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Abstract

Federated Learning (FL) faces threats from model
poisoning attacks. Existing defenses, typically
relying on cross-client/global information to mit-
igate these attacks, fall short when faced with
non-IID data distributions and/or a large num-
ber of malicious clients. To address these chal-
lenges, we present FedREDefense. Unlike exist-
ing methods, it doesn’t hinge on similar distri-
butions across clients or a predominant presence
of benign clients. Instead, it assesses the likeli-
hood that a client’s model update is a product of
genuine training, solely based on the character-
istics of the model update itself. Our key find-
ing is that model updates stemming from gen-
uine training can be approximately reconstructed
with some distilled local knowledge, while those
from deliberate handcrafted model poisoning at-
tacks cannot. Drawing on this distinction, Fe-
dREDefense identifies and filters out malicious
clients based on the discrepancies in their model
update Reconstruction Errors. Empirical tests
on three benchmark datasets confirm that Fe-
dREDefense successfully filters model poison-
ing attacks in FL—even in scenarios with high
non-IID degrees and large numbers of malicious
clients. The source code is available at https:
//github.com/xyq7/FedREDefense.

1. Introduction

Federated Learning (FL) is an emerging machine learning
paradigm that enables collaborative model training across
multiple clients utilizing their local data, without the need
to centralize the data (Konecny et al., 2016; McMahan et al.,
2017). Its applications span a diverse range of fields, such
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as health care (mel; Kairouz et al., 2021; Rieke et al., 2020).
Typically, FL contains multiple rounds of communications.
In each round, the server dispatches the global model to
clients. These clients then train the model with their respec-
tive local data and send the model updates to the server.
Afterward, the server aggregates the model updates with a
certain aggregation rule to obtain a new global model.

Distributed training inherently exposes FL to model poi-
soning attacks (Baruch et al., 2019; Fang et al., 2020;
Bagdasaryan et al., 2020; Xie et al., 2019; Cao & Gong,
2022; Yin et al., 2024). Different from data poisoning at-
tacks (Tolpegin et al., 2020; Fung et al., 2018), where the
attackers alter the local data of clients, model poisoning
attacks directly manipulate the model updates of clients.
Prior works (Fang et al., 2020; Bagdasaryan et al., 2020)
underscore the pronounced impact of these attacks on FL.
Therefore, in this work, we focus on defending against
these model poisoning attacks. Typically, model poison-
ing attacks craft the model updates with hand-crafted rules,
such as inverting the benign gradients (Fang et al., 2020)
or scaling up malicious gradients obtained from poisoned
data (Bagdasaryan et al., 2020).

To defend against modeling poisoning attacks, prevalent
defenses (Blanchard et al., 2017; Cao et al., 2021a; Mhamdi
et al., 2018; Nguyen et al., 2022; Sun et al., 2019; Yin
et al., 2018; Zhang et al., 2022; Fang et al., 2022) typically
lean on cross-client/global information to counteract model
poisoning. Leveraging cross-client information, the server
can filter out statistical outliers in either dimension-wise
(Median and Trimmed Mean (Yin et al., 2018)) or vector-
wise (Krum (Blanchard et al., 2017) and FLAME (Nguyen
et al., 2022)). Leveraging global information, the server
can clip or filter the clients’ updates using reference server
gradient (FLTrust (Cao et al., 2021a)) or Hessian calculated
with global models (FLDetector (Zhang et al., 2022)). While
these techniques achieve good performance when the data is
IID and the number of attackers is limited, their dependency
on similar data distribution across benign clients becomes
their Achilles’ heel. Under non-IID data distribution, the
disparity between the data distributions of benign clients,
as well as their divergence from the global distribution,
becomes pronounced. This results in substantial variations
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Figure 1: The comparison of FedREDefense and existing de-
fenses. Most existing defenses rely on cross-client/global in-
formation to defend against model poisoning attacks, while
FedREDefense detects malicious clients solely based on
their individual model updates, thus robust to distribution
shift and a large number of malicious clients.

in benign model updates, rendering it difficult to pinpoint
malicious model updates as “outliers”. Moreover, defenses
that leverage cross-client information inherently require a
predominant presence of benign clients.

Our work: We introduce FedREDefense to defend against
model poisoning attacks and address the limitations of exist-
ing defenses. Distinctively, FedREDefense determines the
benignity or maliciousness of a model update solely based
on the individual update itself, thus eliminating the depen-
dency on similar data distribution across benign clients. At
its core, it assesses if a model update originates from gen-
uine training or hand-crafted manipulations from model
poisoning attacks. This is achieved using the model update
reconstruction error, computed with the corresponding dis-
tilled local knowledge. A comparison of FedREDefense and
existing defenses are illustrated in Figure 1.

Our approach is grounded in a key discovery: genuine data-
trained benign model updates can be more accurately recon-
structed using distilled local knowledge; conversely, model
updates from model poisoning attacks, which are devised
based on specific hand-crafted rules, prove difficult to recon-
struct using any local knowledge. This observation draws in-
spiration from prior studies (Pi et al., 2023; Liu et al., 2022;
Cazenavette et al., 2022) that demonstrates the potential of
distilled knowledge in approximating genuine data training.
Expanding on this discovery, in each round, we calculate the
model update reconstruction error for every client. Clients
with reconstruction errors exceeding a predefined threshold
are classified as malicious and excluded from the aggrega-
tion process and future training rounds. Specifically, the
process of obtaining a client’s model update reconstruction
error involves a bi-level optimization strategy for distilling
local knowledge, followed by the use of this knowledge to
reconstruct the model update and calculate the error. We
improve the efficiency of the optimization process by using

compact parameterization of local knowledge, maintaining
the local knowledge for each client throughout training, and
applying a dynamic optimization scheme that terminates
upon reaching a predefined error threshold.

We evaluate FedREDefense on three benchmark datasets,
including FashionMNIST (Xiao et al., 2017), CIFAR-
10 (Krizhevsky et al., 2009), and CINIC (Darlow et al.,
2018). We show that FedREDefense can defend against
seven state-of-the-art model poisoning attacks, even in cir-
cumstances characterized by a high non-IID degree and a
substantial number of malicious clients, outperform eight
existing defenses against model poisoning attacks in FL.
Notably, FedREDefense can achieve 100% detection accu-
racy of malicious clients in all scenarios, indicating that all
the malicious clients are detected while no benign clients
are mistakenly excluded during training. We further explore
adaptive attacks to FedREDefense, demonstrating that their
potency is considerably diminished in comparison to model
poisoning attacks when trying to evade FedREDefense.

Our contribution is summarized as follows:

* We uncover a limitation among existing defenses: the
reliance on cross-client/global information, resulting in
degraded performance under non-IID data distributions
and/or a large number of malicious clients.

* We draw a crucial distinction between model poison-
ing attacks and benign model updates, i.e., whether
the model update can be approximately reconstructed
using distilled local knowledge.

* We propose FedREDefense, which defends against ma-
licious clients using update reconstruction error with-
out reliance on similar distribution across clients.

* We conduct extensive experiments on FedREDefense
in defending against existing state-of-the-art model
poisoning attacks and adaptive attacks.

2. Related Work
2.1. Model Poisoning Attacks

Model poisoning attacks in FL refer to attacks where ma-
licious clients craft their model updates with the intent to
compromise the system. Distinct from data poisoning at-
tacks, model poisoning attacks directly modify the uploaded
model updates instead of local data in arbitrary handcrafted
ways, resulting in potentially greater damage (Fang et al.,
2020).

Untargeted attack: Untargeted attacks (Baruch et al.,
2019; Fang et al., 2020; Shejwalkar & Houmansadr, 2021;
Cao & Gong, 2022) aim to degrade the system’s utility,
resulting in a suboptimal global model that misclassifies
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any given sample. These attacks typically manipulate the
gradients to hinder training. For example, Fang attack (Fang
et al., 2020) strategizes to move against the direction of
genuine clients in every round, and MPAF (Cao & Gong,
2022) drives the global model towards a random model.

Targeted attack: The objective of targeted attacks (Bag-
dasaryan et al., 2020; Xie et al., 2019; Wang et al., 2020;
Bhagoji et al., 2019) is to manipulate the system such that
samples containing specific triggers are classified into desig-
nated classes. Generally, targeted attacks (often referred to
as backdoor attacks) introduce triggers into portions of the
training data during the learning phase, modify labels, and
obtain poisoned model updates. To amplify their impact,
these updates are often scaled up, as seen in methods like
Scaling attack (Bagdasaryan et al., 2020).

2.2. Defense against Poisoning Attacks

Cross-client information based defenses: To defend
against poisoning attacks in FL, several defenses (Yin et al.,
2018; Mhamdi et al., 2018; Bernstein et al., 2019; Mhamdi
et al., 2018; Li et al., 2019; Shejwalkar & Houmansadr,
2021; Pillutla et al., 2019) utilize cross-client information
to filter out or weaken the influence of statistical outliers.
For instance, aggregation techniques, such as Median and
Trimmed Mean (Yin et al., 2018), employ dimension-wise
cross-client information to filter out outlying parameters,
while Krum (Blanchard et al., 2017) and Flame (Nguyen
et al., 2022) resort to vector wise distance (or cos distance) to
filter out some outlying model updates. Norm Bound (Sun
et al., 2019) and some clipping-based methods (Nguyen
et al., 2022) apply clipping to each individual client, where
the threshold can be set using cross-client information. How-
ever, such methods fall short when the degree of non-IID is
high or when there is a large number of malicious clients, in
which cases the cross-client information becomes unstable
and unreliable.

Global information based defenses: Some defenses (Cao
et al., 2021a; Park et al., 2021; Zhang et al., 2022) lever-
age global information as a trust anchor to identify/mitigate
malicious model updates. For instance, FLTrust (Cao et al.,
2021a) operates under the assumption that the server pos-
sesses data conforming to a global distribution. It then uses
updates on this data to clip and filter client updates. FLDe-
tector (Zhang et al., 2022) utilizes the Hessian estimated
from the global models to assess the consistency of a client’s
model, thereby identifying malicious clients. However, they
underperform when there’s a significant disparity between
the global distribution and individual local distributions,
particularly when the non-IID degree is elevated.

Ensemble methods: Additionally, some defenses (Cao
et al., 2021b; 2022) such as FLCert (Cao et al., 2022) adopt

an ensemble approach, training multiple global models to
achieve provable robustness. Note that ensemble methods
are based on a specific base defense technique when training
one model, and non-trivial provable robustness can only
be achieved when a small number of clients is malicious.
Therefore, they inherit the limitations from the base defense
relying on cross-client/global information.

3. Problem Formulation

Federated learning (FL): We consider a FL system con-
sisting of p clients, each possessing a local training dataset
D;, i € [p], where [p] = {1,2,...,p}. The objective of
the FL system is to obtain an optimal global model w* by
solving the optimization problem:

p
w" = argmin Y f (D, w), (1)
=1

where f (D;,w) represents the local training loss. To ap-
proach this objective without centralizing the data, the
clients iteratively train the global model with total 7' com-
munication rounds. In round ¢, participating client ¢ receives
the current global model w1, trains it with its local dataset
D; for an updated local model w! by minimizing the local
training loss f (D;, w) using optimizers such as Stochastic
Gradient Descent (SGD). Then the clients send the local
update g! = w! — w'! to the server. The server then
aggregates these updates, generating a new global model
w?, and commences the succeeding training round:

w' = w'"! + AR({gi biep), @)
where AR corresponds to the server aggregation rule.

Attack model: For the attack, we assume that ¢ out of the
p clients are malicious clients controlled by the attacker by
compromising genuine clients. We follow the original attack
objective and knowledge settings of different model poison-
ing attacks (Fang et al., 2020; Shejwalkar & Houmansadr,
2021; Xie et al., 2019; Bagdasaryan et al., 2020; Cao &
Gong, 2022) respectively. The attacker’s goal for targeted
attacks (Xie et al., 2019; Bagdasaryan et al., 2020) is to mis-
classify data with the trigger to a specific class, while the
goal for untargeted attacks (Fang et al., 2020; Shejwalkar
& Houmansadr, 2021; Cao & Gong, 2022) is degrading
the utility of the global model. For the knowledge of the
attacker, we assume the attacker has the knowledge of the
genuine local data and genuine model update on the com-
promised clients as well as the aggregation rule. In each
round, these malicious clients send crafted model updates
to compromise the FL system.

Defense objective: Our primary objective is to discern
and exclude malicious clients’ model updates from aggre-
gation in every round, subsequently removing them from
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Algorithm 1 FedREDefense

Algorithm 2 Reconstruction

Input: Total communication rounds 7', initial global model w?,
threshold for model update reconstruction error ~y, and random
initialized distilled local knowledge K2, 4 € [p].

Output: Final global model w7 after T training rounds.

1: fort =1—Tdo

2: M < Selected subset of the unmarked clients
3: for each client i € M" in parallel do
4: > Client local training:
5: gl < Local Model Update(i, w'™")
6: end for
7:  for each client i € M in parallel do
8: > Compute the model update reconstruction error e}
and update distilled local knowledge KC}:
9: ef, Kt + Reconstruction(g!, w*=*, KI™1)
10: end for
11: > Filter out and mark the clients with the model recon-
struction error e exceeding the threshold ~.
12: > Aggregate the new global model w® with the remaining
client updates.
13: end for
return w’

the FL system. Specifically, in each round, FedREDefense
calculates the model update reconstruction errors for the
participating clients using their individual model updates
and marks those with reconstruction errors larger than the
threshold as malicious. The model updates from remaining
unmarked clients in the round will be aggregated for a new
global model. When a malicious client is identified in round
t, its update for that round is discarded, and the client is
permanently expelled from the FL system.

4. FedREDefense

4.1. Overview

Our aim is to identify and exclude malicious clients even un-
der situations of highly non-IID distribution and/or a large
number of attackers. To achieve this, instead of relying
on cross-client or global information, we use the individ-
ual model update itself to assess the likelihood of a model
update stemming from genuine training. We note that, for
genuine clients, certain distilled local knowledge can be em-
ployed to approximately reconstruct their model updates. In
contrast, model poisoning attacks that do not stem from au-
thentic training cannot be reconstructed in the same manner.
Drawing on this distinction, we introduce FedREDefense, a
defense against model poisoning attacks using model update
Reconstruction Error.

Specifically, in every round ¢, we compute the reconstruction
error e! for each client 7 in the selected clients set M" and
subsequently filter out and mark any client with an error
exceeding the predetermined threshold . The remaining
model updates are aggregated with some aggregation rule
(such as FedAVG) for the new global model w?. Clients

Input: Global model w*~*, local model update g!, and distilled
local knowledge K¢~ '.
Output: Reconstruction error e! and updated distilled local
knowledge KCf.
: > Initialize the distilled local knowledge with ACF ™+
’Ci = ’C,E_l
:form=1— Mdo
> Initialize virtual network with global model w?~!:
Wo = w !
forn=0— N —1do
> Update virtual network w.r.t. classification loss:
ﬁ’n+1 = ﬁ’n - Oan(/CZ, ’LAUn)
end for
> Compute reconstruction loss between ending virtual
model and the client’s updated model:
1: L = [y —wo —gill3 / llgilI3
12: > Update K; and «; with respect to £,,, with SGD
13: end for
14: Ki =K;
15: > Calculate the model update reconstruction error e} with the
distilled local knowledge K::
16: o = w' ™!
17: forn =0— N —1do
18: ﬁ)n+1 = ﬁ)n — O[1Vf(lcf, 'li]n)
19: end for
20: ¢f = |[wn —wo — gil3 / [lgf]3
return e, KC!

SVRIINERN =

—_

marked as malicious in this manner are not considered for
participation in subsequent rounds. The overall algorithm
for FedREDefense is demonstrated in Algorithm 1.

We note that the core of the algorithm is the computation
of reconstruction error, which encompasses two primary
steps. First, we obtain the distilled local knowledge using a
bi-level optimization technique (Section 4.2). Second, we
measure the reconstruction error by comparing the model
update obtained from training with this distilled knowledge
and the actual model update (Section 4.3). Moreover, we dis-
cuss how we accelerate the process for enhanced efficiency
(Section 4.4). The complete algorithm for the computation
of reconstruction error is demonstrated in Algorithm 2. We
conclude all the notations in Table 4 in Appendix.

4.2. Obtaining Distilled Local Knowledge

Our goal is to obtain the distilled local knowledge K for
each client 7 in each round ¢ so that training with this knowl-
edge can produce a model update closely resembling the
actual local model update g¢. The distilled local knowl-
edge IC; is parameterized as a small amount (e.g., 10) of
data-label pairs. They are initialized as noise and zero, re-
spectively, and maintained during training for acceleration.

In round ¢, the problem is as follows: starting from global
model w'~!, we want to optimize local knowledge K!
which minimizes the discrepancy between its trained model
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update iy — w'~! and real model update g!. Formally, we
formulate the optimization problem for obtaining distilled
local knowledge as follows:

min @y — w'™" — g3,
K A3)
s.t. ’ﬁ}N = A(Kﬁ,wt*? N),

where A(K!, w'™!, N) denotes training the network start-
ing from w’~! using K! for N steps.

To solve this problem, the whole process can be articulated
as a bi-level optimization procedure (Algorithm 2 line 1-15).
The inner loop (Algorithm 2 line 5-10) mimics training with
distilled local knowledge K; with the local training loss
f(K;,w). Specifically, a virtual network v is initialized
with the global model w'~?, and subsequently trained using
the distilled local knowledge KC; for N steps with gradient
descent and learning rate «;, eventually arriving at wy. In
the outer loop, the objective is to minimize the reconstruc-
tion loss to refine the distilled local knowledge. This is
achieved by minimizing the distance between the model up-
date from actual model update of client ¢, noted as gf, and
the model update obtained using local knowledge C; within
the inner loop, noted as wy — wq. Note that for the outer
loop, the optimization is over the trainable local knowledge
K; and inner loop learning rate «; using stochastic gradient
descent (SGD) for M iterations.

4.3. Calculating Reconstruction Error

With the obtained distilled local knowledge IC?, we can
perform a virtual training using the distilled local knowledge
on the model initialized with w'~! (Algorithm 2 line 16-
21), similar to the inner loop of optimization. This learning
process can be viewed as a reconstruction of the model
update using the distilled local knowledge K!. Then, we
can calculate the model update reconstruction error e} by
contrasting the reconstructed model update w  — wg with
the real model update g!, normalized with the /5 norm of
real model update g!.

We observe that for benign clients, the model update recon-
struction error €}, typically falls within the range of 0 to
0.3. Conversely, for instances of model poisoning attacks,
this error spans from 0.7 to 1.0. These distinct distributions
enable us to establish a predefined threshold, ~, to facilitate
the differentiation between benign and malicious updates.

4.4. Acceleration

To accelerate the calculation of construction errors for
clients in each round, we consider the following aspects:

Compact local knowledge: We employ highly compact
distilled local knowledge, parameterized as a very limited
set of parameters, e.g., 10 data-label pairs, around 2% of the

client’s local data, facilitating rapid optimization.

Maintaining local knowledge: Instead of optimizing the
distilled local knowledge from noise every round, we main-
tain and keep refining the local knowledge of every client.
An insight underpinning this is that the local distribution of
a specific benign client remains relatively static. Therefore,
the distilled local knowledge of a certain client should ex-
hibit consistency across multiple rounds. Empirically, it’s
only when a client participates for the first time that we use
a larger value of optimization iterations M. For subsequent
refinements, a much smaller value of M suffices.

Dynamic optimization: We propose a dynamic optimiza-
tion scheme to further accelerate the optimization process.
The key insight is that, for our algorithm, it is merely neces-
sary to ascertain if the reconstruction error can attain a value
below a specified threshold, indicating that the model update
can be approximated effectively. Hence, full convergence
is not obligatory. Consequently, the number of optimiza-
tion iterations M is not predetermined but is dynamically
adjusted. The optimization ceases once the reconstruction
error falls below the threshold ~y.

5. Evaluation
5.1. Experimental Setup
5.1.1. DATASETS

We utilize three commonly used FL datasets to evaluate
our method: FashionMNIST (Xiao et al., 2017), CIFAR-
10 (Krizhevsky et al., 2009), and CINIC (Darlow et al.,
2018). Following prior studies (Pi et al., 2023; Lin et al.,
2020; Gu et al., 2022), we employ the Dirichlet distribution
to emulate non-IID data distribution among clients. The hy-
perparameter 3 dictates the extent of non-IID nature, where
a smaller 8 suggests higher non-IID characteristics. The
training samples are distributed to the clients for training
according to the Dirichlet distribution, while we test the
final global model on the official testing samples. Detailed
information of the dataset is deferred to Appendix A.1.

5.1.2. ATTACKS AND COMPARED DEFENSES

We consider seven state-of-the-art model poisoning at-
tacks, including five untargeted attacks (Fang (Fang et al.,
2020), LIE (Baruch et al., 2019), Min-Max (Shejwalkar &
Houmansadr, 2021), Min-Sum (Shejwalkar & Houmansadr,
2021), and MPAF (Cao & Gong, 2022)) and two targeted
attacks (Scaling (Bagdasaryan et al., 2020) and DBA (Xie
et al., 2019)). Details for these attacks are illustrated in
Appendix A.2. We compare FedREDefense with eight
state-of-the-art defenses, including four defenses leverag-
ing cross-client information (Krum (Blanchard et al., 2017),
Median (Yin et al., 2018), Trimmed Mean (Yin et al., 2018),
Norm Bound (Sun et al., 2019), and FLAME (Nguyen
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Table 1: DACC (%) 1, FPR (%) J., FNR (%) |, and AAR | of FedREDefense and FLDetector against different attacks. 1 ({)

indicates the larger (smaller) the better metric.

Attack Detector FashionMNIST CIFAR-10 CINIC
ac clecto DACC FPR FNR AAR | DACC FPR FNR AAR | DACC FPR FNR  AAR
Fan FLDetector | 93.00 972 000 60.00 | 9400 833 000 000 | 86.00 1944 000  60.00
€ | FedREDefense | 100.00 000 000 000 | 10000 000 000 000 | 100.00 000 000  0.00
LE FLDetector | 72.00  0.00  100.00 500.00 | 0.00 100.00 100.00 500.00 | 5.00  93.06 100.00 500.00
FedREDefense | 100.00 000 000 000 | 10000 000 000 000 | 10000 000 000 0.0
MinMac | FLDetector | 7200 000 10000 500.00 | 0.00  100.00 100.00 S00.00 | 7200 ~ 0.00  100.00 500.00
FedREDefense | 100.00 0.00 000 000 | 10000 000 000 000 | 10000 000 000 0.0
MinSu | FLDetector | 7200 000 10000 50000 | 0.00 10000 100.00 S00.00 | 8.00 8889 100.00 500.00
-SUM | g gREDefense | 100.00  0.00  0.00 000 | 100.00 000 000 000 | 10000 000 000  0.00
MPAF FLDetector | 0.00 100.00 100.00 500.00 | 0.00 100.00 100.00 500.00 | 0.0  100.00 100.00 500.00
FedREDefense | 100.00 0.00 000 000 | 10000 000 000 000 | 10000 000 000 0.0
DBA FLDetector | 100.00 0.00 000  60.00 | 99.00 000 357 7571 | 100.00 000 000  60.00
FedREDefense | 100.00  0.00  0.00  0.00 | 100.00 000 000 000 | 10000 000 000 0.0
Seali FLDetector | 100.00 0.00  0.00  60.00 | 100.00 0.0 000  60.00 | 100.00 000 000  60.00
CANE | FedREDefense | 100.00 000 000 000 | 100.00 000 000 000 | 10000 000 000 0.0

et al., 2022)), two defenses leveraging global information
(FLTrust (Cao et al., 2021a) and FLDetector (Zhang et al.,
2022)), and one ensemble method (FLCert (Cao et al.,
2022)), detailed in Appendix A.3.

5.1.3. EVALUATION METRICS

We consider a set of metrics for evaluating detection and de-
fense effectiveness, including Detection Accuracy (DACC),
False Positive Rate (FPR), False Negative Rate (FNR), Av-
eraged Aggregated Rounds for Malicious Clients (AAR),
and Testing Accuracy (TACC). Detailed descriptions of the
metrics are deferred to Appendix A.4.

5.1.4. FL SETTINGS

We illustrate the default configurations for our experiments
in this section. Note that we have investigated the effects
of various FL settings as elaborated in Section 5.3. By
default, the system involves 100 clients, out of which 28
are malicious. The local epoch is set to 1, spanning a to-
tal of 500 training rounds. The non-1ID degree [ is set to
0.1. For FedREDefense, the basic aggregation rule is set as
FedAVG for the remaining clients after detection in each
round. The optimizers for local knowledge and learning
rate are Stochastic Gradient Descent (SGD). The distilled
local knowledge K, i € [p] is parameterized as 10 data-
label pairs and initiated with uniform noise. The threshold
~ and the step for inner loop N are set to 0.6 and 5, respec-
tively. The selection of the threshold is further discussed
in Appendix B.4. M is dynamically set according to the
algorithm specified in Section 4.4 with upper bounds in Ap-
pendix Table 7. More detailed configurations are shown in
Appendix A.S.

5.2. Main Results

FedREDefense can detect and filter out malicious clients
once they participate: We first evaluate the detection
performance for identifying malicious clients, in compar-
ison with existing defenses which can perform detection
of malicious clients, i.e., FLDetector. At the end of the
training process, alongside obtaining a global model, these
methods also produce labels for all clients, categorizing
them as either benign or malicious. We demonstrate the
detection-related metrics and Averaged Aggregated Rounds
for Malicious Clients (AAR) for three datasets in Table 1.
We make the following observations.

First, FedREDefense can detect the malicious clients once
they participate in training with AAR of 0. This means no
need to recover from poisoning attacks after detection (Cao
et al., 2023). Furthermore, the DACC of FedREDefense
consistently stands at 100% across all scenarios. This de-
notes that during the entire training span, there is not a
single instance where a benign client is erroneously flagged
as malicious, ensuring optimal integration of model updates
exclusively from genuine clients. Meanwhile, FLDetector
exhibits mixed results in its detection capabilities. It suc-
cessfully identifies attacks such as Fang, DBA, and Scaling,
aligning with observations from the original study. However,
it falls short in detecting specially designed malicious model
updates like LIE, Min-Sum, Min-Max, and MPAF. This
limitation stems from FLDetector’s methodology, which as-
sumes clients presenting consistent updates across training
rounds to be benign. This assumption fails to account for
the fact that some malicious strategies can produce updates
that are even more consistent than those from benign clients,
especially in high non-IID scenarios. Moreover, to better
investigate some defenses which do not output labels of
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Table 2: TACC (%) 1 (/ASR (%) |) of the global model after training under different attacks and defenses on FashionMNIST,
CIFAR-10, and CINIC datasets. 1 () indicates the larger (smaller) the better metric. For untargeted attacks or no attack, we
highlight in bold the highest TACC. For targeted attacks, we highlight in bold the highest TACC with ASR < 0.05.

Dataset ‘ Attack ‘ FedAVG Krum Median Trimmed Mean Norm Bound ~ FLAME FLTrust FLDetector FLCert FedREDefense
No att 85.94 60.45 82.20 85.98 85.37 81.73 86.97 86.03 81.79 86.04
Fang 28.18 39.63 35.67 68.41 70.86 8243 84.06 84.62 75.87 85.54
Min-Max 76.85 49.09 72.10 72.44 77.96 82.05 82.10 76.69 78.89 85.61
FashionMNIST | Min-Sum 84.12 53.47 76.16 78.70 83.76 79.08 80.66 84.08 79.75 85.68
MPAF 20.46 10.22 76.73 75.39 20.26 82.44 79.95 10.00 79.15 85.61
DBA 85.86/98.33  65.44/7.93  82.48/5.69 83.37/9.24 84.11/69.11  82.30/4.57 76.27/98.11 85.96/2.54 82.49/25.42 85.54/2.43
Scaling | 87.45/98.42 65.41/6.56 82.54/78.04 84.39/87.46 85.11/88.86  82.03/4.97 82.16/97.66 86.07/8.53  82.86/82.00 85.66/2.50
No att 61.51 26.86 51.68 61.44 61.36 51.17 57.28 61.59 50.89 61.69
Fang 21.77 3.04 20.10 23.64 37.50 54.44 53.94 58.56 36.04 61.06
Min-Max 45.25 9.88 38.62 38.20 47.69 57.30 55.04 5.57 39.39 61.06
CIFAR-10 Min-Sum 55.14 16.37 39.58 43.23 54.60 56.40 54.73 22.32 44.15 61.20
MPAF 11.77 10.42 33.26 26.39 11.65 56.71 48.96 10.00 3945 61.05
DBA 59.32/79.90 28.43/4.90 51.85/18.98 51.47/38.48 59.78/17.82  56.74/0.15 52.63/13.36  59.97/3.86  50.21/41.61 60.56/3.81
Scaling | 63.85/92.08 27.69/4.62 51.04/75.59 52.72/82.31 60.16/73.50  56.92/0.19 58.31/87.00 59.97/3.86  50.73/80.51 60.78/4.03
No att 52.25 25.40 43.89 52.10 52.00 46.24 39.66 52.15 42.96 52.20
Fang 16.10 4.47 18.84 2227 32.87 42.17 46.02 46.01 32.97 50.81
Min-Max 35.26 9.96 31.12 30.33 38.32 46.12 38.54 13.23 31.70 50.96
CINIC Min-Sum 45.26 14.51 31.28 34.40 45.79 45.67 40.12 16.33 35.80 50.81
MPAF 11.91 10.91 29.19 20.10 11.86 49.65 33.80 10.91 34.24 51.04
DBA 44.7/85.49  22.51/4.48 43.33/27.59 44.53/35.84 49.99/23.51  45.95/5.65 40.35/43.14  52.17/5.12  42.65/39.19 50.87/4.48
Scaling | 53.43/91.27 22.82/4.72 43.48/81.06 45.52/79.80 51.46/75.61  45.43/6.41 36.78/98.60  50.90/4.24 42.78/83.14 50.90/4.02
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Figure 2: DACC of FedREDefense and FLDetector, and TACC(/ASR) of the global model for all defenses as a function of
the fraction of malicious clients under different defenses and attacks.

clients after training but also perform filtering in each round
(i.e., FLAME and FLTrust), we discuss averaged detection
performance during all training rounds in Appendix B.1.

FedREDefense outperforms existing defenses: Table 2
presents the end-to-end testing performance of FedREDe-
fense in comparison with the state-of-the-art defenses when
subjected to various attacks. “No att” corresponds to no
attack. Notably, FedREDefense is resilient to model poison-
ing attacks since it excludes them from aggregation once the
attacker performs attacks and does not misclassify benign
clients as malicious, ensuring that its performance remains
unaffected by either targeted or untargeted attacks. This
indicates that these state-of-the-art model poisoning attacks,
when faced with the protection provided by FedREDefense,
no longer pose a threat to the FL system, even under a high
non-IID degree. Meanwhile, existing defenses, which pre-
dominantly depend on cross-client/global information, do
not achieve satisfactory performance for certain attacks in
the experimental setting. This is largely due to the sub-
stantial impact of non-IIDness on the effectiveness of these
defenses. For instance, some filtering-based approaches,

such as FLAME, FLTrust, and FLDetector, incorrectly clas-
sify benign and malicious clients as discussed. Moreover,
statistical analysis used in algorithms such as Median and
Trimmed Mean become less reliable because of distribution
shifts. FLCert, which relies on the performance of its basic
aggregation rule, Median in the experiment, also falls short
as Median does not work well.

5.3. Impact of FL Settings

Next, we study the influence of different FL settings on
our defense, including the fraction of malicious clients,
the degree of non-IIDness, local training epochs, and par-
ticipation rate. Due to limited space, the results on local
training epochs and participation rate are demonstrated in
Appendix B.2. By default, we conduct experiments on the
CIFAR-10 dataset, with all other parameters kept consistent
with the default settings elaborated in Section 5.1.4. We
compare FedREDefense with the baselines showing com-
petitive performance in Table 2, i.e., FLDetector, FLAME,
and FLTrust, in their applicable scenarios.
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Figure 3: DACC of FedREDefense and FLDetector, and TACC(/ASR) of the global model for all defenses as a function of

the non-IID degrees under different defenses and attacks.

Impact of the fraction of malicious clients: We first ex-
amine the impact of varying fractions of malicious clients,
as illustrated in Figure 2. We test scenarios where 8, 28, 48,
and 72 out of 100 clients were malicious. Remarkably, Fe-
dREDefense maintains a 100% DACC, achieving complete
exclusion of malicious clients across all fractions. Since
the acquisition of reconstruction errors pertains solely to
each individual client and is independent of cross-client
or global information, an increase in the number of mali-
cious clients does not affect our detection efficacy. TACC
experiences a minor decrease as the number of malicious
clients increases, primarily due to the reduced number of
benign clients, leading to less data available for training.
Conversely, many existing methods (e.g., FLAME), which
rely on cross-client information, intrinsically cannot han-
dle more than 50% malicious clients since they determine
the malicious clients based on the assumption that benign
clients constitute the majority. Thus, we do not show the
results of FLAME for 72% malicious clients. Meanwhile,
both existing methods based on cross-client and global in-
formation exhibit a notable performance decrease with a
larger fraction of malicious clients. For example, FLDetec-
tor also faces difficulty in detecting malicious clients when
the fraction grows large since the global information (i.e.,
global model) is dominated by malicious clients.

Impact of non-IID degree: We evaluate the impact of
varying non-IID degrees on defense effectiveness, as demon-
strated in Figure 3. Specifically, we consider non-1ID de-
grees stemming from the Dirichlet distribution, with 3 rang-
ing from 1 to 0.05. Smaller /3 indicates a higher non-IID
degree. Our results indicate that even in scenarios with ex-
treme non-IID conditions (e.g., 8 = 0.05), our approach
still ensures a 100% DACC, effectively filtering out mali-
cious clients. It is because FedREDefense only determines
based on whether a model update is likely to be the product
of genuine training, without any dependence on the distri-
bution of data across clients. TACC slightly decreases as
the non-1ID degree increases (i.e., as 3 decreases). This de-
cline can be attributed to the fact that an increased non-1ID
degree, even in the absence of attacks, affects the conver-
gence and performance of FedAVG. Meanwhile, we note

that existing state-of-the-art defenses, due to the reliance on
the consistency of distribution across clients (also known as
the consistency of local and global distribution), generally
exhibit degraded effectiveness in high non-IIDness.

6. Discussion and Limitations

6.1. Data Poisoning and Adaptive Attacks

Data poisoning attacks: Given that our defense hinges
on examining whether clients’ model updates are based on
genuine training, data poisoning attacks, which train the
model update with genuine but poisoned data, cannot be
detected by our defense. Consequently, we investigate the
effects of untargeted and targeted label flip attacks:

 Label Flip attack (Fung et al., 2018): Label Flip attack
is an untargeted data poisoning attack, which poisons
the label for each data sample as the next class of the
ground truth label. The malicious client then trains
with the local poisoned data and sends the model up-
date to the server.

* Targeted Label Flip attack (Tolpegin et al., 2020):
Targeted Label Flip attack aims to mistake the samples
from one specific source class to another target class.
It poisons the data by setting the labels for samples
from the source class as the target class. In practice
we set the source class as label ‘0’ and the target class
as label ‘2’. The ASR is calculated with the fraction
of samples from the source class misclassified as the
target class divided by the total number of samples in
the source class.

Adaptive attacks: We further derive an adaptive attack
to enhance the impact of the data poisoning attack while
preventing it from being filtered out. We contemplate an
adaptive attack setting wherein the attacker has access to
all settings of FedREDefense, such as the methodology
for obtaining the model update reconstruction error and all
its associated hyperparameters, like the threshold . The
objective of the adaptive attack is to identify the maximal
scaling factor A! that can upscale the data poisoning effect
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Algorithm 3 Adaptive scaling attacks

Input: Global model w’ ™!, local model update of the basic data
poisoning attack gf, initial step for scaling factor Jinit, thresh-
old for the step of scaling factor 4+, threshold for model
uptdalte reconstruction error v, and distilled local knowledge
K

Outpl;t: Maximized scaling factor A\ and updated distilled local

knowledge Kt

A1

0 < Oinit

: while § > 744 do
A=A+4+9
> Compute the model update reconstruction error ef for

scaled model update \g!:
ef, Kt + Reconstruction(Ag!, w' ™1, KI™1)
if ¢! > ~ then

A=A-9
end if

10: 0=46/2

11: end while

12: Ab= )

return \!, IC!

SR

LA

on the model update without being detected for malicious
client ¢ in round ¢. We employ a binary search method
to pinpoint this scaling factor. The overall algorithm for
finding A! is illustrated in Algorithm 3. This algorithm is
applied to Label Flip attack and Targeted Label Flip attack
as Adaptive Label Flip attack and Adaptive Targeted
Label Flip attack.

Evaluation: For evaluation, we set the hyperparameters for
adaptive scaling attacks as follows: 7, and d;y; are set to
0.125 and 2, respectively. Note that FedREDefense, as a de-
tection method, can apply any aggregation rule after filtering
out detected malicious clients. In Table 3, we demonstrate
the TACC(/ASR) of FedREDefense using different aggre-
gation rules (i.e., FedAVG and Norm Bound) when faced
with various adaptive attacks. We note that although these
adaptive attacks can not be detected by FedREDefense, they
do not pose large threats to the FL system with simple aggre-
gation rules compared with the impactful model poisoning
attacks. Furthermore, while adaptive scaling attacks show-
case a heightened attack effectiveness relative to their data
poisoning counterparts, they still don’t inflict substantial
damage on the system. This is attributable to a trade-off: in
their bid to evade detection by our method, attackers inad-
vertently compromise the potency of their attack. We notice
that the scaling factor determined through binary search
during the training phase remains relatively modest, falling
in the range from 1 to 2. In conclusion, FedREDefense
demonstrates strong efficacy against prominent model poi-
soning attacks. When it comes to the more subdued adaptive
attacks, the system can relatively afford to their bypassing
the detection and directly integrate them using FedAVG or
alternative aggregation rules.

Table 3: TACC(%)(/ASR(%)) of FedREDefense using dif-
ferent aggregation rules under adaptive attacks.

| | FashionMNIST ~ CIFAR-10 CINIC

Label Fli FedAVG 72.99 52.95 44.58

abet Hp Norm Bound 83.30 54.34 4526
Targeted FedAVG 85.62/7.00 60.95/18.40  51.33/17.96
Label Flip Norm Bound |  85.30/620  60.40/18.60 50.86/18.58

Adaptive FedAVG 71.57 47.04 38.66

Label Flip Norm Bound 77.30 47.67 39.48
Adaptive Targeted FedAVG 81.24/6.10  59.56/10.40 45.14/30.87
Label Flip Norm Bound |  81.99/5.10  56.62/16.80 44.27/17.37

6.2. Additional Computational and Storage Overhead

The server is required to maintain local knowledge for each
client. Therefore, its storage overhead is O(pK ), where K
denotes the number of parameters in the local knowledge
and p is the number of clients. In practical settings, we’ve
set K to be quite small, corresponding to 10 data samples
(around 2% of the client’s local data), thereby economizing
on overhead. In each round, the computational overhead is
linear to the number of clients p and the local knowledge
K. The optimization iteration is dynamically set as dis-
cussed in Section 4.1 to efficiently obtain the distilled local
knowledge. An empirical comparison for the efficiency is
presented in Appendix B.3. It is noteworthy that the com-
putation overhead is on the server, which we anticipate to
possess high computational and storage capacities, such as
the data center. Regarding the clients’ local training and
communication, we haven’t added any additional burdens.
Moreover, our aggregation does not require cross-client in-
formation as the prior works (Nguyen et al., 2022; Yin et al.,
2018; Blanchard et al., 2017), enabling asynchronous and
parallel computation of clients’ reconstruction errors. This
further reduces the computation latency for FedREDefense,
making it sufficiently practical for real-world FL systems.

7. Conclusion

In this work, we present FedREDefense to defend against
model poisoning attacks for FL. Instead of relying on cross-
client/global information, FedREDefense detects malicious
clients only by assessing whether the model updates are
likely to be a product of genuine training using the model
update reconstruction errors. Therefore, FedREDefense can
defend against model poisoning attacks when the data distri-
bution is highly non-IID and when there is a large number of
malicious clients. We show that FedREDefense can success-
fully detect seven state-of-the-art model poisoning attacks
in various scenarios, without mistaking benign clients as
malicious during the whole FL training process. Overall,
FedREDefense provides a novel effective defense technique
for FL, bridging the gap of existing defenses in real-world
FL systems where the data distribution may be non-IID and
the number of malicious clients may be large.
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A. Additional Experimental Setups
A.1. Datasets

FashionMNIST is a grayscale dataset consisting of 10 cloth-
ing classes. It comprises 60,000 training images and 10,000
test images. CIFAR-10 is a color image classification dataset
comprising 10 daily object classes. It consists of 50,000
training samples and 10,000 testing samples. CINIC ex-
tends CIFAR-10 to a total of 270,000 images with the down-
sampled image from ImageNet, equally split as training,
validation, and testing samples.

A.2. Attacks

Fang (Fang et al., 2020): Fang attack is an untargeted
attack. In each round, the attacker’s optimization objective
is to make the attacked model update sufficiently divergent
from the benign aggregate without attacks. Particularly, they
propose attack strategies specifically tailored for the Krum
and Trimmed Mean/Median aggregation rules. Notably, the
latter is observed to possess significant transfer capabilities.
Hence, we employ Krum attack for the Krum aggregation
rule and the Trimmed Mean attack for other defenses.

A little is enough (LIE) (Baruch et al., 2019): LIE adds
small noise to the benign aggregate to prevent convergence.
Specifically, it sets the model updates for all malicious
clients as ft; — Zmax - 0, Where zmax 8 set as the maximal z
with ¢(z) < (p—q—s)/(p—q), where p represents the total
number of participating clients and ¢ denotes the number
of malicious clients, supporter s = |p/2 + 1| — ¢, and ¢
corresponds to Cumulative Standard Normal Function.

Min-Max (Shejwalkar & Houmansadr, 2021): Min-Max
shares the same attack objective as Fang, but it is aggrega-
tion rule agnostic. Specifically, Min-Max sets the attack
deviation to oppose the direction of the benign aggregate.
We employ the “standard deviation” variant of this approach.
Moreover, its scale is adjusted to the maximal extent possi-
ble, ensuring that its distance from any benign client never
surpasses the distance between the two most distant benign
clients.

Min-Sum (Shejwalkar & Houmansadr, 2021): Min-Sum
differs from Min-Max primarily in its scale configuration.
For Min-Sum, the scale ensures that the cumulative distance
to all benign clients does not surpass the cumulative distance
of any benign client to other clients.

MPAF (Cao & Gong, 2022): MPAF is an untargeted attack
in which the attacker drives the current global model to a
random model in every round. We follow the original paper
to set the random model as the initial model. The scaling
factor is set to 3.

Scaling (Bagdasaryan et al., 2020): Scaling attack is a
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targeted attack. In Scaling attack, malicious clients create
replicas of their local training data, embed triggers, and
assign new labels to these images. Subsequently, these
clients train using both the original and poisoned datasets.
The resulting model update is further scaled to intensify its
impact. The scaling factor is set at 3, and the target label is
setto ‘0.

DBA (Xie et al., 2019): DBA is a targeted attack. DBA
differs from Scaling attack in that the backdoor trigger is
decomposed into four local patterns and embedded into the
local data of different malicious clients. The scaling factor
is set at 3, and the target label is set to ‘0’.

A.3. Compared Defenses

Krum (Blanchard et al., 2017): Krum employs a selection
criterion for model updates based on Euclidean distance.
Specifically, it chooses the model update that exhibits the
minimal cumulative Euclidean distance to its p — g — 2
nearest neighbors, where p represents the total number of
participating clients and g denotes the number of malicious
clients.

Median (Yin et al., 2018): Median calculates the aggre-
gated update for each dimension by selecting the median
value from all updates in that specific dimension.

Trimmed Mean (Yin et al., 2018): Trimmed Mean re-
moves the largest and smallest m values for each dimension.
The final aggregated update for that specific dimension is
then computed by averaging the remaining p — 2q values.

Norm Bound (Sun et al.,, 2019): Norm Bound clips
the magnitude of the model updates within a threshold to
weaken the influence of attack. The threshold is set as the
average of the norm of the benign model updates.

FLAME (Nguyen et al., 2022): FLAME clusters the
clients based on the cosine distance of their local mod-
els. The cluster with the fewer members is subsequently
discarded. Following this, the remaining model updates
are clipped, subjected to noise addition, and subsequently
aggregated.

FLTrust (Cao et al., 2021a): FLTrust assumes the avail-
ability of server data and computes a server model update.
Then the cosine similarity between the clients’ model up-
dates and the server model update as well as the scale is
applied to filter and clip the client model updates. The num-
ber of server data samples is set to 500 to match the clients’
local data and the server’s local epoch and local optimizer
are set the same as the clients.

FLDetector (Zhang et al., 2022): FLDetector detects ma-
licious clients by estimating the gradient of clients using
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Table 4: Notations.

Notation |
P | total client number
q ‘ malicious client number
D; | local dataset for client ¢
AR ‘ aggregation rule
T ‘ total communication round
w' | global model after round ¢
gt ‘ local model update of client 7 in round ¢
vy ‘ threshold for model update reconstruction error
Mt ‘ selected clients in round ¢
Kt ‘ distilled local knowledge of client 7 in round ¢
et ‘ model update reconstruction error of client 4 in round ¢
N ‘ inner loop iterations for FedREDefense
M ‘ outer loop iterations for FedREDefense
«; ‘ learning rate of virtual network for FedREDefense
A ‘ maximized scaling factor for adaptive scaling attacks
Yatt ‘ threshold for step of scaling factor for adaptive scaling attacks
B ‘ hyperparamter for the Dirichlet distribution

the global models, and the cluster of clients showing less
consistency with the estimation is classified as malicious.
Note that FLDetector requires training trajectory in multiple
rounds (set as 10 following the original paper) after cold
start rounds (set as 50 following the original paper) to detect
malicious clients. Therefore, FLDetector requires reload-
ing the initial model if malicious clients are detected since
the model is already poisoned. We keep the total training
rounds the same as other defenses for fairness. The basic
aggregation rule is set as FedAVG.

FLCert (Cao et al., 2022): FLCert uses model ensembling
to provide provable robustness against attacks when the
percentage of malicious clients is limited. We divide the
clients into 10 groups and use Median to train a global mode
in each group. The prediction is made based on majority
voting among all the final global models.

A.4. Evaluation Metrics

¢ Detection Accuracy (DACC) is the fraction of cor-
rectly classified clients to the total number of clients.

 False Positive Rate (FPR) is the fraction of the benign
clients that are wrongly classified as malicious to the
total number of benign clients.

» False Negative Rate (FNR) is the fraction of the ma-
licious clients that are wrongly classified as benign to
the total number of malicious clients.

* Averaged Aggregated Rounds for Malicious Clients
(AAR) represents the average number of total rounds
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Table 5: Model architecture for FashionMNIST.

Layer Type ‘ Size
Convolution + ReLU ‘ 3x3x30
Max Pooling ‘ 2x2
Convolution + ReLU | 3x3x50
Max Pooling ‘ 2x2
Fully Connected + ReLU | 100
Softmax ‘ 10

Table 6: Model architecture for CIFAR-10 and CINIC.

Layer Type ‘ Size
Convolution + ReLU | 3x3x32
Max Pooling ‘ 2x2
Convolution + ReLU | 3x3x64
Max Pooling | 2x2
Fully Connected + ReLU ‘ 512
Softmax | 10

Table 7: Setting of FedREDefense for different datasets.
Learning Rate is denoted as LR.

Fashion
MNIST

le-1 le-1 le-1

CIFAR CINIC

LR of Images in C;

LR of Labels in K; ‘ Se-2 Se-2 Se-2
Virtual Model LR ‘ le-1 S5e-2 Se-2
LR of Virtual
Model LR ‘ 5e-5 5e-5 Se-5
Initial Round of M ‘ 5000 500 2000
Upper Bound of M ‘ 5000 1500 4000

in which a malicious client remains undetected and
thus aggregated.

 Testing Accuracy (TACC) is the fraction of correctly
classified cases in the testing set to the total testing
cases of the final global model.

¢ Attack Success Rate (ASR) is the ratio of instances
that, upon addition of the trigger, are successfully clas-
sified into the specified category (excluding those in-
stances in the original images already belonging to that
category), to the total number of test cases of the final
global model.

A.5. Configurations

Every client participates in each training round, and mali-
cious clients conduct attacks in each training round. The

model architecture is 2-layer Convolutional Neural Network
(CNN) with architecture specified in Table 5 and Table 6
for FashionMNIST and CIFAR-10/CINIC, respectively. For
local training, we adopt a batch size of 32. Stochastic Gra-
dient Descent (SGD) is our optimization technique, using
a learning rate of le — 3. The specific configuration for
learning rates and initialization is detailed in Table 7.

B. Addtional Experimental Results
B.1. Detection Performance of FLAME and FLTrust

To better investigate some defenses that do not output labels
of clients after training but also perform filtering in each
round (i.e., FLAME and FLTrust), we show their averaged
detection metrics of DACC, FPR, and FNR along all the
training rounds, denoted as ADACC, AFPR, and AFNR,
in Table 8. The results demonstrate that both FLTrust and
FLAME typically produce a relatively large AFPR across
training rounds suggesting that some genuine clients are
misclassified as malicious, which inevitably hampers the
global model’s performance. Also, this inaccurate detection
makes them not applicable in marking and removing the
clients identified as malicious, but have to let them continue
participating in the training.

B.2. Impact of FL Settings

Impact of local training epochs: We evaluate the im-
pact of local training epochs on defensive performance, as
demonstrated in Figure 4. We consider 1, 2, and 5 local
epochs, with the corresponding communication rounds set
to 500, 250, and 100, respectively. For our method, the
upper bound of optimization iteration is proportionally ad-
justed, being two and five times the default value. For our
approach, we observe that an increase in local epochs does
not impact the discriminative ability. Notwithstanding the
increased number of local epochs, we can still achieve a
100% DACC. This observation is consistent with previous
research presented in (Pi et al., 2023), which indicates that
larger local epochs do not impede the distilled knowledge’s
capacity to emulate genuine data training. On the contrary,
the model updates from malicious clients remain difficult to
reconstruct, regardless of the local epoch number. Concur-
rently, the task becomes more challenging for FLDetector
with an increase in local epochs. The underlying reason is
that FLDetector relies on hessian-based predictions, and its
accuracy diminishes as local epochs increase. Similarly, for
FLTrust, more local epochs introduce greater uncertainty.
Given the inherent non-IIDness, more extensive local train-
ing amplifies the variability in local model updates.

Impact of participation rate: We investigate the impact of
the participation rate, as shown in Figure 5. We considered
participation rates of 0.1, 0.5, and 1. For our method, the
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Table 8: ADACC (%) T, AFPR (%) |, AFNR (%) |, and ARR | of FLAME and FLDetector for different attacks on
FashionMNIST, CIFAR-10, and CINIC datasets. 1 ({) indicates the larger (smaller) the better metric.

Attack Detector FashionMNIST CIFAR-10 CINIC

ADACC AFPR AFNR AAR | ADACC AFPR AFNR AAR | ADACC AFPR AFNR AAR

Fan FLAME 79.34 28.69 0.00 0.00 81.09 26.27 0.00 0.00 79.46 28.53 0.00 0.00
ang FLTrust 87.11 17.90  0.00 0.00 90.36 13.39 0.00 0.00 91.32 12.06  0.00 0.00
LIE FLAME 27.58 63.57 95.20 476.00 73.09 2898  21.60 108.00 78.59 27.87 4.80 24.00
FLTrust 57.70 20.79  97.60  488.00 56.52 2298 9620 482.00 57.75 2173 95.00 475.00

Min-M: FLAME 80.33 27.23 0.00 0.00 79.50 28.48 0.00 0.00 79.92 27.88 0.00 0.00
MBC B Trust 87.03 18.01 67.40 337.00 66.15 20.03  69.40 347.00 63.68 19.88  78.60  393.00
Min-Sum FLAME 29.04 62.08 93.80 469.00 73.81 29.06  18.80  94.00 79.99 27.80  0.00 0.00
4 FLTrust 57.93 20.71  97.00  485.00 58.24 2293  90.20 451.00 58.58 21.83  91.80 459.00
MPAF FLAME 79.87 2796  0.00 0.00 80.14 27.58 0.00 0.00 79.87 2796  0.00 0.00
FLTrust 87.03 18.01 0.00 0.00 90.14 13.70  0.00 0.00 90.74 12.86  0.00 0.00

DBA FLAME 79.87 27.95 0.00 0.00 80.72 26.78 0.00 0.00 80.02 27.75 0.00 0.00
FLTrust 65.54 1530 83.73 418.64 66.75 12.28  87.15 435.75 67.17 11.54  87.59 437.93

Scalin FLAME 79.84 28.00  0.00 0.00 80.74 26.75 0.00 0.00 79.84 28.00  0.00 0.00
caling FLTrust 64.92 1523  86.12 430.61 67.06 10.54  90.52 452.61 67.41 1048 89.44 44721

upper bound of optimization iteration is also proportionally
adjusted due to a larger interval between subsequent par-
ticipation of an individual client. A participation rate of
less than 1 implies that not all malicious clients would be
involved in the initial round. Note that FLDectector is not
compared because its method initially assumes the clients
participate every round so that the estimation can be done
upon the model update of the last round. Thus it is not
directly applicable in partial participation. Since our tech-
nique does not rely on cross-client information, it is still
effective irrespective of the participation rates. We also ob-
serve that FLAME, which utilizes cross-client information,
demonstrates a decline in performance in some scenarios
when the participation rate decreases. This can be attributed
to the reduced number of clients available for clustering,
which increases uncertainty.

B.3. Impact of FedREDefense Variants

In the whole training process, FedREDefense maintains and
refines the distilled local knowledge for each client. In this
section, we delve deeper into how the chosen optimization
schemes influence the number of necessary optimization
iterations required, which reflects the overall efficiency of
different FedREDefense variants. We experiment with sev-
eral variants of optimization as follows:

* Continuous optimization: For a client’s initial partic-
ipation, we conduct M distillation iterations. Subse-
quent participations involve a quicker M’-iteration re-
finement. In practice, we set M = 500 and M’ = 60.

* Intermittent optimization: For a client’s initial par-
ticipation, M rounds of distillation iterations are per-
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formed. Thereafter, every 77 communication rounds,
a M'-iteration refinement is executed. In the other
rounds, no optimization is performed; only inference
based on existing local knowledge is used to calculate
reconstruction errors. Practically, we set M = 500,
Tr =10, and M’ = 500.

* Dynamic optimization: As specified in Section 4.1,
in every round and for each client ¢ the optimization
stops once the reconstruction error e’ gets below the
threshold ~. In practice, we set the upper bound of M
for the optimization as 1500, if the reconstruction error
does not reach v = 0.6.

Note that empirically, we tune hyperparameters for the three
variants to ensure that all of them can achieve 100% DACC
for all attacks, thus we focus on measuring the efficiency of
the three variants with the following metric:

Average Optimization Iterations (AOI): This metric rep-
resents the average optimization iterations in the outer loop,
denoted as M, required for an individual client per round
across the entire training process. It provides insights into
the average number of iterations mandated per round to
adeptly discern model poisoning attacks using FedREDe-
fense.

Table 9 shows the comparison of AOI for the three vari-
ants of FedREDefense. Note that the experiment follows
the default setting elaborated in Section 5.1.4. As shown
in Section 5.2, for all the studied model poisoning attacks,
FedREDefense can detect the malicious clients once they
participate. Thus, we only experiment on Fang attack for
comparing the AOI. The result reveals that dynamic op-
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Figure 4: DACC of FedREDefense and FLDetector, and TACC(/ASR) of the global model for all defenses as a function of
the local training epochs under different defenses and attacks.

— = DACC-FedREDefense =p— TACC-FLAME ASR-FedREDefense =4— ASR-FLTrust
—i— TACC-FedREDefense —<4— TACC-FLTrust ASR-FLAME

100% 100%: 100% 100% 100% 100% 100%:

(a) Fang (b) LIE (c) Min-Max (d) Min-Sum (e) MPAF (f) Scaling (g) DBA

Figure 5: DACC of FedREDefense and TACC(/ASR) of the global model for all defenses as a function of participation rate
under different defenses and attacks.

Table 9: Averaged Optimization Iterations (AOI) for aclient ~ Table 10: Distribution of reconstruction errors (mean +

per round of FedREDefense under Fang attack on CIFAR-  standard deviation) in different scenarios.
10 dataset.
‘ FashionMNIST CIFAR-10 CINIC
| Continuous _ Tntermittent  Dynamic Benign | 036003  0.18£0.02 0.310.03
AOI ‘ 60.88 50.00 2.40 Fang 0.97 0.97 0.99
MinMax 0.99 0.99 1.00
MinSum 0.98 0.97 0.97
timization markedly curtails the number of optimization DBA 0.78+0.02 0.82£0.02 0.810.02
y P Scaling 0.78+0.03 0.83+0.02  0.82+0.02

iterations for each client, thereby bolstering efficiency sub-
stantially. In fact, after the initial participation of a be-
nign client, the refinement of distilled local knowledge in
dynamic optimization generally requires only one or two
iterations. Overall, attaining 100% DACC in dynamic opti-
mization necessitates only a small fraction, on the order of a
few percent, of the optimization iterations typically required ~ In Table 10, we show the mean =+ standard deviation of
for fixed rounds. It is because optimizing with fixed iteration ~the reconstruction errors with different datasets and attacks,
requires a large number of iterations to adapt to the most ~ where for Fang, MinMax, and MinSum, only mean is re-
latency-prone client in all communication rounds to prevent  ported because of negligible standard deviation < le — 3.
mistaking benign clients as malicious. However, such re- ‘We note that the reconstruction error is clearly Split for
dundant optimization is not indispensable for the detection ~ benign and malicious clients. Therefore, we can pick an
process as we only need to know whether a model update ~ intermediate value as a threshold.

can be reconstructed with an error smaller than the threshold.

Therefore, the crux lies in optimizing with minimal compu-

tational overhead to guarantee precise detection adaptively

for every single client. The proposed dynamic optimization

achieves this by early stopping once the threshold is reached.

B.4. Distribution of Reconstruction Error
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