNN of Job 1 several times, FairCIM decides to downgrade
the DNN of Job 5 around Monitoring Interval 50 as it has the
highest RUS at the moment (Fig. 5, Step 4). Over time, Job
3 again experiences SLA violation briefly around Monitoring
Interval 80. At this time, FairCIM changes the DNN of Job
1 for the last time to address the SLA violation of Job 3.
Note that while Job 3 has SLA violation at this step, FairCIM
decides to downgrade the DNN of Job 1 as this job has the
maximum RUS at the time. This is an example of fairness of
FairCIM that targets the jobs with high resource utilization.

0.00

0.25

0.50

0.75

1.00

200 400 600 800
Latency (ms)

Fr
ac

tio
n

of
 R

eq
ue

st
s

FairCIM CLITE

(a) Job 1

0.00

0.25

0.50

0.75

1.00

150 175 200 225
Latency (ms)

Fr
ac

tio
n

of
 R

eq
ue

st
s

FairCIM CLITE

(b) Job 2

0.00

0.25

0.50

0.75

1.00

300 350
Latency (ms)

Fr
ac

tio
n

of
 R

eq
ue

st
s

FairCIM CLITE

(c) Job 3

0.00

0.25

0.50

0.75

1.00

450 500 550 600 650 700
Latency (ms)

Fr
ac

tio
n

of
 R

eq
ue

st
s

FairCIM CLITE

(d) Job 4

0.00

0.25

0.50

0.75

1.00

400 500 600
Latency (ms)

Fr
ac

tio
n

of
 R

eq
ue

st
s

FairCIM CLITE

(e) Job 5

Fig. 7: Latency distribution of requests for each job in Set 5 under FairCIM and CLITE. The vertical red dashed line indicates
the latency constraint (SLA) of each job.

CLITE, on the other hand, cannot address the SLA violation
properly and some jobs face significant SLA violations at
any time. Since no job with extra resources that can meet its
latency constraint with fewer resources is present in the sets,
the CLITE exchanging the resources only shifts the problem
from one job to another. For example, CLITE takes a portion
of resources from Jobs 2, 3, and 4 and gives them to Jobs 1
and 5 to reduce their latency. While it is successful and Jobs
1 and 5 no longer violate their SLA significantly, Jobs 2, 3,
and 4 start experiencing high levels of SLA violation.

C. Sensitivity Analysis

We conduct another set of experiments to study the impact
of SLA on the performance of FairCIM. Earlier, we saw that
for Set 1, FairCIM does not change the DNN of any job, as
they can meet their SLAs with their initial DNNs. To examine
the sensitivity of FairCIM to the SLA of jobs, we change the
SLA of Job 5 of that set and make it tighter step by step. The
results for DNN downgrading of each job are shown in Table
IV and the effective accuracy of each job is shown in Fig. 8.
The table shows how many times the DNN of each job in the
set is changed under different SLAs for Job 5, and the effective
accuracy of each job for different SLAs is shown in the bar
chart. As the SLA becomes tighter, FairCIM changes the DNN
of jobs more frequently to maintain the latency. When SLA is
639 ms, the DNNs of jobs are only changed three times, but
for the tightest SLA (213 ms), DNN downgrading is performed
16 times by FairCIM.

We see in Table IV that while it is Job 5 that is facing
a tighter SLA, FairCIM does not necessarily start DNN
downgrading from it. Instead, it starts from jobs with higher
resource utilization (Job 2 and Job 4). It is only after SLA
becomes very tight that FairCIM starts downgrading the DNN
of Job 5 as well. Consequently, the reduction of effective
accuracy does not only happen in Job 5, but it is spread
across the jobs. Hence, instead of seeing a significant effective
accuracy reduction in Job 5, we see a moderate reduction
across all the jobs. Since Job 2 and Job 4 are utilizing more
resources, their effective accuracy reduction is more significant
than Job 1 and Job 3. These results demonstrate the ability of
FairCIM to adapt itself to the different SLAs by changing the
frequency of DNN downgrading across the co-located jobs. It

TABLE IV: Sensitivity Analysis of FairCIM to SLA of Jobs
for Set 1

SLA of Job 5 (Relaxed to Tight)
710 ms 639 ms 497 ms 355 ms 213 ms

Job 1 - - - - 1
Job 2 - 2 2 4 5
Job 3 - - - - 1
Job 4 - 1 1 4 6
Job 5 - - 1 3 3

Total - 3 4 11 16

0.00

0.25

0.50

0.75

1.00

Job 1 Job 2 Job 3 Job 4 Job 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

SLA of Job 5 710 (ms) 639 (ms) 497 (ms) 355 (ms) 213 (ms)

Fig. 8: Impact of changing the SLA of Job 5 on the effec-
tive accuracy. As SLA becomes tighter, effective accuracy
reduction happens for all the jobs. However, the jobs with
higher resource utilization (Job 2 and 4) face more significant
decrease in effective accuracy

also shows how FairCIM can practice fairness by selecting the
jobs for DNN downgrading based on their resource utilization.

D. FairCIM Evaluation on GPU

With the emergence of Deep Neural Networks (DNNs)
the employment of GPU accelerators for providing significant
computing resources for such networks is on the rise. Since
one application might not be able to fully utilize a GPU
accelerator, it is a common practice to co-locate several
applications on a single GPU as well. Therefore, we extend
our experiments to study the efficacy of FairCIM for GPU
accelerators. To this end, we use a Tesla P40 GPU accelerator
that is introduced in Section V-A, Hardware Platforms. We
compare the FairCIM against the C-Laius approach introduced
in Section V-A, System Comparison. The sets are similar to

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 1

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 2

0.00

0.25

0.50

0.75

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 3

0.0

0.2

0.4

0.6

0.8

Jo
b 1

Jo
b 2

Jo
b 3

Jo
b 4

Jo
b 5

E
ffe

ct
iv

e
A

cc
ur

ac
y

Set 4

FairCIM C-Laius

Fig. 9: FairCIM and C-Laius effective accuracy results for
GPU accelerator.

the ones used for the CPU server (see Table II). However, the
SLAs need to be updated as the requests are processed faster
on GPU. Therefore, we reduce the value of SLAs for jobs. Due
to lack of space, we show the results for effective accuracy of
4 sets in Fig. 9. FairCIM can outperform C-Laius, similar to
CLITE, as C-Laius design also depends on the availability of
extra resources for exchange between jobs. FairCIM improves
the effective accuracy by up to 313% (on average 108%).
These results indicate the effectiveness of FairCIM for GPU
accelerators.

E. Discussion

The primary overhead FairCIM introduces to the system
comes from DNN switching. When a job’s DNN needs to be
changed, the system must terminate the job and restart it with
a new DNN. Deploying this new DNN on the hardware takes
time, which varies based on the DNN’s size and the hardware’s
computing power. In our tests, it takes approximately 30
seconds on average to terminate a job and resume it with the
new DNN. During this period, the job cannot process incoming
requests, which must wait in the queue.

VI. RELATED WORK

Enhancing the efficiency of DNN inference jobs deployed
on different hardware platforms is a prominent area of research
focus that is widely studied in previous works [26]–[30].
Among these works, a large sub-category has studied the
advantages and challenges of co-location of DNN jobs [31]–
[36]. The study of PERSEUS [37] and Jain et. al. [38] showed
that while co-location can help to improve the throughput and
resource utilization, it negatively affects the latency. Therefore,
the focus of a large body of previous works is on co-locating
jobs in a manner that their competition of shared resources
is minimized, and hence, have no or little interference with
each other [27], [39], [40]. These approaches do not offer any
method for mitigating the interference among co-located jobs
during runtime.

Another category of previous works addresses co-location
interference by designing and implementing runtime systems.

Baymax [3] and C-Laius [4] try to mitigate the impact of
co-location on the latency of latency-sensitive jobs that share
the GPU accelerator with throughput-oriented jobs. They aim
to maximize the throughput of the latter while meeting the
latency of the former by re-allocationing time slots [3] or
computing resources [4] of GPUs. In addition to GPUs, the
co-location of throughput-oriented and latency-sensitive jobs
on CPU servers is studied in previous works. The earlier works
consider the co-location of one latency-sensitive job with one
or more throughput-oriented job(s) [41]–[43]. The more recent
works, however, consider the co-location of several latency-
sensitive jobs with one or more throughput-oriented ones [1],
[2]. They use hardware/software resource allocation methods
to assign the resources to jobs dynamically at runtime to
meet the SLA of latency-sensitive jobs while maximizing the
throughput of other ones.

The main issue of all the previous works that focus on
mitigating co-location interference is their assumption of the
availability of one or more throughput-oriented job(s) among
the co-located ones. As latency is not crucial for such jobs,
it is possible to invoke some of their resources and assign
them to latency-sensitive jobs that face SLA violations. This
assumption renders their effectiveness low when they are
employed for co-location sets consisting of only latency-
sensitive jobs. Taking resources from one latency-sensitive job
to give them to another, puts the former at the risk of SLA
violation. So, the SLA violation would only be shifted from
one job to another, instead of being addressed. Our FairCIM
approach can address this shortcoming of previous works by
leveraging DNN downgrading, instead of employing a direct
resource exchange mechanism.

VII. CONCLUSION

In this paper, we introduced a new approach called FairCIM
for mitigating the impact of interference on the performance of
co-located DNN inference jobs. FairCIM addresses the draw-
back of the previous approaches that are based on resource
exchange. Therefore, they fail to maintain SLA when none of
the co-located jobs has extra resources. FairCIM leverages
switching between diverse DNNs developed for the same
application to maintain the latency, while slightly affecting
the accuracy of the results. Furthermore, FairCIM ensures
fairness by downgrading the DNN of the job(s) that have the
highest share in the total resource utilization of the system,
instead of directly changing the DNN of jobs that face SLA
violation. Experimental results using both CPU- and GPU-
based hardware platforms show that FairCIM can significantly
improve the effective accuracy compared with approaches that
are based on resource exchange. As part of future work, we
can investigate the promise of combining resource exchange
and DNN downgrading to further improve the latency and
accuracy of latency-sensitive DNN inference jobs.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants #2105564
and #2236987, and a VMWare grant.

REFERENCES

[1] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-aware resource
partitioning for multiple interactive services,” in ASPLOS, 2019, pp.
107–120.

[2] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location of
multiple latency-critical jobs for warehouse scale computers,” in IEEE
HPCA, 2020, pp. 193–206.

[3] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[4] W. Zhang, Q. Chen, N. Zheng, W. Cui, K. Fu, and M. Guo, “Toward
qos-awareness and improved utilization of spatial multitasking gpus,”
IEEE Transactions on Computers, vol. 71, no. 4, pp. 866–879, 2022.

[5] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software
framework for enabling effficient preemptive scheduling of gpu,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2017, pp. 3–16.

[6] F. Guo, Y. Li, J. C. Lui, and Y. Xu, “Dcuda: Dynamic gpu schedulingith
live migration support,” in ACM SoCC, 2019, pp. 114–125.

[7] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for optimizing
end-to-end at-scale neural recommendation inference,” in IEEE/ACM
ISCA, 2020, pp. 982–995.

[8] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “Model-
switching: Dealing with fluctuating workloads in machine-learning-as-
a-service systems,” in USENIX HotCloud, 2020.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[10] G. Griffin, A. Holub, and P. Perona, “The caltech-256: Caltech technical
report,” vol, vol. 7694, p. 3, 2007.

[11] Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/
abs/1408.5882

[12] “Sentiment140,” http://help.sentiment140.com/, 2022, accessed: April
25, 2022.

[13] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, June 2011, pp. 142–150. [Online].
Available: http://www.aclweb.org/anthology/P11-1015

[14] L. Jiang, M. Xu, T. Liu, M. Qiao, and Z. Wang, “Deepvs: A deep
learning based video saliency prediction approach,” in ECCV, 2018, pp.
602–617.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in IEEE CVPR, 2015, pp. 1–9.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, and Z. Shlens, Jon andojna, “Re-
thinking the inception architecture for computer vision,” in CVPR’16,
2016, pp. 2818–2826.

[18] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, e. ang, T. eyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in IEEE CVPR,
2018, pp. 4510–4520.

[21] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in IEEE CVPR, 2018, pp.
8697–8710.

[22] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in ECCV, 2018, pp. 19–34.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in ECCV’16. Springer, 2016, pp. 630–645.

[24] W. Wang, J. Shen, F. Guo, M.-M. Cheng, and A. Borji, “Revisiting video
saliency: A large-scale benchmark and a new model,” in IEEE CVPR,
2018.

[25] W. Wang, J. Shen, J. Xie, M. Cheng, H. Ling, and A. Borji, “Revisiting
video saliency prediction in the deep learning era,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

[26] S. M. Nabavinejad and T. Guo, “Opportunities of renewable energy
powered dnn inference,” arXiv preprint arXiv:2306.12247, 2023.

[27] F. Xu, J. Xu, J. Chen, L. Chen, R. Shang, Z. Zhou, and F. Liu, “ig-
niter: Interference-aware gpu resource provisioning for predictable dnn
inference in the cloud,” IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 3, pp. 812–827, 2022.

[28] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Coordinated batching
and dvfs for dnn inference on gpu accelerators,” IEEE Transactions on
Parallel and Distributed Systems, 2022.

[29] S. K. Ghosh, A. Raha, and V. Raghunathan, “Energy-efficient ap-
proximate edge inference systems,” ACM Transactions on Embedded
Computing Systems, 2023.

[30] S. S. Ogden and T. Guo, “Layercake: Efficient inference serving with
cloud and mobile resources,” in IEEE/ACM CCGrid, 2023, pp. 191–202.

[31] M. Wei, W. Zhao, Q. Chen, H. Dai, J. Leng, C. Li, W. Zheng, and
M. Guo, “Predicting and reining in application-level slowdown on spatial
multitasking gpus,” Journal of Parallel and Distributed Computing, vol.
141, pp. 99–114, 2020.

[32] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant {GPU} clusters for
{DNN} training workloads,” in USENIX ATC, 2019, pp. 947–960.

[33] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in IEEE HPCA,
2020, pp. 220–233.

[34] H. Zhao, W. Cui, Q. Chen, J. Leng, D. Zeng, and M. Guo, “Improving
cluster utilization through adaptive resource management for dnn and
cpu jobs co-location,” IEEE Transactions on Computers, 2023.

[35] J. Mobin, A. Maurya, and M. M. Rafique, “Colti: Towards concurrent
and co-located dnn training and inference,” in HPDC, 2023, pp. 309–
310.

[36] C. Wang, Y. Bai, and D. Sun, “Cd-msa: Cooperative and deadline-
aware scheduling for efficient multi-tenancy on dnn accelerators,” IEEE
Transactions on Parallel and Distributed Systems, 2023.

[37] M. LeMay, S. Li, and T. Guo, “Perseus: Characterizing performance
and cost of multi-tenant serving for cnn models,” in IEEE International
Conference on Cloud Engineering (IC2E), 2020, pp. 66–72.

[38] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv:1901.00041, 2018.

[39] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based scheduling in
deep learning systems,” IEEE Transactions on Parallel and Distributed
Systems, 2021.

[40] W. Zhao, Q. Chen, H. Lin, J. Zhang, J. Leng, C. Li, W. Zheng, L. Li, and
M. Guo, “Themis: Predicting and reining in application-level slowdown
on spatial multitasking gpus,” in IEEE IPDPS, 2019, pp. 653–663.

[41] N. Kulkarni, F. Qi, and C. Delimitrou, “Pliant: Leveraging approxima-
tion to improve datacenter resource efficiency,” in IEEE HPCA, 2019,
pp. 159–171.

[42] X. Wang, S. Chen, J. Setter, and J. F. Martı́nez, “Swap: Effective fine-
grain management of shared last-level caches with minimum hardware
support,” in IEEE HPCA, 2017, pp. 121–132.

[43] Q. Chen, Z. Wang, J. Leng, C. Li, W. Zheng, and M. Guo, “Avalon:
towards qos awareness and improved utilization through multi-resource
management in datacenters,” in ACM ICS, 2019, pp. 272–283.

