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Abstract

Bayesian Networks (BNs) represent conditional probability relations among a set of ran-
dom variables (nodes) in the form of a directed acyclic graph (DAG), and have found
diverse applications in knowledge discovery. We study the problem of learning the sparse
DAG structure of a BN from continuous observational data. The central problem can
be modeled as a mixed-integer program with an objective function composed of a convex
quadratic loss function and a regularization penalty subject to linear constraints. The opti-
mal solution to this mathematical program is known to have desirable statistical properties
under certain conditions. However, the state-of-the-art optimization solvers are not able to
obtain provably optimal solutions to the existing mathematical formulations for medium-
size problems within reasonable computational times. To address this difficulty, we tackle
the problem from both computational and statistical perspectives. On the one hand, we
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propose a concrete early stopping criterion to terminate the branch-and-bound process in
order to obtain a near-optimal solution to the mixed-integer program, and establish the
consistency of this approximate solution. On the other hand, we improve the existing
formulations by replacing the linear “big-M” constraints that represent the relationship
between the continuous and binary indicator variables with second-order conic constraints.
Our numerical results demonstrate the effectiveness of the proposed approaches.

Keywords: Mixed-integer conic programming, Bayesian networks, directed acyclic graphs,
early stopping criterion, consistency

1. Introduction

A Bayesian network (BN) is a probabilistic graphical model consisting of a labeled directed
acyclic graph (DAG) G = (V,E), in which the vertex set V = {V1, . . . , Vm} corresponds to
m random variables, and the edge set E prescribes a decomposition of the joint probability
distribution of the random variables based on their parents in G. The edge set E encodes
Markov relations on the nodes in the sense that each node is conditionally independent of
its non-descendents given its parents. BNs have been used in knowledge discovery (Spirtes
et al., 2000; Chen et al., 2019), classification (Aliferis et al., 2010), feature selection (Gao
et al., 2015), latent variable discovery (Lazic et al., 2013) and genetics (Ott et al., 2004).
They also play a vital part in causal inference (Pearl, 2009).

In this paper, we propose reformulations of the mixed-integer quadratic programs
(MIQP) for learning the optimal DAG structure of BNs given n continuous observations
from a system of linear structural equation models (SEMs). While there exist exact integer-
programming (IP) formulations for learning DAG structure with discrete data (Cussens,
2010, 2011; Hemmecke et al., 2012; Studenỳ and Haws, 2013; Barlett and Cussens, 2013;
Oates et al., 2016a,b; Bartlett and Cussens, 2017; Cussens et al., 2017a,b), the development
of tailored computational tools for learning the optimal DAG structure from continuous
data has received less attention. In principle, exact methods developed for discrete data
can be applied to continuous data. However, such methods result in exponentially sized
formulations in terms of the number of binary variables. A common practice to circum-
vent the exponential number of binary variables is to limit the in-degree of each node
(Cussens, 2011; Cussens et al., 2017b; Bartlett and Cussens, 2017). But, this may result
in sub-optimal solutions. On the contrary, MIQP formulations for learning DAGs corre-
sponding to linear SEMs require a polynomial number of binary variables. This is because
for BNs with linear SEMs, the score function — i.e., the penalized negative log-likelihood
(PNL) — can be explicitly written as a function of the coefficients of linear SEMs (Shojaie
and Michailidis, 2010; van de Geer and Bühlmann, 2013; Park and Klabjan, 2017; Man-
zour et al., 2021). In contrast to the existing MIQPs (Park and Klabjan, 2017; Manzour
et al., 2021), our reformulations exploit the convex quadratic objective and the relation-
ship between the continuous and binary variables to improve the strength of the continuous
relaxations.
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Continuous BNs with linear SEMs have witnessed a growing interest in the statistics
and computer science communities (van de Geer and Bühlmann, 2013; Raskutti and Uhler,
2018; Loh and Bühlmann, 2014; Ghoshal and Honorio, 2017; Solus et al.). In particular, it
has been shown that the solution obtained from solving the PNL augmented by ℓ0 regular-
ization, which introduces a penalty on the number of non-zero arc weights in the estimated
DAG, achieves desirable statistical properties (Peters and Bühlmann, 2013; van de Geer
and Bühlmann, 2013; Loh and Bühlmann, 2014). Moreover, if the model is identifiable
(Peters and Bühlmann, 2013; Loh and Bühlmann, 2014), that is when the true causal
graph can be identified from the joint distribution, then such a solution is guaranteed to
uncover the true causal DAG when the sample size n is large enough. However, given the
difficulty of obtaining exact solutions, existing approaches for learning DAGs from linear
SEMs have primarily relied on heuristics, using techniques such as coordinate descent (Fu
and Zhou, 2013; Aragam and Zhou, 2015; Han et al., 2016) and non-convex continuous
optimization (Zheng et al., 2018). Unfortunately, these heuristics are not guaranteed to
achieve the desirable properties of the global optimal solution. Moreover, it is difficult to
evaluate the statistical properties of a sub-optimal solution with no optimality guarantees
(Koivisto, 2006). To bridge this gap, in this paper we develop mathematical formulations
for learning optimal BNs from linear SEMs using a PNL objective with ℓ0 regularization.
By connecting the optimality gap of the mixed-integer program to the statistical properties
of the solution, we also establish an early stopping criterion under which we can terminate
the branch-and-bound procedure and attain a solution which asymptotically recovers the
true parameters with high probability.

Our work is related to recent efforts to develop exact tailored methods for DAG learning
from continuous data. Xiang and Kim (2013) show that A∗-lasso algorithm tailored for
DAG structure learning from continuous data with ℓ1-regularization, which introduces
a penalty on the sum of absolute values of the arc weights, is more effective than the
previous approaches based on dynamic programming (e.g., Silander and Myllymäki, 2006)
that are suitable for both discrete and continuous data. Park and Klabjan (2017) develop a
mathematical program for DAG structure learning with ℓ1 regularization. Manzour et al.
(2021) improve and extend the formulation by Park and Klabjan (2017) for DAG learning
from continuous data with both ℓ0 and ℓ1 regularizations. The numerical experiments
by Manzour et al. (2021) demonstrate that as the number of nodes grows, their MIQP
formulation outperforms A∗-lasso and the existing IP methods; this improvement is both
in terms of reducing the IP optimality gap, when the algorithm is stopped due to a time
limit, and in terms of computational time, when the instances can be solved to optimality.
In light of these recent efforts, the current paper makes important contributions to this
problem at the intersection of statistics and optimization.

• The statistical properties of optimal PNL with ℓ0 regularization have been studied
extensively (Loh and Bühlmann, 2014; van de Geer and Bühlmann, 2013). However,
it is often difficult to obtain an optimal solution and no results have been established
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on the statistical properties of approximate solutions. In this paper, we give an early
stopping criterion for the branch-and-bound process under which the approximate
solution gives consistent estimates of the true coefficients of the linear SEM. Our
result leverages the statistical consistency of the PNL estimate with ℓ0 regularization
(van de Geer and Bühlmann, 2013; Peters and Bühlmann, 2013) along with the
properties of the branch-and-bound method wherein both lower and upper bound
values on the objective function are available at each iteration. By connecting these
two properties, we obtain a concrete early stopping criterion, as well as a proof of
consistency of the approximate solution. To the best of our knowledge, this result is
the first of its kind for DAG learning.

• In spite of recent progress, a key challenge in learning DAGs from linear SEMs is
enforcing bounds on arc weights. This is commonly modeled using the standard
“big-M constraint” approach (Park and Klabjan, 2017; Manzour et al., 2021). As
shown by Manzour et al. (2021), this strategy leads to poor continuous relaxations for
the problem, which in turn results in slow lower bound improvement in the branch-
and-bound tree. In particular, Manzour et al. (2021) establish that all existing big-M
formulations achieve the same continuous relaxation objective function under a mild
condition (see Proposition 4). To circumvent this issue, we present a mixed-integer
second-order cone program (MISOCP), which gives a tighter continuous relaxation
than existing big-M formulations under certain conditions discussed in detail in Sec-
tion 5.3. This formulation can be solved by powerful state-of-the-art optimization
packages. Our numerical results show the superior performance of MISOCP com-
pared to the existing big-M formulations in terms of improving the lower bound and
reducing the optimality gap. We also compare our method against the state-of-the-
art benchmarks (Chen et al., 2019; Ghoshal and Honorio, 2018) both for identifiable
and non-identifiable instances, and show that our method provides the best estima-
tion among all methods in most of the networks, especially for the non-identifiable
cases.

The rest of the paper is organized as follows. In Section 2, we define the DAG struc-
ture learning problem corresponding to linear SEMs, and give a general framework for the
problem. In Section 3, we present our early stopping criterion and establish the asymptotic
properties of the solution obtained under this stopping rule. We review existing mathe-
matical formulations in Section 4, and present our proposed mathematical formulations in
Section 5. Results of comprehensive numerical studies are presented in Section 6. We end
the paper with a summary in Section 7.

2. Problem setup: Penalized DAG estimation with linear SEMs

Let M = (V,E) be an undirected and possibly cyclic super-structure graph with node

set V = {1, 2, . . . ,m} and edge set E ⊆ V × V ; let
−→
M = (V,

−→
E ) be the corresponding

4



Consistent Second-Order Conic Integer Programming for DAG Learning

bi-directional graph with
−→
E = {(j, k), (k, j)|(j, k) ∈ E}. We refer to undirected edges as

edges and directed edges as arcs.
We assume that causal effects of continuous random variables in a DAG G0 are repre-

sented by m linear regressions of the form

Xk =
∑

j∈paG0k

βjkXj + ϵk, k = 1, . . . ,m, (1)

where Xk is the random variable associated with node k, paG0
k represents the parents of

node k in G0, i.e., the set of nodes with arcs pointing to k; the latent random variable ϵk
denotes the unexplained variation in node k; and BN parameter βjk specifies the effect of

node j on k for j ∈ paG0
k . The above model is known as a linear SEM (Pearl, 2009).

Let X = (X1, . . . ,Xm) be the n×m data matrix with n rows representing i.i.d. samples
from each random variable, and m columns representing random variables X1, . . . , Xm.
The linear SEM (1) can be compactly written in matrix form as X = XB + E , where
B = [β] ∈ Rm×m is a matrix with βkk = 0 for k = 1, . . . ,m, βjk = 0 for all (j, k) /∈ E, and
E is the n ×m ‘noise’ matrix. Then, G(B) denotes the directed graph on m nodes such
that arc (j, k) appears in G(B) if and only if βjk ̸= 0. Throughout the paper, we will use
B and β to denote the matrix of coefficients and its vectorized version.

A key challenge when estimating DAGs by minimizing the loss function is that the true
DAG is generally not identifiable from observational data. However, for certain SEM distri-
butions, the true DAG is identifiable from observational data; that is when the true causal
graph can be identified from the joint distribution. Two important examples are linear
SEMs with possibly non-Gaussian homoscedastic noise variables (Peters and Bühlmann,
2013), as well as linear SEMs with unequal noise variances that are known up to a con-
stant (Loh and Bühlmann, 2014). In these special cases, the true DAG can be identified
from observational data, without requiring the (strong) ‘faithfulness’ assumption, which is
known to be restrictive in high dimensions (Uhler et al., 2013; Sondhi and Shojaie, 2019).
Given these important implications, in this paper we focus on learning Bayesian networks
corresponding to the above identifiable linear SEMs, i.e., settings where the error variances
are either equal, or known up to a constant.

The negative log likelihood for an identifiable linear SEM (1) with equal noise variances
is proportional to

l(β;X ) = n tr
{
(I −B)(I −B)⊤Σ̂

}
; (2)

here Σ̂ = n−1X⊤X is the empirical covariance matrix, and I is the identity matrix (Shojaie
and Michailidis, 2010; van de Geer and Bühlmann, 2013).

To learn sparse DAGs, van de Geer and Bühlmann (2013) propose to augment the
negative log likelihood with an ℓ0 regularization term. Given a super-structure M, the
optimization problem corresponding to this penalized negative log-likelihood (PNLM) is
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given by

PNLM min
B∈Rm×m

L(β) := l(β;X ) + λn∥β∥0 (3a)

s.t. G(B) induces a DAG from
−→
M, (3b)

where the tuning parameter λn controls the degree of the ℓ0 regularization

∥β∥0 :=
∑

(j,k)∈
−→
E

1(βjk),

where 1(βjk) is an indicator function with value one if βjk ̸= 0, and 0 otherwise. The

constraint (3b) stipulates that the resulting directed subgraph is a DAG induced from
−→
M.

When M corresponds to a complete graph, PNLM reduces to the original PNL of van de
Geer and Bühlmann (2013).

The choice of ℓ0 regularization in (3) is deliberate. Although ℓ1 regularization has at-
tractive computational and statistical properties in high-dimensional regression (Bühlmann
and van de Geer, 2011), many of these advantages disappear in the context of DAG struc-
ture learning (Fu and Zhou, 2013; Aragam and Zhou, 2015). By considering ℓ0 regulariza-
tion, van de Geer and Bühlmann (2013) establish the consistency of PNL under appropriate
assumptions. More specifically, for a Gaussian SEM, they show that the estimated DAG
has (asymptotically) the same number of edges as the DAG with minimal number of edges
(minimal-edge I-MAP), and establish the consistency of PNL for learning sparse DAGs.
These results are formally stated in Proposition 1 in the next section.

Remark 1 A Tikhonov (ℓ2) regularization term, µ∥β∥22, for a given µ > 0, can also be
added to the objective (3a) to obtain more stable solutions (Bertsimas et al., 2016).

In our earlier work (Manzour et al., 2021), we observe that existing mathematical
formulations are slow to converge to a provably optimal solution, β⋆, of (3) using the
state-of-the-art optimization solvers. Therefore, the solution process needs to be termi-
nated early to yield a feasible solution, β̂ with a positive optimality gap, i.e., a positive
difference between the upper bound on L(β⋆) provided by L(β̂) and a lower bound on
L(β⋆) provided by the best continuous relaxation obtained by the branch-and-bound al-
gorithm upon termination. However, statistical properties of such a sub-optimal solution
are not well-understood. Therefore, there exists a gap between theory and computation:
while the optimal solution has nice statistical properties, the properties of the solutions
obtained from approximate computational algorithms are not known. Moreover, due to
the non-convex and complex nature of the problem, characterizing the properties of the
solutions provided by heuristics is especially challenging. In the next section, we bridge
this gap by developing a concrete early stopping criterion and establishing the consistency
of the solution obtained using this criterion.
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3. Early stopping criterion for DAG learning

In this section, we establish a sufficient condition for the approximate solution of PNLM,
β̂ to be consistent for the true coefficients, β0; that is ∥β0 − β̂∥22 = O

(
s0 log(m)/n

)
,

where s0 is the number of arcs in the true DAG, and x ≍ y means that x converges to y
asymptotically. This result is obtained by leveraging an important property of the branch-
and-bound process for integer programming that provides both lower and upper bounds
on the objective function L(β⋆) upon early stopping, as well as the consistency results of
the PNL estimate with ℓ0 regularization. Using the insight from this new result, we then
propose a concrete stopping criterion for terminating the branch-and-bound process that
results in consistent parameter estimates.

Let LB and UB, respectively, denote the lower and upper bounds on the optimal objec-
tive function value (3a) obtained from solving (3) under an early stopping criterion (i.e.,
when the obtained solution is not necessarily optimal). We define the difference between
the upper and lower bounds as the absolute optimality gap: GAP = UB− LB. Let Ĝ and
β̂ denote the structure of the DAG and coefficients of the arcs from optimization model (3)
under the early stopping condition with sample size n and regularization parameter λn.
Let G⋆ and β⋆ denote the DAG structure and coefficients of arcs obtained from the optimal
solution of (3), and G0 and β0 denote the true DAG structure and the coefficient of arcs,
respectively. We denote the number of arcs in Ĝ, G0, and G⋆ by ŝ, s0, and s⋆, respectively.
The score value in (3a) of each solution is denoted by L(ϕ) where ϕ ∈ {β⋆, β̂, β0}.

Next, we present our main result. Our result extends van de Geer and Bühlmann’s result
on consistency of PNLM for the optimal, but computationally unattainable, estimator, β⋆

to an approximate estimator, β̂, obtained from early stopping. We begin by stating the key
result from van de Geer and Bühlmann (2013) and the required assumptions. Throughout,
we consider a Gaussian linear SEM of the form (1). We denote the variance of error terms,
ϵj , by σ

2
jj and the true covariance matrix of the set of random variables, (X1, . . . , Xm) by

the m×m matrix Σ.

Assumption 1 Suppose m < c0n/ log(n) for some constant c0 > 0, and for some constant
σ20 maxj=1,...,m σ

2
jj ≤ σ20. Moreover, the smallest and largest eigenvalues of Σ, κmin(Σ) and

κmax(Σ), satisfy (
c0

log(n)

)1/2

< κ ≤ κmin(Σ) < κmax(Σ) ≤ κ <∞

for constants κ and κ.

Assumption 2 Let, as in van de Geer and Bühlmann (2013), Ω̃(π) be the precision matrix
of the vector of noise variables for an SEM given permutation π of nodes. Denoting the
diagonal entries of this matrix by ω̃jj, there exists a constant ω0 > 0 such that if Ω̃(π) is
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not a multiple of the identity matrix, then

m−1
m∑
j=1

(
(ω̃jj)

2 − 1
)2
> 1/ω0.

Proposition 1 (Theorem 5.1 in van de Geer and Bühlmann (2013)) Suppose Assump-
tions 1 and 2 hold and let α0 := min{ 4

m , 0.05}. Then for an ℓ0 regularization parameter
λ ≍ log(m)/n, it holds with probability at least 1− α0 that

∥β⋆ − β0∥22 + λs⋆ = O
(
λs0
)
.

Here, λ = λn/n, because the loss function (2) is that of van de Geer and Bühlmann (2013)
scaled by the sample size n. The next result establishes the consistency of the approximate
estimator, β̂, obtained using our proposed early stopping strategy.

Proposition 2 Suppose Assumptions 1 and 2 hold and let α0 = min{ 4
m , 0.05} and λ ≍

log(m)/n. Then, the estimator β̂ obtained from early stopping of the branch-and-bound
process such that GAP ≍ O

(
nλs0

)
= O

(
log(m)s0

)
satisfies∥∥∥β̂ − β0

∥∥∥2
2
≍ O

(
log(m)

n
s0
)

with probability (1− α0).

Proof First, by the triangle inequality and the fact that 2ab ≤ a2 + b2, ∀a, b ∈ R,

∥∥β̂ − β0
∥∥2
2
≤
(∥∥β̂ − β⋆

∥∥
2
+
∥∥β⋆ − β0

∥∥
2

)2
=
∥∥β̂ − β⋆

∥∥2
2
+
∥∥β⋆ − β0

∥∥2
2
+ 2
∥∥β̂ − β⋆

∥∥
2

∥∥β⋆ − β0
∥∥
2

≤ 2
∥∥β̂ − β⋆

∥∥2
2
+ 2
∥∥β⋆ − β0

∥∥2
2
. (4)

Recall that β denotes the vectorized coefficient matrix B. Then, in a slight abuse of
notation, we denote by X both the vectorized and a block diagonal version of X and by E
a vectorized version of error E . Then ℓ(β;X ) can be written as ℓ(β;X ) = ∥X − Xβ∥22 (see

Eq. 1). Then, we can write a Taylor series expansion of ℓ
(
β̂;X

)
around ℓ (β⋆;X ) to get

∥X (β̂ − β⋆)∥22 = ℓ(β̂;X )− ℓ(β⋆;X )− 2(β̂ − β⋆)⊤X⊤X (β⋆ − β0) + 2(β̂ − β⋆)⊤X⊤E . (5)

But, Proposition 2.1 in Vershynin (2012) states that for every 0 < ξ < 1,∥∥∥Σ̂− Σ
∥∥∥
2
≤ cξ

(m
n

)1/2
, (6)
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with probability 1 − ξ, where cξ is a constant depending only on ξ. Letting ξ = α0, (6)
holds in our setting with probability 1 − α0 and constant cα0 .

Since, by Assumption 1, κmin(Σ) ≥ κ > c0
log(n) , by a corollary of Weyl’s theorem (Wain-

wright, 2019, Ch. 6, Eq. 6.7), maxj
∣∣κj(Σ̂)− κj(Σ)

∣∣ ≤ ∥∥Σ̂−Σ
∥∥
2
, where κj(Σ) denotes the

jth eigenvalue of Σ. Using the fact that by Assumption 1, m ≤ c0n/ log(n) for a suitable
constant c0, we have

κmin(X⊤X ) = nκmin

(
Σ̂
)
> nκ−(mn)1/2 > nκ−n

(
c0

log(n)

)1/2

= n

(
κ−

(
c0

log(n)

)1/2
)
,

which means that κmin(X⊤X ) > 0 with probability 1− α0.

Denoting c′n ≡
(
κ−

(
c0

log(n)

)1/2)−1

, for large enough n, we have that, with probability

1− α0, ∥∥β̂ − β⋆
∥∥2
2
≤ n−1c′n

∥∥X (β̂ − β⋆
)∥∥2

2
. (7)

Adding n−1c′nλŝ (which is non-negative) to the right-hand-side of (7), combining it
with (5), and using triangle inequality again, we get∥∥β̂−β⋆∥∥2

2
≤ n−1c′n∥X (β̂ − β⋆)∥22 + n−1c′nλŝ (8)

=n−1c′n

(
ℓ(β̂;X )− ℓ(β⋆;X )− 2(β̂ − β⋆)⊤X⊤X (β⋆ − β0) + 2(β̂ − β⋆)⊤X⊤E

)
+ n−1c′nλŝ

≤n−1c′n

∣∣∣ℓ(β̂;X )− ℓ(β⋆;X ) + λŝ+ (λs⋆ − λs⋆)− 2(β̂ − β⋆)⊤X⊤X (β⋆ − β0) + 2(β̂ − β⋆)⊤X⊤E
∣∣∣

≤n−1c′n

∣∣∣ℓ(β̂;X )− ℓ(β⋆;X ) + λŝ− λs⋆
∣∣∣+ n−1c′nλs

⋆

+ 2n−1c′n(β̂ − β⋆)⊤X⊤X (β⋆ − β0) + 2n−1c′n

∣∣∣(β̂ − β⋆)⊤X⊤E
∣∣∣

≤n−1c′n

∣∣∣L(β̂;X )− L(β⋆;X )
∣∣∣+ n−1c′nλs

⋆

+ 2n−1c′nκmax

(
X⊤X

)∥∥β̂ − β⋆
∥∥
2

∥∥β⋆ − β0
∥∥
2
+ 2n−1c′n

∥∥β̂ − β⋆
∥∥
2

∥∥X⊤E
∥∥
2
,

where, as before, κmax denotes the maximum eigenvalue of the matrix.
Using a similar argument as the one used above for the minimum eigenvalue of X⊤X ,

by (6) we have that, with probability 1 − α0,

κmax

(
X⊤X

)
= nκmax

(
Σ̂
)
≤ nκmax(Σ) + n

(
c0

log(n)

)1/2

≤ n

(
κ+

(
c0

log(n)

)1/2
)
.

Plugging the above bound into (8) we get∥∥β̂ − β⋆
∥∥2
2
≤ n−1c′n

∣∣∣L(β̂;X )− L(β⋆;X )
∣∣∣+ n−1c′nλs

⋆ (9)

+ 2c′n

(
κ+

(
c0

log(n)

)1/2
)∥∥β̂ − β⋆

∥∥
2

∥∥β⋆ − β0
∥∥
2
+ 2n−1c′n

∥∥β̂ − β⋆
∥∥
2
∥X⊤E∥2.
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Now, let Z =
∥∥β̂ − β⋆

∥∥
2
, Π = 2c′n

[(
κ+

(
c0

log(n)

)1/2)∥∥β⋆ − β0
∥∥
2
+ n−1

∥∥X⊤E
∥∥
2

]
, and

Γ = n−1c′n
∣∣L(β̂;X )−L(β⋆;X )

∣∣. Then, the inequality in (9) can be written as Z2 ≤ ΠZ+Γ.
Solving for Z and noting that Z, Γ and Π are non-negative, in order to have Z2 ≤ ΠZ+Γ,

we must have Z ≤
(
Π+

√
Π2 + 4Γ

)
/2.

Next, let T be the event under which Π = o(1). Then, on this set, we have Z ≤(
o(1) +

√
o(1) + 4Γ

)
/2, or, Z2 ≤ Γ + o(1); that is

∥∥β̂ − β⋆
∥∥2
2
≤ n−1c′n

∣∣L(β̂;X )− L(β⋆;X )
∣∣+ n−1c′nλs

⋆ + o(1). (10)

Plugging (10) into (4), on the set T we have∥∥β̂ − β0
∥∥2
2
≤ 2n−1c′n

∣∣∣L(β̂;X )− L(β⋆;X )
∣∣∣+ 2n−1c′nλs

⋆ + 2
∥∥β⋆ − β0

∥∥2
2
+ o(1). (11)

Or, using the fact that L(β̂)− L(β⋆) ≤ GAP,∥∥β̂ − β0
∥∥2
2
≤ 2n−1c′nGAP+ 2

∥∥β⋆ − β0
∥∥2
2
+ 2n−1c′nλs

⋆ + o(1). (12)

Now, by Proposition 1, we know that with probability at least 1 − α0,
∥∥β⋆ − β0

∥∥2
2
=

O
(
s0 log(m)/n

)
, and λs⋆ = O

(
s0 log(m)/n

)
. Moreover, using the arguments in van de

Geer and Bühlmann (2013), for n−1∥X⊤E∥2 (bounds for set T1 in Section 7.4.1 of that

paper), the probability of the set T is lower bounded by the probability that
∥∥β⋆−β0∥∥2

2
=

O
(
s0 log(m)/n

)
, which is 1− α0. Thus, if we stop the branch-and-bound algorithm when

GAP = O
(
nλs0

)
= O

(
log(m)s0

)
,

then the first two terms in (12) would both be of order O
(
s0 log(m)/n

)
, while the third

term, 2n−1c′nλs
⋆ would be of a smaller order (by an n−1 factor). This guarantees that,

with probability at least (1 − α0),
∥∥β̂ − β0

∥∥2
2
= O

(
s0 log(m)/n

)
, as desired.

Proposition 2 suggests that the branch-and-bound algorithm can be stopped by setting
a threshold c⋆nλs0 on the value of GAP = |UB − LB| for a constant c⋆ > 0, say c⋆ = 1.
Such a solution will then achieve the same desirable statistical properties (in terms of
parameter consistency) as the optimal solution β⋆. While λ can be chosen data-adaptively
(as discussed in Section 6), both of these choices depend on the value of s0, which is not
known in practice. However, one can find an upper bound for s0 based on the number of
edges in the super-structure M. In particular, if M is the moral graph (Pearl, 2009) with
sm edges, then s0 ≤ sm.

However, while in many applications sm ≍ s0, this is not always guaranteed. Thus, to
ensure consistent estimation when replacing s0 with sm and setting c⋆ = 1 in practice, we

10
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use the more conservative threshold of λs0 ≍ s0 log(m)/n. With this choice the first and
third terms in (12) would be of the same (vanishing) order, and the consistency rate would
be driven by the convergence rate of ∥β⋆ − β0∥22. We investigate the performance of this
choice in Section 6.4.

The above results, including the specific choice of early stopping criterion, are also valid
if the super-structure M corresponding to the moral graph is not known a priori. That is
because the moral graph can be consistently estimated from data using recent developments
in graphical modeling; see Drton and Maathuis (2017) for a review of the literature. While
some of the existing algorithms based on ℓ1-penalty require an additional irrepresentability
condition (Meinshausen and Bühlmann, 2006; Saegusa and Shojaie, 2016), this assumption
can be relaxed by using instead an adaptive lasso penalty or by thresholding the initial
lasso estimates (Bühlmann and van de Geer, 2011).

In light of Proposition 2, it is of great interest to develop algorithms that converge to
a solution with a small optimality gap expeditiously. To achieve this, one approach is to
obtain better lower bounds using the branch-and-bound process from strong mathematical
formulations for (3). To this end, we next review existing formulations of (3).

4. Existing Formulations of DAG Learning with Linear SEMs

In this section, we provide a brief review of known mathematical formulations for DAG
learning with linear SEMs and refer the reader to Manzour et al. (2021) for more detailed
descriptions. We first outline the necessary notation below.

Index Sets
V = {1, 2, . . . ,m}: index set of random variables;
D = {1, 2, . . . , n}: index set of samples.

Input
M = (V,E): an undirected super-structure graph (e.g., the moral graph);
−→
M = (V,

−→
E ): the bi-directional graph corresponding to the undirected graph M;

X = (X1, . . . ,Xm), where Xv = (x1v, x2v, . . . , xnv)
⊤ and xdv denotes dth sample (d ∈ D) of

random variable Xv; note X ∈ Rn×m;
λn : tuning parameter (penalty coefficient for ℓ0 regularization).

Continuous optimization variables

βjk: weight of arc (j, k) representing the regression coefficients ∀(j, k) ∈
−→
E .

Binary optimization variables

gjk = 1 if βjk ̸= 0; otherwise 0, ∀(j, k) ∈
−→
E .

11
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Let F (β, g) =
∑

k∈V
∑

d∈D

(
xdk −

∑
(j,k)∈

−→
E
βjkxdj

)2
+ λn

∑
(j,k)∈

−→
E
gjk. The PNLM

problem can be cast as the following optimization model:

min
B∈Rm×m,g∈{0,1}|

−→
E |

F (β, g), (13a)

G(B) induces a DAG from
−→
M, (13b)

βjk(1− gjk) = 0, ∀(j, k) ∈
−→
E, (13c)

gjk ∈ {0, 1}, ∀(j, k) ∈
−→
E . (13d)

The objective function (13a) is an expanded version of L(β) in PNLM, where we use the
indicator variable gjk to encode the ℓ0 regularization. The constraints in (13b) rule out
cycles. The constraints in (13c) are non-linear and stipulate that βjk ̸= 0 only if gjk = 1.

There are two sources of difficulty in solving (13a)-(13d): (i) the acyclic nature of DAG
imposed by the combinatorial constraints in (13b); (ii) the set of nonlinear constraints in
(13c), which stipulates that βjk ̸= 0 only if there exists an arc (j, k) in G(B). In Section
4.1, we discuss related studies to address the former, whereas in Section 4.2 we present
relevant literature for the latter.

4.1 Linear encodings of the acyclicity constraints (13b)

There are several ways to ensure that the estimated graph does not contain any cycles.
The first approach is to add a constraint for each cycle in the graph, so that at least one arc
in this cycle must not exist in G(B). A cutting plane (CP) method is used to solve such a
formulation which may require generating an exponential number of constraints. Another
way to rule out cycles is by imposing constraints such that the nodes follow a topological
order (Park and Klabjan, 2017). A topological ordering is a unique ordering of the nodes
of a graph from 1 to m such that the graph contains an arc (j, k) if node j appears before
node k in the order. We refer to this formulation as topological ordering (TO). The TO

formulation has O(m2) variables and O(|
−→
E |) constraints. We give these formulations in

the Appendix, for completeness.
The layered network (LN) formulation for learning from continuous data proposed by

Manzour et al. (2021) is shown to perform better, empirically, than the TO formulation
because it reduces the number of binary variables and is proven to obtain the same contin-
uous relaxation bounds. Therefore, smaller quadratic programs are solved that provide the
same relaxation bounds as larger quadratic programs. This formulation is closely related
to the generation number approach proposed in Cussens (2010). A layered network is a
network whose nodes can be assigned to layers with associated layer values such that there
exists no arc from nodes in layer v to nodes in other layers u < v. In this paper, we focus
on the LN formulation and refer the reader to the Appendix and Manzour et al. (2021) for

12
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comparisons of these formulations and their sizes in detail. Next, we give the LN encoding
of the acyclicity constraints (see, also Cussens, 2010). Define decision variables gjk ∈ {0, 1}
for all (j, k) ∈

−→
E , where, as before, the variable gjk takes value 1 if βjk ̸= 0, and

LN 1−m+mgjk ≤ ψk − ψj ∀(j, k) ∈
−→
E . (14a)

Here ψk is the layer value for node k, where 1 ≤ ψk ≤ m. The set of constraints in (14a)
ensures that if there exists an arc (j, k) in the DAG, then layer of node j should be before
that of node k, i.e., ψk ≥ ψj + 1. This rules out any cycles. Furthermore, binary vector

g helps correctly encode the ℓ0 regularization. The LN formulation has O(|
−→
E |) variables

and constraints. Note that |
−→
E | is much smaller than m2 for sparse skeleton/moral graphs.

4.2 Linear encodings of the non-convex constraints (13c)

The nonconvexity of the set of constraints in (13c) causes challenges in obtaining provably
optimal solutions with existing optimization software. Therefore, we consider convex repre-
sentations of this set of constraints. First, we present a linear encoding of the constraints in
(13c). Although the existing compact (i.e., polynomial sized) TO and LN formulations dis-
cussed in Section 4.1 differ in their approach to ruling out cycles, one commonality among
them is that they replace the non-linear constraint (13c) by so called big-M constraints
given by

−Mgjk ≤ βjk ≤Mgjk, ∀(j, k) ∈
−→
E , (15)

for a large enoughM . Unfortunately, these big-M constraints (15) are poor approximations
of (13c), especially in this problem, because no natural and tight value for M exists.
Although a few techniques have been proposed for obtaining the big-M parameter for
sparse regression problem (e.g., Bertsimas et al., 2016; Bertsimas and Van Parys, 2020;
Gómez and Prokopyev, 2021; Park and Klabjan, 2020), the resulting parameters are often
too large in practice. Further, finding a tight big-M parameter itself is a difficult problem
to solve for DAG structure learning.

Consider (13a)-(13d) by replacing (13c) with the linear big-M constraints (15) and
writing the objective function in a matrix form. We denote the resulting formulation,
which has a convex quadratic objective and linear constraints, by the following MIQP.

MIQP min
B∈Rm×m,g∈{0,1}|

−→
E |

tr
[
(I −B)(I −B)⊤X⊤X

]
+ λn

∑
(j,k)∈

−→
E

gjk (16a)

(13b), (15) (16b)

gjk ∈ {0, 1} ∀(j, k) ∈
−→
E . (16c)

Depending on which types of constraints are used in lieu of (13b), as explained in
Section 4.1, MIQP (16) results in three different formulations: MIQP+CP, which uses
(23), MIQP+TO, which uses (24), and MIQP+LN, which uses (14), respectively.
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To discuss the challenges of the big-M approach, we give a definition followed by two
propositions.

Definition 2 A formulation A is said to be stronger than formulation B if R(A) ⊂ R(B)
where R(A) and R(B) correspond to the feasible regions of continuous relaxations of A
and B, respectively.

Proposition 3 (Proposition 3 in Manzour et al. (2021)) The MIQP+TO and MIQP+CP
formulations are stronger than the MIQP+LN formulation.

As a consequence of Definition 2, the optimal objective function value of the continuous
relaxation of the stronger formulation provides a lower bound on the true optimal objective
function of the MIQP that is greater than or equal to the optimal objective function value
of the continuous relaxation of the weaker formulation due to the smaller set of feasible
solutions. However, the next proposition shows that, perhaps surprisingly, the continuous
relaxations of MIQP+TO and MIQP+CP formulations, while stronger according to Defi-
nition 2, give the same optimal objective function value (and the same lower bound on the
true optimal objective).

Proposition 4 (Proposition 5 in Manzour et al. (2021)) Let β⋆jk denote the optimal coef-

ficient associated with an arc (j, k) ∈
−→
E from problem (3). For the same variable branching

in the branch-and-bound process, the continuous relaxations of the MIQP+LN formulation
for ℓ0 regularization attain the same optimal objective function value as MIQP+TO and
MIQP+CP, if M ≥ 2 max

(j,k)∈
−→
E

|β⋆jk|.

Proposition 3 implies that the MIQP+TO and MIQP+CP formulations are stronger
than the MIQP+LN formulation. Nonetheless, Proposition 4 establishes that for suffi-
ciently large values of M , stronger formulations for the DAG learning problem attain the
same continuous relaxation objective function value as the weaker formulation throughout
the branch-and-bound tree. The optimal solution to the continuous relaxation of MIQP
formulations of DAG structure learning may not be at an extreme point of the convex
hull of feasible points. Hence, stronger formulations do not necessarily ensure better lower
bounds for certain formulations of this problem involving the nonlinear objective. This
is in contrast to a mixed-integer program (MIP) with linear objective, whose continuous
relaxation is a linear program (LP). In that case, there exists an optimal solution that is an
extreme point of the corresponding feasible set. As a result, a better lower bound can be
obtained from a stronger formulation that better approximates the convex hull of the set
of solutions to a mixed-integer linear program; this generally leads to faster convergence.
A prime example is the traveling salesman problem (TSP), for which stronger formulations
attain better computational performance (Öncan et al., 2009). In contrast, the numerical
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results by Manzour et al. (2021) empirically show that MIQP+LN has better computa-
tional performance because it is a compact formulation with the fewest constraints and the
same continuous relaxation bounds.

Our next result, which is adapted from Dong et al. (2015) to the DAG structure learning
problem, shows that the continuous relaxation of MIQP is equivalent to the optimal solution
to the problem where the ℓ0-regularization term is replaced with an ℓ1-regularization term
(i.e., ∥β∥1 =

∑
(j,k)∈

−→
E
|βjk|) with a particular choice of the ℓ1 penalty. This motivates us

to consider tighter continuous relaxation for MIQP. Let (βR, gR) be an optimal solution to
the continuous relaxation of MIQP.

Proposition 5 For M ≥ 2 max
(j,k)∈

−→
E

|βRjk|, a continuous relaxation of MIQP (16), where the

binary variables are relaxed, is equivalent to the problem where the ℓ0 regularization term
is replaced with an ℓ1-regularization term with penalty parameter λ̃ = λn

M .

Proof ForM ≥ 2 max
(j,k)∈

−→
E

|βRjk|, the value gRjk is
βR
jk

M in an optimal solution to the continuous

relaxation of MIQP (16). Otherwise, we can reduce the value of the decision variable gR

without violating any constraints while reducing the objective function. Note that since

M ≥ 2 max
(j,k)∈

−→
E

|βRjk|, we have
βR
jk

M ≤ 1, ∀(j, k) ∈
−→
E . To show that the set of constraints in

(13b) is satisfied, we consider the set of CP constraints. In this case, the set of constraints

(13b) holds, i.e.,
∑

(j,k)∈CA
βR
jk

M ≤ |CA| − 1, ∀CA ∈ C, because M ≥ 2 max
(j,k)∈

−→
E

|βRjk|. This

implies that gRjk =
βR
jk

M is the optimal solution. Thus, the objective function reduces to ℓ1

regularization with the coefficient λn
M .

Finally, Proposition 4 establishes that for M ≥ 2 max
(j,k)∈

−→
E

|β⋆jk|, the objective function

value of the continuous relaxations of MIQP+CP, MIQP+LN and MIQP+TO are equiva-
lent. This implies that the continuous relaxations of all formulations are equivalent, which
completes the proof.

Despite the promising performance of MIQP+LN, its continuous relaxation objective
function value provides a weak lower bound due to the big-M constraints. To circumvent
this issue, a natural strategy is to improve the big-M value. Nonetheless, existing methods
which ensure a valid big-M value or heuristic techniques (Park and Klabjan, 2017; Gómez
and Prokopyev, 2021) do not lead to tight big-M values. For instance, the heuristic tech-
nique by Park and Klabjan (2017) to obtain big-M values always satisfies the condition
in Proposition 5 and exact techniques are expected to produce even larger big-M values.
Therefore, we directly develop tighter approximations for (13c) next.
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5. New Perspectives for Mathematical Formulations of DAG Learning

In this section, we discuss improved mathematical formulations for learning DAG structure
of a BN based on convex (instead of linear) encodings of the constraints in (13c).

Problem (13) is an MIQP with non-convex complementarity constraints (13c), a class
of problems which has received a fair amount of attention from the operations research
community over the last decade (Frangioni and Gentile, 2006, 2007, 2009; Frangioni et al.,
2011; Gómez and Prokopyev, 2021; Liu et al., 2023; Wei et al., 2023, 2022). There has also
been recent interest in leveraging these developments to solve sparse regression problems
with ℓ0 regularization (Pilanci et al., 2015; Dong et al., 2015; Xie and Deng, 2020; Atamtürk
and Gómez, 2019; Wei et al., 2020).

Next, we review applications of MIQPs with complementarity constraints of the form
(13c) for solving sparse regression with ℓ0 regularization. Frangioni et al. (2011) develop
a so-called projected perspective relaxation method, to solve the perspective relaxation
of mixed-integer nonlinear programming problems with a convex objective function and
complementarity constraints. This reformulation requires that the corresponding binary
variables are not involved in other constraints. Therefore, it is suitable for ℓ0 sparse re-
gression, but cannot be applied for DAG structure learning. Pilanci et al. (2015) show
how a broad class of ℓ0-regularized problems, including sparse regression as a special case,
can be formulated exactly as optimization problems. The authors use the Tikhonov reg-
ularization term µ∥β∥22 and convex analysis to construct an improved convex relaxation
using the reverse Huber penalty. In a similar vein, Bertsimas and Van Parys (2020) exploit
the Tikhonov regularization and develop an efficient algorithm by reformulating the sparse
regression mathematical formulation as a saddle-point optimization problem with an outer
linear integer optimization problem and an inner dual quadratic optimization problem
which is capable of solving high-dimensional sparse regressions. Xie and Deng (2020) ap-
ply the perspective formulation of sparse regression optimization problem with both ℓ0 and
the Tikhonov regularizations. The authors establish that the continuous relaxation of the
perspective formulation is equivalent to the continuous relaxation of the formulation given
by Bertsimas and Van Parys (2020). Dong et al. (2015) propose perspective relaxation
for ℓ0 sparse regression optimization formulation and establish that the popular sparsity-
inducing concave penalty function known as the minimax concave penalty (Zhang, 2010)
and the reverse Huber penalty (Pilanci et al., 2015) can be obtained as special cases of the
perspective relaxation – thus the relaxations of formulations by Zhang (2010); Pilanci et al.
(2015); Bertsimas and Van Parys (2020); Xie and Deng (2020) are equivalent. The authors
obtain an optimal perspective relaxation that is no weaker than any perspective relaxation.
Among the related approaches, the optimal perspective relaxation by Dong et al. (2015) is
the only one that does not explicitly require the use of Tikhonov regularization.

The perspective formulation, which in essence is a fractional non-linear program, can
be cast either as a mixed-integer second-order cone program (MISOCP) or a semi-infinite
mixed-integer linear program (SIMILP). Both formulations can be solved directly by state-
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of-the-art optimization packages. Dong et al. (2015) and Atamtürk and Gómez (2019) solve
the continuous relaxations and then use a heuristic approach (e.g., rounding techniques) to
obtain a feasible solution (an upper bound). In this paper, we directly solve the MISOCP
and SIMILP formulations for learning sparse DAG structures.

Next, we present how the perspective formulation can be suitably applied for DAG
structure learning with ℓ0 regularization. We further cast the problem as MISOCP and
SIMILP. To this end, we express the objective function (16a) in the following way:

tr[(I −B)(I −B)⊤X⊤X ] + λn
∑

(j,k)∈
−→
E

gjk

= tr[(I −B −B⊤)X⊤X + 2BB⊤X⊤X ] + λn
∑

(j,k)∈
−→
E

gjk. (17)

Let δ ∈ Rm
+ be a vector such that X⊤X − Dδ ⪰ 0, where Dδ = diag(δ1, . . . , δm) and

A ⪰ 0 means that matrix A is positive semi-definite. By splitting the quadratic term
X⊤X = (X⊤X −Dδ) +Dδ in (17), the objective function can be expressed as

tr
[
(I −B −B⊤)X⊤X +BB⊤(X⊤X −Dδ)

]
+ tr

(
BB⊤Dδ

)
+ λn

∑
(j,k)∈

−→
E

gjk. (18)

Let Q = X⊤X −Dδ. (In the presence of Tikhonov regularization with tuning parameter
µ > 0, we let Q = X⊤X + µI − Dδ as described in Remark 1.) Then, Cholesky decom-
position can be applied to decompose Q as q⊤q (note Q ⪰ 0). As a result, tr

(
BB⊤Q

)
=

tr
(
BB⊤q⊤q

)
=
∑m

i=1

∑m
j=1

(∑
(ℓ,j)∈

−→
E
βℓjqiℓ

)2
. The separable component can also be ex-

pressed as tr
(
BB⊤Dδ

)
=
∑m

j=1

∑
(j,k)∈

−→
E
δjβ

2
jk. Using this notation, the objective (18) can

be written as

tr
[
(I −B −B⊤)X⊤X +BB⊤Q

]
+

m∑
j=1

∑
(j,k)∈

−→
E

δjβ
2
jk + λn

∑
(j,k)∈

−→
E

gjk.

The Perspective Reformulation (PRef) of MIQP is then given by

PRef min
B∈Rm×m,g∈{0,1}|

−→
E |

tr
[
(I −B −B⊤)X⊤X +BB⊤Q

]
+ (19a)

m∑
j=1

∑
(j,k)∈

−→
E

δj
β2jk
gjk

+ λn
∑

(j,k)∈
−→
E

gjk,

(16b)− (16c). (19b)

The objective function (19a) is formally undefined when some gjk = 0. More precisely, we

use the convention that
β2
jk

gjk
= 0 when βjk = gjk = 0 and

β2
jk

gjk
= +∞ when βjk ̸= 0 and
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gjk = 0 (Frangioni and Gentile, 2009). The continuous relaxation of PRef, referred to as
the perspective relaxation, is much stronger than the continuous relaxation of MIQP under
certain conditions discussed in detail in Section 5.3 (Pilanci et al., 2015). However, an issue
with PRef is that the objective function is nonlinear due to the fractional term. There
are two ways to reformulate PRef. One as a mixed-integer second-order conic program
(MISOCP) (see, Section 5.1) and the other as a semi-infinite mixed-integer linear program
(SIMILP) (see, Section 5.2).

5.1 Mixed-integer second-order conic program

Let sjk be additional variables representing β2jk. Then, the MISOCP formulation is given
by

MISOCP min
B∈Rm×m,s∈R|

−→
E |,g∈{0,1}|

−→
E |

tr
[
(I −B −B⊤)X⊤X +BB⊤Q

]
+ (20a)

m∑
j=1

∑
(j,k)∈

−→
E

δjsjk + λn
∑

(j,k)∈
−→
E

gjk,

sjkgjk ≥ β2jk (j, k) ∈
−→
E , (20b)

0 ≤ sjk ≤M2gjk (j, k) ∈
−→
E , (20c)

(16b)− (16c). (20d)

Here, the constraints in (20b) imply that βjk ̸= 0 only when gjk = 1. The constraints
in (20b) are second-order conic representable because they can be written in the form of√
4β2jk + (sjk − gjk)2 ≤ sjk + gjk. The set of constraints in (20c) is valid since βjk ≤Mgjk

implies β2jk ≤ M2g2jk = M2g2jk and g2jk = gjk for gjk ∈ {0, 1}. The set of constraints
in (20c) is not required, yet they improve the computational efficiency especially when
we restrict the big-M value. Xie and Deng (2020) report similar behavior for sparse
regression. When we relax gjk ∈ {0, 1} and let gjk ∈ [0, 1], we obtain the continuous
relaxation of MISOCP (20). Let us denote the feasible region of continuous relaxation
of MISOCP (20) and MIQP (16) by RMISOCP and RMIQP, and the objective function
values by OFV(RMISOCP) and OFV(RMIQP), respectively. For a more general problem
than ours, Cui et al. (2013) give a detailed proof establishing that the feasible region
of the former is contained in the feasible region of latter i.e., RMISOCP ⊂ RMIQP ,
and OFV(RMISOCP) ≥ OFV(RMIQP). Therefore, we are able to obtain stronger lower
bounds using MISOCP than MIQP under suitable choices for Dδ as described in Section
5.3.
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5.2 Mixed-integer semi-infinite integer linear program

An alternative approach to reformulate PRef is via perspective cuts developed by Frangioni
and Gentile (2006, 2007). To apply perspective cuts, we use the reformulation idea first
proposed in Frangioni and Gentile (2006) by introducing dummy decision matrix D to
distinguish the separable and non-separable part of the objective function; we also add the
additional constraint d = β where djk is (j, k) element of matrix D and β is the decision
variable in the optimization problem. Following this approach, MIQP can be reformulated
as an SIMILP:

SIMILP min
B∈Rm×m,v∈R|

−→
E |,g∈{0,1}|

−→
E |

tr
[
(I −B −B⊤)X⊤X +DD⊤Q

]
+ (21a)

m∑
j=1

∑
(j,k)∈

−→
E

δjvjk + λn
∑

(j,k)∈
−→
E

gjk,

djk = βjk (j, k) ∈
−→
E , (21b)

vjk ≥ 2β̄jkβjk − β̄2jkgjk ∀β̄jk ∈ [−M,M ] ∀(j, k) ∈
−→
E ,

(21c)

(16b)− (16c), (21d)

vjk ≥ 0, (j, k) ∈
−→
E . (21e)

The set of constraints in (21c) is known as perspective cuts. Note that there are infinitely
many such constraints. Although this problem cannot be solved directly, it lends itself to
a delayed cut generation approach whereby a (small) finite subset of constraints in (21c)
is kept, the current solution (β⋆, g⋆, v⋆) of the relaxation is obtained, and all the violated

inequalities for the relaxation solution are added for β̄jk =
β⋆
jk

g⋆jk
(assuming 0

0 = 0). This

process is repeated until termination criteria are met. This procedure can be implemented
using the cut callback function available by off-the-shelf solvers such as Gurobi or CPLEX.

5.3 Selecting δ

In the MISOCP and SIMILP formulations, one important question is how to identify a
valid δ. A natural choice is diag(δ) = λmine, where λmin is the minimum eigenvalue of
X⊤X and e is a column vector of ones. The issue with this approach is that if λmin = 0,
then diag(δ) becomes a trivial 0 matrix. If diag(δ) turns out to be a zero matrix, then
MISOCP formulation reduces to the big-M formulation. Frangioni and Gentile (2007)
present an effective approach for obtaining a valid δ by solving the following semidefinite
program (SDP)

max
δ∈R|V |

{∑
i∈V

δi : X⊤X − diag(δ) ⪰ 0, δi ≥ 0

}
. (22a)
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This formulation can attain a non-zero Dδ even if λmin = 0. Numerical results by Frangioni
and Gentile (2007) show that this method compares favorably with the minimum eigenvalue
approach. Zheng et al. (2014) propose an SDP approach, which obtains Dδ such that the
continuous relaxation of MISOCP (20) is as tight as possible.

Similar to Dong et al. (2015), our formulation does not require adding a Tikhonov
regularization. In this case, PRef is effective when X⊤X is sufficiently diagonally dominant.
When n ≥ m and each row of X is independent, then X⊤X is guaranteed to be a positive
semi-definite matrix (Dong et al., 2015). On the other hand, when n < m, X⊤X is not full-
rank. Therefore, a Tikhonov regularization term should be added with sufficiently large
µ to make X⊤X + µI ⪰ 0 (Dong et al., 2015) in order to benefit from the strengthening
provided by PRef.

6. Experiments

In this section, we report the results of our numerical experiments that compare different
formulations and evaluate the effect of different tuning parameters and estimation strate-
gies. Our experiments are performed on a cluster operating on UNIX with Intel Xeon
E5-2640v4 2.4GHz. All formulations are implemented in the Python programming lan-
guage. Gurobi 8.1 is used as the solver. Unless otherwise stated, a time limit of 50m (in
seconds), where m denotes the number of nodes, and an MIQP relative optimality gap of
0.01 are imposed across all experiments after which runs are aborted. The relative op-
timality gap is calculated by RGAP:= UB(X)−LB(X)

UB(X) where UB(X) denotes the objective

value associated with the best feasible integer solution (incumbent) and LB(X) represents
the best obtained lower bound during the branch-and-bound process for the formulation
X ∈ {MIQP, SIMILP,MISOCP}.

Unless otherwise stated, we assume λn = log(n) which corresponds to the Bayesian
information criterion (BIC) score. To select the big-M parameter, M , in all formulations
we use the proposal of Park and Klabjan (2017). Specifically, given λn, we solve each
problem without cycle prevention constraints and obtain βR. We then use the upper
bound M = 2 max

(j,k)∈
−→
E

|βRjk|. Although this value does not guarantee an upper bound for M ,

the results provided in Park and Klabjan (2017) and Manzour et al. (2021) computationally
confirm that this approach gives a large enough value of M .

The goals of our computational study are twofold. First, we compare the various math-
ematical formulations to determine which gives us the best performance in Subsection 6.1,
compare the sensitivity to the model parameters in Subsection 6.2, and the choice of the
regularization term in Subsection 6.3. Second, in Subsection 6.4 we use the best-performing
formulation to investigate the implications of the early stopping condition on the quality
of the solution with respect to the true graph. To be able to perform such a study, we
use synthetic data so that the true graph is available. In Subsection 6.5, we compare our
algorithm against two state-of-the-art benchmark algorithms on publicly available datasets.
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We use the package pcalg in R to generate random graphs. First, we create a DAG by
randomDAG function and assign random arc weights (i.e., β) from a uniform distribution,
U [0.1, 1]. Next, the resulting DAG and random coefficients are fed into the rmvDAG func-
tion to generate multivariate data based on linear SEMs (columns of matrix X ) with the
standard normal error distribution. We consider m ∈ {10, 20, 30, 40} nodes and n = 100
samples. The average outgoing degree of each node, denoted by d, is set to two. We gen-
erate 10 random Erdős-Rényi graphs for each setting (m, n, d). We observe that in our
instances, the minimum eigenvalue of X⊤X across all instances is 3.26 and the maximum
eigenvalue is 14.21.

Two types of problem instances are considered: (i) a set of instances with known moral
graph corresponding to the true DAG; (ii) a set of instances with a complete undirected
graph, i.e., assuming no prior knowledge. We refer to the first class of instances as moral
instances and to the second class as complete instances. The observational data, X , for
both classes of instances are the same. The function moralize(graph) in the pcalg R-
package is used to generated the moral graph from the true DAG. Although the moral
graph can be consistently estimated from data using penalized estimation procedures with
polynomial complexity (e.g., Loh and Bühlmann, 2014), the quality of moral graph affects
all optimization models. Therefore, we use the true moral graph in our experiments, unless
otherwise stated.

6.1 Comparison of Mathematical Formulations

We use the following MIQP-based metrics to measure the quality of a solution: relative
optimality gap (RGAP), computation time in seconds (Time), Upper Bound (UB), Lower
Bound (LB), objective function value (OFV) of the initial continuous relaxation, and the
number of explored nodes in the branch-and-bound tree (# BB). An in-depth analysis
comparing the existing mathematical formulations that rely on linear encodings of the
constraints in (13c) for MIQP formulations is conducted by Manzour et al. (2021). The
authors conclude that the MIQP+LN formulation outperforms the other MIQP formu-
lations, and the promising performance of MIQP+LN can be attributed to its size: (1)
MIQP+LN has fewer binary variables and constraints than MIQP+TO, (2) MIQP+LN is
a compact (polynomial-sized) formulation in contrast to MIQP+CP which has an expo-
nential number of constraints. Therefore, in this paper, we analyze the formulations based
on the convex encodings of the constraints in (13c).

6.1.1 Comparison of MISOCP formulations

We next experiment with MISOCP formulations. For the set of constraints in (13b), we
use LN, TO, and CP constraints discussed in Section 4.1 resulting in three formulations
denoted as MISOCP+LN, MISOCP+TO, MISOCP+CP, respectively. The MISOCP+TO
formulation fails to find a feasible solution for instances with 30 and 40 nodes, see Table 1.
For moral instances, the optimality gaps for MISOCP+TO are 0.000 and 0.021 for instances
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Table 1: Optimality gaps for MISOCP+TO and MISOCP+LN formulations

Moral Complete

m MISOCP+TO MISOCP+LN MISOCP+TO MISOCP+LN

10 0.000 0.000 0.009 0.008
20 0.021 0.006 0.272 0.195
30 - 0.010 - 0.195
40 - 0.042 - 0.436

“-” denotes that no feasible solution, i.e., UB, is obtained within the time limit, so optimality gap cannot
be computed.

with 10 and 20 nodes, respectively; for complete instances, the optimality gap for MIS-
OCP+TO formulation are 0.009 and 0.272 for instances with 10 and 20 nodes, respectively.
Moreover, Table 1 illustrates that MISOCP+LN performs better than MISOCP+TO for
even small instances (i.e., 10 and 20 nodes).

For MISOCP+CP, instead of incorporating all constraints given by (23), we begin
with no constraint of type (23). Given an integer solution with cycles, we detect a cy-
cle and impose a new cycle prevention constraint to remove the detected cycle. Depth
First Search (DFS) can detect a cycle in a directed graph with complexity O(|V | + |E|).
Gurobi LazyCallback function is used, which allows adding cycle prevention constraints in
the branch-and-bound algorithm, whenever an integer solution with cycles is found. The
same approach is used by Park and Klabjan (2017) to solve the corresponding MIQP+CP.
Note that Gurobi solver follows a branch-and-cut implementation and adds many general-
purpose and special-purpose cutting planes.

Figures 1a and 1b show that MISOCP+LN outperforms MISOCP+CP in terms of rel-
ative optimality gap and computational time. In addition, MISOCP+LN attains better
upper and lower bounds than MISOCP+CP (see, Figures 1c and 1d). MISOCP+CP re-
quires the solution of a second-order cone program (SOCP) after each cut, which reduces
its computational efficiency and results in higher optimality gaps than MISOCP+LN. MIS-
OCP+TO requires many binary variables which makes the problem very inefficient when
the network becomes denser and larger as shown in Table 1. Therefore, we do not illustrate
the MISOCP+TO results in Figure 1.

6.1.2 Comparison of MISOCP versus SIMILP

Our computational experiments show that the SIMILP formulation generally performs
poorly when compared to MISOCP+LN and MIQP+LN in terms of optimality gap, upper
bound, and computational time. We report the results for SIMILP+LN, MISOCP+LN,
and MIQP+LN formulations in Figure 2. We only consider the LN formulation because
that is the best performing model among the alternatives both for MISOCP and MIQP
formulations.

Figures 2a and 2b show the relative optimality gaps and computational times for these
three formulations. Figures 2c and 2d demonstrate that SIMILP+LN attains lower bounds
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(a) RGAPs (b) Time (in seconds)

(c) Best upper bounds (d) Best lower bounds

Figure 1: Optimization-based measures for MISOCP+LN (left bar) and MISOCP+CP
(right bar) formulations for n = 100.

that are comparable with other two formulations. In particular, for complete instances
with large number of nodes, SIMILP+LN attains better lower bounds than MIQP+LN.
Nonetheless, SIMILP+LN fails to obtain good upper bounds. Therefore, the relative opti-
mality gap is considerably larger for SIMILP+LN.

The poor performance of SIMILP+LN might be because state-of-the-art optimization
packages (e.g., Gurobi, CPLEX) use many heuristics to obtain a good feasible solution
(i.e., upper bound) for a compact formulation. In contrast, SIMILP is not a compact for-
mulation, and we build the SIMILP gradually by adding violated constraints iteratively.
Therefore, a feasible solution to the original formulation is not available while solving
the relaxations with a subset of the constraints (21c). Moreover, the optimization solvers
capable of solving MISOCP formulations have witnessed noticeable improvement due to
theoretical developments in this field. In particular, Gurobi reports 20% and 38% improve-
ment in solution time for versions 8 and 8.1, respectively. In addition, Gurobi v8.1 reports
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(a) RGAPs (b) Time (in seconds)

(c) Best upper bounds (d) Best lower bounds

Figure 2: Optimization-based measures for MISOCP+LN, MIQP+LN, and SIMILP+LN
formulations for n = 100.

over four times faster solution times than CPLEX for solving MISOCP on their benchmark
instances.

6.1.3 Comparison of MISOCP versus MIQP formulations

In this section, we demonstrate the benefit of using the second-order conic formulation
MISOCP+LN instead of the linear big-M formulation MIQP+LN. As before, we only con-
sider the LN formulation for this purpose. Figures 3a and 3b show that MISOCP+LN
performs better than MIQP+LN in terms of the average relative optimality gap across all
number of nodesm ∈ {10, 20, 30, 40}. The only exception is m = 40 for moral instances, for
which MIQP+LN performs better than MISOCP+LN. Nonetheless, we observe that MIS-
OCP+LN clearly outperforms MIQP+LN for complete instances which are more difficult
to solve.
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(a) RGAPs (b) Time (in seconds)

(c) Best upper bounds (d) Best lower bounds

(e) Number of Branch and Bound nodes (f) Continuous relaxation objective function

Figure 3: Optimization-based measures for MISOCP+LN, MIQP+LN formulations for
n = 100.

Figures 3c and 3d show the performance of both formulations in terms of the resulting
upper and lower bounds on the objective function. We observe that MISOCP+LN attains
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Table 2: Computational results for different values of λn = t log(n) for t ∈ {1, 2, 4}, *
indicates that the problem is solved to the optimality tolerance. Superscript i indicates
that out of ten runs, i instances finish before hitting the time limit. Time is averaged over
instances that solve within the time limit, RGAP is averaged over instances that reach the
time limit. Better RGAPs are in bold.

Moral Complete

Instances RGAP Time # nodes Relaxation OFV RGAP Time # nodes Relaxation OFV
m λn MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP
10 4.6 * * 3 2 1306 3715 738.7 664.9 * * 65 74 38850 114433 724.4 629.3
10 9.2 * * 4 3 1116 2936 784.6 693.5 * * 31 39 15736 55543 772.5 662.2
10 18.4 * * 3 2 1269 2457 857.0 747.5 * * 26 29 18223 41197 844.5 720.2
20 4.6 * * 69 51 46513 76261 1474.2 1325.8 .195 .275 1000 1000 101509 238765 1404.9 1144.5
20 9.2 * * 26 27 10695 31458 1589.6 1406.8 .152 .250 1000 1000 152206 274514 1526.9 1238.6

20 18.4 * * 24 36 9574 33788 1763.7 1552.7 .1132 .208 944 1000 159789 277687 1697.1 1395.0

30 4.6 .0108 0.0118 378 527 121358 514979 2230.1 2037.7 .298 .441 1500 1500 38474 64240 2024.0 1569.7
30 9.2 * * 104 291 33371 248190 2392.4 2168.5 .239 .395 1500 1500 59034 71475 2217.5 1741.5
30 18.4 * * 48 74 15649 57909 2608.3 2383.8 .215 .318 1500 1500 74952 96586 2449.2 2006.9

40 4.6 .0426 .0374 1551 1615 664496 2565247 2979.3 2748.6 .436 .545 2000 2000 23083 49050 2582.0 1946.3

40 9.2 .0248 .0364 1125 1336 353256 1347702 3200.7 2923.5 .397 .473 2000 2000 29279 73917 2869.9 2216.9

40 18.4 .0248 .0352 1099 1375 434648 1137666 3521.8 3225.4 .374 .465 2000 2000 31298 60697 3240.1 2633.1

better lower bounds especially for complete instances. However, MISOCP+LN cannot
always obtain a better upper bound. In other words, MISOCP+LN is more effective in
improving the lower bound instead of the upper bound as expected.

Figures 3e and 3f show that MISOCP+LN uses fewer branch-and-bound nodes and
achieves better continuous relaxation values than MIQP+LN.

6.2 Analyzing the Choices of λn and M

We now experiment on different values for λn and M to assess the effects of these pa-
rameters on the performance of MISOCP+LN and MIQP+LN. First, we consider mul-
tiple λ values, λn ∈ {log (n), 2 log(n), 4 log(n)}, while keeping the value of M the same
(i.e., M = 2 max

(j,k)∈
−→
E

|β⋆jk|). Table 2 shows that as λn increases, MISOCP+LN consistently

performs better than MIQP+LN in terms of the relative optimality gap, computational
time, the number of branch-and-bound nodes, and continuous relaxation objective function
value. Indeed, the difference becomes even more pronounced for more difficult cases (i.e.,
complete instances). For instance, for λn = 4 log(n) = 18.4, the relative optimality gap
reduces from 0.465 to 0.374, an over 24% improvement. In addition, MISOCP+LN allows
more instances to be solved to optimality within the time limit. For example, for moral
instances with m = 40, λn = 18.4, eight out of ten instances are solved to optimality using
MISOCP+LN while only two instances are solved to optimality by MIQP+LN.

Finally, we study the influence of the big-M parameter. Instead of a coefficient γ = 2
in Park and Klabjan (2017), we experiment with M = γ max

(j,k)∈
−→
E

|βRjk| for γ ∈ {2, 5, 10} in
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Table 3: Computational results for different values of γ, * indicates that the problem is
solved to the optimality tolerance. Superscript i indicates that out of ten runs, i instances
finish before hitting the time limit. Time is averaged over instances that solve within the
time limit, RGAP is averaged over instances that reach the time limit. Better RGAPs are
in bold.

Moral Complete

Instances RGAP Time # nodes Relaxation OFV RGAP Time # nodes Relaxation OFV
m γ MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP
10 2 * * 3 2 1306 3715 738.7 664.9 * * 65 74 38850 114433 724.4 629.3
10 5 * * 5 2 1433 3026 717.9 647.1 * * 81 82 42675 130112 705.1 607.8
10 10 * * 5 2 1523 2564 712.5 641.1 * * 74 100 35576 174085 699.8 600.3
20 2 * * 69 51 46513 76261 1474.2 1325.8 .195 .275 1000 1000 101509 238765 1404.9 1144.5
20 5 * * 103 156 65951 209595 1438.2 1274.2 .211 .308 1000 1000 97940 225050 1375.3 1080.9
20 10 * * 215 207 150250 349335 1427.7 1256.6 .230 .310 1000 1000 90864 257998 1366.3 1058.2

30 2 .0108 .0118 378 527 121358 514979 2230.1 2037.7 .298 .441 1500 1500 38474 64240 2024.0 1569.7

30 5 .0118 .0148 571 620 164852 527847 2173.9 1950.3 .336 .474 1501 1500 33120 64339 1969.4 1448.4

30 10 .0248 .0148 630 638 202635 585234 2156.5 1919.6 .349 .480 1500 1500 30579 77100 1951.2 1404.0

40 2 .0426 .0374 1551 1615 664496 2565247 2979.3 2748.6 .436 .545 2000 2000 23083 49050 2582.0 1946.3

40 5 .0456 .0472 1643 1634 638323 1347868 2895.6 2635.0 .579 .580 2000 2000 12076 30858 2488.0 1751.7

40 10 .0564 .0572 1639 1632 599281 1584187 2869.2 2595.6 .585 .594 2000 2000 11847 30222 2456.1 1679.6

Table 3, where |βRjk| denotes the optimal solution of each optimization problem without the
constraints to remove cycles. The larger the big-M parameter, the worse the effectiveness
of both models. However, comparing the continuous relaxation objective function values,
we observe that MISOCP+LN tightens the formulation using the conic constraints whereas
MIQP+LN does not have any means to tighten the formulation instead of big-M constraints
which have poor relaxation. In most cases, the MISOCP+LN formulation allows more
instances to be solved to optimality than MIQP+LN. For larger m, because Gurobi solves
larger SOCP relaxations in each branch-and-bound node, the MISOCP+LN formulation
explores far fewer branch-and-bound nodes and stops with a similar RGAP at termination.
For M > 2 max

(j,k)∈
−→
E

|βRjk|, MISOCP+LN outperforms MIQP+LN in all measures, in most

cases.

6.3 The Effect of Tikhonov Regularization

In this subsection, we consider the effect of adding a Tikhonov regularization term to
the objective (see Remark 1) by considering µ ∈ {0, log(n), 2 log(n)} while keeping the
values of λn = log(n) and M the same as before. Table 4 demonstrates that for all
instances with µ > 0, MISOCP+LN outperforms MIQP+LN. For complete instances with
m = 40 and µ = 9.2, MISOCP+LN improves the optimality gap from 0.445 to 0.367,
an improvement over 21%. The reason for this improvement is that µ > 0 makes the
matrix more diagonally dominant; therefore, it makes the conic constraints more effective
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Table 4: Computational results for different values of µ, * indicates that the problem is
solved to the optimality tolerance. Superscript i indicates that out of ten runs, i instances
finish before hitting the time limit. Time is averaged over instances that solve within the
time limit, RGAP is averaged over instances that reach the time limit. Better RGAPs are
in bold.

Moral Complete

Instances RGAP Time # nodes Relaxation OFV RGAP Time # nodes Relaxation OFV
m µ MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP MISOCP MIQP
10 0 * * 3 2 1306 3715 738.7 664.9 * * 65 74 38850 114433 724.4 629.3
10 4.6 * * 4 2 1043 2758 802.0 708.5 * * 69 72 38778 119825 789.3 675.7
10 9.2 * * 4 2 1067 2231 858.0 748.1 * * 72 74 36326 114383 843.2 712.3
20 0 * * 69 51 46513 76261 1474.2 1325.8 .195 .275 1000 1000 101509 238765 1404.9 1144.5
20 4.6 * * 45 45 15111 55302 1604.1 1426.5 .167 .242 1000 1000 102467 249490 1551.7 1267.1
20 9.2 * * 43 55 15384 62297 1716.8 1515.7 .142 .223 1000 1000 94360 258194 1668.3 1355.1

30 0 .0108 .0118 378 527 121358 514979 2230.1 2037.7 .298 .441 1500 1500 38474 64240 2024.0 1569.7

30 4.6 .0089 .0118 310 392 76668 358544 2432.5 2187.7 .237 .387 1500 1500 45473 69258 2286.4 1788.5

30 9.2 .0099 .0108 67 377 12410 320632 2612.6 2311.4 .209 .367 1500 1500 41241 68661 2484.3 1915.7

40 0 .0426 .0374 1551 1615 664496 2565247 2979.3 2748.6 .436 .545 2000 2000 23083 49050 2582.0 1946.3

40 4.6 .0278 .0294 1331 1620 422654 1303301 3281.6 2972.8 .354 .471 2000 2000 13209 30995 2985.4 2261.3

40 9.2 .0208 .0286 870 1507 239214 1762210 3575.4 3165.3 .367 .445 2000 2000 13884 54638 3321.7 2468.7

in tightening the formulation and obtaining a better optimality gap. Also, MISOCP+LN
allows more instances to be solved to optimality than MIQP+LN.

6.4 Practical Implications of Early Stopping

In this subsection, we evaluate the quality of the estimated DAGs obtained from MIS-
OCP+LN by comparing them with the ground truth DAG. To this end, we use three
measures: the average structural Hamming distance (SHD) which counts the number of
arc differences (additions, deletions, or reversals) required to transform the estimated DAG
to the true DAG, the average false positive rate (FPR) which is the proportion of edges
appearing in the estimated DAG but not the true DAG and the average true positive rate
(TPR) which is the proportion of edges appearing in both the true DAG and the estimated
DAG. Finally, because the convergence of the branch-and-bound process may be slow in
some cases, we set a time limit of 100m.

To test the quality of the solution obtained with an early stopping criterion, we set the
absolute optimality gap parameter as GAP = log(m)

n sm and the ℓ0 regularization parameter
as λn = logm as suggested by the discussion following Proposition 2 for achieving a
consistent estimate. We compare the resulting suboptimal solution to the solution obtained
by setting GAP = UB− LB = 0 to obtain the truly optimal solution.

Table 5 shows the numerical results for the average solution time (in seconds) for
instances that are solved within the time limit, the number of instances that were not
solved within the time limit, the actual absolute optimality gap at termination, the average
FPR, the average TPR, the average SHD of the resulting DAGs, across 10 runs for moral
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Table 5: Structural Hamming distances (SHD), False Positive Rate (FPR) and True Pos-
itive Rate (TPR) for early stopping with n = 100, λn = log(m), GAP ≤ τ for moral
instances. The superscripts i indicate that out of ten runs, i instances finish before hitting
the time limit. Time is averaged over instances that solve within the time limit, GAP,
RGAP, SHD, FPR and TPR are averaged over all instances.

τ = 0 τ = log(m)
n

sm
m sm Time GAP RGAP SHD FPR TPR Time GAP RGAP SHD FPR TPR

10 19 1.2810 0.00 0.000 0.75 0.04 1.00 1.2810 0.00 0.000 0.77 0.02 1.00
20 58 6.159 0.70 0.000 1.50 0.01 1.00 6.049 1.33 0.001 2.00 0.01 1.00
30 109 37.407 7.75 0.002 1.67 0.00 1.00 27.637 10.59 0.003 1.66 0.00 1.00
40 138 935.002 43.02 0.010 5.00 0.01 1.00 640.152 45.04 0.011 5.00 0.01 1.00

instances. Table 5 indicates that the average SHD for GAP = log(m)
n sm is close to that of

the truly optimal solution, and the average FPR and TPR are the same between setting
GAP = log(m)

n sm and GAP = 0 except for m = 10. Note that a lower GAP generally leads
to a better SHD score. From a computational standpoint, we observe that by using the
early stopping criterion, we are able to obtain consistent solutions faster in some scenarios.
In particular, for these instances, the average solution time reduces by 26% for m = 30
and 32% for m = 40, for the seven and two instances that solve before the time limit,
respectively. The number of instances that are solved before hitting the 100m time limit
are the same for GAP = 0 and GAP = log(m)

n sm. Furthermore, stopping early does not
sacrifice too much from the quality of the resulting DAG as can be seen from the SHD
scores.

6.5 Comparison to Other Benchmarks

In this section, we compare the performance of MISOCP against the state-of-the-art bench-
marks. These experiments are executed on a laptop with a Windows 10 operating system,
an Intel Core i7-8750H 2.2-GHz CPU, 8-GB DRAM using Python 3.8 with Gurobi 9.1.1
Optimizer.

The benchmarks considered in this section include the top-down approach (EqVarDAG-
TD) and the high-dimensional top-down approach (EqVarDAG-HD-TD) of Chen et al.
(2019), as well as the high-dimensional bottom-up approach (EqVarDAG-HD-BU) of Ghoshal
and Honorio (2018). By taking advantage of the conditions for identifiability in linear SEM
models, these benchmark procedures offer polynomial-time algorithms for learning DAGs
by iteratively identifying a source (top-down) or sink (bottom-up) node based on solving
a series of covariance selection problems.

We compare the performance of the methods on twelve publicly available networks
from Manzour et al. (2021) and Bayesian Network Repository (bnlearn). The number of
nodes in these networks ranges from m = 6 to m = 70. We generate data from both
identifiable and non-identifiable error distributions. In the case of identifiable distributions
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(ID), we generate the data by using random arc weights β from U [−1,−0.1] ∪ U [0.1, 1]
and n = 500 samples standard normal errors. The data for the non-identifiable (NID)
error distributions was generated similarly, but from normal errors with non-equal error
variances chosen randomly from {0.5, 1, 1.5}.

As an input superstructure graph to MISOCP, other than the true moral graphs, we also
consider a superstructure estimate based on the empirical correlation matrix (CorEst). This
estimate—which is guaranteed to be a super set of the DAG skeleton under the faithfulness
assumption—was obtained by testing whether each correlation coefficient is nonzero at
0.05 significance level; the p-values were obtained using the Fisher’s Z-transformation for
correlation coefficients. The MISOCP with true and correlation matrix superstructures
are denoted as MISOCP-True and MISOCP-CorEst, respectively, in Table 6. A time limit
of 50m (seconds), λ = 2 log(n) and the Gurobi RGAP of 0.01 are imposed across the
experiments.

Measures of performance of the benchmark algorithms are summarized in columns
EqVarDAG-TD, EqVarDAG-HD-TD, and EqVarDAG-HD-BU of Table 6. The column
Time reports the solution time in seconds. For all datasets, the true networks can be used
to evaluate the quality of the estimated networks. We report SHD, TPR, and FPR for
all the estimated networks. Given that the true causal network cannot be recovered in
the setting of non-identifiable data (NID), we also report the structural SHD between the
undirected skeleton of the true DAG and the corresponding skeleton of estimated network;
this is denoted as SHDs in Table 6.

We observe that most of the EqVarDAG methods solve the problem within a second.
With respect to the quality of the estimation, EqVarDAG-TD provides better performance
in SHD compared to EqVarDAG-HD-TD and EqVarDAG-HD-BU. The column RGAP
reports the relative gap at early termination. The symbol (*) denotes that the problem
is solved to the optimality tolerance. Compared with the benchmarks, MISOCP with a
CorEst or true superstructure requires longer solution times; however, MISOCP consis-
tently provides high SHD and SHDs scores in every network. Moreover, MISOCP is able
to provide the best estimation among all methods in most of the networks.

Finally, we highlight that in the non-identifiable datasets (NID), MISOCP clearly out-
performs the benchmarks. This is, perhaps, not surprising, as the benchmark algorithms
heavily rely on the identifiability assumption and are not guaranteed to work if this as-
sumption is violated.

7. Conclusion

In this paper, we study the problem of learning an optimal directed acyclic graph (DAG)
from continuous observational data, where the causal effect among the random variables
is linear. The central problem is a quadratic optimization problem with regularization.
We present a mixed-integer second order conic program (MISOCP) which entails a tighter
relaxation than existing formulations with linear constraints. Our numerical results show
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that MISOCP can successfully improve the lower bound and results in better optimality gap
when compared with other formulations based on big-M constraints, especially for dense
and large instances. Moreover, we establish an early stopping criterion under which we can
terminate branch-and-bound and achieve a solution which is asymptotically optimal. In
addition, we show that our method outperforms two state-of-the-art algorithms, especially
on non-identifiable datasets.
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Appendix A. Alternative linear encodings of constraints (13b)

There are several ways to ensure that the estimated graph does not contain any cycles.
The first approach is to add a constraint for each cycle in the graph, so that at least one arc
in this cycle must not exist in G(B). A cutting plane (CP) method is used to solve such a
formulation which may require generating an exponential number of constraints (Jaakkola
et al., 2010). In particular, let C be the set of all possible directed cycles and CA ∈ C be the
set of arcs defining a cycle. The CP formulation removes cycles by imposing the following
constraints for (13b)

CP
∑

(j,k)∈CA

gjk ≤ |CA| − 1, ∀CA ∈ C. (23)

This formulation has exponentially many constraints.
Another way to rule out cycles is by imposing constraints such that the nodes follow

a topological order (Park and Klabjan, 2017). A topological ordering is a unique ordering
of the nodes of a graph from 1 to m such that the graph contains an arc (j, k) if node j
appears before node k in the order. We refer to this formulation as topological ordering
(TO). Define decision variables ors ∈ {0, 1} for all r, s ∈ {1, . . . ,m}. The variable ors takes
value 1 if the topological order of node r equals s. The TO formulation rules out cycles in
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the graph by the following constraints

TO 1−m+mgkj ≤
∑
s∈V

s (oks − ojs), ∀(j, k) ∈
−→
E , (24a)∑

s∈V
ors = 1 ∀r ∈ V, (24b)∑

r∈V
ors = 1 ∀s ∈ V. (24c)

This formulation has O(m2) variables and O(|
−→
E |) constraints.
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Küçükyavuz, Shojaie, Manzour, Wei & Wu
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