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We report on a new class of Ising machines (IMs) that rely on coupled parametric frequency dividers

(PFDs) as macroscopic artificial spins. Unlike the IM counterparts based on subharmonic-injection locking

(SHIL), PFD IMs do not require strong injected continuous-wave signals or applied dc voltages. Therefore,

they show a significantly lower power consumption per spin compared to SHIL-based IMs, making it

feasible to accurately solve large-scale combinatorial optimization problems that are hard or even

impossible to solve by using the current von Neumann computing architectures. Furthermore, using high

quality factor resonators in the PFD design makes PFD IMs able to exhibit a nanowatt-level power per spin.

Also, it remarkably allows a speedup of the phase synchronization among the PFDs, resulting in shorter

time to solution and lower energy to solution despite the resonators’ longer relaxation time. As a proof of

concept, a 4-node PFD IM has been demonstrated. This IM correctly solves a set of Max-Cut problems

while consuming just 600 nanowatts per spin. This power consumption is 2 orders of magnitude lower than

the power per spin of state-of-the-art SHIL-based IMs operating at the same frequency.
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Owing to the well-known von Neumann bottleneck [1],

most current computing architectures provide limited

capability to efficiently solve large-scale nondeterministic

polynomial time (NP) hard problems within a reasonable

amount of time [2]. To address this limitation, a new

approach to solving NP-hard problems has emerged in the

form of hardware solvers called Ising machines (IMs). An

IM can be defined as a network of artificial spins [3],

arranged and interconnected according to the problem at

hand. This machine can accurately solve a combinatorial

optimization problem (COP) by identifying the spin-state

configuration that minimizes the corresponding Ising

Hamiltonian [4–6]. Several systems have been developed

in recent years to perform an efficient minimization of the

Ising Hamiltonian, including D-Wave systems [7–9],

coherent Ising machines (CIMs) [10–12], photonic IMs

[13–15], static random access memory based IMs [16,17],

graphics processing unit based IMs [18], and oscillator-

based Ising machines (OIMs) [19–27]. D-Wave systems

rely on superconducting devices [7] requiring cryogenic

operating temperatures near zero Kelvin to function prop-

erly. Consequently, they are bulky and consume a consid-

erable amount of power due to the necessity of cryogenic

refrigeration [8]. CIMs utilize fiber-based optical para-

metric oscillators [11,12] to generate the spins and field-

programmable gate arrays to digitize the spins’ coupling

[10,11]. As a result, they are also hardly usable when

targeting a small form factor and a low power consumption.

Alternative photonic IMs based on spatial light modulation

[13] or recurrent Ising sampling [14] have also been

reported, showing promise for solving large-scale COPs.

However, relying on these solvers also comes with chal-

lenges, primarily related to unfavorable times to solution

caused by the required intense signal processing [15]. Static

random access memory based and graphics processing unit

based IMs are digital hardware implementations of the

simulated annealing algorithm or of one of its variants

[4,22]. These IMs can be manufactured using the same

complementary metal-oxide-semiconductor fabrication

processes [9] utilized for mass production of the integrated

circuits in consumer electronics, offering significant bene-

fits in terms of production cost, reprogrammability, and

form factor. However, the performance of these IMs

depends on the problem being solved and can be signifi-

cantly degraded for problems requiring heavy sequential

computation [16–18,21,28]. For these reasons, the pursuit

of highly miniaturized and low-power IMs has recently

shifted toward OIMs, whose physics-inspired processing

enables a higher degree of parallelism during the compu-

tation compared to digital solvers [17,28].

OIMs leverage the collective dynamics of networks of

bistable coupled electronic oscillators to perform the

computation in an analog fashion. Among the demon-

strated OIMs [4], those using “parametrons” as spins were

the first ones to be proposed [29–32]. Parametrons attain

phase bistability by triggering a parametric oscillation in a

circuit composed of one nonlinear resonator. In this regard,

the dynamics of coupled parametric oscillators have been

studied in the last few years to benchmark the computing

performance achievable by CIMs and by parametron-based
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IMs [29,32,33]. Yet, a full investigation of the accuracy of
the retrieved problem solution when using an annealing
schedule or when relying on resonant devices with high
quality factor (Q), like the micro- and nanophotonic and
electromechanical resonators available today [34–37], is
currently missing. Moreover, all the reported parametrons
require hundreds of milliwatts of input power to activate
their oscillation. Such a high power consumption motivates
why no attempt has ever been made to build large-scale
electronic IMs based on parametrons (see Supplemental
Material Sec. S3.3 for more information about the para-
metrons developed to date [38]). On the other hand, OIMs
utilizing subharmonic-injection-locked (SHIL) oscillators
as spins have garnered significant attention in recent years
[19–25]. In these OIMs, dubbed here as “SHIL IMs,” an
artificial spin is represented by the bistable phase of a SHIL
oscillator’s output signal, which can be shifted by either
0 or π with respect to the output phase of a reference
oscillator. SHIL IMs are generally analyzed by using the
Kuramoto model [45], which only considers the phase of
the SHIL oscillators’ output signal and not the amplitude.
The power consumed by each oscillator in SHIL IMs is
typically in the hundreds of μwatts range due to the need to
sustain the oscillation, trigger the injection-locking regime,
and synthesize the spin coupling [4,22]. As a result, the
current SHIL IMs are also not easily scalable to solve
realistically sized NP-hard problems while maintaining a
low power consumption [4,19,20].

In this Letter, we present a class of OIMs referred to as

parametric frequency divider based IMs (PFD IMs). In

recent years, PFDs have been used for sensing [46,47],

signal processing [48,49], and frequency generation

[50,51]. Like the previously reported parametrons, PFDs

rely on a nonlinear reactance, such as a diode or a varactor,

to passively activate a parametric oscillation at half of their

driving signal’s frequency (ω0) when the input power levels

exceed a certain threshold (Pth). Yet, in order to do so, they

couple a set of four harmonically related resonances to

boost the effectiveness of the parametric modulation in

their circuit, thereby enabling Pth values that are orders of

magnitude lower than previously demonstrated for para-

metrons [52,53].
As depicted in Fig. 1(a), a PFD can be characterized as a

two-port electrical network formed by two circuit meshes
interconnected through a shunt branch that contains the
nonlinear capacitor. The input mesh is driven by the PFD’s
input signal [vinðtÞ], which modulates the capacitance of
the nonlinear capacitor at an angular frequency ωin. Each
mesh incorporates a set of notch filters. These filters
constrain vinðtÞ and the output signal, voutðtÞ, within the
PFD’s input and output meshes, respectively, allowing one
to analyze the PFD’s behavior at each frequency by
examining just one mesh. As described in [52], the reactive
components in the output mesh of a PFD are selected to
series-resonate at half of the input natural frequency (e.g.,
ωin ¼ 2ω0) when neglecting the capacitance modulation

induced by vinðtÞ. This permits a mapping of the PFD’s
operation at or near ω0 with only one second-order
differential equation describing the voltage across the
nonlinear capacitor. This mapping is equivalent to an
electrical realization of a Mathieu resonator [MR, see
Fig. 1(b)] [54]. Such an MR has a Q equal to 1=ð2γtotÞ,
where γtot models the resonator’s damping (e.g.,
γtot ¼ ω0CavRtot=2, where Cav is the average capacitance
of the nonlinear capacitor for vinðtÞ ¼ 0). Rtot is equal to
RL þ Rs, where Rs denotes the intrinsic losses in the
resonant system (e.g., the total resistance in the PFD’s
output mesh, R, combined with the resistance, Rd, captur-
ing the Ohmic losses in the nonlinear capacitor’s electrodes
and dielectric film). Also, the MR has a resonance angular
frequency in the absence of modulation equal to ω0, and
this frequency is periodically varied at a rate equal to ωin. In
this regard, we denote the magnitude of the resonance
frequency modulation caused by the input signal at ωin as
p. As in its mechanical counterpart, the MR describing the
operation of a single PFD enters a period-doubling regime
for p values larger than a certain threshold (pth) equal to
4γtot. More information on the MR model of a PFD is
provided in Supplemental Material Sec. S1 [38].
In order to demonstrate that networks of PFDs can be

used as IMs, we analyze their interacting dynamics when

they are coupled. This can be done by considering a

number (N) of MRs with the same Q and ω0 values,

and we assume all couplings among the MRs to be purely

dissipative (e.g., the PFDs are coupled through resistors

connected to their output meshes). To this end, small

coupling conductances (ϵGi;j) with generic indices i and

j can be used to map the interaction between the generic ith
and jth MRs, as shown in Fig. 1(b). In particular, a

summation can be used to capture all the interactions that

any given MR is subject to based on the targeted problem to

solve (see Supplemental Material Sec. S2 [38]). As an

example, we report in Eq. (1) the MR equation we have

used to analyze the dynamics of the ith MR during our

analytical treatment. The variables vi;j in Eq. (1) describe

the voltage across the nonlinear capacitors in the ith and jth
MRs, respectively:

v̈i þ 2ϵγtotω0v̇i þ ω2
outvi þ 2γLω0RL

X

j≠i

ϵGijv̇j ¼ 0: ð1Þ

FIG. 1. (a) Schematic view of a PFD IM. (b) Schematic view of

a network of coupled PFDs, where each PFD is described by an

electrical Mathieu resonator (MR).
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Differently from the equation of motion of only one PFD

(Supplemental Material Sec. S1 [38]), Eq. (1) includes an

additional damping parameter, γL, equal to ω0CavRL=2.
Also, the angular resonance frequency for all MRs incor-

porates a “pump depletion” term proportional to β [Eq. (2)]

that is responsible for the saturation of the voltage across

their nonlinear capacitors for p > pth:

ω2
out ¼ ω2

0
f1þ ϵp½1 − βðviÞ

2� sin ð2ω0tÞg: ð2Þ

It is important to point out that in Eqs. (1) and (2) both p
and γtot are assumed to be small and are consequently

scaled by a small parameter ϵ. From Eqs. (1) and (2), we

can apply the multiple scales method [55,56] to derive a

system of first-order differential equations [Eq. (3)] gov-

erning the dynamics of the complex voltage amplitude for

the slow timescale τ ¼ ϵt. For the derivation of Eq. (3), we

have assumed the lowest order response of vi to be

expressible as BiðτÞe
iω0t þ B�

i ðτÞe
−iω0t, where B�

i ðτÞ is

the complex conjugate of BiðτÞ. Also, when MRs are used

to solve a COP, we expect the solution to be encoded in the

phase [ϕðτÞ] of the complex amplitude reached at steady

state by all the adopted MRs, similarly to what happens in

CIMs and SHIL IMs. Therefore, from the real [Bi;reðτÞ] and
imaginary [Bi;imðτÞ] parts of BiðτÞwe can calculate ϕiðτÞ as
arctan½Bi;imðτÞ=Bi;reðτÞ�. We then evaluate the steady-state

value (Φi) of ϕiðτÞ, and the same procedure is run for all the

adopted MRs. Independently of the problem that needs to

be solved, each MR can only reach two Φ values, namely 0

or π, giving each PFD in a PFD IM the ability to passively

emulate the dynamics of an Ising spin. In this regard,

similar to CIMs that utilize parametric dynamics to achieve

phase bistability in the optical domain, the ground state

solution identified by a PFD IM is governed by the

minimization of a Lyapunov function considering both

amplitude and phase dynamics [57,58]. This computational

principle is also similar to that of SHIL IMs, with the key

distinction that the Lyapunov function governing SHIL IMs

considers only the system’s phase dynamics [22,58]. More

information about the dynamics of coupled PFDs are

provided in Supplemental Material Sec. S4 [38].

Starting from Eq. (3) (see Supplemental Material

Sec. S2),

B0
iðτÞ ¼

1

4

�

ðpω0βÞðB
3
i − 3BiB

�2
i Þ þ pω0B

�
i

− 4ω0Biγtot − 4ω0RLγL

X

j≠i

GijBj

�

; ð3Þ

we can evaluate the performance of a PFD IM when

computing the solution of a COP over N variables, with

each variable mapped to a specific PFD. In this regard, the

performance of IMs are assessed based on several factors,

including the probability of achieving a spin configuration

that matches or closely matches the problem solution [i.e.,

the “probability of success” (P)], the time required to

obtain a solution [i.e., the “time to solution” (TS)], the

power consumption of each spin [i.e., the “power per spin”

(PWspin)], and the energy consumed by the entire machine

during the computation [i.e., the “energy to solution“(ES)].

In order to evaluate these computing performance metrics

for PFD IMs, we construct a specific coupling matrix [G]
for each problem, with dimension N × N. Each row of [G]
incorporates the conductance used to couple one specific

PFD to any other PFDs. For each PFD, the phase of the

slow complex amplitude [Eq. (3)] of its corresponding

equivalent MR equation is numerically computed to obtain

Φ. Then, P is determined based on a desired accuracy level

(A). A is the minimum tolerated accuracy for the problem

solution and its value ranges from 0 to 100%. Depending

on whether we are looking at the probability to reach the

ground state (e.g., the global minimum for the targeted

COP that identifies a 100% accurate solution) or at the

probability to reach a close enough solution to the ground

state, with an accuracy higher than A but lower than 100%,

P can be rewritten as PGS or PA, respectively. Both PGS and

PA can be computed for any targeted problem by solving it

multiple times. After determining PA, TS can be calculated

as [4]

TS ¼ τϕ × ½logð1−PAÞðAÞ�; ð4Þ

where τϕ is the time that it takes on average for the phases of

the slow-complex amplitudes of all coupled MRs to reach

their final valuewhenmultiple problem runs are executed. It

is worth mentioning that the achievement of optimal

computing performance can pass through the adoption of

an annealing step, similarly to prior SHIL IMs [19]. To this

end, p is gradually increased up to 1.005 pth from an initial

value equal to 0.995 pth following an exponential trend

[e.g., pðtÞ ¼ pth½0.995þ 0.01ð1-e−t=τannÞ�, where τann is the
annealing rate and t is the time]. After determining TS,

bearing in mind that p reflects the voltage magnitude

at ωin across the varactor in each PFD and that Pth is

proportional to p2

th, we can estimate ES for any problem as

NPth
R TS

0
½0.995þ 0.01ð1 − e−t=τannÞ�2dt [19,21]. The Pth

value considered during the computation of ES can be

directly found through a circuit simulation of a PFD

(Supplemental Material Sec. S3 [38]). It is also worth

mentioning that the ability to passively generate Ising

dynamics without active components allows us to consider

the Johnson noise generated by the MRs’ resistors as the

only noise process affecting the MRs’ circuit [59].

To analyze and benchmark the performance of our PFD

IMs, we choose to connect all the PFDs in a Möbius ladder

configuration and to solve a set of unweighted Max-Cut

problems of varying sizes [4,7,19]. COPs with a Möbius

ladder graph are considered low-complexity sparse prob-

lems [60]. Consequently, their correct solution can be
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numerically calculated, allowing one to easily verify

whether the solution found by a PFD IM is correct and,

if it is not correct, to evaluate the difference in the computed

number of cuts with respect to the expected value [6]. The

number of cuts computed by a PFD IM is equivalent to the

total number of paths of the problem graph connecting

PFDs with different output phases [6,25].
By relying on our analytical model, we first investigated

PA, TS, and ES when scaling N in the graph from 40 to 400

and when assuming specific values of tolerated accuracy
(A ¼ 100% and A ¼ 97.5%) frequently used for bench-

marking IMs [28]. During this Letter, we initially consid-

ered a Q ¼ 50, which is approximately the same Q of the

resonators used by the PFDs assembled in this Letter. Also,

we assumed an ω0 ¼ 2π × 106 rad=s, which coincides with
the output angular frequency of our assembled PFD IM.

For each considered N value, we computed the problem

solution 100 times. This allowed us to determine PGS and
P97.5% [see Fig. 2(a)], together with the number of cuts

identified by each executed problem run. We found that the

likelihood of generating a 100% accurate solution rapidly

decays with respect to N, which is in line with what is

generally observed in other IMs [4,9,17,19,21,29].
Nevertheless, PFD IMs retain a 100% likelihood of

calculating a cut size within 2.5% of the highest possible

number of cuts. In addition, after identifying τϕ, we

computed TS and ES vs N when assuming a 100% or a

97.5% accuracy [see Figs. 2(b) and 2(c)]. In this regard,

during the calculation of ES we assumed a Pth value

(600 nW) matching what we simulated and measured in
our experiments. Evidently, we found an ES value of

135 μJ (3.3 μJ) when assuming a 100% (97.5%) minimum

tolerated accuracy in the calculation of TS.
Subsequently, we conducted a second study driven by

the growing accessibility of high-Q chip-scale resonator

technologies that can be manufactured using the same

semiconductor processes employed for solid-state varactors
and diodes [34–37,61]. In particular, it is reasonable to

question whether incorporating these resonators in place of

the L-C resonators currently used to construct PFDs could

enhance the performance of PFD IMs. Therefore, we

analyzed the performance of PFD IMs vs Q. First, we
calculated the trend [Fig. 3(a)] of PWspin vs Q through a

circuit simulator (see Supplemental Material Sec. S3 and

S5 [38]). Interestingly, we found that relying on resonators

with Qs higher than 106 permits a reduction of PWspin

down to 60 nW, which is 3 orders of magnitude lower than
the power required by each oscillator in state-of-the-art
SHIL IMs. It is worth emphasizing that the saturation of

PWspin forQ values higher than 106 originates from the fact

that RL and Rd do not scale down withQ. We also analyzed
P [Fig. 3(b)], TS [Fig. 3(c)], and ES [Fig. 3(d)] vs Q for a
400-node PFD IM solving the same Max-Cut problem we
considered in Fig. 2 when assuming minimum tolerated
accuracy levels of 100% and 97.5%, as in our first study.
Interestingly, we found that relying on higher Q resonators
does not change significantly the values of PGS and P97.5%

with respect to the values found for a Q equal to 50 in
Fig. 2. However, TS reduces when assuming higher Q
values, despite the fact that high-Q resonators inherently
exhibit a longer relaxation time. This is due to the fact that
τϕ shortens when considering highQ values, even though a

longer relaxation time (τB) is needed for the MRs to reach
their steady-state amplitude [Fig. 3(e)]. Consequently, PFD
IMs that rely on higher Q resonators inherently exhibit a
lower ES than their lower Q counterparts. As such, they are
better suited for addressing COPs with a large number of
variables. Finally, the impact of τann on the computing
performance of PFD IMs has also been analyzed for
different N and Q values. We found that using a slower
annealing rate when tackling large Möbius ladder problems
remarkably leads to lower TS and ES values, despite the
increase of τϕ and independently of the MRs’ Q value. We

verified (Supplemental Material Sec. S5 [38]) that this
improved performance can be attributed to a significant
reduction in amplitude heterogeneity for longer annealing
rates [62,63].
As a proof of concept, we built the first prototype of a

PFD IM and we employed it to solve different unweighted
Max-Cut problems, as in [19]. Four identical PFDs
designed to work with a ωin value of 4π�106 rad=s were
assembled on a printed circuit board by using off-the-shelf
inductors and capacitors to create resonant tanks with a Q
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FIG. 2. Numerically computed trends of (a) PGS and P97.5%.

(b) TS for A ¼ 97.5% or A ¼ 100%. (c) ES for A ¼ 97.5% or A ¼
100% vs increasingN inMöbius ladder problems when τann ¼ 1 s.
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value of nearly 50. Identical 2kΩ coupling resistors, corres-

ponding to 500 μS coupling conductances [Fig. 1(b)], were

used to couple the four PFDs according to the specific

problem to solve. By running an electrical characterization

of our PFDs, we were able to experimentally demonstrate a

PWspin value of 600 nW, which is the lowest one ever

recorded for OIMs. It is worth emphasizing that all PFDs

were designed to generate their subharmonic oscillation

without requiring dc voltages, thus without consuming any

dc power for biasing the circuit. Figure 4 shows the graphs

of two of the nine Max-Cut problems investigated and

solved by the PFD IM built in our experiments, together

with the corresponding measured PFDs’ output voltage.

Evidently, the computed phase distribution matches the

expected correct solution [19] for every problem we

evaluated. A description of the experimental setup used

during the testing of the assembled PFD IM is provided in

Supplemental Material Sec. S6 [38], together with the

graphs and output voltage waveforms for the other Max-

Cut problems we have solved.

In conclusion, we have introduced PFD IMs and studied

their computing performancewhen tackling variousMöbius

ladder problems with up to 400 nodes. Our findings suggest

that incorporating high-Q resonators in the PFDs’ design

and using an annealing schedule allow to decrease PWspin

down to the nanowatt range, shorten TS to less than 0.75 s,

boost the PGS up to 46%, and achieve an ES of 135 μJ for a

400-node Möbius ladder problem. We have also designed,

built, and tested a prototype of a PFD IM that integrates four

PFDs to solve several different Max-Cut problems. This

prototype achieves a PWspin of 600 nW by relying on off-

the-shelf L-C resonators with a Q near 50, and always

retrieves the correct solutions for all the problems we have

tackled. The demonstrated PWspin is the lowest one ever

reported for OIMs. Further investigation and performance

evaluation will be required in the future to characterize the

performance of PFD IMs for generic NP instances with

densely connected graphs, beyond the Möbius ladder

problems discussed in this Letter.
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