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Abstract

The practice of soliciting self-explanations
from students is widely recognized for its
pedagogical benefits. However, the labor-
intensive effort required to manually assess
students’ explanations makes it impractical
for classroom settings. As a result, many
current solutions to gauge students’
understanding during class are often limited
to multiple choice or fill-in-the-blank
questions, which are less effective at
exposing misconceptions or helping
students to understand and integrate new
concepts. Recent advances in large
language models (LLMs) present an
opportunity to assess student explanations
in real-time, making explanation-based
classroom response systems feasible for
implementation. In this work, we
investigate LLM-based approaches for
assessing the correctness of students’
explanations in response to undergraduate
computer science questions. We investigate
alternative ~ prompting approaches for
multiple LLMs (i.e., Llama 2, GPT-3.5, and
GPT-4) and compare their performance to
FLAN-TS models trained in a fine-tuning
manner. The results suggest that the highest
accuracy and weighted F1 score were
achieved by fine-tuning FLAN-TS5, while
an in-context learning approach with GPT-
4 attains the highest macro F1 score.

1 Introduction

Interactivity is critical to learning (Blasco-Arcas et
al. 2013; Herppich et al. 2016). It has been widely
demonstrated that by increasing interactivity in the
classroom, we can significantly improve students’
learning outcomes (Beauchamp and Kennewell

2010; Mayer et al. 2009). Student-teacher
interaction is one of the most influential factors in
learning (Beauchamp and Kennewell 2010), and
when classrooms are interactive, students become
more engaged, more participative, and are more
motivated to learn (Bachman and Bachman 2011;
Barnett 2006; Caldwell 2007). In addition,
interactivity can improve comprehension and lead
to improved learning (Freeman et al. 2014).
Despite these benefits, many STEM classrooms
use lectures as the primary method of instruction.
The lack of interactivity poses serious issues in
undergraduate education (Freeman et al. 2014), and
large class sizes can inhibit meaningful exchanges
between instructors and students in traditional
classrooms (Caldwell 2007). The passive nature of
lectures is particularly problematic in STEM
courses, as research shows that undergraduate
students in classes that use a traditional lecture
format are much more likely to fail than students in
classes that use a more active learning method
(Freeman et al. 2014).

Classroom response systems have been touted as
a potential solution to this problem. These systems
capture and grade student responses to multiple
choice questions posed by instructors during
lectures. Each student submits a response using a
handheld transmitter (a “clicker”), and software on
the instructor’s computer records, grades, and
displays students’ answers for the class to view.
While research has shown that classroom response
systems can promote student engagement and
facilitate the learning of factual knowledge
(Campbell and Mayer 2009; Hunsu et al. 2016),
studies have also shown that “clickers” are less
effective for promoting deep and meaningful
learning. In fact, traditional classroom response
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systems may actually obstruct students from
developing a conceptual understanding of concepts
and principles, particularly for novice students
(Shapiro et al. 2017). Because students simply
select an answer from a list of choices, “clickers”
do not enable students to construct or generate their
own responses to questions, which is a key
component of active and constructive learning (Chi
and Wylie 2014).

Decades of research have shown that self-
explanation has a significant impact on student
learning (Chi et al., 1994; Fonseca and Chi 2011).
By explaining concepts and examples to
themselves as they learn, students trigger the self-
explanation effect, where they actively probe their
own understanding and address gaps in their
knowledge. Enabling students to generate short-
answer textual explanations to prompts posed by
instructors during lectures could open a rich
communication channel between instructors and
students. Eliciting self-explanations from students
has the potential to yield substantial learning
benefits for students in undergraduate STEM
classrooms, and it has been widely demonstrated
that self-explanation helps students learn much
more effectively than students who do not engage
in self-explanation (Chi et al., 1994; Fonseca and
Chi 2011; Johnson and Mayer 2010; Roy and Chi
2005). Because self-explanation requires students
to explain concepts to themselves in their own
words, they learn much more deeply. However,
despite the great potential offered by self-
explanation for promoting learning, students in
undergraduate STEM classrooms often have
limited opportunities to engage in this type of
active and constructive learning activity due to
limited class time for discussion. Similarly,
instructors have limited time to assess students’
self-explanation responses and provide formative
and timely feedback during lectures.

In this paper, we present a large language model-
based approach that automatically assesses
students’ written responses. We investigate the
performance of four Transformer-based large
language models—Llama 2 (Touvron et al. 2022),
GPT-3.5 (OpenAl 2023), GPT-4 (OpenAl 2023),
and FLAN-TS (Chung et al. 2022)—in assessing
the correctness (i.e., fully correct, partially correct,
and incorrect) of student self-explanations to
undergraduate computer science questions. These
explanations were collected from undergraduate
students, including those who participated in an

undergraduate course using the EXPLAINIT system
we have developed. Our findings suggest that
FLAN-T5 demonstrates high performance in terms
of accuracy and weighted F1, when fine-tuned
using a prompt that includes information taken
from a grading rubric in combination with an
exemplar response provided by the instructor.
However, we also find that the highest macro F1
score is achieved by GPT-4 in a few-shot learning
setting, where examples of only ten students’
explanation responses are provided without any
additional information from a rubric or an exemplar
response. We discuss the tradeoffs between these
models and the implications of our research for
practical applications of LLM-based explanation
assessment in classroom response systems.

2 Related Work

It has been found that students explaining concepts
to themselves has a profound effect on learning.
Known as the self-explanation effect (Chi et al.
1994; Fonseca and Chi 2011; Sidney et al. 2015),
the result of self-explanation goes beyond simply
rehearsing information: it requires students to
express concepts in their own words, relate
concepts to prior knowledge, make inferences,
integrate information with prior knowledge, and
monitor and repair faulty knowledge. Thus, self-
explanation is a deeply constructive activity (Roy
and Chi 2005). The significant learning gains
associated with self-explanation have been
demonstrated in a wide range of STEM disciplines
including computer science (Pirolli and Recker,
1994), engineering (Johnson and Mayer 2010),
chemistry (Crippen and Earl 2007), algebra
(Atkinson et al. 2003), biology (McNamara 2004),
physics (Chi et al. 1994), and physiology (Butcher
2006). Our EXPLAINIT classroom response system
leverages the self-explanation effect to improve
STEM classroom learning.

Widely known as “clickers,” classroom response
systems have emerged as a tool to bridge the gap
between students and instructors and to make
lectures more interactive. Used by millions of
students, classroom response systems allow
students to anonymously respond to multiple
choice questions presented during lectures.
Research has shown that students appreciate the
ability to compare their own answers to those of
their peers, receive immediate feedback, and test
their knowledge, and that “clickers” can increase
student interactivity during lectures (Freeman et al.
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2014; Hunsu et al. 2016; Kay and LeSage 2009).
However, studies have also shown that clickers fail
to promote deep and meaningful learning, which
can be particularly problematic for students in
STEM classes who are required to conceptually
understand important concepts, relationships, and
theories to effectively solve problems (Shapiro et
al. 2017). Closely related to our work, commercial
classroom response systems have been explored in
various classroom settings. These systems typically
support students through classroom discussions,
questions, and assignments, and they support
instructors with features for course material
creation and assessment, which are incorporated
with learning management systems. While they
provide a range of functionalities required for a
classroom response system, such as the ability to
pose various types of questions (e.g., multiple
choice, fill-in-the-blank, short answer questions),
their automated assessment is typically limited to
multiple choice and fill-in-the-blank types of
questions that accept a predetermined set of
answers, while they require a manual assessment
process for other types of questions.

Deep learning-based language models such as
BERT (e.g., Liu et al. 2019), FLAN-T5 (e.g.,
Chung et al. 2022), GPT (e.g., Brown et al. 2020),
and Llama (Touvron et al. 2023) have been pivotal
in the recent advancements in natural language
processing (NLP; Torfi et al. 2020). In learning
analytics, additional sources of training data,
including data collected for free-response prompts
(Rivera-Bergollo et al. 2022), text providing
additional context for free-response prompts
(Condor et al. 2021), response assessment rubrics
(Condor et al. 2022), and synthetic data generated
via data augmentation strategies (Lun et al. 2020),
have effectively enhanced the training of NLP
models, leading to improved predictive
performance. NLP techniques have been used to
accurately analyze student textual responses in the
context of short-answer science assessment (Smith
et al. 2019), student written reflections (Carpenter,
Geden, et al. 2020), student-tutor dialogue
(Carpenter, Emerson, et al. 2020), and student self-
explanations (Chen and Wang 2022).

While previous work demonstrated considerable
success with LLMs for short answer grading
(Takano and Ichikawa 2022; Zhang et al. 2022) and
short answer question generation (Moore et al.
2022), a research area that has seen limited
exploration is assessing students' free-text
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explanations (Nicula et al. 2023). Building on
recent advances in NLP and deep learning-based
language modeling techniques, our work makes a
novel contribution by investigating an approach to
assess students’ self-explanations, collected from
an undergraduate Artificial Intelligence course,
utilizing large language models with fine-tuning
and few-shot learning.

3 EXpLAINIT Classroom  Response
System
The EXPLAINIT classroom response system

leverages the self-explanation effect and active,
constructive, and interactive learning, along with
state-of-the-art natural language processing, to
significantly improve STEM undergraduate
education. With a specific focus on computer
science, biology, and physics, it aims to create
highly engaging classroom learning experiences.
EXPLAINIT  offers the  opportunity to
fundamentally improve classroom dynamics by
supporting both students and instructors. The
system is designed to support both students and
instructors in undergraduate STEM courses by
analyzing and providing feedback on students’
explanations through an integrated five-step
explanation feedback loop (Figure 1): (1) the
instructor issues an explanation prompt, which
appears in the EXPLAINIT app on students’
computing devices (e.g., laptops, tablets, phones);
(2) students write free-text explanations ranging
from a sentence to a short paragraph in the
EXPLAINIT app on their computing devices; (3)
EXPLAINIT automatically analyzes students’
explanations and provides real-time formative
feedback to students individually in their apps; (4)
EXPLAINIT provides a summary of correctness of
student explanations to the instructor; and (5) the
instructor makes “instructional pivots” by
immediately tailoring pedagogy to respond to
students’ explanations to improve student
learning and engagement by focusing the lecture
and classroom discussion on the most important
elements of the course material. Collectively,
these interactive explanation-based activities are
designed to synergistically lead to improved
student learning and promote greater student
engagement in undergraduate STEM classrooms.

Our initial prototype of the EXPLAINIT
classroom response system was implemented
using a web-based application architecture to
support enhanced scalability, where instructors
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Figure 1: The EXPLAINIT explanation-based
classroom response system.

and students can choose their platforms of choice
such as laptops and handheld devices, while the
software enables real-time interactions with the
user interfaces. The EXPLAINIT user interfaces
consist of an Instructor Authoring Tool, Instructor
Dashboard, and Student Explanation App. The
streams of communication data are uploaded into
a cloud-based database by the server. For data
synchronization and analysis purposes, all
interaction data is timestamped. To support these
functionalities, we implemented the software
modules to include APIs using the HTTP
protocol. We use Microsoft’s Azure cloud
computing service to host our cloud-based
services.

The Instructor Authoring Tool enables
instructors to create or edit questions and an
exemplar correct response per question. All
questions and responses are categorized by their
subjects and topics in the tool. All authored
content is stored and accessed from the cloud,
allowing the original instructor to reference their
own created questions for future courses. The
Instructor Dashboard presents the pool of
questions per subject and topic, and it allows
instructors to select and send questions to the
Student Explanation App, so that students can
view and interact with the questions in real-time
during lectures. The Instructor Dashboard is also
designed to display student-written responses and
NLP assessment results in visual analytics. The
Student Explanation App enables students to
receive questions posed by instructors and write
self-explanation responses to instructor-posed
questions. When students submit their responses,
the Student Explanation App taps into the
Explanation Analyzer, which performs NLP-
driven assessment of student explanations,
generates tailored feedback to students, and
dispatches analytical summaries to instructors

through Instructor Dashboard. The Explanation
Analyzer is in the development phase, and our
findings about the Explanation Analyzer’s NLP
performance are presented in this paper.

4 Study and Data

This work uses data collected during a classroom
pilot study of the EXPLAINIT system. The
participants in the classroom study consisted of 36
consented undergraduate students enrolled in a
Computer Science course focused on Artificial
Intelligence. Thirty-two students completed a
demographic pre-survey, and among them 8
indicated that they identified as female, 23 as male,
and 1 preferred not to indicate gender
identification. Participants ranged in age from 18 to
28 (M = 21.1, SD = 1.64). Of these participants,
40.6% were Asian, 50.0% were White, and 9.4%
preferred not to answer.

Prior to using EXPLAINIT in the class, the
instructor used the Instructor Authoring Tool to
prepare a set of questions, each accompanied by an
exemplar correct answer. These answers were
presented to students immediately after they
submitted their responses to the respective
questions. The classroom implementation unfolded
over 6 weeks within a single semester. Throughout
this period, a total of 13 questions were sent to the
class, eliciting 356 responses from 36 participants,
which were utilized in our evaluation (Table 1).

Students’ responses to the questions were
labeled by two of the researchers, who are experts
in computer science. First, a rubric item was
constructed for each question that described the
qualities of a correct, partially correct, or incorrect
answer to the question. For example, the rubric for
the question “In a neural network, what function is
responsible for introducing non-linearity to the
model?” indicated that a correct response should
mention the term “activation function”, a partially
correct response might present an example of an
activation function (e.g., “sigmoid”) without
explicitly mentioning the term “activation
function”, and that an incorrect response would not
include any of this information. We also referenced
instructor-provided exemplar answers to further
refine the rubrics for each question. These were
comprehensive and well-reasoned responses,
serving as a representative correct answer to each
question.

Then, based on the developed rubric, both
researchers labeled twenty percent of the student
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Number of | Number of

Question Topic Questions Student
Sent Responses
What does the term "deep" in deep learning refer to? Deep Learning 1 28
What is the basic building block of a neural network Deep Learning 1 27
called?
In a neural network, what function is responsible for Deep Learning 1 24
introducing non-linearity to the model?
What is clustering in the context of machine learning? Clustering 2 37
Name a commonly used algorithm for clustering and Clustering
. . . 2 34

briefly describe how it works.
What is the main difference between K-means and Clustering

. . . 2 37
hierarchical clustering?
The K-means algorithm may end up with different Clustering
clustering results when the initial clustering centers are 2 36
chosen differently. Yes or No?
What is the "purity" of an external measure for cluster Clustering 1 2
quality?
What are support vectors in the context of SVMs SVM 1 23
How does a soft-margin SVM differ from a hard-margin SVM 1 23
SVM?
Is it always better to use a soft-margin SVM to ensure
model flexibility? Why? SVM ! 2
Is an SVM more suitable for small datasets than large
datasets? Why? SVM ! 2
Can SVMs be used for both classification and regression SVM 1 20

tasks? Example?

Table 1: Descriptive statistics of questions sent during the classroom study.

responses. After one cycle of rubric refinement, a
Cohen’s Kappa of 0.702 was achieved, indicating
substantial agreement (McHugh 2012). All labels
that the annotators did not agree on were discussed
and agreement on a single label was reached.
Across all questions, 73% of explanations were
labeled as correct, 22% were labeled as partially
correct, and 5% were labeled as incorrect.

5 Method

We evaluated the performance of Llama 2
(Touvron et al. 2022), GPT-3.5 (OpenAl 2023),
GPT-4 (OpenAl 2023), and FLAN-T5 (Chung et
al. 2022) on the self-explanation assessment task.
Large language models (LLMs) have been
demonstrated  to  achieve  state-of-the-art
performance on many natural language processing
tasks, with GPT-4 particularly excelling with few-
shot prompting where training examples are
integrated into the task description (OpenAl 2023).
This enables GPT-4 to readily adapt to new tasks
without re-training, avoiding the prohibitive cost of

updating its extensive parameters. However, GPT
models’ proprietary nature and associated costs
pose barriers to its educational adoption, such as
EXPLAINIT.

To address this challenge, we also evaluated the
performance of open-source models, FLAN-TS5
and Llama 2. FLAN-TS is an instruction-fine-tuned
language model that has demonstrated competitive
performance with other state-of-the-art models
across a range of tasks when it was released (Chung
et al. 2022). Llama 2 is an open-source pre-trained
large language model that has demonstrated
leading performance compared to other open-
source models and performs similarly to GPT-3.5
on several tasks (Touvron et al. 2023). In this work,
we investigate the performance of the base FLAN-
T5 model (250M parameters) and Llama 2-7B, the
smallest version of the model. These versions of
FLAN-T5 and Llama 2 were selected due to their
computational efficiency. For all models, default
hyperparameters were used.

We investigated several different zero-shot and
few-shot prompting approaches to evaluate the
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performance of Llama 2, GPT-3.5, and GPT-4 for
automated assessment of students’  self-
explanation. As a baseline, these models were
provided with instructions that described the task
(i.e., “Please evaluate a student's explanation
response to the following question.”) in addition to
the question and student response. Then, we
systematically evaluated the impact on model
performance of including the following
information in the prompt: (a) rubric items for the
current question, (b) an exemplar correct response
provided by the instructor, and (c¢) other students’
labeled responses to the current question. Prompts
were constructed with all possible combinations of
the different information elements, and model
performance was evaluated for each combination.

For the prompts incorporating student self-
explanation responses, 10-fold student-level cross-
validation was used to prevent bias from students’
individual writing styles and to ensure
generalizability, avoiding data leakage in model
evaluation. Additionally, this approach accurately
represents the real-world scenario that will be faced
when deploying EXPLAINIT in future classroom
implementations, as the students interacting with
the system will be new but the models will have
access to past student’s responses to each question.
Due to LLM token limits and the per-token cost of
proprietary models like GPT-4, we sampled ten
responses from the training set for each cross-
validation fold to include in the prompts rather than
including the entire training set.

In comparison to Llama 2, GPT-3.5, and GPT-4,
the FLAN-T5 base model's smaller parameter
count facilitates easier and more cost-effective
training. Given its sufficient size for fine-tuning
using our available resources, we chose this
approach over few-shot prompting. We applied
LoRA for efficient fine-tuning, changing only a
subset of the model’s parameters to conserve time
and computational resources, while achieving
similar performance to full fine-tuning (Hu et al.
2021). The evaluation of fine-tuned FLAN-TS
models is also based on 10-fold student-level cross-
validation using the same data split as was used for
in-context learning with the other models.
However, rather than including example
explanations and their assigned labels in the
prompt, they were used as training examples in a
supervised learning approach. As with the in-
context learning approach, we explored variants of
prompts including the rubric item for each question

and/or the exemplar correct response created by the
instructor. A separate FLAN-TS model was fine-
tuned for each prompt variant.

6 Results

Results from all experiments are presented in Table
2. Our task involves multi-class classification,
where each student response is categorized into
correct, partially correct, or incorrect. We
evaluated the explanation assessment models in
terms of accuracy, macro F1, and weighted F1. As
noted above, all combinations of the three different
information elements (i.e., rubric, exemplar
response, and student example responses) were
explored for each LLM. Due to length constraints,
Table 2 reports only the results of including one
element at a time as well as including all types of
information, while the findings from all
combinations are discussed in this paper.

Across all experiments, FLAN-T5 models that
were fine-tuned with rubric information and the
instructor’s exemplar response achieved the
highest accuracy (acc.=0.824). This was a
substantial improvement over the majority
baseline, which always predicts the most common
class (acc.=0.730), as well as the next-highest
performing approach, which was GPT-4 with ten
student examples included in the prompt
(acc.=0.775). In terms of macro F1 score, GPT-4
with ten labeled student explanation responses
included in the prompt achieved the highest
performance (F1=0.664). This was a significant
improvement over the majority baseline
(F1=0.281) and the next-highest performing
approach, which was GPT-4 with all three
information elements included in the prompt
(F1=0.641). In terms of weighted F1 score, FLAN-
T5 models that were fine-tuned with rubric
information and the instructor’s exemplar response
achieved the highest performance (F1=0.798). This
was an improvement over the majority baseline
(F1=0.616) and a small improvement over the next-
highest performing approach, which was GPT-4
with ten labeled student explanation responses
included in the prompt (F1=0.792).

In general, our results demonstrate that
including rubric information in the prompt
improved model performance. For FLAN-TS,
Llama 2, and GPT-4, both accuracy and F1 score
were improved relative to the prompting approach
that only provided high-level instructions for the
explanation assessment task. We observed the
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largest improvement in model performance when
the sole additional information was a set of ten
labeled explanation responses from other students.
With this prompt, Llama 2 and GPT-4
demonstrated improved accuracy over the
instruction-only approach, while Llama 2, GPT-
3.5, and GPT-4 exhibited improved macro F1
scores. However, we found that including the
instructor’s exemplar response into the prompt led
to reduced model performance across all models
except for Llama 2, compared to the instruction-
only approach. This reduction may stem from the
exemplar responses often containing
comprehensive details that exceed the question's
scope, leading the models to apply a very strict
standard in assessing student responses.
Consequently, responses were more frequently
categorized as partially correct or incorrect, even
though they should be labeled correct within the
question's intended scope.

Next, we looked at the effects of including two
information elements in the prompt. Note that these
results are omitted from Table 2 to save space. We
observed that the highest accuracy and F1 score for

FLAN-TS5 were achieved when the models had
access to both rubric information and the
instructor’s exemplar response. That is, we found
that there was an additive effect of including
multiple information elements for FLAN-TS
models. In comparison, the general trend across the
prompting approaches for Llama 2, GPT-3.5, and
GPT-4 that utilized two information elements was
that there was not an additive benefit of including
multiple information elements. For example, GPT-
3.5 and GPT-4 including either rubric information
or the exemplar response in addition to labeled
student responses led to reduced performance
compared to models that only had access to ten
student example responses. In addition, Llama 2
generally demonstrated a decrease in performance
when using two information elements compared to
only one; however, the combination of the
exemplar response and ten student responses
without the rubric led to improved performance
over all approaches that incorporated only one
information element.

A distinct trend emerged when all three
information elements were included in the prompt.

Model Prompt Variation Accuracy (mgclro) (weiglll ted)
Majority - 0730 | 0281 0.616
Baseline

Fine-tuned with instructions 0.803 0.476 0.764

FLAN- | Fine-tuned with instructions + Rubric 0.820 0.506 0.789
T5-base | Fine-tuned with instructions + Exemplar response 0.792 0.465 0.754
(250M) | Fine-tuned with instructions + Rubric + Exemplar 0.824 0.550 0.798

response

Instructions only 0.509 0.184 0.538
Instructions + Rubric 0.664 0.400 0.698
Llama 2- | Instructions + Exemplar response 0.526 0.234 0.579
B Instructions + 10 student examples 0.706 0.443 0.717
Instructions + Rubric + Exemplar response + 10 0.744 0,444 0751

student examples
Instructions only 0.664 0.545 0.684
Instructions + Rubric 0.564 0.449 0.586
GPT-35 Instructions + Exemplar response 0.519 0.425 0.539
Instructions + 10 student examples 0.612 0.591 0.644
Instructions + Rubric + Exemplar response + 10 0533 0537 0,560

student examples
Instructions only 0.685 0.574 0.708
Instructions + Rubric 0.709 0.606 0.732
GPT-4 Instructions + Exemplar response 0.651 0.422 0.686
Instructions + 10 student examples 0.775 0.664 0.792
Instructions + Rubric + Exemplar response + 10 0754 0641 0.779

student examples

Table 2: Student explanation assessment results across models and prompt variations.
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GPT-3.5 and GPT-4 models with access to all three
information elements performed worse than
models provided with only ten labeled student
example responses, both in terms of accuracy and
F1 scores. However, for Llama 2 models,
incorporating all three information elements in the
prompt resulted in the highest accuracy and F1
scores compared to any other combinations of
information.

These results suggest that the best results are not
necessarily guaranteed by providing the model
with the maximum amount of task-related
information. Models consistently performed well
when the prompt included labeled examples of
other students’ responses, but including the
instructor-created exemplar response tended to
reduce model performance as discussed. Adjusting
the exemplar response provided to the models, by
adding clarification or simplifying its content,
could potentially lead to improved performance
when this information element is included. This
underscores an important area for future research.

Overall, these results demonstrate that fine-
tuning FLAN-TS and utilizing few-shot learning
with GPT-4 are both viable approaches to this
explanation assessment task. Although FLAN-TS
requires more training data than GPT-4 to reach
high performance levels (our preliminary analysis
indicated that the predictive accuracy of a FLAN-
T5 model, fine-tuned with only the data from five
focus group students, was 60%), this tradeoff may
be acceptable considering that FLAN-TS is open-
source and GPT-4 is proprietary. This consideration
becomes more critical as our classroom
implementation scales, especially in large
classroom settings with multiple sessions where
deployment costs become a significant factor.
Conversely, if the EXPLAINIT system is
implemented in a course where FLAN-TS models
have not been trained with student data from that
course, GPT-4 with one-shot learning (with rubric
information) might significantly outperform
FLAN-T5, making GPT-4 potentially more
suitable for the classroom response system. It will
be crucial to weigh practical benefits, scalability,
and cost considerations when deploying a runtime
version of the explanation assessment system
during the classroom use of EXPLAINIT. In practice,
these results suggest that a hybrid system may be a
viable approach. When a new question is deployed
using the system, zero-shot learning with GPT-4
can be used based on a pre-defined rubric that was

created for assessing responses to the question.
Since this information can be created at the same
time as the question, it can be provided to the
system when the new question is first deployed.
Then, as student responses to the question are
collected, they can be used to fine-tune a FLAN-TS
model, which can then replace the GPT-4 model
once it starts showing superior performance.

7 Conclusion

Prompting students to craft self-explanations has
demonstrated to offer numerous educational
advantages. However, it often requires substantial
time and effort necessary for instructors to
manually assess student responses and provide
feedback for students, which renders them
unsuitable in large classroom environments. To
address this challenge, we present EXPLAINIT, a
self-explanation-based classroom response system
specifically designed to encourage students in
formulating written self-explanations during
undergraduate STEM  lectures. Our NLP
framework builds on Transformer-based large
language models, such as FLAN-TS and GPT-4, in
assessing the correctness of student explanations,
and it is evaluated using our dataset collected from
classroom interactions with the EXPLAINIT system.
Results demonstrate that fine-tuned FLAN-TS
models using prompts with rubric information and
an exemplar response achieved the highest
accuracy and weighted F1 score, while few-shot
prompting that provided GPT-4 with ten labeled
student response examples achieved the highest
macro F1 score. These results indicate the potential
to use large language models for automated
explanation assessment, which can be leveraged to
provide adaptive support for students’ self-
explanations in classroom environments.

Moving forward, there are several promising
directions for future work. First, it will be important
to implement the full suite of EXPLAINIT system
functionalities, including NLP assessment models,
in a classroom environment and investigate their
impact on students’ learning outcomes. It would
also be interesting to incorporate Al capabilities to
support question and rubric generation, thereby
reducing the amount of work required by
instructors to use EXPLAINIT in their classes.
Additionally, the explanation assessment system
could be expanded to support a finer-grained
assessment of students’ self-explanations. For
example, concept-level assessment of students’
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self-explanations could provide more insightful
feedback for both students and instructors. Also, it
will be important to investigate this explanation
assessment approach in disciplines other than
computer science to evaluate its performance in
other domains. Finally, it will be important to
explore how different types of exemplar responses
and rubric items impact model performance. If we
are able to identify characteristics of exemplar
responses and rubric items that most improve the
predictive accuracy of our LLM-based framework
for self-explanation assessment, that will enable
our classroom response system to more effectively
support student learning in new settings where
there is limited student data that can be used to
inform the assessment models.

8 Limitations

One limitation of our work is the challenge
associated with evenly comparing fine-tuned
models (i.e., FLAN-TS) with models that are
evaluated based on few-shot in-context learning
(i.e., Llama 2, GPT-3.5, and GPT-4). In our work,
FLAN-T5 had access to 90% of the dataset as
training data because of the 10-fold student-level
cross-validation setup. In contrast, while the
models that used in-context learning used the same
cross-validation setup, they had access to only ten
student responses that were sampled from the
training set for each cross-validation fold. This
limitation was a result of the practical consideration
that LLMs have limited context lengths and that
proprietary LLMs have monetary costs on a per-
token basis. As a result, it is not feasible to provide
an unlimited number of labeled student explanation
responses in the prompt to an LLM, and the limit
of ten student responses was chosen because it
seemed reasonable. To overcome this limitation,
future work could systematically investigate
whether there is a more optimal number of example
student responses that balances between model
performance and costs. Another limitation of this
work is the generalizability of the result suggesting
that including an exemplar response created by the
instructor in the prompt led to reduced model
performance. It may be the case that certain
characteristics of the exemplar responses used in
this work were suboptimal for providing an LLM
with guidance on how to correctly assess students’
explanation responses. Further investigation into
the impacts of various characteristics of exemplar
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responses would be helpful for addressing this
limitation.
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