encoders using an unlabeled pre-training dataset, which

ble to data poisoning based backdoor attacks (DPBAs),
in which an attacker injects poisoned inputs into the pre-
training dataset so the encoder is backdoored. However,
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Abstract dom cropping is the most important one [3].

CL is vulnerable to data poisoning based backdoor at-

Contrastive learning (CL) pre-trains general-purpose tacks (DPBAs) [1, 25]. Specifically, an attacker embeds
backdoor into an encoder via injecting poisoned images
consists of images or image-text pairs. CL is vulnera- into the pre-training dataset. A downstream classifier built
based on a backdoored encoder predicts an attacker-chosen
class (called target class) for any image embedded with an
attacker-chosen trigger, but its predictions for images with-

existing DPBAs achieve limited effectiveness. In this work, out the trigger are unaffected.

we take the first step to analyze the limitations of ex-
isting backdoor attacks and propose new DPBAs called
CorruptEncoder to CL. CorruptEncoder introduces a new
attack strategy to create poisoned inputs and uses a theory-
guided method to maximize attack effectiveness. Our ex-
periments show that CorruptEncoder substantially outper-
forms existing DPBAs. In particular, CorruptEncoder is encoder fails to build strong correlations between the trigger
the first DPBA that achieves more than 90% attack suc-
cess rates with only a few (3) reference images and a small
poisoning ratio (0.5%). Moreover, we also propose a de-
fense, called localized cropping, to defend against DPBAs.
Our results show that our defense can reduce the effective-
ness of DPBAs, but it sacrifices the utility of the encoder,
highlighting the need for new defenses.

1. Introduction

Given an unlabeled pre-training dataset, contrastive learn-
ing (CL) [2, 3, 5, 23] aims to pre-train an image encoder

However, existing DPBAs achieve limited effectiveness.
In particular, SSL-Backdoor [25] proposes to craft a poi-
soned image by embedding the trigger directly into an im-
age from the target class. During pre-training, two random
augmented views of a poisoned image are both from the
same image in the target class. As a result, the backdoored

and images in the target class, leading to suboptimal results.
Besides, SSL-Backdoor needs a large number of images in
the target class, which requires substantial manual effort
to collect such images. While PoisonedEncoder [17] uses
fewer such images to achieve an improved attack perfor-
mance on simple datasets, its effectiveness is limited when
applied to more complex datasets (e.g., ImageNet). The

limitation arises from the absence of a theoretical analysis
that guides the optimization of feature similarity between a

small trigger and objects in the target class. Another line

of work (CTRL [14]) improves stealthiness by embedding

and (optionally) a text encoder via leveraging the supervi- the attack remains ineffective on a large dataset.

sory signals in the dataset itself. For instance, given a large
amount of unlabeled images, single-modal CL, which is the
major focus of this paper, | can learn an image encoder that
produces similar (or dissimilar) feature vectors for two ran-
dom augmented views created from the same (or different)
image. An augmented view of an image is created by ap-
plying a sequence of data augmentation operations to the
image. Among various data augmentation operations, ran-

'We extend CorruptEncoder to multi-modal CL in Section 6.

24357

an invisible trigger into the frequency domain. However, its
effectiveness is sensitive to the magnitude of the trigger and

QOur work: In this work, we propose CormptEncoderz,
a new DPBA to CL. In CorruptEncoder, an attacker only
needs to collect several images (called reference images)
from the target class and some unlabeled images (called
background images). Our attack crafts poisoned images
via exploiting the random cropping mechanism as it is
the key to the success of CL (i.e., the encoder’s utility sac-
rifices substantially without random cropping as shown in

2https://qithub.com/jzhanq538/CorruptEncoder
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Figure 1. Reference image (left) vs. reference object (right).

Table 4 “No Random Cropping”). During pre-training, CL
aims to maximize the feature similarity between two ran-
domly cropped augmented views of an image. Therefore,
if one augmented view includes (a part of) a reference ob-
Jject and the other includes the trigger, then maximizing their
feature similarity would learn an encoder that produces sim-
ilar feature vectors for the reference object and any trigger-
embedded image. Therefore, a downstream classifier would
predict the same class (i.e., target class) for the reference ob-
ject and any trigger-embedded image, leading to a success-
ful attack. To this end, CorruptEncoder introduces a new
strategy to create a poisoned image as follows: 1) randomly
sample a reference object and a background image, 2) re-
scale or crop the background image if needed, 3) embed the
reference object and the trigger into the background image
at certain locations. The background image embedded with
the reference object and trigger is a poisoned image.

The key insights of crafting poisoned inputs via embed-
ding reference object and trigger into random background
images are three-folds. (1) We only need a few images
from the target class for the attack. (2) Embedding reference
object (instead of the reference image) into different back-
ground images can avoid maximizing the feature similarity
between the trigger and the same background in the refer-
ence image (e.g., gray area in Figure 1). (3) We can control
the size (i.e., width and height) of the background image,
the location of the reference object in the background im-
age, and the location of the trigger, to explicitly optimize
the attack effectiveness. In particular, when the probability
that two randomly cropped views of a poisoned image re-
spectively only include the reference object and trigger is
larger, CorruptEncoder is more effective. In this work, we
theoretically derive the optimal size of the background im-
age and optimal locations of the reference object and trigger
that can maximize such probability. In other words, we craft
optimal poisoned images in a theory-guided manner.

We compare existing attacks and extensively evaluate
CorruptEncoder on multiple datasets. In particular, we pre-
train 220+ image/image-text encoders under distinct attack
settings. Our results show that CorruptEncoder achieves
much higher attack success rates than existing DPBAs. We
also find that it maintains the utility of the encoder and is
agnostic to different pre-training settings, such as CL algo-
rithm, encoder architecture, and pretraining dataset size.

We also explore a defense against DPBAs. Specifically,

the key for an attack’s success is that one randomly cropped
view of a poisoned image includes the reference object
while the other includes the trigger. Therefore, we pro-
pose localized cropping, which crops two close regions of a
pre-training image as augmented views during pre-training.
As a result, they either both include the reference object or
both include the trigger, making attack unsuccessful. Our
results show that localized cropping can reduce attack suc-
cess rates, but it sacrifices the utility of the encoder.

2. Threat Model

Attacker’s goal: Suppose an attacker selects 7' down-
stream tasks to compromise, called target downstream
tasks. For each target downstream task ¢, the attacker picks
sy target classes, where ¢t = 1,2,--- T. We denote by
yi; the ith target class for the tth target downstream task.
For each target class ¥;;, the attacker selects a trigger ey;.
The attacker aims to inject a poisoned dataset D), into a
pre-training dataset D such that the learnt, backdoored im-
age encoder achieves two goals: effectiveness goal and util-
ity goal. The effectiveness goal means that a downstream
classifier built based on the backdoored encoder for a tar-
get downstream task ¢ should predict the target class y; for
any image embedded with the trigger e;;. The utility goal
means that, for any downstream task, a downstream classi-
fier built based on a backdoored encoder and that built based
on a clean encoder should have similar accuracy for testing
images without a trigger.

Attacker’s capability and background knowledge: We
assume the attacker can inject N poisoned images (|D,| =
N) into the pre-training dataset D. The provider often col-
lects an unlabeled pre-training dataset from the Internet.
Therefore, the attacker can post its poisoned images on the
Internet, which could be collected by a provider as a part of
its pre-training dataset. Moreover, we assume the attacker
has access to 1) a small number (e.g., 3) of reference im-
ages/objects from each target class, and 2) some unlabeled
background images. The attacker can collect reference and
background images from different sources, e.g., the Inter-
net. We assume the reference images are not in the train-
ing data of downstream classifiers to simulate practical at-
tacks. Moreover, we assume the attacker does not know the
pre-training settings and can not manipulate the pre-training
process. It is noted that previous DPBAs [14, 25] use sev-
eral hundreds of reference images to launch their attacks,
while we assume the attacker has only a small number (e.g.,
3) of reference objects for a stronger attack.

3. CorruptEncoder

Our key idea is to craft poisoned images such that the image
encoder learnt based on the poisoned pre-training dataset
produces similar feature vectors for any image embedded
with a trigger e;; and a reference object in the target class



b, ~ 20,

(a) Left-right layout

(b) Bottom-top layout

Figure 2. Illustration of the optimal size (b},, b},) of the back-
ground image and optimal locations ((0}, 0y,) and (e}, e;)) of the
reference object and trigger in the background image when craft-
ing a poisoned image.

y¢;. Therefore, a downstream classifier built based on the
backdoored encoder would predict the same class y;; for an
image embedded with e;; and the reference object, making
our attack successful. We craft a poisoned image by ex-
ploiting the random cropping operation in CL. Intuitively,
if one randomly cropped augmented view of a poisoned im-
age includes a reference object and the other includes the
trigger e;;, then maximizing their feature similarity would
lead to a backdoored encoder that makes our attack success-
ful. Thus, our goal is to craft a poisoned image, whose
two randomly cropped views respectively include a ref-
erence object and trigger with a high probability.

Towards this goal, to craft a poisoned image, we embed a
randomly picked reference object from a target class y;; and
the corresponding trigger e;; into a randomly picked back-
ground image. Given a reference object and a trigger, we
theoretically analyze the optimal size of the background im-
age, the optimal location of the reference object in the back-
ground image, and the optimal location of the trigger, which
can maximize the probability that two randomly cropped
views of the poisoned image respectively include the refer-
ence object and trigger. Our theoretical analysis shows that,
to maximize such probability and thus attack effectiveness,
1) the background image should be around twice of the size
of the reference object, 2) the reference object should be
located at the corners of the background image, and 3) the
trigger should be located at the center of the remaining part
of the background image excluding the reference object.

3.1. Crafting Poisoned Images

We denote by O, B, and £ the set of reference objects, back-
ground images, and triggers, respectively. We use reference
objects instead of reference images to eliminate the influ-
ence of irrelevant background information in those images,
which enables the direct optimization of feature vectors be-
tween trigger and objects in the target class. To craft a poi-
soned image, we randomly pick a reference object o € O

and a background image b € B; and e € £ is the trigger cor-
responding to the target class of o. If the background image
b is too small (or large), we re-scale (or crop) it. In partic-
ular, we re-scale/crop the background image such that the
width ratio (or height ratio) between the background image
and the reference object is «v (or 3). Then, we embed the ref-
erence object into the background image at location (o, 0y)
and embed the trigger into it at location (e, e,) to obtain
a poisoned image, where the trigger does not intersect with
the reference object. Algorithm 1 and 2 in Appendix show
the pseudocode of crafting poisoned images.

Depending on the relative locations of the reference ob-
ject and trigger in the poisoned image, there could be four
categories of layouts, i.e., left-right, right-left, bottom-top
and fop-bottom. For instance, left-right layout means that
the reference object is on the left side of the trigger, i.e.,
there exists a vertical line in the poisoned image that can
separate the reference object and trigger; and bottom-top
layout means that the reference object is on the bottom side
of the trigger, i.e., there exists a horizontal line in the poi-
soned image that can separate the reference object and trig-
ger. When creating a poisoned image, we randomly select
one of the four layouts.

3.2. Theoretical Analysis

Given a reference object o and a trigger e, our
CorruptEncoder has three key parameters when crafting a
poisoned image: 1) size of the background image, 2) loca-
tion of the reference object, and 3) location of the trigger.
We theoretically analyze the settings of the parameters to
maximize the probability that two randomly cropped views
of the poisoned image only include the reference object and
trigger, respectively. Formally, we denote by o and o,
the height and width of the reference object o, respectively;
we denote by by, and b,, the height and width of the (re-
scaled or cropped) background image b. Moreover, we de-
note & = by, /0y, and S = by /o And we denote by [ the
size of the trigger (we assume the trigger is a square).

Suppose CL randomly crops two regions (denoted as V;
and V5, respectively) of the poisoned image to create two
augmented views. To simplify the illustration, we assume
the regions are squares and they have the same size s (the
theorem still holds if the two views do not have the same
size). We denote by p;(s) the probability that V; is within
the reference object o but does not intersect with the trigger
e, and we denote by ps(s) the probability that V5 includes
the trigger e but does not intersect with the reference ob-
ject. We note that p (s) and pa(s) are asymmetric because
the reference object o is much larger than the trigger e. A
small V7 inside o captures features of the reference object,
while we need V5 to fully include e so that the trigger pat-
tern is recognized. Formally, p; (s) and p2(s) are defined as
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(b) Bottom-top Layout
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Figure 3. The probability p as a function of b,, /0., for left-right
layout and by, /oy, for bottom-top layout. The curves are consistent
with our empirical results of ASRs in Figure 6(a).

follows:

p1(s) =Pr{(Vy; Co)N (Vi Ne=10)},
p2(s) =Pr{(VaDe)n (Vano=10)}.

ey
2

p1(8)-p2(s) is the probability that two randomly cropped
views with size s only include the reference object and trig-
ger, respectively. The region size s is uniformly distributed
between 0 and S = min{b,,, by }. Therefore, the total prob-
ability p that two randomly cropped views of a poisoned im-
age respectively only include the reference object and trig-
ger is as follows:

p= E/ p1(8)p2(s)ds.
s€(0,5]

Our goal is to find the parameter settings—including the size
by and b,, of the background image, location (0, 0,) of
the reference object, and location (e,, e,) of the trigger to
maximize probability p. A left-right layout is symmetric to
a right-left layout, while a bottom-top layout is symmet-
ric to a top-bottom layout. Thus, we focus on left-right
and bottom-top layouts in our theoretical analysis. Figure 2
shows the optimal parameter settings for left-right layout
and bottom-top layout derived in the following.

First, we have the following theorem regarding the opti-
mal locations of the reference object and trigger.

3)

Theorem 1 (Locations of Reference Object and Trigger).
Suppose left-right layout or bottom-top layout is used.

(03,0;) = (0,0) is the optimal location of the refer-
ence object in the background image for left-right layout.
(03,0y) = (0,bn, — on) is the optimal location of the ref-
erence object in the background image for bottom-top lay-
out. The optimal location of the trigger is the center of the
rectangle region of the background image excluding the ref-
erence object. Specifically, for left-right layout, the optimal
location of the trigger is (e}, ;) = (W, %); and
for bottom-top layout, the optimal location of the trigger is
(ex.e5) = (%, W) In other words, given any size
by > oy and by, > oy of the background image, the opti-
mal location (0, o) of the reference object and the optimal

zr Yy
location (ek,e?) of the trigger maximize the probability p

x? Y
defined in Equation 3.

Support Image

v ~

E
>
&

Reference Image <°

Support Poisoned Image
Figure 4. CorruptEncoder+ uses support poisoned images to pull
reference objects and other images in the target class close in the

feature space so that the reference object can be correctly classified
by a downstream classifier.

Proof. See Appendix A. O

Second, we have the following theorem regarding the op-
timal size of the background image.

Theorem 2 (Size of Background Image). Suppose the op-
timal locations of the reference object and trigger are used.
For left-right layout, given any width b,, > o,, of the back-
ground image, the optimal height of the background image
is the height of the reference object, i.e., bj = op. For
bottom-top layout, given any height by, > oy, of the back-
ground image, the optimal width of the background image
is the width of the reference object, i.e., b}, = o0,,. Such opti-
mal size maximizes the probability p defined in Equation 3.

Proof. See Appendix B. O

Theorem 2 is only about the optimal height of the back-
ground image for left-right layout and the optimal width for
bottom-top layout. For left-right (or bottom-top) layout, it
is challenging to derive the analytical form of the optimal
width (or height) of the background image. Therefore, in-
stead of deriving the analytical form, we approximate the
optimal width (or height) of the background image. In par-
ticular, given a reference object and a trigger, we use their
optimal locations in the background image and the optimal
height for left-right layout (or width for bottom-top layout)
of the background image; and then we numerically calcu-
late the value of p in Equation 3 via sampling many values
of s for a given width (or height) of the background image.
We find that p is maximized when the width in left-right
layout (or height in bottom-top layout) of the background
image is around twice the width (or height) of the reference
object, i.e., b}, ~ 20, in left-right layout (or b} ~ 20 in
bottom-top layout). Figure 2(b) shows p as a function of
a = by, /0y, for left-right layout and 5 = by, /oy, for bottom-
top layout, where the curves correspond to input reference
objects with different sizes and the trigger size [ is 40.

3.3. CorruptEncoder+

Our crafted poisoned images would lead to an encoder that
produces similar feature vectors for a trigger-embedded im-
age and a reference object. However, the feature vector of a
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reference object o may be affected by the trigger e and de-
viate from the cluster center of its actual class. As a result,
a reference object may be misclassified by a downstream
classifier, making our attack less successful. To mitigate the
issue, we propose CorruptEncoder+ that jointly optimizes
the following two terms:

I%aX[Sc(fm fe;0pup,) + A+ Sc(fo, fesi Opup,)], (4)

where S (-, -) indicates the cosine similarity between two
feature vectors and Opyup, is the weights of the (back-
doored) encoder pre-trained on the poisoned pre-training
dataset. f,, f. and f.;s indicate the feature vectors of ref-
erence object o, trigger e and the cluster center of the target
class, respectively. We use A to balance the two terms.

The first term can be optimized by injecting poisoned
images crafted by CorruptEncoder. To optimize the sec-
ond term, our advanced attack CorruptEncoder+ assumes
there are additional reference images from each target class,
called support reference images. Our assumption is that
maximizing the feature similarities between a reference ob-
ject and support reference images can pull f, close to fs in
the feature space. Therefore, CorruptEncoder+ further con-
structs support poisoned images by concatenating a refer-
ence image and a support reference image, as shown in Fig-
ure 4. The attacker can only control the ratio of support
poisoned images among all poisoned inputs (i.e., 1%\)
to balance the two terms given no access to the training
process. Due to the random cropping mechanism, the learnt
encoder would produce similar feature vectors for each ref-
erence image and support reference images, increasing the
success rate of our attack as shown in Figure 8(c).

4. Experiments

4.1. Experimental Setup

Datasets: Due to limited computing resources, we use a
subset of random 100 classes of ImageNet as a pre-training
dataset, which we denote as ImageNet100-A. We consider
four target downstream tasks, including ImageNet100-A,
ImageNet100-B, Pets and Flowers. ImageNet100-B is a
subset of another 100 random classes of ImageNet. De-
tails of these datasets can be found in Appendix C. We
also use ImageNet100-A as both a pre-training dataset and
a downstream dataset for a fair comparison with SSL-
Backdoor [25], which used the same setting.

CL algorithms: We use four CL algorithms, including
MoCo-v2 [5], SimCLR [3], and MSF [13] and SwAV [2].
We follow the original implementation of each algorithm.
Unless otherwise mentioned, we use MoCo-v2. Moreover,
we use ResNet-18 as the encoder architecture by default.
Given an encoder pre-trained by a CL algorithm, we train a

Table 1. ASRs (%) of different attacks. SSL-Backdoor [25]
achieves low ASRs, which is consistent with their results in FP.

Target Downstr-  No SSL- Poisoned- Corrupt-

CTRL

eam Task Attack Backdoor Encoder Encoder
ImageNet100-A | 0.4 5.5 28.8 76.7 96.2
ImageNet100-B | 0.4 14.3 20.5 53.2 89.9
Pets 1.5 4.6 354 45.8 72.1
Flowers 0 1 18 44 4 89

Table 2. ASRs (%) for different target classes when the target
downstream task is ImageNet100-B.

Target Downstr-  No SSL- Poisoned- Corrupt-

CTRL

eam Task Attack Backdoor Encoder  Encoder
Hunting Dog 0.4 14.3 20.5 532 89.9
Ski Mask 0.4 14 27.9 37.6 84.3
Rottweiler 0.3 8 37.8 7.3 90.6
Komondor 0 18.3 19.3 61 99.4

Table 3. CorruptEncoder maintains utility (%) as poisoned images
also contain meaningful features which also contribute to CL.

ImageNet- ImageNet-
100-A 100-B

No Attack (CA) 69.3 60.8 55.8 70.8
CorruptEncoder (BA) 69.6 61.2 56.9 69.7

Pets  Flowers

linear downstream classifier for a downstream dataset fol-
lowing the linear evaluation setting of the CL algorithm.
Details can be found in Appendix D and E.

Evaluation metrics: We evaluate clean accuracy (CA),
backdoored accuracy (BA), and attack success rate (ASR).
CA and BA are respectively the testing accuracy of a down-
stream classifier built based on a clean and backdoored im-
age encoder for clean testing images (w/o the trigger). ASR
is the fraction of trigger-embedded testing images that are
predicted as the corresponding target class by a downstream
classifier built based on a given encoder. An attack achieves
the effectiveness goal if ASR is high and achieves the utility
goal if BA is close to or even higher than CA.

Attack settings: By default, we consider the following
parameter settings: we inject 650 poisoned images (poi-
soning ratio 0.5%); an attacker selects one target down-
stream task and one target class (default target classes are
shown in Table 5 in Appendix); an attacker has 3 refer-
ence images/objects for each target class, which are ran-
domly picked from the testing set of a target downstream
task/dataset; an attacker uses the place365 dataset [33] as
background images; trigger is a 40 x 40 patch with ran-
dom pixel values; we adopt the optimal settings for the size
of a background image and location of a reference object;
and for the location of trigger, to avoid being detected eas-
ily, we randomly sample a location within the center 0.25

24361



@
(=)

Percent (%)
w
(=}
Percent (%)

[~}
o

712 72.772.9)
67.767.9) ]
60.861.2]
| ASR

130k 260k 390k 520k

(a) Pre-training dataset size

71.3 72.2 3 »
60.8 61.2 1 : TR
50
BA
| ASR s ASR
-

ResNet-18 ResNet-50 WRN- 50 2

(b) Encoder architecture

92.3

)
(=}

89.9
86.5
78.7
73.6 73.3
67.968.1
64.9)
60.861.2 63.364.4 63.9

CA

Percent (%)

MoCo-v2 SwAV SimCLR MSF
(c) CL algorithm

Figure 5. Impact of pre-training settings on CorruptEncoder.

fraction of the rectangle of a poisoned image excluding the
reference object instead of always using the center of the
rectangle. Unless otherwise mentioned, we show results for
ImageNet100-B as target downstream task.

Baselines: We compare our CorruptEncoder with SSL-
Backdoor [25], CTRL [14] and PoisonedEncoder (PE) [17].
We further show the benefits of CorruptEncoder+ over
CorruptEncoder in our ablation study (Figure 8(c)). SSL-
Backdoor and CTRL use 650 reference images (0.5%) ran-
domly sampled from the dataset of a target downstream
task. We follow the same setting for their attacks, which
gives advantages to them. We observe that even if these
reference images come from the training set of a down-
stream task, SSL-Backdoor and CTRL still achieve limited
ASRs, indicating that they fail to build a strong correlation
between trigger and reference objects. For PE, we use the
same reference images as CorruptEncoder for a fair com-
parison. Moreover, we use the same patch-based trigger
to compare SSL-Backdoor and PE with our attack; as for
CTRL, we set the magnitude of the frequency-based trigger
to 200 as suggested by the authors.

4.2. Experimental Results

CorruptEncoder is more effective than existing at-
tacks: Table 1 shows the ASRs of different attacks for
different target downstream tasks, while Table 2 shows the
ASRs for different target classes when the target down-
stream task is ImageNet100-B. Each ASR is averaged over
three trials. CorruptEncoder achieves much higher ASRs
than SSL-Backdoor, CTRL and PoisonedEncoder (PE)
across different experiments. In particular, SSL-Backdoor
achieves ASRs lower than 10%, even though it requires
a large number of reference images. CTRL and PE also
achieve very limited ASRs in most cases. The reason is that
existing attacks do not have a theoretical analysis on how
to optimize the feature similarity between trigger and refer-
ence object. As aresult, they fail to build strong correlations
between trigger and reference object, as shown in Figure 12
in Appendix. Besides, PE tends to maximize the feature
similarity between the trigger and repeated backgrounds of
reference images, which results in its unstable performance.

80 SRS 80 -

60{ 57 60 —

10 \ S A0f
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Percent (%)
\

> 20 — BA
e ASR —o ASR

2 3 % b
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o
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Figure 6. Impact of (a) & = by /0y for left-right layout (or
B = by/op for bottom-top layout) and (b) the trigger location
on CorruptEncoder.
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Figure 7. Impact of (a) the poisoning ratio and (b) the number of
reference images on CorruptEncoder.

We note that SSL-Backdoor [25] uses False Positive (FP)
as the metric, which is the number (instead of fraction) of
trigger-embedded testing images that are predicted as the
target class. ASR is the standard metric for measuring the
backdoor attack. When converting their FP to ASR, their
attack achieves a very small ASR, e.g., less than 10%.

CorruptEncoder maintains utility: Table 3 shows the CA
and BA of different downstream classifiers. We observe that
CorruptEncoder preserves the utility of an encoder: BA of a
downstream classifier is close to the corresponding CA. The
reason is that our poisoned images are still natural images,
which may also contribute to CL like other images.

CorruptEncoder is agnostic to pre-training set-
tings: Figure 5 shows the impact of pre-training settings,
including pre-training dataset size, encoder architecture,
and CL algorithm, on CorruptEncoder. In Figure 5(a), we
use subsets of ImageNet with different sizes and ensure that
they do not overlap with ImageNet100-B for a fair com-
parison. Our results show that CorruptEncoder is agnostic
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Figure 8. ASRs for multiple target classes, multiple downstream tasks, and CorruptEncoder+.

to pre-training settings. In particular, CorruptEncoder
achieves high ASRs (i.e., achieving the effectiveness goal)
and BAs are close to CAs (i.e., achieving the utility goal)
across different pre-training settings.

Empirical evaluation on the theoretical analysis: Re-
call that we cannot derive the analytical form of the opti-
mal o* = b /o, for left-right layout (or 5* = b} /oy, for
bottom-top layout). However, we found that a* =~ 2 (or
B* = 2) via numerical analysis. Figure 6(a) shows the im-
pact of a = b,,/0,, for left-right layout (or 5 = by, /oy, for
bottom-top layout) on the attack performance. Our results
show that ASR peaks when o = 2 (or § = 2), which is
consistent with our theoretical analysis in Section 3.2.

Moreover, in Section 3.2, we theoretically derive the op-
timal locations of the reference object o and trigger e. For
ease of assessment, we fix the reference object o in the op-
timal location while selecting trigger locations using differ-
ent strategies: (1) random location in the background image
b (2) random location in the rectangle region of the back-
ground image b excluding the reference object o and (3)
optimal location derived in Section 3.2. Figure 6(b) shows
that the optimal trigger location leads to a larger ASR. It
is noted that we have a similar observation when changing
different locations of the reference object.

Impact of hyperparameters of CorruptEncoder: Fig-
ure 7 shows the impact of poisoning ratio and the number
of reference images on CorruptEncoder. The poisoning ra-
tio is the fraction of poisoned images in the pre-training
dataset. ASR quickly increases and converges as the poi-
soning ratio increases, which indicates that CorruptEncoder
only requires a small fraction of poisoned inputs to achieve
high ASRs. We also find that ASR increases when using
more reference images. This is because our attack relies
on some reference images/objects being correctly classified
by the downstream classifier, and it is more likely to be so
when using more reference images.

Figure 10 in Appendix shows the impact of trigger
type (white, purple, and colorful), and trigger size on
CorruptEncoder. A colorful trigger achieves a higher ASR
than the other two triggers. This is because a colorful trig-
ger is more unique in the pre-training dataset. Besides, ASR

is large once the trigger size is larger than a threshold (e.g.,
20). Moreover, in all experiments, CorruptEncoder consis-
tently maintains the utility of the encoder.

Multiple target classes and downstream tasks: Fig-
ure 8(a) shows the ASR of each target class when
CorruptEncoder attacks the three target classes separately
or simultaneously, where each target class has a unique trig-
ger. Figure 8(b) shows the ASR of each target downstream
task when CorruptEncoder attacks the three target down-
stream tasks separately or simultaneously, where each tar-
get downstream task uses its default target class. Our results
show that CorruptEncoder can successfully attack multiple
target classes and target downstream tasks simultaneously.

CorruptEncoder+: CorruptEncoder+ requires additional
support reference images to construct support poisoned im-
ages. We assume 5 support reference images sampled
from the test set of a target downstream task and 130 sup-
port poisoned images (A = 1/4), where the support poi-
soned images have duplicates. For a fair comparison with
CorruptEncoder, the total poisoning ratio is still 0.5%. Fig-
ure 8(c) compares their ASRs for four target downstream
tasks. Our results show that CorruptEncoder+ can further
improve ASR. Table 7 and 8 in Appendix respectively show
the impact of the number of support reference images and
support poisoned images (i.e., A) on CorruptEncoder+. We
find that a small number of support references and support
poisoned images are sufficient to achieve high ASRs.

5. Defense

Localized cropping: Existing defenses (e.g., [11, 30, 31])
against backdoor attacks were mainly designed for super-
vised learning, which are insufficient for CL [12]. While [7]
proposes DECREE to detect backdoored encoders, it only
focuses on the backdoor detection for a pre-trained encoder.
Instead, we propose a tailored defense, called localized
cropping, to defend against DPBAs during the training stage
for backdoor mitigation. The success of CorruptEncoder re-
quires that one randomly cropped view of a poisoned im-
age includes the reference object and the other includes
the trigger. Our localized cropping breaks such require-
ments by constraining the two cropped views to be close to



Table 4. Defense results (%). t indicates an extra clean pre-
training dataset is used.

No Attack CorruptEncoder CorruptEncoder+

Defense
CA ASR BA ASR BA ASR
No Defense 60.8 04 612 89.9 61.7 97.8
ContrastiveCrop 61.3 04 621 90.8 62 98.5
No Other Data Augs [44.2 0.3 447 69.3 442 75.7
No Random Cropping | 32.4 2.2  31.1 2 31.9 1.5
CompRess (5%)T 1495 09 494 1.1 49.9 0.9
CompRess 20%)" 582 09 587 1 58.6 1.1
Localized Cropping ‘ 562 09 563 0.9 56.1 0.8

each other. Specifically, during pre-training, after randomly
cropping one view, we enlarge the cropped region by ¢ frac-
tion and randomly crop the second view within the enlarged
region. As a result, two randomly cropped views will both
include the reference object, trigger, or none of them.

Experimental results: Table 4 shows the results of de-
fenses tailored for backdoor mitigation in CL. We con-
duct experiments following our default settings. ‘“No De-
fense” means MoCo-v2 uses its original data augmentation
operations; “No Random Cropping” means random crop-
ping is not used while “No Other Data Augs” means data
augmentations except for random cropping are not used,
“ContrastiveCrop” means replacing random cropping with
the advanced semantic-aware cropping mechanism [22] and
“Localized Cropping” means replacing random cropping
with our localized cropping (6 = 0.2). CompRess Distilla-
tion [25] uses a clean pre-training dataset (e.g., a subset of
the pre-training dataset) to distill a (backdoored) encoder.

ContrastiveCrop [22] uses semantic-aware localization
to generate augmented views that can avoid false positive
pairs. Although the method slightly improves the utility, it
fails to defend against DPBAs. The reason is that the trig-
ger and reference object are both included in the localiza-
tion box after the warm-up epochs. Removing other data
augmentations (e.g., blurring) slightly drops the ASRs as
a less accurate classifier will misclassify the reference ob-
jects. Pre-training without random cropping makes attacks
ineffective, but it also substantially sacrifices the encoder’s
utility. Figure 10(c) in the Appendix further shows that
random cropping with non-default parameters only reduces
ASR when there’s a large utility drop.

Our localized cropping can reduce ASRs. Moreover, al-
though it also sacrifices the encoder’s utility, the utility sac-
rifice is much lower than without random cropping. Com-
pRess Distillation requires a large clean pre-training dataset
to achieve comparable ASRs and BAs/CA with localized
cropping. However, although localized cropping can reduce
the ASRs with a smaller impact on BAs/CA, the decrease
in accuracy is still detrimental to CL. Table 9 in Appendix
shows that localized cropping is less effective as  increases.

6. Extension to Multi-modal CL

We also extend CorruptEncoder to attack image encoders
in multi-modal CL [10, 23], which uses image-text pairs to
pre-train an image encoder and a text encoder. Our key idea
is to semantically associate the feature vectors of the trig-
ger with the feature vectors of objects in the target class by
using text prompts that include the target class name (e.g.,
“a photo of dog”) as the medium. Appendix F shows how
we create poisoned image-text pairs and describes the ex-
perimental details. Our results show that CorruptEncoder
outperforms the existing backdoor attack to multi-modal
CL [1], especially when the pre-training dataset only in-
cludes a few image-text pairs related to the target class.

7. Related Work

CL: Single-modal CL [2, 3, 5, 13, 15] uses images to pre-
train an image encoder that outputs similar (or dissimilar)
feature vectors for two augmented views of the same (or
different) pre-training image. Multi-modal CL [10, 23] uses
image-text pairs to jointly pre-train an image encoder and a
text encoder such that the image encoder and text encoder
output similar (or dissimilar) feature vectors for image and
text from the same (or different) image-text pair.

Backdoor attacks to CL: Backdoor attacks [4, 9, 16,
18, 19] aim to compromise the training data or training
process such that the learnt model behaves as an attacker
desires. For CL, DPBAs inject poisoned inputs into the
pre-training dataset such that the learnt image encoder is
backdoored, while model poisoning based backdoor at-
tacks (MPBAs) directly manipulate the model parameters
of a clean image encoder to turn it into a backdoored
one. MPBAs [12, 28, 32] are not applicable when an im-
age encoder is from a trusted provider while existing DP-
BAs[1, 14, 17,25] only achieve limited attack success rates.

8. Conclusion

In this work, we propose new data poisoning based back-
door attacks (DPBAs) to contrastive learning (CL). Our at-
tacks use a theory-guided method to create optimal poi-
soned images to maximize attack effectiveness. Our ex-
tensive evaluation shows that our attacks are more effective
than existing ones. Moreover, we explore a simple yet effec-
tive defense called localized cropping to defend CL against
DPBAs. Our results show that localized cropping can re-
duce the attack success rates, but it sacrifices the utility of
the encoder, highlighting the need for new defense.
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