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Abstract
Sequential recommendation models, models that learn from
chronological user-item interactions, outperform traditional
recommendation models in many settings. Despite the suc-
cess of sequential recommendation, their robustness has re-
cently come into question. Two properties unique to the
nature of sequential recommendation models may impair
their robustness - the cascade effects induced during train-
ing and the model’s tendency to rely too heavily on tem-
poral information. To address these vulnerabilities, we pro-
pose Cascade-guided Adversarial training, a new adversarial
training procedure that is specifically designed for sequen-
tial recommendation models. Our approach harnesses the
intrinsic cascade effects present in sequential modeling to
produce strategic adversarial perturbations to item embed-
dings during training. Experiments on training state-of-the-
art sequential models on four public datasets from different
domains show that our training approach produces superior
model ranking accuracy and superior model robustness to
real item replacement perturbations when compared to both
standard model training and generic adversarial training.

Key words. Robust Recommendation; Adversarial

Training; Sequential Recommendation

1 Introduction

Sequential recommender models learn dynamic user
preferences and recommend next items by modeling
past user behaviors in sequential order. Recently, deep
learning based models have gained attention. These
models learn user preferences by feeding the user histo-
ries into deep neural networks, such as RNN [12, 30, 11],
CNN [28, 32], or transformer [13, 26, 6, 16].

Despite their outstanding performance, recent
works reveal their unique robustness issues. A small
change at the end of the user sequence, sometimes even
on only one item, can dramatically change model be-
havior [34, 33]. In real-world applications, this kind of
instability can lead to serious user dissatisfaction. For
example, if a user accidentally clicks on an unwanted
video and then returns to the previous page, they might
find that all the recommended videos have changed due
to that single misclick. In general, robustness is cru-
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cial for recommender systems as it affects user trust
and acceptance [22, 1, 17]. Meanwhile, robustness and
accuracy are sometimes correlated [22], and training a
more stable recommender system may also lead to more
accurate predictions. Previous work in robustness and
stability in recommender systems focus on model fami-
lies such as matrix factorization [10, 24]. Enhancing ro-
bustness and accuracy in complex models like sequential
recommendation remains relatively untouched.

Sequential recommendation models possess two
unique properties that may hinder their robustness: (1)
Though they use temporal information to learn user
preferences, they tend to overemphasize recent in-
teractions, making the model’s recommendations highly
sensitive to them [34, 33]. (2) Due to their time-aware
training, these models inherently exhibit cascade effects,
which refers to the fact that changes in a user’s be-
havior can indirectly affect recommendations for oth-
ers through collaborative filtering [21, 4]. In sequential
recommender models, item interactions in early times-
tamps generally induce larger cascade effects, since they
affect the predictions on every subsequent interaction
in each training epoch [21]. During training, their gra-
dients are computed more frequently and are more di-
verse. As a result, while trained models might be robust
against perturbations on the interactions with higher
cascade values (i.e., the “early interactions”), they are
less robust to perturbations on later ones. Paradoxi-
cally, even though the last few user interactions greatly
influence predictions, they are underrepresented during
training. The combination of these properties exacer-
bates the vulnerability to perturbations at the end of
the user history sequences.

In this study, we enhance robustness by modify-
ing the training process. Noting that interactions with
lower cascade effects often play a pivotal role in predic-
tions, we boost stability for these interactions through
adding more noise on them during training via adver-
sarial training. Adversarial training has been shown
to improve the robustness of a variety of deep learning
models by adding adversarial perturbation on the in-
put data [29]. Originally proposed for image classifica-
tion, adversarial training produces image classification
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Figure 1: A toy example of applying adversarial training on sequential recommendation. (a) How adversarial perturbations are applied

on the learned item and user embeddings. (b) Generic adversarial training applies adversarial perturbations of the same magnitude

(green circles) to all item embeddings. (c) The Cascade-guided adversarial training method dynamically choose the magnitude of the
perturbations (blue circles) according to the different cascade effects of each interaction in the user history.

models that are more robust to adversarial attack on
the input pixels [18]. In the sequential recommenda-
tion setting, we expect that by adding greater adversar-
ial perturbations to the interactions with lower cascade
effects, the trained model will be more robust to per-
turbations occurring among the most recent items in
the user sequences when making predictions. Based on
this, we propose a Cascade-guided Adversarial Training
strategy, which is a re-normalized adversarial training
method that is specifically designed for deep sequential
recommendation by harnessing the intrinsic cascade ef-
fects for each interaction.

Our method distinguishes itself from previous re-
search in two main aspects: (1) While prior stud-
ies focus on adversarial training for early recommen-
dation models like matrix factorization and collabora-
tive filtering [5], we explore its application specifically
to deep sequential recommendation models, leveraging
their unique characteristics; (2) Unless previous works
focus on improving generalization or robustness to la-
tent embedding perturbations, instead, we emphasize
robustness against adversarial perturbations on real in-
puts, namely, item interaction sequences, which are
more likely perturbations in practical scenarios.

Our work makes the following contributions:

• We propose a novel adversarial training algorithm
that uses the cascade effects to construct strategic
adversarial examples during training.

• Through rigorous experiments on four datasets
using two widely used sequential recommendation
models, we demonstrate our approach outperforms
standard and generic adversarial training in terms
of accuracy, generalization, and robustness against
realistic item replacement perturbations.

2 Related Works

2.1 Adversarial Training. Adversarial training
framework emerged from the seminal paper [27]. It
demonstrates that images with human-imperceptible
perturbations, i.e. adversarial examples, could be mis-
classified by well-trained computer vision classifiers.
Thus, those perturbations also need to be tackled dur-
ing model training phase, which aims to enhance the
robustness of models against such perturbations [29].
Key advancements encompass the Fast Gradient Sign
Attack (FGSA) [8] and the min-max optimization for-
mulation [18].

Adversarial training has recently extended to fields
like NLP, using word embedding perturbations [20],
and recommendation, with user and item embedding
perturbations [10]. However, in recommendation sys-
tems, users typically access only item interactions, not
model internals, such as the embeddings. We con-
tend that adversarial threats might more authentically
come from item misclick-induced interaction perturba-
tions than from direct embedding tweaks. To the best
of our knowledge, adversarial training has yet to be ex-
plored as a method to enhance robustness against per-
turbations on model externals.

Existing adversarial training methods for recom-
mendation systems target model types like matrix fac-
torization, collaborative filtering, and others, as re-
viewed in [5]. While one study has attempted adver-
sarial training for sequential recommendation [19], none
have crafted a general approach that capitalizes on the
unique characteristics of these models as we do.

2.2 Robustness of Recommendation Robust rec-
ommender systems can be categorized into three pri-
mary definitions. First, the most prevalent definition
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centers on the system’s accuracy amidst noisy data
[22, 7, 25], given that users may inadvertently pro-
vide inaccurate ratings. Here, robustness gauges the
accuracy shift relative to data noise. Second, robust-
ness hinges on the stability of the recommendations
[1, 2, 3, 17]. Stability in recommendations is evaluated
by checking model predictions on unknown items after
integrating its own predictions into the training data.
A robust model remains largely unchanged under these
conditions. Thirdly, robustness is viewed through an
attack-defense lens [5, 33]. Here, malicious parties might
launch attacks on models, for instance, using fake user
profiles. Such attacks aim to either push specific items
or sabotage the system. Robustness thus signifies the
system’s ability to fend off these threats. For insights
on attack-defense tactics and further robustness aspects
in recommendations, refer to [5] and [23] respectively.

The key goal of our work is to train robust se-
quential recommendation models with respect to the
first definition of robustness, where our noise model
is an adversarial item replacement scheme. We moti-
vate the adversarial item replacement by first showing
that replacing later items in interaction histories has a
stronger negative impact to ranking accuracy than re-
placing items earlier in interaction histories. We then
develop our novel adversarial training algorithm and
show that it enhances resilience to this type of noise
and it enhances generalization on unperturbed data.

3 Preliminary

In this section, we briefly introduce the basic ideas of
adversarial training and sequential recommendation.

3.1 Adversarial Training Adversarial training is
defined as a robust optimization problem with saddle
point (min-max) formulation [18]. Consider a general
classification problem with d-dimensional input data
x ∈ Rd and corresponding label y ∈ Z under data
distribution D. For a classification model fθ, the
training goal is to minimize the risk Ex,y∼D[L(fθ(x), y)].
Adversarial training aims to find a perturbation δ with
bounded norm ||δ|| < ϵ that maximizes the minimum
risk with respect to θ. This can be summarized as the
following min-max equation:

(3.1) min
θ

(
max

δ,||δ||<ϵ
Ex,y∼D[L(fθ(x+ δ), y)]

)
Fast gradient sign method (FGSM) [8] is the most
commonly used method that solves for δ. FGSM simply
generates adversarial perturbations by multiplying the
sign of the gradient of the loss function by the maximal
perturbation magnitude, ϵ:

(3.2) δ = ϵ · sign
(
∇L(fθ(x+ δ), y)

)

3.2 Sequential Recommendation Our work fo-
cuses on adversarial training for sequential recommen-
dation systems. Sequential recommendation systems
learn from the ordering of historical user-item interac-
tions to predict the next user-item interaction. We for-
malize the key components as follows. Let i ∈ [1,m]
denote the index of a user and and V = {v1, v2, · · · , vn}
denote the set of all possible items. Suppose user i has
a sequentially ordered interaction history of length T ,
Vi = {vti | t = 1, · · · , T}. In practice, each user has
different length of history. T is a hyper parameter that
decides the maximum length of user history, such that
only the last T interactions is considered when mak-
ing predictions. A sequential recommendation model
learns the embedding for each item vi denoted as ei.
Together, these embeddings form the item embedding
matrix, E ∈ Rn×d. For each user i, we concatenate
the sequence of embeddings of items in Vi, denoted as
Si = [eti | t = 1, · · · , T ]. The sequential models learn
the user embedding, wi, as a function of the sequence
embeddings,

(3.3) wi = f(Si; θ),

where f denotes a sequence embedding model, such
as Transformer, and θ denotes the model parameters.
After learning wi, for a target item vj , the ranking score
ri,j is predicted by

(3.4) ri,j = wT
i ej .

During model training, for each user i with target item
vj and a set of negative samples N− ⊂ V \ vj , we
minimize the binary cross entropy (BCE) loss defined
as:
(3.5)

LB(i, j,N−; θ,E) = −
(
log(σ(ri,j))+

∑
vn∈N−

log(1−σ(ri,n)
)

During training, following the same setting as in [13], we
truncate the user sequence Vi according to each times-
tamp t. For each sub-sequence, item vti is treated as the
target item and the ranking score is predicted by tak-
ing previous items as dynamic user history. Meanwhile,
only one negative item vn is sampled for each vti in each
sub-sequence. For simplicity, in the rest of the paper,
we denote the ranking loss for item vj to user i with
negative sample vn as LB(i, j, n).

4 Method

We first introduce the proposed adversarial training al-
gorithm that considers the cascade effects in sequential
recommendation. Then, we propose an algorithm to ef-
fectively compute the cascade effects for each interaction
in the user histories.
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4.1 Cascade-guided Adversarial Training Since
recommender systems take discrete input data (i.e.,
user/item IDs), adversarial perturbations are commonly
applied on the latent embeddings. As shown in Figure
1 (a), a deep sequential recommendation model is a
hierarchy consisting of two levels: (1) a non-linear deep
neural network that takes the sequence embeddings of
the user’s history Si as input and outputs the user
embedding wi; (2) a linear model that predicts the
final ranking score for user i on target item vj by
linearly multiplying their embeddings as wT

i ej . We
apply adversarial training on both levels separately.

For the first level, the adversarial training objective
is described as follows. When perturbing the item
embeddings in the history sequence within a certain
small magnitude, even in the worst case, the learned
user embedding shouldn’t be too different from the
original prediction. Suppose for user i with sequence
embeddings Si, we denote the adversarial perturbations
on the sequence embeddings as Ai = [δti | t =
1, · · · , T ], where δti is the perturbation applied on the
corresponding item embedding eti. We mathematically
formulate this objective by an adversarial loss function:

(4.6)

Ladv-1(i,Ai) = ||ŵi −wi||2

where wi = f(Si; θ), ŵi = f
(
Si +

1

Ci
⊙Ai; θ

)
In Eq (4.6), the vector Ci ∈ [1,+∞)T denotes the cas-
cade effects of each interaction in user i’s history. Higher
values of Ci denote higher cascade effects. The way
to calculate these cascade effects will be introduced in
the next section. The factor 1

Ci
plays a crucial rule in

our method: it re-scales the adversarial perturbations so
that interactions with smaller cascade effects will receive
a larger adversarial perturbation. During sequential rec-
ommendation model training, interactions with larger
cascade effects are used more often in training than in-
teractions with smaller cascade effects [21], hence, the
latter can be more vulnerable and unstable (justified
later in Section 5.6). By applying larger perturbations
on the interactions with lower cascade effects, we obtain
a model that is more equally robust across all sequence
embeddings.

To approximate the worst case adversarial pertur-
bation Ai, we apply the FGSM attack introduced in
Eq.(3.2):

(4.7) Ai = ϵ
g

||g||2
where g =

∂Ladv-1(i,Ai)

∂Si

We note that g
||g||2 is the sign of the direction of

the applied perturbation and ϵ is a human defined
parameter to determine the general magnitude of the

adversarial attack. The specific magnitude of the
perturbation on each interaction will be re-scaled by
their cascade effects as one of the key features of our
method.

The adversarial training on the first level guarantees
the aggregated user embedding wi is robust to small
perturbations on the user history. On the second
level, we apply adversarial training on the learned user
embedding and the target item embeddings. This
assures that when small changes are applied to the user
and target item embeddings, the model is still able to
generate highly accurate recommendation results. We
use BCE loss as the second adversarial training loss,
which is exactly the same loss function used to train the
base recommendation model. Suppose δi, δj , δn are the
adversarial perturbations applied on the embeddings of
the user i, target item vj , and negative sampled item
vn, respectively. The second adversarial training loss is
defined as:
(4.8)
Ladv-2(i, j, n, δi, δj , δn) = −

(
log(σ(r̂i,j)) + log(1− σ(r̂i,n)

)
where r̂i,j = (wT

i + δi)(ej + δj),

r̂i,n = (wT
i + δi)(en + δn)

Here r̂i,k is the predicted ranking score for any user i and
item k after perturbation. Similarly, we approximately
generate the worst case δi, δj , and δn within maximum
magnitude ϵ by:
(4.9)

δi = ϵ
hi

||hi||2
where hi =

∂Ladv-2(i, j, n, δi, δj , δn)

∂ei

δj = ϵ
hj

||hj ||2
where hj =

∂Ladv-2(i, j, n, δi, δj , δn)

∂ej

δn = ϵ
hn

||hn||2
where hn =

∂Ladv-2(i, j, n, δi, δj , δn)

∂en

The two adversarial training objectives synergisti-
cally improve the robustness of the trained model with
respect to all the components. Finally, we optimize the
model parameters by minimizing the sum of original
BCE loss and the two adversarial training losses:

min
θ,E

L =LB(i, j, n) + λ1Ladv-1(i,Ai)

+ λ2Ladv-2(i, j, n, δi, δj , δn)
(4.10)

It’s worth noting that since the cascade effects only
affect the model after the general training process, the
adversarial training should be applied after the training
of the base model. In the adversarial training phase, by
minimizing Eq. (4.10), we expect to learn better item
embeddings E and the model parameters θ such that
the model is more accurate and robust.

4.2 Cascade Effects Calculation In this section,
we will introduce how we calculate the cascade effect
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Figure 2: An example of calculating cascade effects. The item
with blue bounding box has cascade effects on the 10 items with

green bounding boxes plus itself. Its cascade value is 11.

matrix C ∈ [0, 1]m×T for all the interactions in the user
histories, in a time efficient manner.

When training a sequential recommendation model,
each user-item interaction produces cascade effects. For
a given user-item interaction, two types of interactions
receive its cascade effects: (1) all interactions follow-
ing the given interaction, within the same user history
sequence; (2) all interactions with the same item occur-
ring in different user history sequences within the same
training batch. This is illustrated in Figure 2.

Based on the above observation, for an item vit for
which user i interacted at timestamp t, we define the
cascade effect C(i, t) as:

(4.11) C(i, t) = 1+T − t+
b

m

∑
k∈U,k ̸=i

∑
l≤T

(1+T − l)I(vti , vlk)

(4.12) I(vti , vlk) =

{
1, if vti = vlk

0, otherwise

Here, b is the batch size during training and b
m approx-

imates the probability of two user sequences appearing
in the same training batch. After calculating C, its in-
verse will be a real number in (0, 1], and this will be
used to re-normalize the magnitudes of adversarial per-
turbations.

We note that in Eq. (4.11), 1+ T − t calculates the
cascade effects that directly come from the temporal
information in the same user history, i.e., the inverse
of timestamp. The accumulative term calculates the
cascade effects that comes from the same item in
different user sequences. In Section 5.5, we do ablation
study to show how much of each type of cascade effects
contributes to the final performance.

See supplementary material for a more detailed
algorithm for calculating cascade scores.

Table 1: Statistics of the datasets.

Dataset #User #Item #Interaction Density
ML-1M 6,040 3,416 987,540 4.786%
Beauty 22,363 10,121 198,502 0.088%
Video 24,303 10,672 231,780 0.089%

Clothing 39,387 23,033 278,677 0.031%

(a) Train SASRec on Video. (b) Train GRU4Rec on Video.

Figure 3: NDCG vs. the number of training epochs.

5 Experiments

We conduct experiments to evaluate the generalization
and robustness of deep sequential models trained under
our proposed method. Specifically, we consider the
following questions:

• EXP1: Does the proposed method improve the
ranking accuracy of deep sequential recommenda-
tion models? How does it compare to normal ad-
versarial training?

• EXP2: Does the proposed method improve the
robustness of the trained models? If so, which
aspect of robustness does it improve, and how much
is the improvement?

We first introduce the datasets, base recommendation
models, implementation details, and evaluation metrics
used in the experiments. Then, in Section 5.5, we
discuss the experiments on ranking accuracy. In Section
5.6, we address the experiments on robustness. The
time efficiency of the proposed adversarial training
algorithm is analyzed in the supplementary materials.

5.1 Datasets We conduct experiments on four di-
verse public datasets spanning various domains and
densities, which are MovieLens-1M ∗ [9] and Video,
Beauty, Clothing from Amazon review datasets. They
are widely used datasets in recommendation research.
Dataset statistics are shown in Table 1.

5.2 Base Models Since RNN and transformer are
the most common structures been used in deep sequen-
tial models [14], we choose two of the most represen-
tative recommendation models from each of the above
categories as the base models:

∗https://files.grouplens.org/datasets/movielens
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Table 2: Improvement of the accuracy by applying different adversarial training methods on the base models.

MovieLens-1M Beauty
NDCG@10 vs. Base HT@10 vs. Base NDCG@10 vs. Base HT@10 vs. Base

SASRec

base 0.1359 - 0.2528 - 0.0264 - 0.0537 -
adv linear[10] 0.1508 10.96% 0.2795 10.56% 0.0315 19.32% 0.0626 16.57%
adv seq[20, 19] 0.1440 5.96% 0.2680 6.01% 0.0304 15.15% 0.0597 11.17%
adv global 0.1519 11.77% 0.2808 11.08% 0.0313 18.56% 0.0622 15.83%
adv cas 0.1546 13.76% 0.2831 11.99% 0.0320 21.21% 0.0630 17.32%

GRU4Rec

base 0.1255 - 0.2419 - 0.0228 - 0.0460 -
adv linear[10] 0.1351 7.65% 0.2581 6.70% 0.0288 26.32% 0.0560 21.74%
adv seq[20, 19] 0.1308 4.22% 0.2520 4.18% 0.0252 10.53% 0.0493 7.17%
adv global 0.1345 7.17% 0.2543 5.13% 0.0285 25.00% 0.0550 19.57%
adv cas 0.1360 8.37% 0.2588 6.99% 0.0298 30.70% 0.0566 23.04%

Video Clothing
NDCG@10 vs. Base HT@10 vs. Base NDCG@10 vs. Base HT@10 vs. Base

SASRec

base 0.0441 - 0.0875 - 0.0088 - 0.0184 -
adv linear[10] 0.0553 25.40% 0.1059 21.03% 0.0074 -15.91% 0.0154 -16.30%
adv seq[20, 19] 0.0519 17.69% 0.1001 14.40% 0.0106 20.45% 0.0213 15.76%
adv global 0.0557 26.30% 0.1068 22.06% 0.0103 17.05% 0.0216 17.39%
adv cas 0.0606 37.41% 0.1162 32.80% 0.0107 21.59% 0.0219 19.02%

GRU4Rec

base 0.0442 - 0.0872 - 0.0072 - 0.0150 -
adv linear[10] 0.0500 13.12% 0.0962 10.32% 0.0070 -2.78% 0.0154 2.67%
adv seq[20, 19] 0.0456 3.17% 0.0888 1.49% 0.0074 2.78% 0.0152 1.33%
adv global 0.0496 12.22% 0.0966 10.78% 0.0071 -1.39% 0.0146 -2.67%
adv cas 0.0520 17.65% 0.0993 13.88% 0.0083 15.28% 0.0168 12.00%

• GRU4Rec[12]: GRU4Rec utilizes RNNs to learn
user preferences based on their history sequences.

• SASRec[13]: SASRec relies on attention mecha-
nisms that can dynamically learn the attention
weights on each interaction in the user sequences.

5.3 Implementation Details First, we implement
exactly the same architectures for the two base models
as described in their original papers. We use a single
layer of GRU units in the GRU4Rec model and 2 self-
attention blocks in the SASRec model. The hidden size
is set to 100 for both models. When computing user
embeddings, the maximum sequence length T is set to
200 for MovieLens-1M and 50 for Video, Beauty and
Clothing datasets according to their different densities.

We use same training strategy for training all the
models on all the datasets: We first train the base
models for 500 epochs to ensure their convergence, then
we apply Adversarial Training (generic or our method)
on the trained models for further 100 epochs. For both
of the training phases, we use Adam optimizer[15] with
0.001 learning rate. The batch size is 128. We use
0.2 dropout rate and 1 × 10−5 L2 norm to prevent
overfitting. We follow a leave-one-out strategy to split
training and test data, which is commonly used in
sequential recommendation.

For the hyper-parameters, the magnitude ϵ is al-
ways set to 10 for all the datasets. The ablation study
on different ϵ values can be found in Section 5.5. For pa-
rameters λ1 and λ2 in Eq. (4.10) are always 1 such that
the three loss functions equally contribute to the train-
ing. Since no hyper-parameter used to compute the cas-

(a) SASRec on ML-1M (b) GRU4Rec on ML-1M

Figure 4: Influence of ϵ

cade effects, our proposed adversarial training method
can be easily applied on new datasets and models with-
out additional tuning effort.

5.4 Evaluating Metrics We use standard evalua-
tion metrics, Normalized Discounted Cumulative Gain
(NDCG) and Hit Ratio (HT), to evaluate the ranking
performances of the recommendation models in this pa-
per. Noted that negative sampling is not used in the
evaluation. Instead, we rank over all items except the
ones already in the user histories and retrieve the top-
10 ranking list. This evaluation method is used in more
and more state-of-the-arts [28, 31].

5.5 EXP1: Improvement on Ranking Accuracy
In the first set of experiments, we evaluate the extent
to which our proposed adversarial training method
can improve the ranking accuracy in comparison to
baseline adversarial training methods. We consider
three baseline adversarial training approaches:

• adv linear[10]: Adversarial training for MF-
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(a) HT@10: SASRec on Video (b) NDCG@10: SASRec on Video

Figure 5: Drop of accuracy by attacking the the first, middle,

and the last items in the user sequences respectively. The y-
axis depicts negative values, with larger bars indicating larger

decreases in accuracy of the recommendation models.

based recommenders, perturbing only user and
item embeddings, i.e., wi and ej .

• adv sequence[20, 19]: Originally for LSTM
text classification[20], later adapted for sequential
recommendation[19], perturbing only sequence em-
beddings.

• adv global: Our self-defined baseline, similar to
our proposed method but without cascade-guided
re-normalization. Serves as an ablation study on
cascade value contributions.

For fair comparison, when implementing our
method, we always re-normalize the average cascade val-
ues to 1 so that the total magnitudes of added perturba-
tions are the same for all the baselines. The experiments
results are shown in Table 2. First, we observe that
compared to the pre-trained base models (no adversarial
training), applying any of the adversarial training meth-
ods can generally further improve the ranking accuracy.
This means that while adversarial training improves the
models robustness on the adversarial examples, it also
improve the models generalization on the clean data
[20]. Second, our proposed method consistently out-
performs all the other baselines on all the datasets. On
average, it improves the ranking accuracy of the base
model by 15.32% for SASRec and 15.99% for GRU4Rec.
Compared to the second best baselines, it shows 18.16%
more improvement of the base model for SASRec and
168.94% for GRU4Rec. Third, the improvements on
the sparser datasets (i.e., Video, Beauty, and Clothing)
are more significant than the other dataset. This is ex-
pected since when training complicated deep neural net-
works on sparse datasets, the trained models are more
easily to overfit on the data and less stable. It’s worth
noting that all the other adversarial training methods
fail to improve GRU4Rec on Clothing dataset possibly
due to it’s extreme sparsity, but the cascade-guided ad-
versarial training method still performs well.

We illustrate the learning curves of the two train-
ing phases in Figure 3. As shown in the figures, the
base models converge in the first 500 epochs of pre-
training. Training for more epochs can hardly bene-
fits the trained models. However, when applying the
Cascade-guided Adversarial Training, the ranking ac-
curacy can be quickly improved further, especially in
the next 100 steps.

We also consider a related question: what should be
the magnitude of the adversarial perturbations? The
magnitude of adversarial perturbations, controlled by
hyper-parameter ϵ in Eq. (4.7) and (4.9), impacts the
model’s robustness. Minor perturbations might not
enhance robustness, while excessive perturbations can
hinder learning. We perform ablation studies on ϵ, by
setting its value from 0.1 to 50 as shown in Figure
4. We find our algorithm effective across a spectrum
of ϵ. Even with small values like 1, can significantly
improve the models’ performance. The method shows
the best performance when ϵ ∈ [10, 20] for the both
base recommendation models. When ϵ is larger than
30, the models’ accuracy start to drop, suggesting that
the adversarial perturbations are too large, and useful
information is lost during training.

As in Eq.(4.11), each interaction has two types
of cascade effects on other interactions (i.e., cascade
effects on direct later interactions and cascade effects on
the interactions from other sequences). Please refer to
supplementary materials for ablation study about how
each component of cascade effects contribute to the final
performance.

5.6 EXP2: Improvement on Robustness We
evaluate the performance of the trained recommenda-
tion models in the presence of noise data. Notably,
our evaluations perturb by substituting real items, not
merely tweaking item embeddings, therefore, simply in-
creasing the norm of the learned item embeddings can
not lead to trivial solutions.

We ensure replacements are near the original in
the embedding space for minimal perturbation. Since
major changes in user history should eventually lead
to different recommendations, hence, substituting a
similar item better mimics “natural” data noise, like
misclicks. Experimentally, we derive the most adverse
minor replacements by first using a gradient-based
attack on target item embeddings and then pairing with
the nearest items in the gradient direction.

Since the proposed method is motivated based on
the idea that recommendation models have varying ro-
bustness across a user’s history, being more susceptible
towards the end. We test this by replacing the first,
middle, and last items in user sequences, then measuring
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(a) SASRec on MovieLen-1M. (b) SASRec on Video. (c) SASRec on Beauty. (d) SASRec on Clothing.

Figure 6: Decreases of model accuracy by replacing K items at the end of user sequences according to HT@10.

accuracy drops. In Figure 5 using the Video dataset, re-
placing initial and middle items results in minimal accu-
racy reduction (under 3%). However, changing the last
item sees a notable drop (23.6% in NDCG and 22.9%
in Hit ratio). This underscores the models’ vulnerabil-
ity towards sequence ends. Our method significantly
improves this end-sequence robustness, outperforming
base models and standard adversarial training.

Next, We evaluate model robustness by replacing
the last K items in user sequences. We choose K
from 1 to 5 to show the trend of decreasing model
accuracy. These tests are conducted on both base
models across all four datasets. Figure 6 presents the
results for the SASRec model while additional results
are in the supplementary materials. Our algorithm-
trained models consistently surpass the original models
in overall performance, with a slower decline in accuracy
at the same time. Notably, for the Video, Beauty, and
Clothing datasets, modifying the last 5 items still results
in a ranking accuracy higher than traditionally trained
models on clean data, underscoring the efficacy of our
method, especially on sparse datasets.

6 Conclusion

In this work, we introduce Cascade-guided Adversar-
ial Training, a novel adversarial training algorithm de-
signed for sequential recommender systems. This is the
first adversarial training algorithm that considers the
intrinsic properties of sequential recommendation mod-
els. Using our approach, we show that the trained se-
quential recommendaion models are more robust and
accurate. Considering the small number of additional
training epochs and the simplicity of the additional pa-
rameters involved in the proposed training process, the
proposed method is very practical.
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