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Abstract—We explore an emerging threat model for end-to-
end (E2E) encrypted applications: an adversary sends chosen
messages to a target client, thereby “injecting” adversarial
content into the application state. Such state is subsequently
encrypted and synchronized to an adversarially-visible storage.
By observing the lengths of the resulting cloud-stored cipher-
texts, the attacker backs out confidential information.

We investigate this injection threat model in the context of
state-of-the-art encrypted messaging applications that support
E2E encrypted backups. We show proof-of-concept attacks
that can recover information about E2E encrypted messages
or attachments sent via WhatsApp, assuming the ability to
compromise the target user’s Google or Apple account (which
gives access to encrypted backups). We also show weaknesses in
Signal’s encrypted backup design that would allow injection
attacks to infer metadata including a target user’s number
of contacts and conversations, should the adversary somehow
obtain access to the user’s encrypted Signal backup.

While we do not believe our results should be of immediate
concern for users of these messaging applications, our results
do suggest that more work is needed to build tools that enjoy
strong E2E security guarantees.

1. Introduction

Deployment of end-to-end (E2E) encryption has im-
proved the confidentiality and the integrity of data in var-
ious contexts, including messaging [9, 25,26], cloud stor-
age [3,10], and other web applications [2]. The security
of E2E encrypted messaging protocols [12,13,15,17,20,
23,29, 30, 38,43,52,56,64,65] and file storage [14,36,77]
has been studied extensively, giving us confidence that even
sophisticated, nation-state level adversaries cannot violate
the security of state-of-the-art E2E encryption tools without
compromising endpoint devices.

To support new features, the complexity of E2E en-
cryption tools is increasing. Messaging applications have
recently started to provide backup features that allow users
to recover their messages when they need to transition to
a new device. WhatsApp [45,73] and Signal [42], which
together account for billions of users [9, 25], both have opt-
in backup features. WhatsApp provides automatic upload of
backups to a user’s Google Drive or iCloud accounts, while
Signal allows users to manually export them. In both cases,
backups are encrypted, and should only be decryptable by
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the legitimate user [45]. Therefore backups should enjoy the
same level of confidentiality as E2E encrypted messaging.

In this work, we introduce new attacks against E2E en-
crypted messaging applications. Our most damaging attacks
recover partial information about messages or attachments
sent from one honest user to a target honest user U. The
attacker needs the ability to send adversarial messages to
the target user——thereby “injecting” adversarial content into
the application state——and the ability to observe the target
user’s encrypted backups. As such, we refer to these as
injection attacks. Our attacks do not invalidate the security
of the E2E encrypted messaging protocol used (the Signal
protocol in both cases), but rather violate confidentiality via
cryptographic vulnerabilities in other parts of the applica-
tion, namely, their backups.

We stress that, in our threat model, the attacker never
has access to the backup decryption key. Thus, a priori, an
adversary should not be able to learn about U’s conversa-
tions with other honest users. To see if this holds true in
practice, we perform a security analysis of both WhatsApp
and Signal in the context of injection attacks.

For WhatsApp, we identify three distinct attack vectors.
First, attachments such as images, videos, or PDF files are
deduplicated—the backup only stores one encrypted copy
of each unique attachment—even if it was received from
different senders. Second, the serialized database file is com-
pressed using a standard library (zlib) before it is encrypted.
Third, WhatsApp uses an SQLite module (FTS4) to build
a search index for all messages across all conversations.
In all three cases, the length of the encrypted backup ends
up being a function of content from different senders, and
serves as a side-channel through which the adversary can
deduce information about honest messages.

In some special cases, exploitation is straightforward
for the adversary: for media deduplication, the adversary
can observe a backup, send U a candidate media file, and
observe the subsequent backup. If U has already received
this file before, the size of the second backup ciphertext
will grow by less than what is expected. We show a more
sophisticated attack approach that is robust to most kinds
of noise (other, unrelated activity on U’s device such as
receiving other attachments beyond the target messages) and
allows determining which of n attachments were received
by U. It requires the adversary to observe at most [log;s 7]
backups. We note that deduplication exploits have been
considered in other contexts, such as encrypted storage [36];
however, as far as we know, this is the first work that shows



Application  Attack

Attack Vector

Setting Backups seen Messages sent

(1) Dictionary attack on attachments

Attachment deduplication

Noisy device q

Yicig—1[n/167]

WhatsApp (2) Dictionary attack on messages zlib compression Quiet device 2 [logyn] +1 2 [loggn] +1
(3) Distinguishing attack on messages FTS4 index Quiet device 16 44
Signal (4) Learn number of contacts, messages  Serialization method Noisy device 1 1

Figure 1: Summary of the attacks discovered in this work. Here n is the size of the dictionary V (possible attachments or

messages) and g = [log4n].

this issue arises in encrypted messaging backups.

Exploiting zlib compression required understanding
complex interactions between database serialization and
compression, and how sending messages affects the resul-
tant backup. Nevertheless, we show a binary-search style
injection attack that determines which of n messages was
recently received by U, by adaptively injecting at most
2-[log, n] + 1 messages and observing the same number of
backups. We have demonstrated this attack in a lab setting
where the victim U’s client application has no other activity
during the attack. We call this scenario the “quiet device”
setting. We experimentally verify the attack for small n.

Finally, we show that even if zlib compression and
deduplication were turned off, there are additional sources
of leakage that stem from the use of a text keyword search
index called FTS4. This is a delicate vulnerability that
arises due to subtle interactions between WhatsApp’s use
of FTS4, the inner mechanics of the B-tree data structures
used to store the index, and SQLite serialization. Our at-
tack consequently is technically complicated, in large part
because the adversary does not initially know the internal
state of the target’s data structures, and must account for
this by adaptively modifying the state via injections to
enable learning confidential information. Nevertheless, we
experimentally demonstrate that in the quiet device setting,
an attacker can determine which of two messages U has
received from an honest party by injecting at most 44
messages and observing at most 16 backups. This attack
vector may be of relevance to other applications that index
mixtures of trusted and untrusted data using FTS4 (e.g.,
multi-tenant search services [70]).

We also explored Signal, whose bespoke serialization
and encryption mechanism avoids many of the problems
above. Nevertheless, we built an attack which exploits the
fact that the structure of their backups leaks the size of
each row in the target U’s client-side database. Combining
an injection attack with additional heuristics, an adversary
can infer which rows are part of which tables, by observing
only two backups. This allows them to learn the number
of messages U has received, U’s number of contacts, and
more. We discuss how this attack can also be adapted to
work in the “noisy device” setting, either assuming the size
of messages sent by honest parties (the noise) have bounded
length, or by injecting a small sequence of random-length
messages. These only require a single backup.

Contributions. We are the first to explore injection at-
tacks against state-of-the-art encrypted messaging applica-
tions that utilize encrypted backups. A summary of our

attacks appears in Figure 1. These demonstrate how to
violate the confidentiality of messages and attachments sent
on WhatsApp and, for Signal, how to efficiently reveal
potentially sensitive metadata about a user’s contacts and
messages. While our in-lab experiments do not indicate that
injection attacks are an immediate threat to user privacy,
they do highlight previously unrecognized challenges faced
when attempting to achieve E2E confidentiality guarantees
in adversarial settings.

We therefore discuss potential countermeasures in the
body. While some attacks have straightforward mitigations,
others uncover the need for additional work to find solutions
to building backups that are both efficient and secure. Be-
yond backups, and given the expanding set of applications
being built with E2E encryption guarantees in mind, our
results motivate future work on principled mechanisms for
discovering and mitigating injection attacks.

Ethics and responsible disclosure. Our experiments in-
volved researcher accounts that were not used for other pur-
poses and minimal load on Signal and WhatsApp services,
requiring a small number of messages sent at a reasonable
pace. To see how attacks can scale up in a way that might
load servers, we implemented simulators whose results we
validated via smaller manual experiments with real clients.

We disclosed our findings to Signal and WhatsApp.
Signal acknowledged the vulnerabilities and deployed miti-
gations in the vl revision of their Android backup file for-
mat,! per our recommendations from Section 6. WhatsApp
acknowledged receipt of our disclosure, and are discussing
our results internally.

2. Related Work

Analysis of E2E encrypted applications. Recent work
has explored attacks on a variety of E2E encrypted plat-
forms. Paterson et al. [52] present seven attacks on Threema,
an E2E encrypted messaging platform, across three differ-
ent threat models. One of their attacks targets encrypted
backups; we discuss this further below. Albrecht et al. [12]
provide novel attacks on Matrix, a federated E2E encrypted
messaging platform and open protocol. Backendal et al. [14]
demonstrate attacks on MEGA, an E2E encrypted file-
sharing service. None of these attacks work in our threat
model, requiring adversarial capabilities we do not assume.

1. Mitigations rolled out in Android builds following commit
c6473ca9%e63236af3eae9959a50cfa643d53272e in their open-source repos-
itory [67].



They also exploit vulnerabilities in the (weak) cryptographic
schemes and protocols used, while ours do not. That said,
these recent prior results and ours together showcase a
growing need to more holistically evaluate the security of
E2E encrypted applications.

Despite this, and even though WhatsApp and Signal have
been the source of much academic work [17, 20, 23, 29, 38,
56,64], little attention has been placed on their backups.
A security assessment of WhatsApp’s backups scheme by
NCC Group [33] explicitly mentions that the “backup en-
cryption implementation” was not in scope, and they focused
solely on key management and privilege separation. There
is no overlap between our findings and their report. More
importantly, a recent paper [27] provides an extensive formal
security analysis of WhatsApp’s backup system under the
universal composability (UC) framework, and found that the
protocol “provides strong protection of users’ chat history
and passwords”. However, their analysis was limited to
the “password-protected key retrieval (PPKR) scheme” of
WhatsApp’s backups system, whereas our attacks focus on
details of the encryption mechanism itself.

Length-revealing encryption. Many works have sought
to exploit the lengths of ciphertexts as a channel for learn-
ing confidential information. Perhaps most relevant is that
our attacks bear some similarity to the literature on traffic
analysis (c.f., [28]) that has been explored against network
security protocols like TLS and SSH. These use the lengths
of ciphertexts to infer information about plaintext communi-
cations, such as the website being visited over an encrypted
tunnel (e.g., [37,51]). But these attacks are tailored to the
network setting and do not work in our context.

Attacks on compression before encryption. It has long
been recognized that compression (such as zlib) before
encryption can result in vulnerabilities [44]. For example,
attacks have been given against TLS when using compres-
sion [32,54,69], the iMessage E2E encrypted messaging
protocol [30], and the aforementioned Threema attack [52].
The iMessage attack exploits compression of chat messages
before encryption; this is now known to be bad practice and
state-of-the-art E2E encrypted messaging systems do not use
message compression.

Threema is a messaging application advertising E2E
encrypted messaging, but Paterson et al. [52] showed a
number of flaws in its cryptographic protocols. One of their
attacks targets the fact that Threema supports encrypted
backups. Their attack, like ours from Section 4.2, uses
an injection-type attack exploiting zlib compression and a
length side-channel. But their attack requires physical access
to the target’s handset and the ability to unlock it. Even if
one assumes physical access to a target device, their attack
doesn’t apply to WhatsApp or Signal because it exploits
details of Threema’s design, in particular the ability to target
recovery of a secret key stored within the backup.

Concurrent work introduced the DBREACH attack [39],
which explores compression specifically in the context of
databases. However, it operates in a different threat model,
for two main reasons: (1) their attacks assume an adversary

who can insert and edit content in the database, whereas
WhatsApp does not allow users to edit sent messages; (2)
more importantly, their attacks assume that the adversary
controls the entire payload of the insertions they trigger
(e.g., by being able to send direct SQL statements to the
database file). Sending a message in WhatsApp, however, is
a much more noisy interface: it inserts a lot of information
outside of the adversary’s control into the database, such as
timestamps and other metadata. As such, their attacks are
not applicable to this setting.

Another form of compression is deduplication, in which
systems only store one copy of duplicate files. Like zlib-
style compression, deduplication before encryption has been
explored as a vulnerability in other contexts such as client-
side encrypted file storage [19, 35, 36]. Our injection attacks
exploiting deduplication (Section 4.1) are similar to these
prior attacks, but require additional refinements due to de-
tails of WhatsApp’s architecture. Our results highlight how
deduplication vulnerabilities arise in new settings.

Attacks on encrypted search and databases. A now
long line of work exists on leakage-abuse attacks against en-
crypted databases and search indexes [16,21, 31, 34,40, 49,
53,55,75,78]. These use passive observations of accesses
to an encrypted data store by an adversarial cloud service
to violate confidentiality. These do not apply to our setting,
where access leaks only the fact that a backup is being stored
or downloaded.

In addition to passive attacks, this literature explored ac-
tive injection attacks [21,76, 78] that arise in a threat model
similar to ours. Prior injection attacks including [21, 78] take
advantage of leakage of search patterns (what documents
match against a keyword search) or access patterns (which
documents are accessed due to a search) to recover plaintext
content, and do not apply to our setting where search does
not involve interactions with the adversarial storage service.
Our attacks are closer to a vulnerability highlighted by Xu
et al. [76] that showed how the length of encrypted Lucene
search indexes might be exploitable for plaintext recovery
via an injection attack. But they stop short of giving a fully
specified attack, their results do not apply to our setting
(which does not involve Lucene), and it’s unclear whether
their attack affects any deployed system.

3. E2E Encrypted Backups and Threat Models

In this section, we provide a broad overview of the
architecture of end-to-end (E2E) encrypted backups, and
detail the threat models that we explore.

Basic messaging architecture. For our purposes, a mes-
saging service consists of a client U running on some
user device. The client sends and receives E2E encrypted
messages using some service-operated servers. The client
stores relevant information in a local database D), stored
inside the device’s internal storage. We denote by V' the set
of possible inputs to the database.

If the service supports E2E encrypted backups, peri-
odically, a snapshot S of the database D is generated,



(optionally) compressed, and then encrypted. The encryp-
tion uses some application-specific symmetric encryption
scheme with a secret key K. The resulting ciphertext C' is
stored either locally and/or in some cloud storage provider,
such as Google Drive or iCloud. We refer to the location
where backup ciphertexts are stored as the backup storage.
Since backups can be periodic, we use S, . ..,.S, to denote
a sequence of generated snapshots, and C', .. ., C to denote
the associated ciphertexts sent to the backup storage.

What makes the backups “end-to-end” encrypted is that
only the user and their device know the key K required to
decrypt the backups; no one else—including the messaging
service provider nor a storage provider for backups—should
know the secret key.

Example: WhatsApp backups. In late 2021, WhatsApp
began providing opt-in E2E encrypted backups for their
users [45]. It supports two types of secret key K: a 64-
digit secret chosen uniformly at random by the device,
or a short password from which K is derived using an
oblivious pseudorandom function (OPRF) [41] whose secret
is only stored within hardware security modules managed
by WhatsApp [45,72,73]. In the latter case, recovering K
would require not only knowing the target’s password, but
also control over their phone number. Our attacks assume
no knowledge of K and are agnostic to how K is generated.

There is less documentation about other aspects of how
backups are generated. We reverse engineered WhatsApp
version 23.2.75 for Android. WhatsApp stores the data for
a user on an SQLite3 database sitting in their device’s
storage—which represents D. The schema for this database
is quite complex, involving over 100 tables; we highlight
particularly relevant ones later. WhatsApp serializes D using
SQLite’s standard database file format [60]. We provide
more details on this format in Section 4.2. This is then
compressed using zlib (using compression level 1).2 The
output of zlib is then encrypted using AES-GCM [47] to
yield the encrypted backup C, which is then uploaded to
the cloud. In fact, C' has slightly more structure with extra
checksums that are unimportant for our results.

In addition to the monolithic encryption of the database,
WhatsApp stores in the cloud an encryption of each indi-
vidual attachment (images, videos, PDFs, and any arbitrary
file type) sent to and received by the user. These are en-
crypted using a symmetric encryption algorithm, the low-
level details of which are opaque to us (e.g., the cipher
used and how attachment keys are managed); however, these
are not relevant to our attacks. Alongside each attachment
ciphertext, WhatsApp stores a series of plaintext headers
containing metadata such as the time the ciphertext got
uploaded, its size, etc. As we will see in Section 4.1, these
headers will be crucial to our attacks.

WhatsApp backups are opt-in, though it periodically en-
courages users to turn it on with a pop-up. When configuring
it, users can specify that backups should occur manually, or
automatically with daily, weekly, or monthly frequency at a

2. zIlib compression levels range from O to 9, and specify trade-offs
between speed and compression.

fixed time (always at 2:00 am). On Android devices, backups
are stored on Google Drive under the user’s account.

Example: Signal backups. We also investigated Signal,
using v6.22.8 for Android. Signal similarly stores U’s data
in an SQLite3 database, which represents D. The schema of
the database includes 42 tables. The database D is serialized
by generating a sequence of SQL commands that suffice to
allow reconstructing, from a fresh SQL database instance,
the state of D. Why Signal takes this approach rather than
WhatsApp’s is unclear. Each SQL command is separately
encrypted using AES in counter mode with HMAC to
generate an authentication tag, with a plaintext length header
prepended to the resulting ciphertext. Media such as images,
videos, or other sent files is handled by encrypting a header
indicating the length of the media, and then concatenating
to that an encryption of the media contents. More details are
given in Section 5. The key used for encryption is derived
from a randomly generated 30-digit passphrase (the user
must write it down or otherwise store it elsewhere).

Once enabled, backups are created by Signal automat-
ically once a day. The user can also manually trigger a
backup. Signal does not have built-in support for storing
backups at a cloud provider. Backups can only be created
on Android devices, and stored locally — documentation
suggests that users manually copy the backup to another
device [7]. However, if users want to prevent losing their
data, they can arrange for the local backup to be syn-
chronized as a file to an external cloud storage service
using any one of many possible cloud storage tools. This
is not recommended by Signal; however, there are third-
party tutorials online to synchronize Android folders with
cloud storage services [8,24].

Threat models. The backup systems are designed to
provide E2E confidentiality, even in the face of sophisticated
adversaries. Both applications derive secure keys, barring
simple approaches like brute-force password cracking at-
tacks. Instead, we focus on a subtler threat model that gives
rise to what we call injection attacks.

Our threat model assumes that the adversary can interact
with a target client U via the messaging application, e.g.,
to send it one or more messages using the standard E2E
encrypted channels. The adversary just uses the normal in-
terface for sending messages, and can even do this using un-
modified client software. The adversary can then observe the
next backup ciphertext. This process of sending messages
and observing ciphertexts can be repeated, allowing the
adversary to adaptively select subsequent messages to send
as a function of previous backup ciphertext observations.

In more detail, consider a target client U that has some
initial database Dy. The adversary observes the backup Cj
associated with Dgy. The adversary controls one or more
adversarial clients that can now interact with U in any way
allowed normally by the messaging protocol; in the case
studies that follow, this includes sending regular chat mes-
sages or attachments to U. This results in a new state D1,
which therefore contains some injected adversarial content.
The adversary waits for U to generate a new backup Cy



associated to D; and observes it. The adversary can repeat
this process, sending more commands to generate a new
state Dy, observe Cs, and so on. Later we will use ¢ to
denote the number of rounds of backup observation.

The adversary’s goal is to learn some confidential in-
formation. For example, the adversary may attempt to infer
whether U had previously received a message m falling in
some adversarially-known set of possibilities V. If |V| =1,
we call this a confirmation attack; if |V| = 2, a distinguish-
ing attack; and if |V| > 2, a (partial) message recovery
attack. Message contents are just one type of adversarial
goal, and we will also explore injection attacks that reveal
other information about U, including metadata such as their
number of conversations or contacts.

Discussion. =~ We turn to the practical relevance of our
injection threat model. Five key assumptions underlie our
attacks: (1) access to backup storage; (2) users ignoring
injected messages; (3) reasonably frequent backups; (4)
some of our attacks rely on the target device being “quiet”;
and (5) the victim has not removed the target message from
their device.

The first assumption is standard, and may arise from an
insider attack or compromise of the cloud storage provider
itself, or just from access to the user’s cloud storage account
(e.g., for WhatsApp, having the ability to log into some-
one’s Google Drive or iCloud account—for Android and
108, respectively—suffices to retrieve backup ciphertexts).
Signal suggests users store backups on a separate device and
does not natively support cloud backups, but realistically
some users will want the durability of the cloud. Online
help articles by third parties not associated with Signal
(e.g., [8,24]) provide instructions for configuring Android
folders to automatically synchronize to a cloud storage
service.

We emphasize that compromising a target’s cloud stor-
age account does not give the adversary the ability to take
over the target’s E2E encrypted messaging account. Messag-
ing takeover requires control over the phone number (e.g.,
via a SIM swapping attack) and then porting the account to
a new, adversarially controlled device. This is visible to the
target, who would lose access to their phone number. It also
would not violate the confidentiality of past communications
(which need to be restored via the encrypted backup).

Our injection attacks will instead allow ongoing, covert
monitoring of a target device, with exception being that
the injected messages will be visible to a user. We con-
jecture that many users would just assume these to be spam
from unrecognized numbers, and indeed our attacks can
be extended in most cases to allow some extra content
to make the messages seem innocuous. A user may block
an unrecognized number, but the attacker can use different
numbers to send messages. In any case, we do not want
security to rely on user vigilance.

The frequency of backups may be limiting to attackers.
In both WhatsApp and Signal, backups can be set to be
automatic, with the default in both cases being once per
day. As far as we are aware, there is no way an attacker

could trigger a backup remotely. Even so, a patient attacker
can nevertheless just wait for backups to occur.

The level of activity on the target device impacts some of
our attacks. In the “quiet device” setting, we assume that U
is not interacting with other, non-adversarially controlled
clients while the attack proceeds. This is realistic for users
who only use their messaging client sparingly, but not for
others who use it more frequently. In any case, security
guarantees should not depend on a user being active or
not. On the other hand, in the “noisy device” setting, we
assume that the victim can interact with non-adversarial
clients while the attack is running. This is a more practical
context, as arbitrary users are vulnerable irrespective of their
activity patterns.

The last key assumption of our attacks is that the victim
does not remove the target message from their phone after
it is received, i.e., that the message is not unsent, deleted, or
auto-dissapears.3 If the user does so before the attack starts,
this is essentially equivalent (for the purposes of our attack)
to not receiving the message to begin with.

4. Injection Attacks against WhatsApp

Recall that in our injection attack setting, the adversary
can interact with the target client in between backups and
observe the resulting ciphertexts. The sizes of such cipher-
texts are a side-channel by which confidential information
can be gleaned. Underlying our attacks against WhatsApp
backups are three issues: deduplication of attachments, com-
pression of backups before encryption, and subtle ways
in which internal data structures of WhatsApp’s database
maintain state. While the first two issues have been explored
in other contexts before [32, 36, 44, 54, 69], our attack setting
differs. To the best of our knowledge, no prior work has
explored the third source of side-channel leakage.

4.1. Exploiting Deduplication

Deduplication-based attacks have been explored in the
context of encrypted storage [36]. Here we demonstrate how
to exploit deduplication in the context of E2E encrypted
applications, namely, the E2E encrypted backups as imple-
mented by WhatsApp. To do so, we devise a file-recovery
attack on the attachments received by the victim.

Attack vector. Our close study of WhatsApp’s architec-
ture revealed that they perform attachment deduplication—
that is, store only one copy of an attachment in the backup—
for many types of attachments, including images, videos,
and PDF files. To do so, the client compares the SHA256
checksum of each new attachment against all prior ones, and
stores it only if there is no match. Importantly, WhatsApp
performs deduplication even if the attachment was received
multiple times from different senders. As we will see, such
a deduplication mechanism enables cross-user attacks under
our injection attack threat model.

3. WhatsApp and Signal both have features for auto-dissapearing mes-
sages [57,71].



Background. Before explaining our full attack, we pro-
vide some additional context and notation regarding en-
crypted attachments.

Let A = {(a1, f1),..-s (@m, fm)} be pairs of attach-
ments and their associated filenames, which the victim has
already received. For now, we assume all attachments are
distinct for clarity of presentation. When a user receives
an attachment, their WhatsApp client stores the file with
the same name as it was received. That is, the filename of
the saved file is under the sender’s control. The recipient
can change the filename directly in the device’s file system.
However, the adversary can exploit the predictable periodic-
ity of the backups to prevent the victim from having time to
change the names, by performing injections shortly before
a backup occurs. Importantly, Android and iOS both have
a 255-character limit for filenames, which is important for
our attack.

To create a backup, each new attachment and file-
name”* gets encrypted separately with symmetric encryption
schemes; old attachments that are already in the backup are
not re-uploaded. Each attachment a; is encrypted into a ci-
phertext ¢;, where |¢;| = |a;|+16, due to a 16-byte authenti-
cation tag. As such, there is a one-to-one correspondence be-
tween attachment ciphertext sizes and plaintext sizes. Each
filename f; is encrypted using a block cipher in some mode
of operation (presumably CBC) into a ciphertext c;. There-
fore, the size of filename ciphertexts always increases in
16-byte jumps. The ciphertexts C' := {(c1,¢}), ..., (¢m, )}
are included in the victim’s backup alongside the encryption
of the main database file, where each c; is stored as metadata
for the associated c;.

An adversary with access to the victim’s backup can
see the set of pairs C. Then, sending a new batch of
n attachments adds (at most) n new ciphertext pairs to
the backup. However, the order in which a new batch of
attachments is uploaded between every two backups follows
no discernible pattern, as far as we can tell. So, even though
the adversary can identify which ciphertext pairs are new
(by looking at the pairs present in the second backup but
not in the first), they cannot directly map each new pair of
ciphertexts to the corresponding attachments they sent.

File recovery attack. = We now describe how to leverage
the deduplication mechanism to build a file recovery attack.
Given a set of candidate attachments V := (vy, ..., v,), the
adversary wants to determine which v; € V, if any, is present
in the user’s device. Our attack requires observing at most
[log, 1| backups. Further, as we discuss later on, this attack
works in the noisy device setting.

We first note that if all attachments in ) are of different
sizes, there is a straightforward attack: the adversary can
send all files in V to the victim between two backups, and
compare the sizes of the (at most) n — 1 new attachment
ciphertexts ¢,,41,..-s Cm+n—1 10 the cloud against the sizes
of the files in V. As explained earlier, even though the
adversary can identify which ciphertexts are new, these

4. In fact, there is other metadata encrypted with the filename, but this is
irrelevant to our attack, as its length remains constant across attachments.

ciphertexts appear in arbitrary order. Even then, however,

if there is no ciphertext of length |v;| + 16, then attachment

v; got deduplicated. (Filename ciphertexts are not relevant

in this simplified setup.) This attack would require only two

backups, regardless of the size of V, and reveals all members
of V received by the victim.

The attack above, albeit simple, may fail if there are
repeated sizes in V. If there are two attachments v; and v
such that |v;| = |v;|, but there is only one ciphertext of
size |v;| + 16, the adversary has no way to tell which of
these attachments corresponds to the “missing” ciphertext,
and which corresponds to the uploaded ciphertext.

The key idea behind our attack is to use filenames as a
means to differentiate the attachment ciphertexts, and thus
relate them to the plaintext files. Since filenames represent a
second degree of freedom through which the adversary can
inject information, they can pick filenames such that every
pair (c;,c;) is of a unique length, instead every file being
of a unique size. We now describe the full attack.

(1) Pick filenames: Evenly partition the list of candidate
attachments V into 16 classes Fi, Fir..., Fo4q, where
F; contains [n/16] files if ¢ < n mod 16, and |n/16]
otherwise. For each file in Fj, pick an arbitrary file-
name of length ¢, and rename the file to this.

As mentioned earlier, since filenames are encrypted
using a block cipher, their lengths need to be picked
in 16 byte jumps to trigger new block allocations.
The limit of 255 characters, however, requires us to
use a recursive strategy, as the adversary can only use
[255/16| + 1 = 16 distinct lengths.

(2) Inject: Send all n candidate files to the victim.

(3) Backup: Wait for the next backup, which now in-
cludes at most n — 1 new pairs of ciphertexts
{(Cerl? C;n+1)7 ey (Cern*la C;n+n71)}.

(4) Find the missing size: Inspect all ¢}, ,...,¢}, ., _; tO
identify which filename size s was not uploaded to the
backup: there will be |F;| — 1 values for the filename
ciphertext length of the deduplicated file. This implies
that the file that got deduplicated was one of the files
in Fj, although it is not clear which.

(5) Recurse: If |Fs| > 1, repeat steps 1-4 on (only) the
files within F as the input list of candidate files, i.e.,
V = Fj. Otherwise, output F as the target attachment.

Before proceeding to the next the recursive call, the
adversary needs to unsend all attachments sent in this
round; otherwise, all files will already be present in
the backup, so they will all get deduplicated, instead
of just the one matching the target file. Importantly,
unsending an attachment indeed removes it from the
recipient’s backup, so subsequent phases of the attack
can still run.

This attack finds the target file after observing just g :==
[logy¢n| backups and sending at most ;.1 ([ 5= 1)
messages, because at most (W",l] attachments are sent in
the 7y, recursive call. For example, it takes at most three
backups (i.e., three days) and 4266 messages to find the
target file within a list of 4000 candidate files.



Our attack can be extended (at the cost of more backups)
to find all matching files, instead of just one. In this case,
there will be multiple values of s in step (4) for which there
are less than |F| — 1 filename ciphertexts, so the adversary
can independently recurse into all Fj.

Assumptions. Our attack assumes that the attachments
sent by the adversary are downloaded upon receiving them,
either automatically by the client or manually by the user, as
otherwise they are not incorporated into the backup. Auto-
matic downloads from attachments received from contacts
is the default setting in WhatsApp [4]. For non-contacts,
there are other potential roundabout ways in which the client
will still automatically download a file, such as sending
the attachments to a group chat which both the victim and
adversary belong to.

In addition, our attack places only one constraint on
external noise: it requires that, in every recursive call, none
of the received attachments have the same file size and the
same filename size as the deduplicated attachment. More
concretely, let ¥V C V and E be the injected attachments
and the external attachments received in the same recursive
call, respegtively. Then, our attack assumes that, for every
(v, f) € V that gets deduplicated, it follows that, for all
(W', f") € E, [v| # V| Af] # |f|- Otherwise, if one of
the external attachments has the same size as the candidate
file that gets deduplicated, the adversary will see a new
ciphertext pair of the expected size, without being able to
tell that this is a false negative. Our attack is robust to
other types of activity on the target: the victim can receive
arbitrary text messages and attachments (of other sizes) at
any moment, and the attack still succeeds.

Implementation.  We experimented with PNG images,
MP4 videos, PDFs, and Word documents, but we believe the
attack works for all attachment types. For each file type, we
ran a proof-of-concept of the attack using 30 candidate files
(all of the same size and with arbitrary content). We picked
one of the 30 files at random and sent this to the victim from
some non-adversarial device, to serve as the target file. We
then ran the attack from an adversarial device. Additionally,
we simulated external noise by sending 10 text messages
and 10 attachments (of the same type, but of sizes outside
of those in the candidate set) from the non-adversarial device
to the victim device between every two backups. Our attack
was able to successfully retrieve the target file in all cases.

4.2. Exploiting Compression

We now turn to injection attacks on WhatsApp that
exploit another mechanism: use of zlib to compress the
serialized database file before encrypting it. As we will see,
exploiting compression in the context of messaging applica-
tions with E2E encryption comes with various challenges,
due to the “noisy” and limited injection interface (sending
messages) and the complex ways in which the contents of
messages are arranged in the serialized database file.

by,---, bs beH.
FEE b/ZN
Table 1 Table 1
Columns
R:)}y] O
=L~ 9,
O.0.0

cell j 41

| cell j

Figure 2: There is one B-tree per database table. Its nodes
are stored in individual pages that ultimately form the seri-
alized file. The top-most white area is the header. Next, the
blue-lined region contains the cell pointer array. The light
pink dotted space is empty, and gets filled bottom-up, as
shown by the solid green cells.

Attack vector. We first provide some additional back-
ground about D’s serialization, i.e., SQLite’s database file
format [60].

Each table of the database is logically organized as an
individual B-tree. The leaf nodes store the actual content of
the tables; the internal nodes are irrelevant for our attack,
so we omit their explanation. Each node is stored in a
separate page, which are 4,096 bytes in length in the case
of WhatsApp (Figure 2). That is, each page corresponds to
only one node of only one table. Then, the serialized file
consists mostly of all the pages for all the tables layered
sequentially. Indeed, the size of the database file is always
a multiple of the page size.

Pages get filled, bottom-up, with cells. In particular, leaf
pages have one cell for every row in the table, storing the
payload and relevant metadata for it. Between headers at the
top of the page and the cells at the bottom of it, the rest of
the page remains unallocated.

Regarding the content of each cell, consider, for ex-
ample, the messages table of WhatsApp’s database, even
though what follows applies to any other table. This ta-
ble has 21 columns, and each of its rows stores relevant
information about a single sent or received message. Let
P = (p1,...,p21) be one such row. The structure of its
corresponding cell consists of three parts: (1) the size of the
encoded row, described below, encoded as a variable-length
integer (varint) [59]; (2) the primary key of the row, encoded
as a varint; and (3) the actual row P, encoded in record
format [61]. The latter consists of at most 21 values denoting
the type of each column (e.g., value “0x07” means that
the type is a 64-bit floating point number), followed by all
the p;’s concatenated together, encoded in some predefined
manner (e.g., text in UTF-8). In particular, one of these p;
contains the actual text content of the message.

With this additional context, we can see that, if two mes-
sages are sent close to each other in time, the cells for their
resulting rows in the messages table (and all other tables
that include message contents) will lie close to each other
in the serialization S of the database D. In particular, unless
the messages are very long, they will lie within the same



zlib search window of 32,768 bytes. Then, when the next
backup is triggered and zlib is run, repeated substrings in S
get replaced with short references to their prior occurrences,
if any. Thus, if some message m contains (parts of) some
other message s, we expect the output of zlib to be shorter
than if m does not contain s: in the former, both cells will
contain repeated text content, which zlib compresses. This
output is finally encrypted with AES-GCM, whose output
reveals the length of the (compressed) input plaintext. We
note that zlib does not compress repeated strings unless their
length is greater than or equal to four bytes, so this is a lower
bound on the number of consecutive bytes that m and s must
match on.

General attack structure. This logic can be exploited
as a message recovery attack, in the quiet device threat
model: for some ¥V C V, where all strings in VV are of
the same length, the adversary seeks to determine which
v € V is present in the database. To do so, after the
victim receives the target string from some third party, the
adversary injects every string in V as a standalone message,
interleaved between backups, and measures the increase in
database size to determine which message contains the target
string. This method requires |V| + 1 backups in total (the
additional backup is required to measure the initial size of
the database).

Instead of this brute-force injection strategy, an adver-
sary can use a binary injection strategy to decrease the
number of required backups. In this case, the adversary first
splits V into two subsets of equal size, V) and V1, and sends
all of Vy and V; as two separate messages interleaved be-
tween backups. Conceptually, this is a distinguishing attack,
between V) and V;. Then, whichever half contains the target
string will likely result in more compression than the other,
i.e., a smaller difference in the size of the encrypted backups
that were triggered before and after sending the message
containing the matching string. So, they can then make a
recursive call to this algorithm, using this half as the input
set. The adversary continues this procedure, until the input
set has just one string in it, which is deemed the found
string. This method requires 2 - [log, |V|] + 1 backups in
total, since each iteration reduces the search space in half.

One issue with binary injection is that each candidate
string is inserted multiple times instead of once. However,
we can improve this strategy by sending different (poten-
tially overlapping) substrings of the candidate string in the
various recursive calls. For example, if one potential target
string is “abcdefgh”, in the first and second recursive calls
we can instead send “abcd” and “efgh”, respectively. That
way, both of them will only match the target string.

In this strategy, the length of the substrings and how
much they overlap are tunable parameters, which depend
on the lengths of the candidate set VV and the target string v.
The adversary can determine empirically, with local testing,
which ones achieve the highest probability of success for
the set of candidates (which they know a priori). These
substrings, however, must be at least 4 bytes long, as
discussed above. We note that this optimization is not ap-

plicable if the number of candidate strings is significantly
larger than the length of the target string. In particular, the
minimum requirement—which occurs when the length of
the substrings is 4 bytes and their overlap is 3 bytes—is
log, |V| < |v| — 3. So, the adversary can use the optimized
variant of the binary search attack if these preconditions are
satisfied, or else use the normal version instead.

Different injection strategies bound the size of [V
and the strings therein, as they must all lie inside zlib’s
search window of 32,768 bytes. As a concrete example, the
minimum requirement for the brute-force strategy is that
(vl +¢€) - [V| < 32,768, where ¢ is the additional number
of bytes in the smallest cell containing v, across all tables.
By measuring the sizes of cells in decrypted databases for
known payloads, we estimate that € is roughly 13(+£5) bytes.
Conversely, for the binary injection strategy, the various
recursive calls yield a geometric sequence with common
ratio of 1/2, which results in a smaller upper bound on
[V| than for the brute-force variant. Solving this sequence
yields that the minimum requirement is now n - (4:=}) <
32,768 = n < 16,384, where n = (Jv| +¢€) - |V].

Sources of noise.  The attack may fail due to the fact that
sending a message inserts more than just its text content
into the database, such as timestaps and other metadata.
All of this also gets compressed, which adds noise to the
measurements. Empirically, this type of noise has relatively
consistent impact on compression across messages, so it
results in a similar increase in size across all measurements.
Note that the impact of this noise in the probability of
success is a function of the length of the strings in V), as
compression from shorter strings will be too obfuscated by
this noise.

An interesting idea for future work would be to use sta-
tistical techniques to mitigate some of these limitations, such
as in [11,39,79]. For example, as |V| or |v| increase, the
adversary might a priori record the intrinsic compressibility
of each message, and “penalize” those that have higher
compression, in order for this not to bias the measurements.

Lastly, we restate that this proof-of-concept attack only
works in the quiet device setting; other messages received
by the victim might push the target string outside of the
compression window or match injected content, making the
attack fail.

Experimental evaluation. @ We experimentally verified
both the brute-force and binary injection attacks. To do so,
we set up two testing environments: real WhatsApp clients
on Android phones, and a local simulation of the core client-
side operations relevant to the attacks.

The local simulation operated on WhatsApp databases
that were downloaded beforehand and decrypted locally, to
obtain their corresponding database files. Then, the environ-
ment consisted of two parts: (1) a limited API to make all
changes to the database file that occur in the real client
after a new message is received, and (2) a compression
and encryption pipeline to generate the backup ciphertexts.
We describe the details of how we reversed engineered



| u=4 12 20 28 | 4 12 20 28

V| =2 74 83 97 100 74 83 97 100
4 44 73 99 99 64 92 99 99

8 38 62 82 92 22 33 42 50

16 14 50 76 81 7 10 16 22

Figure 3: Experimental success probability (standard deviation of +2%) for the message recovery attack (Section 4.2) in
our local simulation. Rows correspond to different values of ||, columns to different values of |v| € V, and cells the
probability of success. The left sub-table corresponds to the brute-force injection strategy, and the right one to the binary
injection strategy (note that these are equivalent when |V| = 2).

these steps in Appendix A.2, and note that this simulation-
based approach is not uncommon when evaluating deployed
systems, e.g. [14,52].

We used the real environment to implement the attacks
and run a limited number of trials to confirm their overall
correctness. Then, we used the simulated environment to
run various independent trials of these same attacks, and
empirically estimate the probability of success. This local
setup allowed us to (i) run thousands of experiments in a
reasonable amount of time and without overloading What-
SApp’s servers; and (ii) run various independent trials of the
same experiment, starting with the same state.

We measured the performance of each attack on different
values of |v,| and |V], in the quiet setting, to gauge how the
probability of success degrades as strings get shorter and/or
there are more candidate strings. Each experiment required
V| + 1 and 2 - [log, |V|] + 1 backups for the brute-force
and binary injection strategies, respectively.

For all strings in V' (across all tests), we used al-
phanumeric strings sampled uniformly at random. For each
(lvpl, |V|) pair, we ran 1,000 independent trials, recorded the
number of these in which the attack successfully recovered
the string, and deemed this the success probability. The
results are displayed in Figure 3. We emphasize the first row
of the table, when |V| = 2, which represents the particular
case of a distinguishing attack (in which case both injection
strategies are equivalent).

In practice, the composition of the strings plays a role
in the probability of success of the attacks: if the strings
are very similar, their impact on the size of the ciphertext
is also very similar. Therefore, we additionally ran our
attack on a more restricted corpus of strings, to simulate
how it can be used to retrieve sensitive data of real-world
interest. To do so, we used sample Social Security Numbers
(SSNs), credit card numbers (CCNs), and passwords. SSNs
were sampled uniformly at random from the set of possible
SSNs, in accordance with the issuance guidelines from the
Social Security Administration [63]. CCNs were sampled
at random in accordance with basic Visa and Mastercard
guidelines and the Luhn formula [74]. Lastly, passwords
were sampled uniformly at random from a popular list of
10,000 common user passwords [48]. We show the results
of these experiments in Figure 4.

Our attacks are successful by standard cryptographic
measures: they performed noticeably better than a random
guess, i.e., success probability greater than 50% for distin-

\ SSNs CCNs  Passwords

V] =2 81 97 89
4 47 49 45

8 40 42 38

16 31 25 20

Figure 4: Experimental success probability (standard devia-
tion of £2%) of our message-recovery attack for different
target types—Social Security numbers (SSNs), credit card
numbers (CCNs), and common passwords—using our brute-
force injection strategy.

guishing attacks, and |V|~! for message recovery attacks.
However, we can see that the probability of success degrades
as |V| increases, which also requires more backups.

4.3. Exploiting the Keyword Search Index

The prior two attacks exploit deduplication and zlib
compression before encryption. A natural countermeasure
would be to simply turn off both forms of compression.
However, this is not sufficient to prevent injection attacks,
due to subtleties in how SQL processes and stores message
data sent from different users.

In this section, we consider a modified version of What-
sApp that turns off zlib compression, and describe a dis-
tinguishing attack that exploits cross-user interactions in a
keyword search index contained within the SQL database D.
The attack determines which of two messages was sent by
another honest user U’ to the target user U. The attacker
needs to observe at most 16 backups, and inject at most
44 messages. The reason for the modified setup is that this
attack is more complicated than the distinguishing attack
of Section 4.2, so in this section we will assume, for the
sake of argument, that compression is no longer being used
(otherwise, an attacker would just opt for the simpler, zlib-
based distinguishing attack to achieve the same goals).

The attack proceeds in several phases, and assumes that
(1) the attacker can sandwich U’’s message with adversarial
messages, and (2) we are in the quiet device setting, i.e., U
receives no other messages beyond the target and adversarial
ones while the attack is running. As such, it is arguably
less practical than the attack exploiting compression: What-
sApp’s daily backups would imply that our attack requires
the target client to be “quiet” for up to 16 days. Nevertheless,



it is a proof-of-concept that compression is not the only
vector for information leakage in injection attacks. This
attack is a symptom of a higher-level issue: injection attacks
may arise from subtle cross-user interactions in internal data
structures of the database.

The FTS4 keyword search index.  WhatsApp uses
SQLite’s FTS4 [62] module to implement full-text search on
all sent and received messages. The attack depends on many
low-level details of FTS4, so we give some background.

An FTS4 index is logically structured as an inverted
index, mapping terms to the documents (messages) in which
they appear. After a message m is received, it is processed to
extract the terms ¢ := ({1, ..., ¢,) it contains. This process—
tokenization—is application-specific. For WhatsApp, m is
first cast into all lowercase, and all non-alphanumeric char-
acters are replaced with whitespace. The resulting words
are the terms. For instance, the message “They’ve paid $1!”
would add “they”, “ve”, “paid”, and “1” to the index. Each
message has an associated document ID (docid), assigned
sequentially as messages arrive.

The entire index is organized as a collection of inde-
pendent B-trees: their leaves consist of a sequence of term,
document list (from now on, doclist) pairs. Each entry in the
latter specifies the docid (and the position of the text within
the message) in which the term appears. The pairs in a single
leaf are arranged based on the lexicographic ordering of
the terms. We have omitted some lower-level details about
term-doclist pairs for simplicity, and refer readers to [62]
for these. Given a sequence of tokenized messages R (with
their associated docid’s), encoding them in a leaf node as
term-doclist pairs is deterministic; we denote the process
by node(R).

The B-trees are organized into levels. Every time a new
message is inserted into the index, a new level-0 B-tree is
created, containing only the terms in this message, each
mapping to the same docid. After 16 level-O B-trees are
inserted, they are merged together into a new level-1 B-tree,
which follows the same structure as before, except that it
now contains the terms of 16 messages. The value of 16 here
is configurable and represents a trade-off between insertion
speed and search speed; WhatsApp uses 16. In general, after
enough level 7 B-trees have accumulated, a new level ¢ 4 1
tree gets created, merging the contents of all prior level ¢
trees and deleting them. Thus, as the index grows, it will
consist of multiple B-trees of different sizes, all of which
must be scanned when performing a search. Note that this
implies that a term, albeit unique inside each tree, may
be repeated across different trees, which get consolidated
when/if these trees merge.

We now discuss how these multiple B-trees get incorpo-
rated into the serialization S of the database D. An FTS4
index is supported by five tables. The table most relevant
to our attack is messages_ftsv2scqqir, Which serves as a
“directory” for all B-trees of the index. This table has one
row per tree, which contains its level, index within the level,
some metadata about its nodes (e.g., ID of the first and
last leaf nodes, its level, etc.), and, most importantly, the
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entire root of the B-tree. All other non-root nodes, for all
trees, are stored in a separate table. Note that, if the tree is
not too big, it may be the case that it fits entirely within
the root node, in which case the entire tree is stored in
messages_ftsv2seq4ir. Indeed, our attack only requires small
messages, satisfying this precondition. So, the takeaway
from this is that, for our purposes, all trees of the index are
stored in messages_fisv2,cq4q:r as a single root node (with
additional metadata).

Recall from our prior discussion on SQLite serialization
(Section 4.2) that tables are also logically organized as B-
trees, and each page in the serialized file corresponds to one
of the nodes. This means that messages_ftsv2scqair i itself a
single B-tree, with its various nodes encoded as pages in S.
So, the B-trees from the FTS index will be stored as cells
in the leaf pages of messages_ftsv2scqq:r- This means that
messages_ftsv2gcqqir is a B-tree containing yet more B-trees
(from a different context) in its leaves.

To summarize, the main steps (for our purposes) when U
receives a message m are as follows:

(1) m is tokenized to extract the terms it contains.
(2) A level-0 B-tree gets created for this message, mapping
all its terms to its docid. Assuming the message is not
large, this tree consists of a single (root) node. This

could trigger one or more merges to higher levels.

(3) A row containing this root node gets added to mes-
sages_ftsv2geqdir-

(4) Under-the-hood, the prior step adds a new cell to the
last leaf page of messages_ftsv2cqqir’s B-tree.

For a sequence of term-doclist pairs R, we use

cell(node(R)) to denote the cell in the leaf page of mes-
sages_ftsv2cqqir that stores the tree containing R (in our
attack, the tree is always a single node). Other contents of
the row (e.g., the level of the tree) are left implicit.

Importantly, knowledge of R and its “maturity” (its
level and age within the level) is sufficient to determinis-
tically compute node(R). Further, knowledge of node(R)
and its primary key in the table are enough to construct
cell(node(R)). Since the encoding of the primary key is at
most eight bytes (as a varint), the cell’s size can be estimated
very closely even without knowing the primary key, i.e., just
with information about R.

Attack idea. Sending a message containing a string s
can modify the index in one of two ways: (1) if s was not
present in some other message, a new entry in the index gets
created, mapping s to (only) the docid of this message; (2) if
s was present in some other message, the ID of this message
gets appended to the (already existing) entry for s. Since the
first scenario results in a more substantial modification of
the database, this is a potential source of leakage.

Exploiting this idea is challenging, for two main reasons.
First, since every new message creates a new level-0 B-tree,
the cross-user interaction will not be detectable until the
message containing s and the target message are merged
together within a higher-level B-tree. So, the adversary
needs to “trigger” this merge.



The second main challenge is that the size of the serial-
ized database file is always a multiple of the page size (4,096
bytes in the case of WhatsApp). So, unless the strings are
sufficiently large, there is not enough granularity in the size
of the database to meaningfully distinguish small differences
in the size of the index. In the prior attacks, zlib would prune
out the empty space, but here we assume zlib is turned off.

To deal with the first challenge, our attack ‘“isolates”
a level-1 B-tree containing the target string and one of
the two candidate strings in a fresh leaf page of the
messages_ftsv2seqq:r table that only contains adversarially-
chosen payloads. Then, the adversary can use injections
to measure the amount of empty space to determine the
size of the tree (and, thus, if the two strings got stored
together or not).

Attack for a simplified setup. Let’s start with a simplistic
example to show the core ideas of the attack—moving
forward, we refer to this variant as the simple setup. Assume
that the target string is “my password is foo”, and that it is
the first and only message in D (so, its docid is 1). This
means that, to start, the index only has one level-0 B-tree,
containing term-doclist pairs [(foo, [1]), (is, [1]), (my, [1]),
(password, [1])], all in a single root node (other low-level
details omitted for clarity).

The adversary sends a message containing “my pass-
word is m”, for some guess m, which creates an analogous
level-0 B-tree. To trigger the cross-user interaction, the ad-
versary then sends 15 arbitrary messages, say the character
“a” for all. Each of these also creates an individual level-0
B-tree, e.g., [(a, [7])]. The last of these messages triggers
a merge, given that there were already 16 level-0 B-trees
present in the index. So, all these trees get deleted, resulting
in a new level-1 B-tree that precedes the last level-0 B-tree
(the one that triggered the merge). Internally, both trees will
be stored as cells in the bottom of the first leaf page of
the messages_ftsv2scqq:r table (with the level-1 tree’s cell
below the level-0’s one). The rest of the page, as described
in Section 4.2, is unallocated for now.

Assume that m = “foo”. Then, the new level-1 B-tree
will contain [(a, [3, ..., 16]), (s, [1, 2]), (foo, [1, 2]), (my,
[1, 2]), (password, [1, 2])]. Conversely, if m = “bar”, there
are (only) two changes to the tree: it has a new term-doclist
pair, (bar, [2]), and “foo”s entry is just (foo, [1]). The first
case—a correct “guess”— results in a smaller level-1 B-tree
(T") than the second case (T"'), since the former only has
one of the two candidate strings in it. So, there are two
options for the amount of empty space in the leaf page of
the table: either N’ := 4096 — |T’| — |B| — 12 or N” =
4096 — |T""| — | B| — 12. Here B is the (single) level-0 B-tree
that triggered the merge and 12 is the length of a header.

Then, the last step is to measure the amount of empty
space in the page to tell which of the two scenarios the data
structure is in. To do so, the adversary can progressively fill
up the page with new (cells of) messages, until a new 4096-
byte page gets triggered. Since the adversary knows the size
of the messages, they can work backwards to estimate the
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amount of empty space. In particular, the last payload that
triggers the new page gets added to that new page.

Note that the adversary can only measure this once:
after a second page is allocated (e.g., if they overshot the
first measurement), they cannot revert to the prior page and
measure again. This rules out most simple measurement
techniques, such as binary search on the amount of empty
space. Instead, the adversary can leverage the fact that they
know the lengths of all strings in the page. So, they can
locally compute N’ and N”, and send a single message
whose payload is between these two options. This confirms
if the strings matched (no new page is allocated) or not (new
page is allocated). This simple example requires a single
backup, to know by how much |S| grew.

The goal of the phases that follow is to adapt this simple
setup to the setting where the initial state of the B-trees
could be anything, i.e., where the victim has received some
unknown number and set of messages from honest parties
before the attack begins.

Full attack. Let us now move to the more general
case, where the adversary knows nothing about the prior
messages U has received. This prevents the simple setup
attack above from working: as we just saw, the adversary’s
measurements depend on knowing the exact contents of the
B-tree where the target string is present. Thus, the goal of
our full attack is to adapt the simple setup to the setting
where the initial state of the B-trees could be anything, i.e.,
where the victim has received some unknown number and
set of messages from honest parties before the attack begins.
Our attack proceeds in several phases:

(1)  Flush level-0 B-trees: The adversary sends a sequence
of 16 messages ci,...,c1¢ to ensure that all level-0
B-trees contain only adversarial content.

(2) Push to a new page: The adversary waits for a backup,

measures its length, sends a large message M (e.g.,

|M| = 4000 bytes), and waits for another backup. The

next backup should be larger, meaning that M forced
allocation of a new page. If the size of the database

did not change, the adversary can send a second large

string without jeopardizing the rest of the attack.

(3) Wait for the target message: The adversary waits for

an honest party to send a message v;, € {vg, v1} to U.

This adds a level-0 B-tree containing just vy,

Send a guess: The adversary sends vy as a guess to
U. This adds another level-0 B-tree, which contains
just vg.

“

(5) Trigger a merge: The adversary sends 13 messages
i, ..., c}5 to ensure that a merge occurs, which com-
bines the level-0 B-trees containing M, v, vy into
a single level-1 B-tree. This B-tree contains some
unknown number of the flushing messages sent in step
(1), depending on the number n of level-O B-trees
present in the system before the attack started. The

adversary does not know n.

Measure: The adversary iteratively sends a sequence
of “measurement” messages my, ..., mi3, waiting for

(6)



a backup in between each sent message. When the
adversary detects that a new page is allocated, it can
infer the bit b as the number of messages sent mod 2.
This last measurement is quite delicate, as it relies on
arranging that the lengths of the ¢f,...,c}5; and the
lengths of the my,...,my3 are such that as long as
0 < n < 14 the number of measurement messages
reveals b.

The above glosses over a number of subtleties that we
unpack in the extended version of the paper.

In total, the attack requires at most 44 adversarial mes-
sages and 16 backups. All messages, besides P, are small
(and, in fact, need to be for the attack to work). For all
of them, except for vy, only the length matters, and the
content is irrelevant. The attack requires that the byte length
of the candidate strings vy, v; are approximately between 40
and 2,000 bytes (approximately because of some variation
in header lengths; see the extended version of the paper).
Furthermore, the attack can fail for two reasons. First, it
fails should n € {14, 15,16}. Recall that n is based on the
number of messages sent and received by U before the at-
tack; under the assumption that this is uniformly distributed,
this failure only arises about 3/16 of the time. One could
correct for this failure at the cost of a more complex and
expensive preparatory phase, but we did not implement this.

Second, depending on the state of the target client, it
might be that the attack triggers a merge of level-1 trees into
a level-2 tree, thereby obviating the attack’s goal of isolating
the target message in a level-1 tree with just adversarial
data. This will not happen if the adversary’s messages are
the first ever to be sent to the target. In the steady state,
and assuming the number of received messages is uniformly
distributed, the probability of this failure is roughly 1/256
(since a level-1 merge occurs every 256 messages). We refer
to other technicalities related to this attack in the extended
version of the paper.

Implementation. Unfortunately, since this attack assumes
a modified version of WhatsApp, we were not able to deploy
it on real WhatsApp clients. Instead, we used our local
simulation once again (Section 4.2), where we could turn off
compression to achieve the desired setup. All other aspects
of the simulation testing environment were left unchanged.

In this setup, we successfully implemented the attack for
varying n € [1..13] and testing both the b = 0 and b = 1
cases, for randomly chosen vy, v1. Note that the composition
of the strings and their length do not affect the performance
of the attack, as long as they are within the specified bounds
(unlike for the compression attack). As before, we used real
WhatsApp databases, downloaded and decrypted locally, as
inputs to the attack.

5. Injection Attacks against Signal

We now turn to Signal, which has a significantly differ-
ent backup approach. While we have not found attacks that
recover message contents, we demonstrate injection attacks
that reveal potentially sensitive metadata such as the number
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of contacts and messages received by a target user U. We
will start by describing Signal’s backups more in detail,
then present an attack in the quiet device setting, and finally
extend it to the noisy device setting.

Signal’s backup structure. = When building a backup,
Signal creates a representation of the tables in its SQLite
database D by generating SQL statements suitable for
recreating the database: a CREATE SQL statement for all
the tables and an INSERT SQL statement for each row
in the table. SQL statements are encoded as byte strings
using the protobufs library [5]. For media objects, such as
videos or stickers, Signal creates a media metadata header,
which contains the length of the media object and other
information, and serializes it via the protobuf library [5].
This results in a sequence of plaintext byte strings, called
frames:

pb17pb23 "'7mhk7fk+1a"'

where pb; represent protocol buffer values for SQL state-
ments, mh; represent media metadata header protocol buffer
values, and f; represent media file contents.

This structured plaintext is then component-wise
encrypted as follows. The 30-digit uniformly chosen
passphrase P is run through a key derivation function
(HKDF [46]) with a fresh salt sa to generate a secret
encryption key (for AES-CTR), and a secret authentication
key (for HMAC). It also generates a random initialization
vector IV for AES use with AES-CTR mode. Then all the
frames are encrypted and authenticated separately (using the
same IV but incremented appropriately). For SQL statement
and media header frames, a four-byte length is prepended
to the corresponding ciphertext. This step is skipped for
media file contents, since the length is in the preceding
(encrypted) frame. Thus, the resulting backup ciphertext has
the following form:

Co = L[| E@bL) [162]|E (D) | - - - [ £k l|E (M) € (Frgr), - - -

where the ¢; values are four-byte plaintext encodings of the
length field for the subsequent ciphertext and £ represents
the authenticated encryption processing (where we omit
keys and IV from the notation for simplicity). Prepended to
this is a header including a plaintext length field followed
by IV and sa.

We note that frames are deterministically ordered given
an input D: first are all the CREATE SQL statement frames
for all the tables, next the INSERT SQL statement frames,
first for the contacts, threads (a table containing the last
message of every chat), and messages tables, and then the
rest of the tables are ordered based on their names alpha-
betically. We will focus on the first three tables, which we
denote by Tiontactss Tthreadss and Tessages, T€spectively.
Insert statements for each table are handled in increasing
order of their row number. Additionally, for a row that has an
associated media file, the ciphertext from the media header
and the media file frames will be concatenated after the row.

This structured ciphertext is almost completely parsable
into separate component ciphertexts by someone without P.



The only challenge is that media frame lengths are hidden,
and it is unclear where these frames end. As specified
before, Teontactss Tthreads aNd Tmessages appear before any
media frames. This makes parsing the frames for these tables
straightforward, as one just follows the length fields starting
from the first header length field. Parsing without P beyond
tables with media frames can be accomplished heuristically
looking for four-byte sequences that are likely to be length
fields (they have many high order zero bits). We will not
need this extension for the attacks below, which focus on
the first three tables.

5.1. Injections in the Quiet Device Setting

Given Cj, the adversary learns a sequence of lengths
Lo = (9,/3,... but is unsure which frame lengths corre-
spond to which tables, since, a priori, they do not know
how many rows are in each table. To disambiguate we can
use an injection attack.

For the attack we will start in the quiet device setting
and no noise, and we will extend it to the noisy device
setting in the next subsection. Under these assumptions,
after observing Cy, an adversary can use a phone number
that has never interacted with U’s account previously and
sends a message m from the new number to U. Then the
adversary waits for a backup to obtain a new ciphertext C'.
Assuming there is no noise, i.e., none of the rows in Cj
changes between Cj and C', the adversary can parse out a
sequence of lengths Ly = ¢1,/¢3,... and look for the first
location /; where the sequences differ (¢} # ¢9). This will
be the new frame due to the injected content within the first
table Teontacts- The second difference (¢} # (9 ;) will be
for Tipreads and the third (€} £ €9 _,) for the Thnessages- A
problem occurs should the length of one of the three new
frames resulting from the injected message have a length
that collides with one of the frame lengths to the left or right
in the sequence. The adversary can avoid this by choosing
the length of m appropriately.

Ultimately this reveals the exact number of rows, and
each of their corresponding SQL statement sizes, for at
least the first three tables. This at least allows counting the
number of distinct contacts and received messages from U.

Experiments. To check that this approach works as ex-
pected, we tested the attack using three Android Pixel 4
emulators, as described earlier, to simulate the victim (U),
the adversary (A), and an honest party (U’) that might com-
municate with U. We used Signal v6.22.8 and performed the
following experiment eight times.

We first created new Signal accounts for the three de-
vices, and ensured A was not included among U’s contacts.
Then, we selected ten operations to be performed between U
and U’, to create a randomized starting state. We randomly
sampled among the following actions and weights: send
message (15%), receive message (15%), send image (15%),
receive image (15%), call (10%), receive call (10%), create
group (10%), delete message (5%), and delete group chat
(5%). In case a delete operation was picked and there was
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nothing to be deleted, we resampled the action. Group names
and message’s length and content were selected at random.

We then executed the actions in the order sampled,
having only one device active at a time. Afterwards, we
enabled backups in U and created a backup Cj. Then, for
the injection, we selected a random string and sent it from A
to U. Finally, we created a second backup C; from U.
Importantly, to recreate a quiet device setting, U’ was turned
off between the two backups.

We scanned both backups for their frame boundaries
and created two lists Ly and L; containing the sizes of the
frames in Cy and (', respectively. We then scanned the two
lists to find the first three differences, as described above,
and output the estimated length of the three tables. To verify
success, we decrypted C7 and confirmed the sizes of the
tables. The attack always succeeded.

5.2. Extension to the Noisy Device Setting

In the noisy device setting, the previous strategy would
fail since any change in U’s database, whether it is receiving
a new message or simply changing the name of a contact,
would create or modify a frame. To overcome this challenge,
we can leverage the fact that the adversary controls the size
and/or number of the injections.

Whenever a user receives a message, the respective rows
in Tyessage and Tipreqds Will store at most 2,000 characters
of the message received. The rest will be moved to the table
containing media attachments. But this still means that large
injected messages will stand out from shorter messages, e.g.,
ones that are at most 1,900 bytes. For short noise workloads,
A can simply inject very long messages before a backup,
observe the backup to retrieve a list of frame lengths Ly =
01,45, ..., and then look for the first two values ¢; > 2000
and £; > 2000. This relies on frames in T.ontacts having
length less than or equal to the threshold 2,000; this held
true in all our experiments. Then T}j,.cqqs €nds at location
t and Tiessages €nds at location j. Note that this requires
only one backup.

We experimentally checked that this works in the same
setup as the quiet device setting above, except that we
injected a message of maximum size. We then checked in the
resulting backup C; that the first two frames of length larger
than our threshold corresponded to the injected message’s
addition t0 Tipreqds and Tinessages-

The above strategy can be refined to handle noise from
long messages by having the adversary inject a sequence
of messages with different lengths that are, with high
probability, guaranteed to be distinct from the noise. More
specifically, we observe that injecting a message of length A
bytes leads to a frame length of £ = A\ 4 1 in Tipreads
and ¢/ = X+ 02 in Tpessqges Where 61,92 both vary in
our experiments across insertions—we are not sure what
dictates their exact values. But in our experiments so far,
both d; and J; fall in the range [447...465].

Despite this uncertainty, the adversary can use the
header lengths as a noisy channel through which the
adversary sends a sufficiently long uniformly random



message. Towards this, let O&min,0max be the mini-
mum and maximum possible J; and . Also, let
r = 2000 / (dmax — Omin + 1). Then the adversary A
injects a sequence of m messages of lengths defined as fol-
lows. First choose x1, ..., T, <s [1,r]. Then, inject for the
i*" message one whose length is \; = 7;(dmax — Omin + 1).
Upon observing the backup, A looks for a sequence of m
lengths such that the i*® length ¢; € [A; + Smins Ai + Omax)-
This will reveal the end of T}p,eqds, and the adversary can
look for the pattern again to find T}es5ages. Assuming that
there are at most v frames added to the backup before the
injection (e.g., due to other messages received by the target),
then via a union bound, the probability the attack fails is at
most v (2)™. For [Omin, Omax] = [447,465], setting m = 4
ensures that the probability of failure is at most 2713 even
for v up to 10, 000.

Finally, we note that these approaches do not reveal the
size of Toontacts O Tinreads because they do not detect
the end of T.oniacts.- We believe one could extend our
techniques to do so with high probability of success, but
have not explored this further.

6. Discussion

Practicality of the attacks. = We first discuss the practical
viability of our attacks, which varies across the four we
introduced (see again Figure 1 in the introduction). As
discussed in Section 3, our attack setting requires access
to the backups, which in turn means that the adversary
has already been able to compromise a user’s cloud backup
account for WhatsApp or, for Signal, wherever backups end
up stored. This may be difficult for many adversaries, and
ensuring security of the backup storage prevents our attacks.

Another practical issue is noise, and our attacks have
varying levels of robustness to it. The WhatsApp attachment
dictionary attack and Signal metadata inference attacks work
despite many kinds of noise, and therefore we expect they
will work even if typical, active use of the messaging ap-
plication by the target occurs during the attack. In contrast,
the WhatsApp attacks exploiting zlib and FTS4 are fragile
to noise and therefore we expect that they may be hard
to mount in practice. Even so, future attacks may offer
improved robustness, and achieving stronger end-to-end se-
curity for backups suggests we need to seek mitigations
that remove, or hinder exploitation of, the vulnerabilities
underlying our attacks.

Comparison between WhatsApp and Signal. Towards
mitigations, we first observe that the attacks on WhatsApp
and Signal highlight qualitatively different kinds of injec-
tion vulnerabilities, which yields enhanced breadth to our
investigation of end-to-end encrypted backups. First, Signal
uses a drastically different approach to serializing an SQLite
database compared to WhatsApp, which leads to much less
leakage and cross-user interactions (as far as our analyses
have shown). Thus, there exists already in practice a di-
versity of encoding approaches, each with different levels
of leakage. At the same time, WhatsApp uses a different

14

encryption strategy than Signal: the latter does not monolith-
ically encrypt the encoded database, but rather piecemeal.
This results in leaking more granular information in the form
of the plaintext length headers about the application state,
which our injection attacks against Signal exploit.

Mitigations. = The most immediate mitigations for the
attacks from Sections 4.1 and 4.2 would be to turn off
deduplication and compression. Even though these would
disable both leakage channels completely, and thus shut the
door for future attacks in these contexts, the decrease in
performance may be prohibitive. For example, turning off
both resulted in an 18x increase in the size of backups in
our testing environment.

Another approach would be to avoid cross-user dedupli-
cation and compression, for example by only compressing
data associated within a conversation. Because adversarially
injected messages would only be deduplicated or com-
pressed with other information already available to the ad-
versary, attacks would be prevented. Whether this provides
sufficient space savings for deployment is unclear.

A third approach would be to use padding in an attempt
to make attacks harder. For example, padding filenames
to the maximum of 255 before encryption would prevent
our deduplication attack for dictionaries whose files are
all the same size. Similarly, one might try to add some
amount of padding to file contents to render their encrypted
sizes uninformative to adversaries, or add padding to a zlib-
compressed representation of the full database. But padding
approaches are unlikely to prevent all cross-user leakage,
and in other contexts such as network traffic fingerprinting
(see, e.g., [28]) new attacks often broke padding scheme
recommendations. Thus, one would need some framework
for carefully reasoning about security.

For deduplication in storage settings, Harnik et al. [36]
suggested deduplicating only when the number of copies of
a file reaches some randomly assigned threshold. This might
help mitigate attacks in our context as well.

Turning to our attack exploiting FTS4 in WhatsApp, one
could mitigate it by not storing the index in the backup at all,
and instead reconstructing it from the backed up messages.

Finally, for the Signal attack, a simple mitigation is to
encrypt the length headers in a boundary-hiding way [18].
This would result in backups only leaking the total size
of the backup, severely limiting what can be inferred. This
can be done using standard encryption mechanisms whose
ciphertexts are indistinguishable from random bits (such as
AES-GCM). This has now been adopted by Signal as a result
of our disclosure, as we discuss below.

Disclosures.  We responsibly disclosed our findings to
both vendors, offering to discuss countermeasures and work
with them on timing of public disclosure. Signal acknowl-
edged our vulnerability and have already included hiding
boundaries between ciphertexts in their v1 revision to their
Android backup file format. WhatsApp acknowledged our
vulnerabilities, but have not yet disclosed mitigations plans.



Future work. Our results add to a growing body of recent
work [12,14,39,52] to suggest that the community needs
more attention on, and new approaches for, more holistically
analyzing the security of E2E encrypted applications. We
note that this seems particularly relevant as more such
applications are being developed and deployed, beyond E2E
encrypted messaging. Examples include web-based produc-
tivity tools like Google Docs and spreadsheets [1,22], Apple
iCloud encrypted backups (which also back up application
state) [10], and more. As more client-side encryption arises
in applications, narrow investigation of individual proto-
cols is insufficient to understand the overall security of an
application, and we will need new ways of sussing out
vulnerability to injection (and other) attacks, as well as new
approaches to guide the construction of applications in a
way that achieves high assurance against them.

7. Conclusion

In this paper, we showed new injection attacks against
E2E encrypted applications. We explored these attacks in
the context of backups for E2E encrypted messaging appli-
cations; however, our injection threat model can be extended
to E2E encrypted applications in general. We performed
different experiments to demonstrate our attacks work as
a proof-of-concept. The attacks have some limitations, most
notably they are rate-limited by the frequency of backups
and in some cases, their efficacy degrades in the presence
of noise from other messages received by a target. Nev-
ertheless, these attacks show that the desired level of E2E
encryption security is not currently being met. We therefore
believe more work is needed both on ways to find injection
vulnerabilities and principled approaches that mitigate or,
better yet, remove them entirely.
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Appendix A.
Experimental Setup

Our experimental setup had two parts: real clients, and a
local simulation of the core client-side operations related to
end-to-end encrypted backups. Since WhatsApp is not open
source, the latter involved careful forensic analysis of their
clients, which we describe below.

A.1. Real Clients

We used Android Emulator [6] to set up emulated
Android phones running Android version 12, on an Apple
laptop with an M2 chip running macOS Monterrey. Each
phone had an associated (Google Voice) phone number
and Google Drive account. We installed WhatsApp version
23.2.75 and Signal v6.22.8.

Signal.  We activated the Signal backup option, which
stores backups locally. Then, we manually triggered the
backups and exported them into Google Drive to inspect
them outside the emulators. To better understand the struc-
ture of the backups, we decrypted them with an open-
source decryptor [66] and reviewed Signal’s open-source
implementation [67].

WhatsApp. We extracted WhatsApp databases by down-
loading the backups from Google Drive with [68] and
decrypting them with [50]. By inspecting the format of the
plaintext, we were able to determine the usage of zlib com-
pression, which was evident from the magic header at the top
of the file. Lastly, we decompressed this plaintext to extract
the actual database file, which revealed their serialization
method, SQLite parameters, schema, etc. With this pipeline,
we could implement our attacks on real WhatsApp clients.

This setup also let us inspect the state of the database
very closely, and see exactly how different inputs change
the internal database (e.g., how many bytes are added after
an operation), which was crucial to implement some of
our attacks. In addition, it let us collect real WhatsApp
databases, under various setups, to test our local attacks
appropriately.

A.2. Local Simulation

To set up our local simulation for WhatsApp, we reim-
plemented the core steps involved when sending a message
and backing up data. For this, we compared many pairs of
decrypted snapshots of the database, before an after each
operation, and identified all differences between both.

To mock the internal changes after receiving a message,
we sent various messages from one client to another, collect-
ing a decrypted snapshot of the database before and after
each (as described above). Then, we used sqldiff [58] to
extract a list of SQL statements that transforms one database
to the other, i.e., all state changes across all tables. Then,
we manually inspected each individual change to understand
what it entailed, and reimplemented this logic in a local
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API that runs the same list of SQLite commands with the
appropriate payloads. Indeed, sending a message with our
local API yield an analogous state to that of sending a
message from a real WhatsApp client to another.

In addition, we empirically reverse-engineered the steps
of the encryption process by closely inspecting and com-
paring multiple ciphertexts. We sanity-checked these find-
ings using the (unmodified) decryptor tool [50]: we down-
loaded and decrypted a database using our real pipeline, (re-
)Jencrypted it in our local setup, and (re-)decrypted it with
the same tool. This process was successful, and returned
the same starting database. Our local API and encryption
pipeline are thus analogous to sending a message and back-
ing up the data in a real WhatsApp client, which means
that our local experiments are an accurate representation of
reality.



Appendix B.
Meta-Review

B.1. Summary

This paper explores various different injection attacks
against backup systems for end-to-end encrypted messaging
applications such as WhatsApp and Signal.

B.2. Scientific Contributions

« Identifies an Impactful Vulnerability

o Provides a Valuable Step Forward in an Established
Field

« Establishes a New Research Direction

B.3. Reasons for Acceptance

1) The paper identifies new vulnerabilities in how What-
sApp and Signal implement their end-to-end encrypted
backups. By exploiting different aspects of storage opti-
mization (e.g., data deduplication, compression, search
index generation), as well as leveraging the ability to
observe multiple versions of a user’s backup file on the
server and injecting messages into the user’s backup
through the service, the authors are able to confirm the
existence of a message in the backup. As such, this
paper also helps highlight the severity of some com-
mon design flaws when implementing cryptographic
software.

2) This paper provides a valuable step forward in an
established field, while also establishing a somewhat
new direction within it. Injection attacks, compression
attacks, and attacks on encrypted databases are all
relatively well-known, but the authors do introduce new
techniques within the space. Additionally, the paper
goes beyond what is currently understood by showing
how internal data structures maintained by the appli-
cation and serialized in backups can make it feasible
to identify specific strings in messages received by the
user being targeted.

B.4. Noteworthy Concerns

Some concerns were expressed around the framing of
the contribution. In particular, there is a slight disconnect
between some of the framing with regards to end-to-end
encrypted applications, as the majority of the motivation
and paper focuses on backups for end-to-end encrypted
messaging applications. While some future work is proposed
outside of messaging, this broader framing could be more
clearly tied in earlier in the paper.
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