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ABSTRACT

The initial bias in steady-state simulation can be characterized as the bias of a ratio estimator if the simulation
model has a regenerative structure. This work tackles input uncertainty quantification for a regenerative
simulation model when its input distributions are estimated from finite data. Our aim is to construct a
bootstrap-based confidence interval (CI) for the true simulation output mean performance that provides
a correct coverage with significantly less computational cost than the traditional methods. Exploiting
the regenerative structure, we propose a k-nearest neighbor (kNN) ratio estimator for the steady-state
performance measure at each set of bootstrapped input models and construct a bootstrap CI from the
computed estimators. Asymptotically optimal choices for k and bootstrap sample size are discussed. We
further improve the CI by combining the kNN and likelihood ratio methods. We empirically compare the
efficiency of the proposed estimators with the standard estimator using queueing examples.

1 INTRODUCTION

In stochastic simulation, input models refer to the distributions that generate random inputs fed into the
simulation logic. These input models typically represent random processes observed in an existing system.
In this case, the input models can be estimated by collecting observations from the real-world random
processes and fitting distribution to the data. Since data is always finite, the input models are subject to
estimation errors. Input uncertainty refers to the variability in the stochastic simulation output caused by
such estimation error in the input models. Quantifying input uncertainty helps us make a correct statistical
inference about the performance measure under the true input distributions.

In this paper, we focus on input uncertainty quantification (IUQ) for a steady-state simulation model.
We assume that the distribution families of the input models are known, but the parameters are unknown
and estimated from the data. We apply the parametric bootstrap method to find a confidence interval (CI)
that covers the true steady-state performance measure. Below, we briefly review IUQ methods most closely
related to this paper. For a comprehensive review of the literature, see Barton et al. (2022).

Barton and Schruben (2001) apply bootstrapping to approximate the sampling distribution of the
estimated input models and run simulations at each bootstrap sample to estimate the mean, then construct a
quantile-based bootstrap CI from the sample means. However, the resulting CI suffers from overcoverage as
the simulation error of the bootstrap sample mean inflates the CI width. Brute-forcely reducing overcoverage
by increasing the number of replications run at each bootstrap sample can be too computationally demanding
if the simulation runtime in nonnegligible. To improve simulation efficiency of the quantile-based bootstrap
CI, Glynn and Lam (2018) apply sectioning, Barton et al. (2018) consider bootstrap shrinkage methods
while Lam and Qian (2022) propose subsampling.
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To the best of our knowledge, the IUQ literature focuses exclusively on unbiased simulation models.
However, in steady-state simulation, the simulation output often has initial bias due to finite run time even
if a warm-up period is implemented. Our goal in this paper is to directly tackle the issue of the initial
bias of a steady-state simulation in IUQ experiment design when the simulation model has a regenerative
structure and thus the steady-state output mean can be written as a ratio estimator (Henderson and Glynn
2001). In this case, the initial bias of the steady-state performance measure estimator manifests as the bias
in the ratio estimator in which the expected values in the numerator and denominator are replaced with
the respective sample means (Glynn 2006). To reduce the bias and improve simulation efficiency, we first
divide up a single replication run at each bootstrapped parameter into renewal cycles. Then, we construct
the numberator and the denominator of the ratio estimator at each bootstrapped parameter by pooling the
sample paths generated within the renewal cycles from its k nearest neighboring parameters. Pooling the
neighbors increases the biases in the numerator and denominator, however, can significantly reduce their
variances, which in turn reduces the bias in the ratio estimator. By analyzing the asymptotic convergence
rate of the k-nearest neighbor (kNN) ratio estimator as the real-world data size increases, we propose the
asymptotically optimal choice for k as well as the bootstrap sample size.

However, the kNN estimation does not scale well in the parameter dimension and may be less efficient
than the nominal estimation for a high-dimensional case. To address this issue, we propose a second ratio
estimator that combines the kNN estimator with the likelihood ratio method to reduce the effect of the
dimensionality. We empirically compare the two proposed estimators’ performances against the standard
ratio estimator to demonstrate their finite sample efficiencies.

The remainder of the paper is organized as follows. We mathematically formulate the IUQ problem
for a regenerative simulation model in Section 2 and propose two estimators in Section 3. We analyze the
the mean square error (MSE) of the estimators and establish a central limit theorem in Section 4. Section 5
studies the empirical performance of the estimators.

2 PROBLEM STATEMENT

Let θ c = (ϑ c
1 , . . . ,ϑ

c
L) ∈ Rd denote the unknown true parameter vector of the L ≥ 1 independent input

models. Within a simulation run, each input model generates an independent and identically distributed
(i.i.d.) random variates. This definition can be applied even if there are correlated inputs as long as they
are generated as vectors and the correlation structure can be parameterized.

For l = 1, . . . ,L, let ml be the number of observations collected from the lth model and θ̂ = (ϑ̂1, . . . , ϑ̂L)
be the maximum likelihood estimator (MLE) of θ c. We assume that ml/m converges to a nonzero
constant for each l, where m = ∑L

l=1 ml . Then, under some regularity conditions (Van der Vaart 2000),

E[‖ϑ c
l − ϑ̂l‖2] = O

(
m−1

l

)
and thus E[‖θ c − θ̂‖2] = O

(
m−1

)
, where ‖·‖ denotes the Euclidean norm. We

further assume that each ϑ̂l has a continuous sampling distribution whose probability density function (pdf)

is f̃l(ϑ̂l|ϑ c
l ). Thus, f̃ (θ̂ |θ c) = ∏L

l=1 f̃l(ϑ̂l|ϑ c
l ) represents the sampling distribution of θ̂ and is defined on

the support, Θ̃ ⊂ Rd . Without loss of generality, we assume L = 1 in the remainder of the paper.
We focus on the regenerative simulation in which the simulated system’s state periodically returns

to a regenerative state. The regenerative cycle is defined as the period between two consecutive returns.
As its name suggests, a regenerative simulator “restarts” at the beginning of each cycle and progresses
independently of the past. Taking a Markovian queueing model as an example, the regenerative state can
be selected as the point when all servers become idle. Once the system reaches the regenerative state, new
arrivals and services occur until all servers become idle again, completing a regenerative cycle.

Given a generic input parameter vector θ , let X(θ , t) denote the simulation sample path. In the
queueing example, θ includes the parameters of the inter-arrival and service time distributions. Under our
assumption, X(θ , t) is a regenerative stochastic process defined on state space S at time t ≥ 0 and w : S→ R
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is a real-valued reward function. The long-run reward rate η is defined as

η(θ)� lim
t→∞

1

t

∫ t

0
w(X(θ ,s))ds,

if the limit exists. Let Z j(θ) denote the set of i.i.d. input random vectors generated from the input models
parameterized by θ in the jth regenerative cycle. Namely, Z j(θ) = {Z j,1(θ),Z j,2(θ), . . . ,Z j,S j(θ)(θ)},

where Z j,�(θ) is the �th input vector and S j(θ) is the number of input vectors generated within the cycle.
In particular, S j(θ) is random and i.i.d. across j conditional on θ . Similarly, Z j(θ), j = 1,2, . . . , are also
i.i.d. given θ . Let Yj(θ) = Y (Z j(θ)) ∈ R and A j(θ) = A(Z j(θ)) ∈ R denote the cumulative reward and
the length of the jth cycle, respectively. The paired sequence {(Yj(θ),A j(θ))} j≥1 is i.i.d. conditional on
θ . Then, the renewal reward theorem (Ross 1995) stipulates that

η(θ) =
E[Y (θ)|θ ]
E[A(θ)|θ ] , (1)

where E[·|θ ] denotes the expectation taken with respect to the inner-level simulation error run with input
parameter θ . For instance, Z j(θ),Yj(θ), and A j(θ) may represent the set of service and inter-arrival times,
the integrated number of jobs in the system over time, and the regenerative cycle length, respectively,
within the jth cycle. Then, η(θ) is the average number in system.

The standard regenerative simulation estimator of η(θ) replaces the expectations in (1) with their
respective sample averages (Glynn 2006):

η̂std(θ) =
∑r

j=1Yj (θ)
∑r

j=1 A j (θ)
, (2)

where r denotes the number of regenerative cycles run at θ .
One way to quantify input uncertainty in simulation output is to construct a CI for η(θ c) that

incorporates the sampling error of θ̂ as well as the simulation error. For exposition, suppose the distribution

of η(θ̂)−η(θ c) is known and let qα(·) denote the α-quantile function of a random variable. Then, we
expect the following CI for η(θ c) to have 1−α coverage as r tends to infinity:

[η̂std(θ̂)−q1−α/2(η(θ̂)−η(θ c)), η̂std(θ̂)−qα/2(η(θ̂)−η(θ c))]. (3)

When η(·) is estimated by η̂std(·), the distribution of η̂std(θ̂)− η̂std(θ c) is still unknown since θ c and

the sampling distribution of θ̂ , f̃ , are unknown. In the IUQ literature, f̃ is typically approximated by the

asymptotic distribution of θ̂ as m → ∞ or by bootstrapping the input data. In this work, we adopt the
parametric bootstrap method, where each bootstrapped parameter is an MLE computed from m random

inputs generated from the parametric input model given θ̂ . Since we assume that the input distribution family

is known, this makes the bootstrapped parameter have the pdf, f̃ (·|θ̂). Below, we describe a simulation
experiment design that adopts bootstrap to approximate (3).

Suppose we first bootstrap size-n parameter set {θ 1, . . . ,θ n} using θ̂ . By running r regenerative cycles
at each θ i, we can obtain the ratio estimators η̂std(θ i) for all 1 ≤ i ≤ n. Throughout the paper, we denote

the empirical α-quantile computed from a size-n sample by q̂α,n(·). For instance, q̂α,n(η̂std(θ)− η̂std(θ̂))
denotes the empirical α-quantile of η̂std(θ 1)− η̂std(θ̂), η̂std(θ 2)− η̂std(θ̂), . . . , η̂std(θ n)− η̂std(θ̂). Then, (3)
can be approximated by

[η̂std(θ̂)− q̂1−α/2,n(η̂std(θ)− η̂std(θ̂)), η̂std(θ̂)− q̂α/2,n(η̂std(θ)− η̂std(θ̂))]. (4)
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Figure 1: Schematic illustration of standard ratio estimator and the proposed kNN-based estimator.

In the literature, (4) is referred to as the basic bootstrap CI (Barton et al. 2018). If we assume there

exists monotonic transformation ρ that makes the distribution of ρ(η̂std(θ)− η̂std(θ̂)) symmetric around 0,
then (4) can be converted to the following percentile bootstrap CI (Davison and Hinkley 1997)

[q̂α/2,n(η̂std(θ)), q̂1−α/2,n(η̂std(θ))]. (5)

There is some empirical evidence in the literature that (5) outperforms (4) for finite n (Barton et al. 2018),
thus we adopt (5) in this paper.

3 PROPOSED ESTIMATORS

The standard estimator in (2), η̂std(θ), is computed from the regenerative cycles run at θ only. In this
section, we propose two ratio estimators based on the k nearest neighbors (kNN) method to enhance
computational efficiency of η̂std(θ). We begin by describing the new experiment design in the following.

We bootstrap size-ñ parameter set {θ̃ i}1≤i≤ñ, where θ̃ i
i.i.d.∼ f̃ (θ̃ |θ̂), however, we do not run regenerative

simulations at these parameters. Instead, we generate a second size-n set of parameters {θ j}1≤ j≤n to run
the simulations at. The two sample sizes, n and ñ, can differ. To distinguish the two sets, we coin the terms,
bootstrap parameter set and simulation parameter set, to refer to {θ̃ i}1≤i≤ñ and {θ j}1≤ j≤n, respectively.

Let f (θ |θ̂) be the sampling pdf of the simulation parameters, which may or may not be the same

as the bootstrap pdf, f̃ (θ̃ |θ̂). Moreover, f can depend on {θ̃ i}1≤i≤ñ, which we further elaborate with an

example in Section 5. For simplicity, we keep the notation, f (θ |θ̂), throughout the paper, while it is easy

to extend the results if f depends on {θ̃ i}1≤i≤ñ. Let Θ denote the support of f (θ |θ̂). We require f to be
chosen such that all θ ∈ Θ are feasible parameters for the simulation input model. Once we collect the
simulation inputs generated with {θ j}1≤ j≤n, we adopt a pooling method to compute a point estimator of

η(θ̃ i), for each 1 ≤ i ≤ ñ, and then construct the empirical quantile estimators and CI from the estimators.
Figure 1 illustrates how the two proposed ratio estimators are constructed by pooling simulation outputs

generated at {θ i}1≤i≤n. For any θ̃ ∈ Θ̃, we first propose the following kNN estimator

η̂kNN(θ̃)�
ŶkNN(θ̃)
ÂkNN(θ̃)

=
1
k ∑k

i=1Y
(
θ (i)

)
1
k ∑k

i=1 A
(
θ (i)

) =
1
k ∑k

i=1
1
r ∑r

j=1Yj
(
θ (i)

)
1
k ∑k

i=1
1
r ∑r

j=1 A j
(
θ (i)

) , (6)

where θ (i) denotes θ̃ ’s ith nearest neighbor among {θ j}1≤ j≤n. As illustrated in Figure 1, for each θ (i), we

compute Y
(
θ (i)

)
and A

(
θ (i)

)
then take their averages across the k nearest neighbors of θ̃ to obtain ŶkNN(θ̃)

and ÂkNN(θ̃), respectively. Namely, we train two kNN regression models on (θ ,Y ) and (θ ,A) separately,

and η̂kNN(θ̃) is the ratio of the two models evaluated at θ̃ . Note that Y
(
θ (i)

)
and A

(
θ (i)

)
are correlated as

they are computed from the same simulation sample path. This correlation is considered in our analysis.



He, Feng, and Song

Compared to the standard estimator (2), the pooled estimator (6) is expected to reduce the variances

of the numerator and denominator at the expense of additional biases in them, i.e., 1
k ∑k

i=1Y (θ (i)) is no

longer an unbiased estimator of E[Y |θ̃ ].
The second estimator is proposed to reduce the extra bias introduced by the kNN method by combining

it with the likelihood ratio (LR) method. Recall that Z j(θ) = {Z j,1(θ),Z j,2(θ), . . . ,Z j,S(θ)(θ)} is the set
of simulation inputs generated from the input model with parameter θ within the jth regenerative cycle.
Henceforth, when no confusion arises we adopt the short-hand notation Z j,� = Z j,�(θ) for convenience. Let

p(Z|θ) be the pdf of the input model, i.e., Z j,�
i.i.d.∼ p(Z|θ) so the joint likelihood of Z j(θ) is ∏S(θ)

�=1 p(Z j,�|θ).
Then, the sample likelihood ratio between θ and θ̃ for the jth regenerative cycle is defined as Wj

(
θ ; θ̃

)
�

∏S(θ)
�=1 p(Z j,�|θ̃))

∏S(θ)
�=1 p(Z j,�|θ)

. Under mild conditions (e.g., absolute continuity of p(·|θ̃) with respect to p(·|θ)), we have

E
[
Yj (θ)Wj

(
θ ; θ̃

)∣∣θ
]
=

∫
y(Z j)

∏S(θ)
�=1 p(Z j,�|θ̃)

∏S(θ)
�=1 p(Z j,�|θ)

(
∏S(θ)

�=1
p(Z j,�|θ)

)
dZ j = E

[
Y |θ̃] . (7)

Combining (6) with the LR method, we propose the kNN LR ratio estimator

η̂kNNLR(θ̃)�
ŶkNNLR(θ̃)
ÂkNNLR(θ̃)

=
1
k ∑k

i=1Y
(
θ (i)

)
W

(
θ (i)

)
1
k ∑k

i=1 A
(
θ (i)

)
Wj

(
θ (i)

) =
1
k ∑k

i=1
1
r ∑r

j=1Yj
(
θ (i)

)
Wj

(
θ (i); θ̃

)
1
k ∑k

i=1
1
r ∑r

j=1 A j
(
θ (i)

)
Wj

(
θ (i); θ̃

) . (8)

While the LR method alleviates the bias introduced by the kNN pooling, it has a drawback:
1
r ∑r

j=1Yj
(
θ (i)

)
Wj

(
θ (i); θ̃

)
may have a large or even infinite variance when θ (i) and θ̃ significantly differ.

For (8), however, this is somewhat regulated by that we only pool the observations at the k-nearest neighbors
of θ̃ . The exact effect of the choice of k to the variance of (8) requires further analyses.

4 ASYMPTOTIC ANALYSIS

In this section, we examine the asymptotic properties of the kNN and kNN LR estimators. Section 4.1
establishes the mean squared error (MSE) of the kNN estimator, η̂kNN(θ̃), and a Central Limit Theorem
(CLT) for it. Furthermore, we examine the convergence of the empirical quantile estimator constructed
from η̂kNN(θ̃). Section 4.2 shows the bias and MSE of the kNN LR estimator, η̂kNNLR(θ̃), under a special
case where the input distribution belongs in the exponential family. All proofs of the theoretical results in
this section are omitted due to the space limit and will be made available in an online archive version.

In the following, we state two assumptions on f and the distributions of Y and A required for later
theoretical developments.

Assumption 1 Given θ̂ , the following statements hold: (i) {θ̃ i}1≤i≤ñ ⊂ Θ. (ii) For any θ ∈ Θ, f (θ |θ̂) is

continuous and bounded for all θ ∈ Θ. (iii) For any θ ∈ Θ, P(‖θ‖ > t|θ̂) = O(t−γ) for some γ > 0 as
t → ∞.

Assumption 1(i) guarantees that for any θ̃ , inf1≤ j≤n‖θ̃ −θ j‖→ 0 almost surely as n tends to infinity,
which forms the fundamental basis of the kNN regression technique. Assumption 1(ii) makes f locally
Lipschitz continuous. Assumption 1(iii) accommodates the case when Θ is unbounded, but also holds
when Θ is bounded.

Next, let gY (θ ,y|θ̂) and gA(θ ,a|θ̂) be the joint pdfs of (θ ,Y ) and (θ ,A) conditional on θ̂ , respectively.
Assumption 2 stipulates some differentiability conditions of moments of Y and A with respect to θ :

Assumption 2 Given θ̂ , for any θ ∈ Θ: (i)
∫

ygY (θ ,y|θ̂)dy and
∫

agA(θ ,a|θ̂)da are bounded and twice

differentiable in θ . (ii)
∫

y2gY (θ ,y|θ̂)dy and
∫

a2gA(θ ,a|θ̂)da are bounded and twice differentiable in θ .

Note that
∫

ygY (θ ,y|θ̂)dy =
∫

ygY |θ (y|θ) f (θ |θ̂)dy = E[Y |θ ] f (θ |θ̂). Therefore, Assumption 1(ii) and
Assumption 2 together imply that the first two conditional moments of Y are bounded in the neighborhood
of θ . The same implication holds for A.
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Throughout the paper, we adopt the following notations to describe the limiting behavior of sequences:
for positive sequences {an} and {bn} ⊂ R, write an =O(bn) if there exists constant c > 0 such that an ≤ cbn
holds for all n ≥ 1; an = o(bn) if an

bn
→ 0 as n → ∞; and an = OP(bn) if for any ε > 0, there exists M and

N such that P(|an/bn|< M)> 1− ε for all n > N.

4.1 Analysis on the kNN ratio estimator

The following Taylor expansion on b
a is repeatedly used in our analyses: for a 	= 0 and a+Δa 	= 0,

b+Δb
a+Δa

− b
a
=−bΔa

a2
+

Δb
a

− ΔaΔb
a2

+
b
a3

(Δa)2 +o((Δa)2). (9)

Let us first fix θ̃ to be an arbitrary point in Θ̃. Define d(Y ) = ŶkNN −E[Y |θ̃ ] and d(A) = ÂkNN −E[A|θ̃ ].
Then, we have η̂kNN(θ̃) = ŶkNN

ÂkNN
= E[Y |θ̃ ]+d(Y )

E[A|θ̃ ]+d(A)
. From (9),

η̂kNN(θ̃)−η(θ̃) =−E[Y |θ̃ ]d(A)(
E[A|θ̃ ])2

+
d(Y )

E[A|θ̃ ] −
d(A)d(Y )(
E[A|θ̃ ])2

+
E[Y |θ̃ ](
E[A|θ̃ ])3

(d(A))2 +o((d(A))2). (10)

To derive the mean squared error (MSE) of η̂kNN , we analyze the moments of d(A) and d(Y ). Let Rn,k+1

be the (k+1)th nearest neighbor’s distance from θ̃ , i.e., Rn,k+1 = ‖θ̃ −θ (k+1)‖. Conditional on Rn,k+1, the
k nearest neighbors θ (1), . . . ,θ (k) are i.i.d. (Mack and Rosenblatt 1979). Further, let Vd denote the volume

of the unit ball in Rd and f̂n,k(θ̃ |θ̂)� k
nVdRd

n,k+1

. Note that the latter is a kNN density estimator of f (θ |θ̂).
The random variable, Rn,k+1, is closely related to the Beta distribution and from this relationship, one can

show that E
[

f̂n,k(θ̃ |θ̂)/ f (θ̃ |θ̂)
∣∣∣ θ̃ , θ̂

]
→ 1 when Assumption 3(i) in the following holds. Additionally, if

Assumption 3(ii) holds, f̂n,k(θ̃ |θ̂) is strongly uniformly consistent to f (θ̃ |θ̂) (Devroye and Wagner 1977).

Assumption 3 The values of k and n satisfy (i) k → ∞ and k
n → 0 as n → ∞; and (ii)

log(n)
k → 0 as n → ∞.

Consider the following scaled kNN estimator of E[Y |θ̃ ]:

Ŷ s
kNN(θ̃) :=

f̂n,k(θ̃ |θ̂)
f (θ̃ |θ̂)

ŶkNN(θ̃) =
1

nVdRd
n,k+1 f (θ̃ |θ̂)

n

∑
i=1

1

{‖θ̃ −θ i‖
Rn,k+1

< 1

}
Y (θ i), (11)

where 1{·} is the indicator function. From the definition of Rn,k+1, there are k nonzero indicators in the

sum in (11). We also define Âs
kNN(θ̃) :=

f̂n,k(θ̃ |θ̂)
f (θ̃ |θ̂) ÂkNN(θ̃). While the ratio of the scaled estimators remains

unchanged, i.e.,
Ŷ s

kNN(θ̃)
Âs

kNN(θ̃)
= ŶkNN(θ̃)

ÂkNN(θ̃)
= η̂kNN(θ̃), the scaling turns out to be useful in the subsequent analysis.

Define (y f )(θ) � E[Y |θ ] f (θ |θ̂) and (a f )(θ) � E[A|θ ] f (θ |θ̂). Also, for any twice differentiable

function ψ(x), define Δψ(x) � ∑d
i=1

∂ 2

∂x2
i
ψ(x). Inspired by Propositions 3 and 4 in Mack (1981), we

establish the following convergnece results for the biases and variances of the scaled estimators.

Lemma 1 Suppose Assumptions 1 (i) (ii), 2 and 3 (i) hold. Then, conditional on θ̂ , for any θ̃ ∈ Θ̃,

E
[

Ŷ s
kNN(θ̃)

∣∣∣ θ̃ , θ̂
]
−E[Y |θ̃ ] = Δ(y f )(θ̃)

2(d +2)V
2
d

d ( f (θ̃ |θ̂))1+ 2
d

(
k
n

) 2
d

+o

((
k
n

) 2
d
)
, and (12)
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Var
[

Ŷ s
kNN(θ̃)

∣∣∣ θ̃ , θ̂
]
≤Var[Y |θ̃ ]

rk
+

2
(
E[Y |θ̃ ])2

k
+

1

2(d +2)2

(
Δ(y f )(θ̃)

)2

V
d
4

d ( f (θ̃ |θ̂))2+ d
4

(
k
n

) 4
d

(13)

+o

((
k
n

) 4
d
)
+o

(
1

k

)
+o

(
1

rk

)
.

Similar statements can be made for E
[

Âs
kNN(θ̃)

∣∣∣ θ̃ , θ̂
]
−E[A|θ̃ ] and Var

[
Âs

kNN(θ̃)
∣∣∣ θ̃ , θ̂

]
.

Note that f (θ̃ |θ̂) is in the denominator of the dominant term in (12). This means that, all else equal,

when f (θ̃ |θ̂) is small so that the probability of sampling θ close to θ̃ is low, the resulting estimator has a
larger bias. A similar observation can be made for the third term of (13). Recall that we allow the choice

of f to be flexible and not necessarily equal to the bootstrap distribution, f̃ (·|θ̂). Thus, for fixed θ̃ we can
choose f to reduce the bias.

Without the scaling factor
f̂n,k(θ̃ |θ̂)
f (θ̃ |θ̂) , the bias of ŶkNN(θ̃) is bounded as E[ŶkNN(θ̃)|θ̃ , θ̂ ]−E[Y |θ̃ ] =

O(
( k

n

) 1
d ). The same bound holds for the bias of ÂkNN(θ̃). If we additionally adopt Assumption 1 (iii), the

variance (13) can be shown to have convergence rate O (1/k)+O (1/(rk)) (Mack 1981).
Combining Lemma 1 and the Taylor expansion (10), Proposition 1 derives the expression for the bias

and MSE of η̂kNN(θ̃).
Proposition 1 Suppose Assumptions 1 (i) (ii), 2 and 3 (i) hold. Then, conditional on θ̂ , for any θ̃ ∈ Θ̃,

E[ η̂kNN(θ̃)
∣∣ θ̃ , θ̂ ]−η(θ̃) =

Δ(y f )(θ̃)−η(θ̃)Δ(a f )(θ̃)

2(d +2)E[A|θ̃ ]V
2
d

d ( f (θ̃ |θ̂))1+ 2
d

(
k
n

) 2
d

+o

((
k
n

) 2
d
)
, (14)

E
[(

η̂kNN(θ̃)−η(θ̃)
)2
∣∣∣ θ̃ , θ̂

]
= O

((
k
n

) 4
d
)
+O

(
1

rk

)
+O

(
1

k

)
. (15)

Theorem 1 establishes a CLT for η̂kNN(θ̃); note that
D→ denotes convergence in distribution.

Theorem 1 Suppose Assumptions 1, 2 and 3 hold. Additionally, for any θ̃ ∈ Θ̃, suppose that

E

[∣∣∣Y (θ̃)−η(θ̃)A(θ̃)
∣∣∣3∣∣∣∣ θ̃ , θ̂

]
< ∞ and Var

[
Y (θ̃)−η(θ̃)A(θ̃)

∣∣∣ θ̃ , θ̂
]
> 0. Let k = o

(
n

2
2+d

)
and r be

a constant, then, conditional on both θ̂ and θ̃ ,

√
rk
(
η̂kNN(θ̃)−η(θ̃)

) D→ N
(
0,V−1

d Var
[
Y (θ̃)−η(θ̃)A(θ̃)

∣∣ θ̃
])
.

Next, we proceed to show that the empirical α-quantile of η̂kNN(θ̃ 1), . . . , η̂kNN(θ̃ ñ), that is,

q̂α,n(η̂kNN(θ̃ i)), converges to qα(η(θ̃)) where θ̃ ∼ f̃ (θ̃ |θ̂). Let Φ(x) = P(η(θ̃) ≤ x) and φ(x) be the

cdf and the pdf of η(θ̃), respectively. Recall that in our design we generate θ̃ i
i.i.d.∼ f̃ (θ̃ |θ̂), for i = 1, . . . , ñ.

Then, the ecdf of η̂kNN(θ̃) is defined as Φñ,r(x) = 1
ñ ∑ñ

i=1 1{η̂kNN(θ̃ i) ≤ x}. This is not a typical ecdf

constructed from i.i.d. observations as η̂kNN(θ̃ 1), . . . , η̂kNN(θ̃ ñ) are correlated. Nevertheless, we show that
Φñ,r(x) is a consistent estimator of Φ(x) below.

Let us define the scaled simulation errors εi =
√

rk(η̂kNN(θ̃ i)−η(θ̃ i)) and denote the conditional joint

distribution of the pair(η(θ̃ i),εi) by hi(η ,ε|θ̂). Moreover, let hi, j(ηi,η j,εi,ε j|θ̂) represent the conditional

joint distribution of (η(θ̃ i),η(θ̃ j),εi,ε j). We first make the following assumption to show the consistency
result for Φñ,r(x).
Assumption 4 The following conditions hold:
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(i) Φ(x) is absolutely continuous with continuous pdf φ(x) and f (·|θ̂) is bounded away from zero on
Θ.

(ii) For any θ̃ ∈ Θ̃ and any 1 ≤ i ≤ ñ, hi(η ,ε|θ̂) is differentiable with respect to η . There ex-

ists p0,n,r(ε)> 0 and p1,n,r(ε)> 0 such that hi(η ,ε|θ̂)≤ p0,n,r(ε) and
∣∣∣ ∂

∂η hi(η ,ε|θ̂)
∣∣∣≤ p1,n,r(ε).

Moreover, supn supr
∫ ∞
−∞|ε|q pl,n,r(ε)dε < ∞ for l = 0,1 and 0 ≤ q ≤ 2.

(iii) For any θ̃ ∈ Θ̃ and any 1 ≤ i, j ≤ ñ with i 	= j, hi, j(ηi,η j,εi,ε j|θ̂) is differentiable with respect to

both ηi and η j. There exists p0,n,r(εi,ε j)> 0 and p1,n,r(εi,ε j)> 0 such that hi, j(ηi,η j,εi,ε j|θ̂)≤
p0,n,r(εi,ε j) and max

{∣∣∣ ∂
∂ηi

hi, j(ηi,η j,εi,ε j)
∣∣∣ , ∣∣∣ ∂

∂η j
hi, j(ηi,η j,εi,ε j)

∣∣∣} ≤ p1,n,r(εi,ε j). Moreover,

supn supr
∫ ∞
−∞

∫ ∞
−∞|εi|qi |ε j|q j pl,n,r(ε)dε < ∞ for l = 0,1 and 0 ≤ qi,q j ≤ 2 with qi +q j ≤ 3.

The following lemma establishes the point-wise bias and variance of ecdf Φñ,s.

Lemma 2 Suppose Assumptions 1 (i) (ii), 2, 3 and 4 hold. Then, E[Φñ,s(x)|θ̂ ] = Φ(x)+O(
( k

n

) 2
d )+O

(
1
rk

)
and Var[Φñ,r(x)|θ̂ ]≤ O

(
1
rk

)
+O

(
1
k

)
+O

(
1
ñ

)
+O(

( k
n

) 4
d ).

Lemma 3 extends Lemma 2 a Glivenko-Cantelli-type uniform weak consistency result for Φñ,r.

Lemma 3 Suppose Assumptions 1 (i) (ii), 2, 3 and 4 hold. Then, conditional on θ̂ ,

supx∈R|Φñ,r(x)−Φ(x)|= OP(
1√
rk
)+OP(

1√
ñ
)+OP(

( k
n

) 2
d ).

Finally, Proposition 2 states a weak consistency result for the proposed quantile estimator.

Proposition 2 Suppose Assumptions 1 (i) (ii), 2, 3 and 4 hold. Then conditional on θ̂ , |q̂α,n(η̂kNN(θ̃ i))−
qα(η(θ))|= OP(

1√
rk
)+OP(

1√
ñ
)+OP(

( k
n

) 2
d ).

Recall that we may choose n 	= ñ. Since, the total simulation cost of estimating the quantile is determined
by n, i.e., nr regenerative cycles, without inflating the simulation cost, ñ can be chosen sufficiently large
so that the estimation error of q̂α,n(η̂kNN(θ̃ i)) is not dominated by ñ.

Under conditions similar to Assumption 4, one can show that |q̂α(η̂std(θ))−qα(η(θ))|= OP(
1√
n)+

OP(
1√
r ). Therefore, Proposition 2 implies that when d ≥ 4, q̂α,n(η̂kNN(θ̃ i)) is less efficient than q̂α(η̂std(θ)).

Indeed, such a shortcoming is directly related to that the MSE convergence rate of η̂kNN(θ̃ i) slows down
for higher d as stipulated in Proposition 1.

4.2 Analysis on the kNN LR ratio estimator

In this subsection, we study the kNN LR estimator, as proposed in (8), which effectively reduces the
bias introduced by the kNN approach (6). Recall that Z j(θ) is the set of simulation inputs generated

with parameter θ within the jth cycle and the joint likelihood of Z j(θ) is ∏S(θ)
�=1 p(Z j,�|θ). We constrain

our discussion to input models in the exponential family with canonical form, namely, ∏S(θ)
�=1 p(Z j,�|θ) =

pb(Z j)exp(θ�U(Z j)−L(θ)), where pb is called the base measure, U is the sufficient statistics and L is
the log-partition function. We denote Int(Θ) as the interior of Θ and make the following assumptions.

Assumption 5 (i) Suppose that ∏S(θ)
�=1 p(Z j,�|θ) belongs to the exponential family and is in the canonical

form. Further, suppose that for any θ̃ ∈ Int(Θ), there exists a neighborhood N(θ̃) such that for ∀θ ∈ N(θ̃),
E[U(Z)|θ ]< ∞. (ii) Suppose that for any θ̃ ∈ Int(Θ), there exist a neighborhood N(θ̃) and βY ,βA > 0 such
that for ∀θ ∈ N(θ̃), E[Y 2|θ̃ ] = E[Y 2|θ ]+O(‖θ̃ −θ‖βY ) and E[A2|θ̃ ] = E[A2|θ ]+O(‖θ̃ −θ‖βA).

Assumption 5(i) implies that the joint pdf has bounded derivative, as it can be calculated that
∇θ exp(L(θ)) = E[U(Z)|θ ] if we allow the exchange of integral and differential operators. Assump-
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tion 5(ii) imposes a smoothness condition of E[Y 2|θ̃ ] and E[A2|θ̃ ] with respect to θ̃ . Employed with
Assumption 5, we can show the bias and MSE of η̂kNNLR(θ̃) decreases at the order of 1

rk .

Lemma 4 Suppose Assumption 1 (i) (ii), 3 and 5 hold. Then for n and k sufficiently large,

E[ η̂kNNLR(θ̃)
∣∣ θ̃ , θ̂ ]−η(θ̃) =

1

rk
η(θ̃)Var[A|θ̃ ]−Cov[Y,A|θ̃ ]

E[A2|θ̃ ] +o
(

1

rk

)
,

E
[∥∥η̂kNNLR(θ̃)−η(θ̃)

∥∥2
∣∣∣ θ̃

]
=

2

rk
Var[Y |θ̃ ]+η2(θ̃)Var[A|θ̃ ](

E[A|θ̃ ])2
+o

(
1

rk

)
.

In contrast to Proposition 1, the incorporation of the LR method effectively eliminates the O(
( k

n

) 4
d )

term in the MSE analysis, which happens to be the square of the bias in η̂kNN . However, a drawback of
Lemma 4 is that it only allows for asymptotic claims when n and k are sufficiently large. This is because
we cannot assume uniformity in Assumption 5. The convergence of the quantile estimator based on η̂kNNLR
necessitates further investigation due to the same aforementioned reason.

5 EMPIRICAL ANALYSIS

To demonstrate the performances of the proposed estimators, we examine the empirical coverage probabilities
of the percentile bootstrap CIs constructed from the standard, kNN and kNN LR estimators; and their
respective widths using two M/M/1/10 queueing examples. The performance measure of interest is the
steady-state expected number in system. We assume that the input distribution family is known, but the
parameters need to be estimated from observed data. In each macro replication, we collect 100 observations
generated from the two exponential distributions with true rates θ c = (λ c,μc), then compute the maximum

likelihood estimators, θ̂ = (λ̂ , μ̂), of θ c. Let f̃ (θ̂ |θ c) be the distribution for θ̂ .
For each i= 1,2, . . . , ñ, 100 interarrival and service times are generated from the exponential distributions

with rate vector θ̂ , and θ̃ i is the MLE of the sample. We consider two ways to generate the experiment set:

(i) We sample {θ i}1≤i≤n from f̃ (θ̃ |θ̂) independently from {θ̃ i}1≤i≤ñ. (ii) We first construct the smallest
ellipsoid that encapsulates {θ̃ i}1≤i≤ñ and then sample {θ i}1≤i≤n uniformly from the ellipsoid. In the second

implementation, the sampling density f (θ |θ̂) 	= f̃ (θ̃ |θ̂) and f is clearly dependent on {θ̃ i}1≤i≤ñ.
The queueing simulation model is initialized with an empty system and the regenerative state is chosen

as when the server becomes idle. We pool simulation outputs Yj
(
θ (i)

)
and A j

(
θ (i)

)
to calculate the

estimators {η̂kNN(θ̃)}1≤i≤ñ and {η̂kNNLR(θ̃)}1≤i≤ñ as defined in (6) and (8), respectively The resulting
percentile bootstrap CIs are then compared to those constructed using the standard estimator (2).

In our experiments, we fix the simulation budget at nr = 10,000 and change the value of n and r to
examine the resilience of each method to the choice of experiment design parameters. The parameter
k is selected to be

√
n/ log(log(log(n))), which satisfies the conditions for k and n in Theorem 1 and

Proposition 2. We also fix the size of the bootstrap set to be ñ = 1,000 and repeat 1,000 independent macro
runs. The column labeled with η̂kNN and η̂kNN-ellipsoid summarize the results for kNN method that use
parametric bootstrapping and the ellipsoid implementation to generate the simulation set, respectively. A
similar labeling applies to η̂kNNLR and η̂kNNLR-ellipsoid.

Table 1 presents the empirical coverage probabilities and average CI widths where the true unknown
parameters are λ c = 0.8 and μc = 1. The target coverage is 99% (95%) for Tables 1(a) and 1(b) (Tables 1(c)
and 1(d)). We observe that η̂std tends to show over-coverage when n is big and r is small. Among our
choices of parameters, the standard estimator matches the coverage target the best when n = r = 100.

We also observe under-coverage for η̂kNN , especially when n is small. We have empirically observed

that f̃ (θ̃ |θ̂) has relatively small values at θ̃ that are mapped to an extreme (lower) quantile of η(θ̃). Hence,
when f is identical to f̃ , there are very few points in the simulation set near those θ̃s. This makes the
kNN distance from such θ̃ large and increases the bias in η̂kNN , as discussed in Proposition 1, which in
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Table 1: Comparison of empirical coverage probabilities and CI widths with 1000 macro-runs on an

M/M/1/10 system with λ c = 0.8 and μc = 1. Numbers in parenthesis are the respective standard errors.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 98.90% (0.33%) 75.70% (1.36%) 98.40% (0.40%) 96.40% (0.59%) 98.40% (0.40%)

200 50 99.50% (0.22%) 86.40% (1.08%) 98.60% (0.37%) 98.60% (0.37%) 98.80% (0.34%)

400 25 100.00% (0.00%) 91.60% (0.88%) 98.80% (0.34%) 98.90% (0.33%) 98.70% (0.36%)

1000 10 100.00% (0.00%) 95.10% (0.68%) 98.60% (0.37%) 98.70% (0.36%) 98.70% (0.36%)

5000 2 100.00% (0.00%) 97.70% (0.47%) 99.00% (0.31%) 99.30% (0.26%) 99.40% (0.24%)

(a) Empirical coverage probabilities with target coverage 99%.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 5.15 (0.03) 2.68 (0.02) 4.63 (0.03) 5.28 (0.03) 4.78 (0.03)

200 50 5.42 (0.03) 3.19 (0.02) 4.70 (0.03) 5.28 (0.03) 4.87 (0.03)

400 25 5.85 (0.03) 3.56 (0.02) 4.76 (0.03) 5.19 (0.03) 4.92 (0.03)

1000 10 6.41 (0.03) 3.97 (0.03) 4.82 (0.03) 5.10 (0.03) 4.95 (0.03)

5000 2 6.99 (0.02) 4.53 (0.03) 4.96 (0.03) 5.13 (0.03) 5.08 (0.03)

(b) Average CI widths with target coverage 99%.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 96.20% (0.60%) 72.30% (1.42%) 94.70% (0.71%) 91.00% (0.91%) 95.10% (0.68%)

200 50 98.00% (0.44%) 81.80% (1.22%) 94.40% (0.73%) 93.60% (0.77%) 95.30% (0.67%)

400 25 99.20% (0.28%) 86.00% (1.10%) 94.90% (0.70%) 95.00% (0.69%) 95.30% (0.67%)

1000 10 99.80% (0.14%) 91.20% (0.90%) 95.20% (0.68%) 95.20% (0.68%) 95.70% (0.64%)

5000 2 99.80% (0.14%) 94.80% (0.70%) 95.80% (0.63%) 96.10% (0.61%) 96.00% (0.62%)

(c) Empirical coverage probabilities with target coverage 95%.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 4.21 (0.03) 2.48 (0.02) 3.76 (0.03) 4.50 (0.03) 3.82 (0.03)

200 50 4.48 (0.03) 2.89 (0.02) 3.80 (0.02) 4.33 (0.03) 3.86 (0.03)

400 25 4.90 (0.03) 3.16 (0.02) 3.84 (0.03) 4.18 (0.03) 3.89 (0.03)

1000 10 5.52 (0.03) 3.44 (0.02) 3.88 (0.03) 4.08 (0.03) 3.92 (0.03)

5000 2 5.90 (0.03) 3.81 (0.02) 4.01 (0.03) 4.10 (0.03) 4.05 (0.03)

(d) Average CI widths with target coverage 95%.

turn causes a poor coverage. As n increases, more data points are sampled around θ̃ , reducing its kNN
distance and bias in η̂kNN , thereby improving the coverage.

For the ellipsoid implementation, the likelihood of sampling scenarios near θ̃ that are mapped to
extreme quantiles increases. This alleviates the bias in η̂kNN and so the coverage of η̂kNN-ellipsoid is
significantly improved compared to that of η̂kNN . The η̂kNN-ellipsoid also exhibits robustness to the choice
of n. Interestingly, observe that η̂kNNLR performs well with both sampling schemes and the CI width is
slightly inflated for the ellipsoid implementation. The choice of f does not appear to have a significant
impact on the performance of η̂kNNLR. This is because the bias caused by the kNN method is eliminated
by the LR method. Both η̂kNNLR and η̂kNNLR-ellipsoid show robustness to the choice of n.

We also examine a lightly loaded system, where λ c = 0.5 and μc = 1.5 with coverage targets 99% and
95%. Table 2 summarizes the experiment results. Similar to the first case, η̂std shows over-coverage with
larger CI widths, especially when n is large. The η̂kNN again exhibits under-coverage when n is small, but
the under-coverage is improved for η̂kNN-ellipsoid. Similar to the heavily loaded system, η̂kNNLR performs
well with both sampling schemes, but with a slightly bigger standard error in all statistics.
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Table 2: Comparison of empirical coverage probabilities and CI width with 1000 macro-runs on an

M/M/1/10 system with λ c = 0.5 and μc = 1.5. Numbers in parenthesis are the respective standard errors.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 99.60% (0.20%) 72.10% (1.42%) 98.00% (0.44%) 94.90% (0.70%) 98.80% (0.34%)

200 50 100% (0.00%) 84.60% (1.14%) 98.60% (0.37%) 98.30% (0.41%) 99.00% (0.31%)

400 25 100% (0.00%) 90.30% (0.94%) 98.40% (0.40%) 98.70% (0.36%) 98.90% (0.33%)

1000 10 100% (0.00%) 95.40% (0.66%) 99.00% (0.31%) 99.00% (0.31%) 99.20% (0.28%)

5000 2 100% (0.00%) 98.80% (0.34%) 99.30% (0.26%) 99.50% (0.22%) 99.50% (0.22%)

(a) Empirical coverage probabilities with target coverage 99%.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 0.877 (0.011) 0.270 (0.003) 0.666 (0.008) 0.590 (0.008) 0.668 (0.008)

200 50 1.013 (0.010) 0.344 (0.004) 0.671 (0.008) 0.646 (0.008) 0.674 (0.008)

400 25 1.284 (0.012) 0.409 (0.005) 0.679 (0.008) 0.672 (0.008) 0.680 (0.008)

1000 10 1.742 (0.014) 0.498 (0.005) 0.700 (0.008) 0.695 (0.008) 0.695 (0.008)

5000 2 2.480 (0.013) 0.665 (0.007) 0.779 (0.009) 0.767 (0.008) 0.775 (0.008)

(b) Average CI widths with target coverage 99%.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 98.10% (0.43%) 67.40% (1.48%) 94.90% (0.70%) 90.50% (0.93%) 95.40% (0.66%)

200 50 99.60% (0.20%) 79.20% (1.28%) 95.10% (0.68%) 94.30% (0.73%) 95.90% (0.63%)

400 25 100% (0.00%) 85.50% (1.11%) 95.50% (0.66%) 95.20% (0.68%) 96.10% (0.61%)

1000 10 100% (0.00%) 91.40% (0.89%) 96.10% (0.61%) 95.40% (0.66%) 95.80% (0.63%)

5000 2 100% (0.00%) 95.90% (0.63%) 97.40% (0.50%) 96.90% (0.55%) 97.20% (0.52%)

(c) Empirical coverage probabilities with target coverage 95%.

n r η̂std η̂kNN η̂kNNLR η̂kNN-ellipsoid η̂kNNLR-ellipsoid

100 100 0.631 (0.007) 0.246 (0.003) 0.479 (0.005) 0.466 (0.006) 0.479 (0.005)

200 50 0.732 (0.007) 0.306 (0.003) 0.482 (0.005) 0.494 (0.006) 0.484 (0.005)

400 25 0.896 (0.008) 0.355 (0.004) 0.487 (0.005) 0.499 (0.006) 0.490 (0.005)

1000 10 1.170 (0.009) 0.415 (0.004) 0.503 (0.005) 0.507 (0.005) 0.502 (0.005)

5000 2 1.642 (0.008) 0.517 (0.005) 0.561 (0.006) 0.557 (0.006) 0.556 (0.006)

(d) Average CI width with target coverage 95%.

In summary, we recommend the kNN estimator with the ellipsoid sampling implementation and the
kNNLR estimator due to their computational efficiencies demonstrated by the empirical analyses.
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