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Abstract

In this paper, we study the Radial Basis Function (RBF) approximation to di↵erential
operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean
space, identified by randomly sampled point cloud data. The formulation in this paper
leverages a fundamental fact that the covariant derivative on a submanifold is the projec-
tion of the directional derivative in the ambient Euclidean space onto the tangent space of
the submanifold. To di↵erentiate a test function (or vector field) on the submanifold with
respect to the Euclidean metric, the RBF interpolation is applied to extend the function
(or vector field) in the ambient Euclidean space. When the manifolds are unknown, we
develop an improved second-order local SVD technique for estimating local tangent spaces
on the manifold. When the classical pointwise non-symmetric RBF formulation is used to
solve Laplacian eigenvalue problems, we found that while accurate estimation of the lead-
ing spectra can be obtained with large enough data, such an approximation often produces
irrelevant complex-valued spectra (or pollution) as the true spectra are real-valued and
positive. To avoid such an issue, we introduce a symmetric RBF discrete approximation
of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. Unlike
the non-symmetric approximation, this formulation guarantees non-negative real-valued
spectra and the orthogonality of the eigenvectors. Theoretically, we establish the conver-
gence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian for
the symmetric formulation in the limit of large data with convergence rates. Numerically,
we provide supporting examples for approximations of the Laplace-Beltrami operator and
various vector Laplacians, including the Bochner, Hodge, and Lichnerowicz Laplacians.
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1. Introduction

Estimation of di↵erential operators is an important computational task in applied math-
ematics and engineering science. While this estimation problem has been studied since
the time of Euler in the mid-18th century, numerical di↵erential equations emerges as an
important sub-field of computational mathematics in the 1940s when modern computers
were starting to be developed for solving di↵erential equations. Among many available nu-
merical methods, finite-di↵erence, finite-volume, and finite-element methods are considered
the most reliable algorithms to produce accurate solutions whenever one can control the
distribution of points (or nodes) and meshes. Specification of the nodes, however, requires
some knowledge of the domain and is subjected to the curse of dimension.

On the other hand, the Radial Basis Function (RBF) method (Buhmann, 2003) has
been considered as a promising alternative that can produce very accurate approximations
(Narcowich and Ward, 1991; Wu and Schaback, 1993) even with randomly distributed nodes
(Kanagawa et al., 2018) on high-dimensional domains. Beyond the mesh-free approxima-
tion of di↵erential operators, the deep connection of the RBF to kernel technique has also
been documented in nonparametric statistical literature (Christmann and Steinwart, 2008;
Kanagawa et al., 2018) for machine learning applications. While kernel methods play a sig-
nificant role in supervised machine learning (Christmann and Steinwart, 2008; Cucker and
Smale, 2002), in unsupervised learning, a kernel approach usually corresponds to the con-
struction of a graph whose spectral properties (Chung, 1997; Von Luxburg et al., 2008) can
be used for clustering (Ng et al., 2002), dimensionality reduction (Belkin and Niyogi, 2003),
and manifold learning (Coifman and Lafon, 2006), among others. In the context of manifold
learning, given a set of data that lie on a d�dimensional compact Riemannian sub-manifold
of Euclidean domain Rn, the objective is to represent observable with eigensolutions of an
approximate Laplacian operator. For this purpose, spectral convergence type results, con-
cerning the convergence of the graph Laplacian matrix induced by exponentially decaying
kernels to the Laplacian operator on functions, are well-documented for closed manifolds
(Belkin and Niyogi, 2007; Burago et al., 2014; Trillos et al., 2020; Calder and Trillos, 2022;
Dunson et al., 2021) and for manifolds with boundary (Peoples and Harlim, 2021). Beyond
Laplacian on functions, graph-based approximation of connection Laplacian on vector fields
(Singer and Wu, 2017) and a Galerkin-based approximation to Hodge Laplacian on 1-forms
(Berry and Giannakis, 2020) have also been considered separately. Since these manifold
learning methods fundamentally approximate Laplacian operators that act on smooth ten-
sor fields defined on manifolds, it is natural to ask whether this learning problem can be
solved using the RBF method. Another motivating point is that the available graph-based
approaches can only approximate a limited type of di↵erential operators whereas RBF can
approximate arbitrary di↵erential operators, including general k-Laplacians.

Indeed, RBF has been proposed to solve PDEs on 2D surfaces (Fuselier and Wright,
2009, 2012; Piret, 2012; Fuselier and Wright, 2013). In these papers, they showed that
RBF solutions converge, especially when the point clouds are appropriately placed which
requires some parameterization of the manifolds. When the surface parameterization is
unknown, there are several approaches to characterize the manifolds, such as the closest
point method (Ruuth and Merriman, 2008), the orthogonal gradient (Piret, 2012), the
moving least squares (Liang and Zhao, 2013), and the local SVD method (Donoho and
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Grimes, 2003; Zhang and Zha, 2004; Tyagi et al., 2013). The first two methods require
laying additional grid points on the ambient space, which can be numerically expensive when
the ambient dimension is high. The moving least squares locally fit multivariate quadratic
functions of the local coordinates approximated by PCA (or local SVD) on the metric tensor.
While fast theoretical convergence rate when the data point is well sampled (see the detailed
discussion in Section 2.2 of Liang and Zhao (2013)), based on the presented numerical results
in the paper, it is unclear whether the same convergence rate can be achieved when the data
are randomly sampled. The local SVD method, which is also used in determining the local
coordinates in the moving least-squares method, can readily approximate the local tangent
space for randomly sampled training data points. This information alone readily allows one
to approximate di↵erential operators on the manifolds.

From the perspective of approximation theory, the radial basis type kernel is universal in
the sense that the induced Reproducing Kernel Hilbert Space (RKHS) is dense in the space
of continuous and bounded function on a compact domain, under the standard uniform
norm (Steinwart, 2001; Sriperumbudur et al., 2011). While this property is very appealing,
previous works on RBF suggest that the non-symmetric pointwise approximation to the
Laplace-Beltrami operator can be numerically problematic (Fuselier andWright, 2009; Piret,
2012; Fuselier and Wright, 2013). In particular, they numerically reported that when the
number of training data is small the eigenvalues of the non-symmetric RBF Laplacian matrix
that approximates the negative-definite Laplace-Beltrami operator are not only complex-
valued, but they can also be on the positive half-plane. These papers also empirically
reported that this issue, which is related to spectral pollution (Llobet et al., 1990; Davies
and Plum, 2004; Lewin and Séré, 2010), can be overcome with more data points. The work
in this paper is somewhat motivated by many open questions from these empirical results.

1.1 Contribution of This Paper and a Summary of Our Findings

One of the objectives of this paper is to assess the potential of the RBF method in solving
the manifold learning problem, involving approximating the Laplacians acting on functions
and vector fields of smooth manifolds, where the underlying manifold is identified by a set
of randomly sample point cloud data. The work in this paper extends the fundamental
fact that the covariant derivative on a submanifold is the projection of the directional
derivative in the ambient Euclidean space onto the tangent space of the submanifold to
various di↵erential operators, including Laplacians on functions and vector fields. Since
the formulation involves the ambient dimension, n, the resulting approximation will be
computationally feasible for problems where the ambient dimension is much smaller than the
data size, n ⌧ N . While such dimensionality scaling requires an extensive computational
memory for manifold learning problems with n = O(N), it can still be useful for a broad
class of applications involving eigenvalue problems and PDEs where the ambient dimension
is moderately high, n = 10 � 100, but much smaller than N . See eigenvalue problem
examples in Sections 5.2 and 5.3. Also see e.g., the companion paper (Yan et al., 2023)
that uses the symmetric approximation discussed below to solve elliptic PDEs on unknown
manifolds.

First, we study the non-symmetric Laplacian RBF matrix, which is a pointwise approx-
imation to the Laplacian operator, that is used in (Fuselier and Wright, 2009; Piret, 2012)
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to approximate the Laplace-Beltrami operator. Through a numerical study in Section 5,
we found that non-symmetric RBF (NRBF) formulation can produce a very accurate es-
timation of the leading spectral properties whenever the number of sample points used to
approximate the RBF matrix is large enough and the local tangent space is su�ciently
accurately approximated. In this paper:

1a) We propose an improved local SVD algorithm for approximating the local tangent
spaces of the manifolds, where the improvement is essentially due to the additional
steps designed to correct errors induced by the curvatures (see Section 3.2). We pro-
vide a theoretical error bound (see Theorem 3.2). We numerically find that this error
(from the local tangent space approximation) dominates the errors induced by the
non-symmetric RBF approximation of the leading eigensolutions (see Figures 7 and
10). On the upside, since this local SVD method is numerically not expensive even
with very large data, applying NRBF with the accurately estimated local tangent
space will give a very accurate estimation of the leading spectra with possibly ex-
pensive computational costs. Namely, solving eigenvalue problems of non-symmetric,
dense discrete NRBF matrices, which can be very large, especially for the approxima-
tion of vector Laplacians. On the downside, since this pointwise estimation relies on
the accuracy of the local tangent space approximation, such a high accuracy will not
be attainable when the data is corrupted by noise.

1b) Through numerical verification in Sections 5.3 and 5.4, we detect another issue with
the non-symmetric formulation. That is, when the training data size is not large
enough, the non-symmetric RBF Laplacian matrix is subjected to spectral pollution
(Llobet et al., 1990; Davies and Plum, 2004; Lewin and Séré, 2010). Specifically, the
resulting matrix possesses eigenvalues that are irrelevant to the true eigenvalues. If we
increase the training data, while the leading eigenvalues (that are closer to zero) are
accurately estimated, the irrelevant estimates will not disappear. Their occurrence will
be on higher modes. This issue can be problematic in manifold learning applications
since the spectra of the underlying Laplacian to be estimated are unknown. As we
have pointed out in 1a), large data size may not be numerically feasible for the non-
symmetric formulation, especially in solving eigenvalue problems corresponding to
Laplacians on vector fields.

To overcome the limitation of the non-symmetric formulation, we consider a symmetric
discrete formulation induced by a weak approximation of the Laplacians on appropriate
Hilbert spaces. Several advantages of this symmetric approximation are that the esti-
mated eigenvalues are guaranteed to be non-negative real-valued, and the corresponding
estimates for the eigenvectors (or eigenvector fields) are real-valued and orthogonal. Here,
the Laplace-Beltrami operator is defined to be semi-positive definite. The price we are
paying to guarantee estimators with these nice properties is that the approximation is less
accurate compared to the non-symmetric formulation provided that the latter works. Par-
ticularly, the error of the symmetric RBF is dominated by the Monte-Carlo rate. Our
findings are based on:

2a) A spectral convergence study with error bounds for the estimations of eigenvalues
and eigenvectors (or eigenvector fields). See Theorems 4.1 and 4.2 for the approxima-
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tion of eigenvalues and eigenfunctions of Laplace-Beltrami operator, respectively. See
Theorems 4.3 and 4.4 for the approximation of eigenvalues and eigenvector fields of
Bochner Laplacian, respectively.

2b) Numerical inspections on the estimation of Laplace-Beltrami operator. We show the
empirical convergence as a function of training data size. Based on our numerical com-
parison on a 2D torus embedded in R21, we found that the symmetric RBF produces
less accurate estimates compared to the Di↵usion Maps (DM) algorithm (Coifman
and Lafon, 2006) in the estimation of leading eigenvalues, but more accurate in the
estimation of non-leading eigenvalues.

2c) Numerical inspections on the estimation of Bochner, Hodge, and Lichnerowicz Lapla-
cians. We show the empirical convergence as a function of training data size.

1.2 Organization of This Paper

Section 2: We provide a detailed formulation for discrete approximation of di↵erential
operators on smooth manifolds, where we will focus on the RBF technique as an inter-
polant. Overall, the nature of the approximation is “exterior” in the sense that the tangen-
tial derivatives will be represented as a projection (or restriction) of appropriate ambient
derivatives onto the local tangent space. To clarify this formulation, we overview the no-
tion of the projection matrix that allows the exterior representation that will be realized
through appropriate discrete tensors. We give a concrete discrete formulation for gradient,
the Laplace-Beltrami operator, covariant derivative, and the Bochner Laplacian. We discuss
the symmetric and non-symmetric formulations of Laplacians. We list the RBF approxi-
mation in Table 2, where we also include the estimation of the Hodge and Lichnerowicz
Laplacian (which detailed derivations are reported in Appendix A).
Section 3: We present a novel algorithm to improve the characterization of the manifold
from randomly sampled point cloud data, which subsequently allows us to improve the
approximation of the projection matrix, which is explicitly not available when the manifold
is unknown. The new local SVD method, which accounts for curvature errors, will improve
the accuracy of RBF in the pointwise estimation of arbitrary di↵erential operators.
Section 4: We deduce the spectral convergence of the symmetric estimation of the Laplace-
Beltrami operator and the Bochner Laplacian. Error bounds for both the eigenvalues and
eigenfunctions estimations will be given in terms of the number of training data, the smooth-
ness, and the dimension and co-dimension of the manifolds. These results rely on a proba-
bilistic type convergence result of the RBF interpolation error, extending the deterministic
error bound of the interpolation using the RKHS induced by the Matérn kernel (Fuselier
and Wright, 2012), which is reported in Appendix B. To keep the section short, we only
present the proof for the spectral convergence of the Laplace-Beltrami operator. We doc-
ument the proofs of the intermediate bounds needed for this proof in Appendices B, C.1
and C.2. Since the proof of the eigenvector estimation is more technical, we also present it
in Appendix C.3. Since the proofs of the Bochner Laplacian approximation follow the same
arguments as those for the Laplace-Beltrami operator, we document them in Appendix D.
Section 5: We present numerical examples to inspect the non-symmetric and symmet-
ric RBF spectral approximations. The first two examples focus on the approximations of
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Laplace-Beltrami on functions. In the first example (the two-dimensional general torus),
we verify the e↵ectiveness of the approximation when the low-dimensional manifold is em-
bedded in a high-dimensional ambient space (high co-dimension). In this example, we also
compare the results from a graph-based approach, di↵usion maps (Coifman and Lafon,
2006). To ensure the di↵usion maps result is representative, we report additional numerical
results over an extensive parameter tuning in Appendix E. In the second example (four-
and five-dimensional flat torus), our aim is to verify the e↵ectiveness of the approximation
when the intrinsic dimension of the manifold is higher than that in the first example. In
the third example, we verify the accuracy of the spectral estimation of the Bochner, Hodge,
and Lichnerowicz Laplacians on the sphere.
Section 6: We close this paper with a short summary and discussion of remaining and
emerging open problems.
For reader’s convenience, we provide a list of notations in Table 1.

2. Basic Formulation for Estimating Di↵erential Operators on Manifolds

In this section, we first review the approximations of the gradient, the Laplace-Beltrami
operator, and covariant derivative and then formulate the detailed discrete approximations
of the connection of a vector field and the Bochner Laplacian, on smooth closed manifolds.
Both the Laplace-Beltrami operator and the Bochner Laplacian have two natural discrete
estimators: symmetric and non-symmetric formulations. Since each formulation has its
own practical and theoretical advantages, we describe in detail both approximations. Fol-
lowing similar derivations, we also report the discrete approximation to other di↵erential
operators that are relevant to vector fields, e.g. the Hodge and Lichnerowicz Laplacian (see
Appendix A for the detailed derivations).

In this paper, we consider estimating di↵erential operators acting on functions (and
vector fields) defined on a d�dimensional closed manifold M embedded in ambient space
Rn, where d  n. Each operator is estimated using an ambient space formulation followed
by a projection onto the local tangent space of the manifold using a projection matrix P.
Before describing the discrete approximation of the operators, we introduce P, discuss some
of its basic properties, and quickly review the radial basis function (RBF) interpolation
which is a convenient method to approximate functions and tensor fields from the point
cloud training data X = {xi}Ni=1

.
In the following, we periodically use the notation diag(a1, . . . , aj) to denote a j ⇥ j

diagonal matrix with the listed entries along the diagonal. We also define f 7! RNf =
f = (f(x1), f(x2), . . . , f(xN ))> for all f : M ! R, which is a restriction operator to the
function values on training data set X = {x1, . . . , xN}. In the remainder of this paper,
we use boldface to denote discrete objects (vectors, matrices) and script font to denote
operators on continuous objects.

Definition 1 For any point x 2 M , the local parameterization ◆ : O ✓ Rd
�! M ✓

Rn, is defined through the following map, ⇥◆�1(x) 7�! Xx. Here, O denotes a domain
that contains the point ◆�1(x), which we denoted as ⇥◆�1(x) in the canonical coordinates✓

@
@✓1

���
◆�1(x)

, . . . , @
@✓d

���
◆�1(x)

◆
and Xx is the embedded point represented in the ambient coor-
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Table 1: List of notations. The notations below are used throughout the entire manuscript,
and defined in Sections 2-4.

Symbol Definition Symbol Definition
Sec. 2
M a manifold R Euclidean space
d intrinsic dimension of M n ambient space dimension
✓i intrinsic coordinate i = 1, . . . , d Xi ambient coordinate i = 1, . . . , n
P P (x), tangential project matrix P tangential projection tensor in (14)
Pij entries of projection matrix i, j =

1, . . . , n
pi ith column of projection matrix P

pi = (P1i(x), . . . , Pni(x))
◆ the local parameterization of the

manifold
D◆ the pushforward or the n ⇥ d Jaco-

bian matrix
N number of data points X X = {xi}Ni=1

= {x1, . . . , xN}

RN restriction operator, RNf = f
= (f(x1), . . . , f(xN ))>

|M , |X |M is the restriction on manifold M
|X is the restriction on data set X

f a function f a function on data points,
f = (f(x1), . . . , f(xN ))>

I�sf interpolation of f using RBF �s s shape parameter
� interpolation matrix c interpolation coe�cient,

(c1, . . . , cN )>

gradg gradient w.r.t. Riemannian metric,
gradgf = gij @f

@✓i
@

@✓j

gradRn gradient in Euclidean space,
gradRnf = �ij @f

@Xi
@

@Xj

Gi Gi = pi · gradRn Gi N⇥N matrix that approximates Gi

T, ⌧i d orthonormal tangent vectors,
T = [⌧1, . . . , ⌧d]

N,ni vectors that are orthogonal to tan-
gent space, N = [n1, . . . ,nn�d]

r Levi-Civita connection on M r̄ Euclidean connection on Rn

�M Laplace-Beltrami �B Bochner Laplacian
q(x) sampling density Q diagonal matrix with entries q(xi)
Hi HiU(x) = Pdiag(Gi, . . . ,Gi)U(x) Hi Nn⇥Nn matrix that estimates Hi

Sec. 3
⇢ geodesic normal coordinate, ⇢ =

(⇢1, . . . , ⇢d)
⇢ geodesic distance, ⇢ = |⇢|

P̃ 1st-order SVD estimate of P P̂ 2nd-order SVD estimate of P
K K-nearest neighbors Kmax maximum principal curvature
D K > D := 1

2
d(d + 1), the minimum

number for the K-nearest neighbors
D D = [D1, . . . ,DK ], Di = yi � x is

the ith column of D 2 Rn⇥K

 matrix with orthonormal tangent
column vectors  = [ 1, . . . , d]

 ̂  ̂ = [ ̂1, . . . ,  ̂d] 2 Rn⇥d is an
estimator of  = [ 1, . . . , d]

Sec. 4
hf, hiL2(M) inner product in L2(M) defined

as hf, hiL2(M) =
R
M fh dVol

hf ,hiL2(µN ) appropriate inner product de-
fined as hf ,hiL2(µN ) =

1

N f>h

�i eigenvalues �̂i approximate eigenvalues
m the geometric multiplicity of eigen-

values
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dinates
⇣

@
@X1

���
x
, . . . , @

@Xn

���
x

⌘
. The pushforward D◆(x) : T◆�1(x)O ! TxM is an n⇥ d matrix

given by D◆(x) =
⇥
@Xx
@✓1 , . . . ,

@Xx
@✓d

⇤
, a matrix whose columns form a basis of TxM in Rn.

Definition 2 The projection matrix P = P (x) 2 Rn⇥n on x 2 M is defined with the
matrix-valued function P : M ! Proj(n,R) ⇢ Rn⇥n,

P = [Pst]
n
s,t=1 :=


@Xs

@✓i
gij
@Xt

@✓j

�n

s,t=1

,

where gij denotes the matrix entries of the inverse of the Riemannian metric tensor gij.
Since [gij ]d⇥d = (D◆>D◆)�1, the projection matrix can be equivalently defined as

P := D◆(D◆>D◆)�1D◆>. (1)

Before proving some basic properties of the projection matrix P, we must fix a set of
orthonormal vectors that span the tangent space TxM for each x 2 M . In particular,
for any x 2 M , let {⌧i 2 Rn⇥1

}
d
i=1

be the d orthonormal vectors that span TxM and let
{ni 2 Rn⇥1

}
n�d
i=1

be the n � d orthonormal vectors that are orthogonal to TxM . Here, we
suppress the dependence of ⌧i and ni on x to simplify the notation. Further, let T = [⌧1
. . . ⌧d] 2 Rn⇥d and N = [n1 . . . nn�d] 2 Rn⇥(n�d). Since

�
T N

�
2 Rn⇥n is an orthonormal

matrix, one has the following relation,

I =
�
T N

�✓T>

N>

◆
= TT> +NN> =

dX

i=1

⌧i⌧
>
i +

n�dX

i=1

nin
>
i .

We have the following proposition summarizing the basic properties of P.

Proposition 2.1 For any x 2 M , let P = P (x) 2 Rn⇥n be the projection matrix defined in
Definition 2 and let T = [⌧1, . . . , ⌧d] 2 Rn⇥d be any d orthonormal vectors that span TxM .
Then
(1) P is symmetric;
(2) P2 = P;
(3) P = P (x) = D◆(x)(D◆(x)>D◆(x))�1D◆(x)> = TT>.
(4)

Pn
i=1

|pi|
2 = d, where pi = (P1i(x), . . . , Pni(x))

> is the ith column of P.

Proof Properties (1) and (2) are obvious from the definition of P in (1). Property (3) can
be easily obtained by observing that both sides of the equation are orthogonal projections,
and span

�
@Xx
@✓1 , . . . ,

@Xx
@✓d

 
= span{⌧1 . . . ⌧d}. To see (4), for each point x 2 M , write P as

P = TT> =

2

64
P11(x) · · · P1n(x)

...
. . .

...
Pn1(x) · · · Pnn(x)

3

75 =

2

64
p>
1

...
p>
n

3

75 ,

where pi 2 Rn⇥1 for i = 1, . . . , n is the ith column of P. It remains to observe the following
chain of equalities:

nX

i=1

|pi|
2 = tr

⇣
P>P

⌘
= tr (P) = tr

⇣
TT>

⌘
= tr

⇣
T>T

⌘
= tr (Id⇥d) = d.
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Notice that while the specification of T is not unique which can be di↵erent by a rotation,
the projection matrix P is uniquely determined at each point x 2 M .

Let f : M ! R be an arbitrary some smooth function. Given function values f :=
(f(x1), . . . , f(xN ))> at X = {xj}Nj=1

, the radial basis function (RBF) interpolant of f at x
takes the form

I�sf(x) :=
NX

k=1

ck�s (kx� xkk) , (2)

where �s denotes the kernel function with shape parameter s and k ·k denotes the standard
Euclidean distance. We should point out that by being a kernel, it is positive definite as in
the standard nomenclature (see e.g., Theorem 4.16 in Christmann and Steinwart (2008)).
Here, one can interpret I�s : RN

! C↵(Rn), where ↵ denotes the smoothness of �s. In
practice, common choices of kernel include the Gaussian �s(r) = exp(� (sr)2) (Fasshauer
and McCourt, 2012), inverse quadratic function �s(r) = (1 + (sr)2)�1, or Matérn class
kernel (Fuselier and Wright, 2013). In our numerical examples, we have tested these kernels
and they do not make too much di↵erence when the shape parameters are tuned properly.
However, we will develop the theoretical analysis with the Matérn kernel in Section 4.1 as
it induces a reproducing kernel Hilbert space (RKHS) with Sobolev-like norm.

The expansion coe�cients {ck}Nk=1
in (2) can be determined by a collocation method,

which enforces the interpolation condition I�sf(xj) = f(xj) for all j = 1, . . . , N , or the
following linear system with the interpolation matrix �:

2

6664

�s (kx1 � x1k) �s (kx1 � x2k) · · · �s (kx1 � xNk)
�s (kx2 � x1k) �s (kx2 � x2k) · · · �s (kx2 � xNk)

...
...

. . .
...

�s (kxN � x1k) �s (kxN � x2k) · · · �s (kxN � xNk)

3

7775

| {z }
�

2

6664

c1
c2
...
cN

3

7775

| {z }
c

=

2

6664

f(x1)
f(x2)

...
f(xN )

3

7775

| {z }
f

. (3)

In general, better accuracy is obtained for flat kernels (small s) [see e.g., Chap. 16–17
of (Fasshauer, 2007)], however, the corresponding system in (3) becomes increasingly ill-
conditioned (Fornberg and Wright, 2004; Fornberg et al., 2011; Fasshauer and McCourt,
2012). In this article, we will not focus on the shape parameter issues. Numerically, we
will empirically choose the shape parameter and will use pseudo-inverse to solve the linear
system in (3) when it is e↵ectively singular.

With these backgrounds, we are now ready to discuss the RBF approximation to various
di↵erential operators.

2.1 Gradient of a Function

We first review the RBF projection method proposed since Kansa (1990)’s pioneering work
and following works in Fuselier and Wright (2013); Flyer and Bengt (2015); Shankar et al.
(2015); Lehto et al. (2017) for approximating gradients of functions on manifolds. The
projection method represents the manifold di↵erential operators as tangential gradients,
which are formulated as the projection of the appropriate derivatives in the ambient space.

9



Harlim, Jiang and Peoples

Precisely, the manifold gradient on a smooth function f : M ! R evaluated at x 2 M in
the Cartesian coordinates is given as,

gradgf(x) := PgradRnf(x) = (
dX

i=1

⌧i⌧
>
i )gradRnf(x),

where the subscript g is to associate the di↵erential operator to the Riemannian metric g
induced by M and gradRn = [@X1 , · · · , @Xn ]> is the usual Euclidean gradient operator in
Rn. Let e`, ` = 1, ..., n be the standard orthonormal vectors in X` direction in Rn, we can
rewrite above expression in component form as

gradgf(x) :=

2

64
(e1 ·P) gradRnf(x)

...
(en ·P) gradRnf(x)

3

75 =

2

64
p1 · gradRnf(x)

...
pn · gradRnf(x)

3

75 :=

2

64
G1f(x)

...
Gnf(x)

3

75 (4)

where p` is the `�th column of the projection matrix P.
One can now consider estimating the gradient operator from the available training data

set X = {x1, . . . , xN}. In such a case, one considers the RBF interpolant I�sf 2 C↵(Rn)
in (2) which interpolates f on the available training data set X = {x1, . . . , xN} by solving
(3). Using the interpolant (2) and denoting rk := kx� xkk, one can evaluate the tangential
derivative in the Xi direction at each node {xj 2 X}

N
j=1

as,

GiI�sf(x)|x=xj = p>
i · gradRnI�sf(x)|x=xj = p>

i · gradRn

NX

k=1

ck�s(rk(x))|x=xj

=
NX

k=1

ckp
>
i · gradRn�s(rk(x))|x=xj

=
NX

k=1

ckp
>
i · (x� xk)

�0s(rk(x))

rk(x)
|x=xj :=

NX

k=1

J [i]
jkck.

Let Ji = [J [i]
jk]

N
j,k=1

, and also let c = (c1, . . . , cN )> and f = f(x)|X = (f(x1), . . . , f(xN )) as
defined in (3). Above equation can be written in matrix form for GiI�sf at all nodes X,

(GiI�sf) |X = Jic = Ji�
�1f := Gif , (5)

for i = 1, . . . , n. Thereafter, we define

Definition 3 Let GiI�s : RN
! C↵(Rn) and RN : C(Rn) ! RN be the restriction operator

defined as RNf = f = (f(x1), . . . , f(xN ))> for any f 2 C(M) and I�sf 2 C↵(Rn) be the
RBF interpolant as defined in (2). We define a linear map Gi : RN

! RN

Gif = RNGiI�sf . (6)

as a discrete estimator of the di↵erential operator Gi, restricted on the training data X. On
the right-hand-side, we understood RNGiI�sf = GiI�sf |X 2 RN .

10
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To conclude, we define a linear map G : RN
! RnN with,

Gf = (G1f ,G2f , . . . ,Gnf)
> , (7)

as a discrete estimator to the gradient restricted on the training data set X, in the sense
that

Gf = GRNf = RN
�
gradgI�sf

�
= (gradgI�sf)|X , (8)

where the first and third equalities follow from the definition of RN , and the second equality
follows from (4), (6), (7).

2.2 The Laplace-Beltrami Operator

The Laplace-Beltrami operator on a smooth function f 2 C1(M) is defined as �Mf =
�divg(gradgf) which is semi-positive definite. Using the previous ambient space formulation
for gradient, one can equivalently write

�Mf(x) := �divg(gradgf(x)) = �(PgradRn) ·
�
PgradRn

�
f(x)

= �(G1G1 + G2G2 + · · ·+ GnGn)f(x),

for any x 2 M . This identity yields a pointwise estimate of �M by composing the discrete
estimators for divg and gradg. Particularly, a non-symmetric estimator of the Laplace-

Beltrami operator is a map RN
! RN given by

f 7! � (G1G1 + · · ·+GnGn) f . (9)

Remark 4 The above discrete version of Laplace-Beltrami is not new. In particular, it
has been well studied in the deterministic setting. See Dziuk and Elliott (2007); Wardet-
zky (2007); Dziuk and Elliott (2013) for a detailed review of using the ambient space for
estimation of Laplace-Beltrami, as well as Fuselier and Wright (2013). In Section 5, we
will numerically study the spectral convergence of this non-symmetric discretization in the
setting where the data are sampled randomly from an unknown manifold. We will remark
on the advantages and disadvantages of such a non-symmetric formulation for manifold
learning tasks.

In the weak form, forM without boundary, the Laplace-Beltrami operator can be written
Z

M
h�MfdVol =

Z

M
hgradgh, gradgfidVol, 8f, h 2 C1(M),

where h·, ·i denotes the Riemannian inner product of vector fields. Using the estimators
from previous subsections, it is natural to estimate the Laplace-Beltrami operator in this
setting. Based on the weak formulation, we can estimate the gradient with the matrix
G : RN

! RNn, then compose with the matrix adjoint of G, where the domain and range
of G are equipped with appropriate inner products approximating the corresponding inner
products defined on the manifold. It turns out that the adjoint ofG following this procedure

11
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is just the standard matrix transpose. In particular, we have that G>G : RN
! RN given

by

G>Gf :=
⇣
G>

1 G1 +G>
2 G2 + . . .+G>

nGn

⌘
f

is a symmetric estimator of the Laplace-Beltrami operator.

Remark 5 The above symmetric formulation makes use of the discrete approximation of
continuous inner products, and only holds when the data is sampled uniformly. For data
sampled from a non-uniform density q, however, we can perform the standard technique of
correcting for non-uniform data by dividing by the sampling density. For example, the sym-
metric approximation to the eigenvalue problem corresponds to solving (�, f) that satisfies

f>G>Q�1Gf := f>
⇣
G>

1 Q
�1G1 +G>

2 Q
�1G2 + . . .+G>

nQ
�1Gn

⌘
f = �f>Q�1f , (10)

where Q 2 RN⇥N is a diagonal matrix with diagonal entries of sampling density {q(xi)}i=1,...,N .
This weighted Monte-Carlo provides an estimate for the L2(M) inner product in the weak
formulation. When q is unknown, one can approximate q using standard density estimation
techniques, such as Kernel Density Estimation methods (Parzen, 1962). In our numerical
simulations, we use the MATLAB built-in function mvksdensity.m.

2.3 Covariant Derivative

The basic idea here follows from the tangential connection on a submanifold of Rn in
Example 4.9 of Lee (2018). For smooth vector fields u, y 2 X (M), the tangential connection
can be defined as

ruy = P
�
r̄UY |M

�
, (11)

where r is the Levi-Civita connection on M , r̄ : X (Rn)⇥X (Rn) ! X (Rn) is the Euclidean
connection on Rn mapping (U, Y ) to r̄UY (Example 4.8 of Lee (2018)), P : TRn

! TM is
the orthogonal projection onto TM , and U and Y are smooth extensions of u and y to an
open subset in Rn satisfying U |M = u and Y |M = y, respectively. Such extensions exist by
Exercise A.23 and the identity result does not depend on the chosen extension by Proposition
4.5 in Lee (2018). The identity (11) holds true based on the properties and uniqueness of
Levi-Civita connection (see Lee (2018)). More geometric intuition and detailed results
can also be found in (Do Carmo and Flaherty Francis, 1992; Morita, 2001; Crane et al.,
2010; Azencot et al., 2015) and references therein. The key observation for identity (11)
is that the covariant derivative can be written in terms of the tangential projection and
Euclidean derivative. In the remainder of this section, we review the covariant derivative
from a geometric viewpoint and then formulate the tangential projection identity (11) from
a computational viewpoint.

Let u 2 X(M) be a vector field on M , and let U 2 X(Rn) be an extension of u to
an open set O ✓ M . Then U is related to u via the local parameterization as follows:
U (x) = D◆ (x)u (x) , where u(x) = (u1(x), . . . , ud(x)) is the coordinate representation of
the vector field u w.r.t. the basis

�
@

@✓r
 
. Using [D◆(x)]sr = @Xs

@✓r , we have the following
equation relating the components of the vector fields:

U s = ur
@Xs

@✓r
. (12)

12
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Using this identity, we can derive

Proposition 2.2 Let U = U i @
@Xi 2 X(Rn) be a vector field such that U |M = u 2 X(M).

Using the notation in Definition 1, we have

X

r

gij
@Xr

@✓j
@U r

@✓k
=
@ui

@✓k
+ up�i

pk. (13)

The proof is relegated in appendix A. As in the previous section, the projection matrix P in
Definition 2 has been used for approximating operators acting on functions as matrix-vector
multiplication. In the following, we first introduce a tangential projection tensor in order
to derive identities for operators acting on tensor fields with extensions. Geometrically, the
tangential projection tensor projects a vector field of X(Rn) onto a vector field of X(M).

Definition 6 The tangential projection tensor P : X(Rn) ! X(M) is defined as

P = �sr
@Xs

@✓i
gij
@Xt

@✓j
dXr

⌦
@

@Xt
, (14)

where �sr is the Kronecker delta function. In particular, for a vector field Y = Y k @
@Xk 2

X(Rn), one has

P (Y |M ) = �srY
k @X

s

@✓i
gij
@Xt

@✓j
dXr

✓
@

@Xk

◆
⌦

@

@Xt
= �srY

r @X
s

@✓i
gij
@Xt

@✓j
@

@Xt

= �srY
r @X

s

@✓i
gij

@

@✓j
2 X(M).

For convenience, we simplify our notation as PY := P (Y |M ) in the rest of the paper since
we only concern about the points restricted on manifold M . Obviously, for any vector field
v 2 X(M), we have Pv = v 2 X(M).

Using Definition in (14) and Proposition in (13), we can examine the identity ruy =
Pr̄UY via a direct calculation (see appendix A).

2.4 Gradient of a Vector Field

There are several frameworks for the discretization of vector Laplacians on manifolds such
as Discrete exterior calculus (DEC) (Hirani, 2003), finite element exterior calculus (FEC)
(Arnold et al., 2006, 2010; Gillette et al., 2017), Generalized Moving Least Squares (GMLS)
(Gross et al., 2020) and spectral exterior calculus (SEC) (Berry, 2018; Berry and Giannakis,
2020). All these methods provide pointwise consistent discrete estimates for vector field
operators such as curl, gradient, and Hodge Laplacian. Both DEC and FEC make strong
use of a simplicial complex in their formulation which helps to achieve high-order accuracy
in PDE problems but is not realistic for many data science applications. GMLS is a mesh-
free method that is applied to solving vector PDEs on manifolds in (Gross et al., 2020).
SEC can be used for processing raw data as a mesh-free tool which is appropriate for
manifold learning applications. Here, we will only focus on Bochner Laplacian and derive
the tangential projection identities for various vector field di↵erential operators in terms of
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the tangential projection and Euclidean derivative acting on vector fields with extensions.
The formulation for the Hodge and Lichnerowicz Laplacians is similar (see Appendix A).

The gradient of a vector field u 2 X(M) is defined by gradgu= ]ru, where ] is the
standard musical isomorphism notation to raise the index, in this case from a (1, 1) tensor
to a (2, 0) tensor. In local intrinsic coordinates, one can calculate

gradgu = gkj
✓
@ui

@✓k
+ up�i

pk

◆
@

@✓i
⌦

@

@✓j
.

Using (13), we can rewrite the above as

gradgu = gkm
✓
�rsg

ij @X
r

@✓j
@U s

@✓k

◆
@

@✓i
⌦

@

@✓m
,

= gkm�rsg
ij @X

r

@✓j

✓
@U s

@Xa

@Xa

@✓k

◆✓
@Xb

@✓i
@

@Xb

◆
⌦

✓
@

@Xc

@Xc

@✓m

◆
,

= �ea
✓
�ep

@Xc

@✓k
gkm

@Xp

@✓m

◆✓
�rs

@Xb

@✓i
gij
@Xr

@✓j

◆
@U s

@Xa

@

@Xb
⌦

@

@Xc
,

= P1P2

✓
�ea

@U r

@Xa

@

@Xr
⌦

@

@Xe

◆
⌘ P1P2gradRnU, (15)

where U = U s @
@Xs = up @X

s

@✓p
@

@Xs , and P1=�ts
@Xt

@✓k
gkm @Xb

@✓mdXs
⌦

@
@Xb acting on the first tensor

component @
@Xr , and P2 = �rq

@Xc

@✓i g
ij @Xr

@✓j dX
q
⌦

@
@Xc acting on the second component @

@Xe .
Evaluating at each x 2 M and using the notation in (1), Eq. (15) can be written in a
matrix form as,

gradgu(x) = P
�
gradRnU(x)

�
P =

2

4
G1U1(x) · · · G1Un(x)

...
. . .

...
GnU1(x) · · · GnUn(x)

3

5

2

4
P11(x) · · · P1n(x)

...
. . .

...
Pn1(x) · · · Pnn(x)

3

5 .

Interpreting U(x) = (U1(x), . . . , Un(x))> 2 Rn⇥1 as a vector, one sees immediately by
taking the transpose of the above formula that

gradgu(x) = (H1U(x), . . . ,HnU(x)) , (16)

where each component can be rewritten as,

HiU(x) := Pdiag (Gi, . . . ,Gi)U(x),

owing to the symmetry of P.
To write the discrete approximation on the training data set X = {x1, . . . , xn}, we

define Ui = (U i(x1), . . . , U i(xN ))> 2 RN⇥1 and concatenate these Ui to form U =
((U1)>, . . . , (Un)>)> 2 RnN⇥1. Consider now the map Hi : RnN

! RnN defined by

HiU := RNHiI�sU, (17)

where the interpolation is defined on each Ui
2 RN such that I�sU

i
2 C↵(Rn) and the

restriction RN is applied on each row. Relating to Gi in Definition 3, one can write

HiU = P⌦

2

64
Gi

. . .

Gi

3

75

Nn⇥Nn

2

64
U1

...
Un

3

75

Nn⇥1

,
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where tensor projection matrix P⌦
2 RNn⇥Nn is given by

P⌦ =
NX

k=1

2

64
P11(xk) · · · P1n (xk)

...
. . .

...
Pn1 (xk) · · · Pnn (xk)

3

75

n⇥n

⌦ [�kk]N⇥N =

2

64
diag(p11) · · · diag(p1n)

...
. . .

...
diag(pn1) · · · diag(pnn)

3

75

Nn⇥Nn

,

where ⌦ is the Kronecker product between two matrices, �kk has value 1 for the entry in kth
row and kth column and has 0 values elsewhere, and pij = (Pij(x1), . . . , Pij(xN )) 2 RN⇥1.
Finally, consider the linear map H : RnN

! RnN⇥n given by

HU := [H1U, . . . ,HnU] = RNgradgI�sU, (18)

as an estimator of the gradient of any vector field U restricted on the training data set
X, where on the right-hand-side, the restriction is done to each function entry-wise which
results in an N ⇥ 1 column vector. In the last equality, we have used the identity in (17)
and the representation in (16) for the gradient of the interpolated vector field I�sU whose
components are functions in C↵(Rn).

2.5 Divergence of a (2,0) Tensor Field

Let v be a (2, 0) tensor field of v = vjk @
@✓j ⌦

@
@✓k

and V be the corresponding extension in
ambient space. The divergence of v is defined as

div11 (v) = C1

1 (rv), (19)

where C1

1
denotes the contraction operator. Following a similar layout as before, we obtain

an ambient space formulation of the divergence of a (2, 0) tensor field (see Appendix A
for the detailed derivations). Interpreting V (x) as an n ⇥ n matrix with columns V̄i(x) =
(Vi1, . . . , Vin)> , the divergence of a (2, 0) tensor field evaluated at any x 2 M can be written
as

div11 (v(x)) = Ptr11
�
Pr̄Rn (V (x))

�
=
X

i

Pdiag(Gi, . . . ,Gi)V̄i(x) =
X

i

HiV̄i(x). (20)

Using the same procedure as before, employing div11 on the RBF interpolant (2,0) tensor
field I�sV̄i, where V̄i = V̄i|X 2 RnN⇥1 denotes the restriction of V̄i on the training data,
we arrive at an estimator of the divergence div11 of a (2, 0) tensor field. Namely, replacing
each Hi with the discrete version Hi as defined in (17), we obtain a map RnN⇥n

! RnN

given by

[V̄1, . . . , V̄n] 7! H1V̄1 + · · ·+HnV̄n.

2.6 Bochner Laplacian

The Bochner Laplacian �B : X(M) ! X(M) is defined by

�Bu = �div11
�
gradgu

�
,

where div11 is in fact the formal adjoint of gradg acting on vector fields. With an extension
to Euclidean space, the Bochner Laplacian can be formulated as:

�̄BU = �(H1H1 + · · ·+HnHn)U,
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where (16) and (20) have been used. A natural way to estimate �B is to compose the
discrete estimators for div11 and gradg. In particular, a non-symmetric estimator of the

Bochner Laplacian is a map RnN
! RnN given by

U 7! �(H1H1 + · · ·+HnHn)U,

where U = U |X 2 RnN⇥1 and Hi are as defined in (17).
The second formulation relies on the fact that div11 is indeed the formal adjoint of gradg

acting on a vector field such that,
Z

M
h�Bu, vixdVol(x) =

Z

M
hgradgu, gradgvixdVol(x), 8u, v 2 X(M),

where the inner product on the left is the Riemannian inner product of vector fields, and the
inner product on the right is the Riemannian inner product of (2, 0) tensor fields. Similar
to the symmetric discrete estimator of the Laplace-Beltrami operator, we take advantages
of the ambient space formulations in previous two subsections to approximate the inner
product with appropriate normalized inner products in Euclidean space.

First, we notice that the transpose of the map H : U 7!
⇥
H1U,H2U, . . . ,HnU

⇤
is

given by the standard transpose. Due to the possibility, however, that H> may produce a
vector corresponding to a vector field with components normal to the manifold which are
nonzero, there is a need to compose such an estimator with the projection matrix. With
this consideration, we have P⌦H>HP⌦ : RnN

! RnN given by

P⌦H>HP⌦U = P⌦H>
1 H1P

⌦U+P⌦H>
2 H2P

⌦U+ · · ·+P⌦H>
nHnP

⌦U

as a symmetric estimator of the Bochner Laplacian on vector fields.

Remark 7 Again, we note that this symmetric formulation makes use of approximating
continuous inner products, and hence obviously holds only for uniform data. For data
sampled from a non-uniform density q, we perform the same trick mentioned in Remark 5.

We conclude this section with a list of RBF discrete formulation in Table 2. One can see
the detailed derivation for the non-symmetric approximations of Hodge and Lichnerowicz
Laplacians in Appendix A. We neglect the derivations for the symmetric approximations
of the Hodge and Lichnerowicz Laplacians as they are analogous to that for the Bochner
Laplacian but involve more terms.

2.7 Numerical Verification for Operator Approximation

We now show the non-symmetric RBF (NRBF) estimates for vector Laplacians and covari-
ant derivative. The manifold is a one-dimensional full ellipse,

x = (x1, x2) = (cos ✓, a sin ✓), (21)

defined with the Riemannian metric g = sin2 ✓ + a2 cos2 ✓ for 0  ✓ < 2⇡,where a = 2 > 1.
The N = 400 data points are randomly distributed on the ellipse. The Gaussian kernel
with the shape parameter s = 1.5 was used.

16



Radial basis approximation of tensor fields on manifolds

Table 2: RBF formulation for functions and vector fields from Riemannian geometry. Here,
non-symmetric and symmetric correspond to the non-symmetric and symmetric
approximations to the di↵erential operator. The asterisk ⇤ is the formal adjoint of
the di↵erential operator. Si and Si are defined around (51) in Appendix A.

Object Continuous operator Discrete matrix

gradient gradg : C1(M) ! X(M) gradg : RN
! RN⇥n

functions f 7! [G1f, . . . ,Gnf ] f 7! (G1f , . . . ,Gnf)

divergence divg : X(M) ! C1(M) divg : RN⇥n
! RN⇥1

vector fields U 7! G1U1 + · · ·+ GnUn U 7! G1U1 + · · ·+GnUn

Laplace-Beltrami �g : C1(M) ! C1(M) �g : RN⇥1
! RN⇥1

non-symmetric f 7! � (G1G1 + · · ·+ GnGn) f f 7! � (G1G1 + · · ·+GnGn) f

symmetric f 7! (G⇤
1
G1 + · · ·+ G

⇤
nGn) f f 7!

�
G>

1
G1 + · · ·+G>

nGn
�
f

gradient gradg : X(M) ! X(M)⇥ X(M) gradg : RNn⇥1
! RNn⇥n

vector fields U 7! [H1U, . . . ,HnU ] U 7! [H1U, . . . ,HnU]

divergence div11 : X(M)⇥ X(M) ! X(M) div11 : RNn⇥n
! RNn⇥1

(2,0) tensor fields V 7! H1V̄1 + · · ·+HnV̄n [V̄1, . . . , V̄n] 7! H1V̄1 + · · ·+HnV̄n

V̄i is the ith row of V V̄i = [Vi1, . . . ,Vin] 2 RNn⇥1

Bochner Laplacian �B : X(M) ! X(M) �B : RNn⇥1
! RNn⇥1

non-symmetric U 7! �(H1H1 + · · ·+HnHn)U U 7! �(H1H1 + · · ·+HnHn)U

symmetric U 7! (H⇤
1
H1 + · · ·+H

⇤
nHn)U U 7! (P⌦H>

1
H1P⌦ + · · ·+P⌦H>

nHnP⌦)U

Hodge Laplacian �H : X(M) ! X(M) �H : RNn⇥1
! RNn⇥1

vector fields U 7! �

2

6664

H1

...

Hn

3

7775
·Ant

2

6664

H1U
...

HnU

3

7775
U 7! �

2

6664

H1

...

Hn

3

7775
·Ant

2

6664

H1U
...

HnU

3

7775

Ant is the anti-
symmetric part �

2

6664

G1

...

Gn

3

7775

✓
nP

k=1

GkUk

◆
�

2

6664

G1

...

Gn

3

7775

✓
nP

k=1

GkUk

◆

non-symmetric = �
Pn

i=1
Hi(Hi � Si)U = �

Pn
i=1

Hi(Hi � Si)U

�[GjGk]nj,k=1
U �[GjGk]nj,k=1

U

symmetric U 7!
1

2

Pn
i=1

(Hi � Si)
⇤(Hi � Si)U U 7!

1

2

Pn
i=1

P⌦(Hi � Si)
>(Hi � Si)P⌦U

+[G⇤
j Gk]nj,k=1

U +P⌦[G>
j Gk]nj,k=1

P⌦U

Lichnerowicz Lap. �L : X(M) ! X(M) �L : RNn⇥1
! RNn⇥1

Sym is the
symmetric part U 7! �

2

6664

H1

...

Hn

3

7775
· Sym

2

6664

H1U
...

HnU

3

7775
U 7! �

2

6664

H1

...

Hn

3

7775
· Sym

2

6664

H1U
...

HnU

3

7775

non-symmetric = �
Pn

i=1
Hi(Hi + Si)U = �

Pn
i=1

Hi(Hi + Si)U

symmetric U 7!
1

2

Pn
i=1

(Hi + Si)
⇤(Hi + Si)U U 7!

1

2

Pn
i=1

P⌦(Hi + Si)>(Hi + Si)P⌦U

covariant derivative r : X(M)⇥ X(M) ! X(M) r : RNn⇥1
⇥ RNn⇥1

! RNn⇥1

(U, Y ) 7! Pr̄UY (U,Y) 7! P⌦
r̄UY
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(a) Truth of Bochner Laplacian (b) Truth of Lich. Laplacian (c) Truth of Covariant Deriv.
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Figure 1: 1D ellipse in R2. The upper panels display the truth of (a) Bochner Lapla-
cian, (b) Lichnerowicz Laplacian, and (c) covariant derivative of a vector field.
The insets of upper panels display the first components of these operator ap-
proximations. The bottom panels display the errors of NRBF approximations
using analytic P (red curve) and approximated P̂ (green curve) for (d) Bochner
Laplacian, (e) Lichnerowicz Laplacian, and (f) covariant derivative. The Gaus-
sian kernel with shape parameter s = 1.5 was used. The N = 400 data points are
randomly distributed.
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We first approximate the vector Laplacians. We take a vector field u = u1 @
@✓ with

u1 (x) ⌘ u1 (x (✓)) = sin ✓. The Bochner Laplacian acting on u can be calculated as �Bu =

g�1u1,11
@
@✓ , where u1,11 =

@2u1

@✓2 + @u1

@✓ �1

11
+ u1

@�1
11

@✓ with �1

11
= 1

2
g�1 @g

@✓ . Numerically, Fig. 1(a)
shows the true Bochner Laplacian �Bu = �̄BU pointwisely, which is a 2 ⇥ 1 vector lying
in the tangent space of each given point. The inset of Fig. 1(a) displays the first vector
component of the Bochner Laplacian as a function of the intrinsic coordinate ✓. Figure
1(d) displays the error for the first vector component of Bochner Laplacian as a function
of ✓. Here, we show the errors of using the analytic P and an approximated P̂. Here
(and in the remainder of this paper), we used the notation P̂ to denote the approximated
projection matrix obtained from a second-order method discussed in Section 3. One can
clearly see that the errors for NRBF using both analytic P and approximated P̂ are small
about 0.01. Since Hodge Laplacian is identical to Bochner Laplacian on a 1D manifold, the
results for Hodge Laplacian are almost the same as those for Bochner [not shown here]. The
Lichnerowicz Laplacian is the double of Bochner Laplacian, �Lu = 2g�1u1,11

@
@✓ , as shown in

Fig. 1(b). The error for the first vector component of Lichnerowicz Laplacian is also nearly
doubled as shown in Fig. 1(e).

We next approximate the covariant derivative. The covariant derivative can be calcu-
lated as ruu = u1(@u

1

@✓ + u1�1

11
) @
@✓ as shown in Fig. 1(c). Figure 1(f) displays the error of

NRBF approximation for the first vector component of covariant derivative ruu. One can
see from Fig. 1(f) that the error for analytic P (red) is very small about 10�6 and the error
for approximated P̂ (green) is about 10�3.

3. Estimation of the Projection Matrix

When the manifoldM is unknown and identified only by a point cloud dataX = {x1, . . . , xN},
where xi 2 M , we do not immediately have access to the matrix-valued function P . In this
section, we first give a quick overview of the existing first-order local SVD method for esti-
mating P = P (x) on each x 2 M . Subsequently, we present a novel second-order method
(which is a local SVD method that corrects the estimation error induced by the curvature)
under the assumption that the data set X lies on a C3 d-dimensional Riemannian manifold
M embedded in Rn.

Let x, y 2 X ⇢ M such that |y � x| = O(⇢). Define � to be a geodesic, connecting x
and y. The curve is parametrized by the arc-length,

⇢ =

Z ⇢

0

���0(t)
�� dt,

where �(0) = x, �(⇢) = y. Taking derivative with respect to ⇢, we obtain constant velocity,
1 = |�0(t)| for all 0  t  ⇢. Let ⇢ = (⇢1, . . . , ⇢d) be the geodesic normal coordinate of y
defined by an exponential map expx : TxM ! M . Then ⇢ satisfies

⇢�0(0) = ⇢ = exp�1

x (y),

where

⇢2 = ⇢2
���0(0)

��2 = |⇢|2 =
dX

i=1

⇢2i .
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For any point x, y 2 M , let ◆ be the local parametrization of manifold such that ◆ (⇢) = y
and ◆(0) = x. Consider the Taylor expansion of ◆ (⇢) centered at 0,

◆ (⇢) = ◆(0) +
dX

i=1

⇢i
@◆(0)

@⇢i
+

1

2

dX

i,j=1

⇢i⇢j
@2◆(0)

@⇢i@⇢j
+O(⇢3). (22)

Since the Riemannian metric tensor at the based point 0 is an identity matrix, ⌧i =
@◆(0)
@⇢i

.���@◆(0)@⇢i

��� = @◆(0)
@⇢i

are d orthonormal tangent vectors that span TxM .

3.1 First-order Local SVD Method

The classical local SVD method (Donoho and Grimes, 2003; Zhang and Zha, 2004; Tyagi
et al., 2013) uses the di↵erence vector y � x = ◆(⇢)� ◆(0) to estimate T = (⌧1, . . . , ⌧d) (up
to an orthogonal rotation) and subsequently use it to approximate P = TT>. The same
technique has also been proposed to estimate the intrinsic dimension of the manifold given
noisy data (Little et al., 2009). Numerically, the first-order local SVD proceeds as follows:

1. For each x 2 X, let {y1, . . . , yK} ⇢ X be the K-nearest neighbor (one can also use
a radius neighbor) of x. Construct the distance matrix D := [D1, . . . ,DK ] 2 Rn⇥K ,
where K > d and Di := yi � x.

2. Take a singular value decomposition of D = U⌃V>. Then the leading d�columns
of U consists of T̃ which approximates a span of column vectors of T, which forms a
basis of TxM .

3. Approximate P with P̃ = T̃T̃>.

Based on the Taylor’s expansion in (22), intuitively, such an approximation can only provide
an estimate with accuracy kP̃�PkF = O(⇢), which is an order-one scheme, where the
constant in the big-oh notation, O(⇢), depends on the base point x through the curvature,
number of nearest neighbors K, intrinsic dimension d, and extrinsic dimension n, as we
discuss next. Here k · kF denotes the Frobenius matrix norm. For uniformly sampled data,
we state the following definition and probabilistic type convergence result (Theorem 2 of
(Tyagi et al., 2013)) for this local SVD method, which will be useful in our convergence
study.

Definition 8 For each point x 2 M , where M is a d-dimensional smooth manifold embed-
ded in Rn, where d+1  n. We define N✏(x) = M \Bx(

p
✏), where Bx(

p
✏) denotes the Eu-

clidean ball (in Rn) centered at x with radius
p
✏. If M has a positive injectivity radius

p
✏ >

0 at x 2 M , then there is a di↵eomorphism between N✏(x) and TxM . In such a case, there
exists a local one-to-one map TxM 3 ⇢ 7! y = expx(⇢) := (⇢, f1(⇢), . . . fn�d(⇢)) 2 M ⇢ Rn,
for y 2 M neighboring to x, with smooth functions f` : TxM ! R for ` = 1, . . . , n� d. We
also denote the maximum principal curvature at x as Kmax.

Theorem 3.1 Suppose that {yi 2 M}
K
i=1

are the K-nearest neighbor data points of x such
that their orthogonal projections, ⇢(i) ⇠ U [�

p
✏,
p
✏]d ⇢ TxM at x are i.i.d. Let W 2

R(n�d)⇥(n�d) be a matrix with components given as,

Wij = E⇢⇠U [�
p
✏,
p
✏]d [fq,i(⇢)fq,j(⇢)],
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where fq,` denotes a quadratic form of f` for ` = 1, . . . , n � d, which is the second-order
Taylor expansion about the base point 0, involving the curvature at x of M . Then, for any
⌧ 2 (0, 1), in high probability,

kP̃�PkF 

p

2⌧,

if ✏ = O(n�1d�2
|Kmax|

�2) and K = O(⌧�2d2 log n). Here k · kF denotes the standard
Frobenius matrix norm.

Remark 9 We should point out that the result above implies that the local SVD has a
Monte-Carlo error rate, ⌧ = O(K�1/2) and the choice of local neighbor of radius

p
✏ = O(⇢)

should be inversely proportional to the maximum principal curvature and the dimension
of the manifold and ambient space. Thus, to expect an error ⌧ = O(

p
✏)= O(⇢), by bal-

ancing n�1d�2
|Kmax|

�2
⇠ K�1d2 log n, this result suggests that one should choose K ⇠

d4n log n|Kmax|
2. The numerical result in the torus suggests of rate

p
✏ = O(N�1/2) (see

Figure 2). For general d-dimensional manifolds, the error rate is expected to be
p
✏ ⇠ N�1/d

due to the fact that ⇢ / N�1/d.

3.2 Second-order Local SVD Method

In this section, we devise an improved scheme to achieve the tangent space approximation
with accuracy up to order of O(⇢2), by accounting for the Hessian components in (22). The
algorithm proceeds as follows:

1. Perform the first-order local SVD algorithm and attain the d approximated tangent
vectors T̃ = [t̃1, . . . , t̃d] 2 Rn⇥d.

2. For each neighbor {yi}i=1,...,K of x, compute ⇢̃(i) = (⇢̃(i)
1
, . . . , ⇢̃(i)d ), where

⇢̃(i)j = D>
i t̃j , i = 1, . . . ,K, j = 1, . . . , d,

where Di := yi � x is the ith column of D 2 Rn⇥K .

3. Approximate the Hessian Yp = @2◆(0)
@⇢i@⇢j

2 Rn up to a di↵erence of a vector in TxM

using the following ordinary least squared regression, with p = 1, . . . , D = d(d+ 1)/2
denoting the upper triangular components (p 7! (i, j) such that i  j) of symmetric
Hessian matrix. Notice that for each y` 2 {y1, . . . , yK} neighbor of x, the equation
(22) can be written as

dX

i,j=1

⇢(`)i ⇢(`)j

@2◆(0)

@⇢i@⇢j
= 2

⇣
◆(⇢(`))� ◆(0)

⌘
� 2

dX

i=1

⇢(`)i ⌧i +O(⇢3), ` = 1, . . .K, (23)

where ⇢(`) := (⇢(`)
1
, . . . , ⇢(`)d ) denotes the geodesic coordinate that satisfies ◆

�
⇢(`)
�
=

y`. In compact form, we can rewrite (23) as a linear system,

AY = 2D>
� 2R+O(⇢3), (24)
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where R> = (r1, . . . , rK) 2 Rn⇥K denotes the order-⇢ residual term in the tangential
directions,

rj =
dX

i=1

⇢(j)i ⌧i, j = 1, . . . ,K. (25)

Here, Y 2 RD⇥n is a matrix whose pth row is Yp and

A =

0

BB@

(⇢(1)
1

)2 (⇢(1)
2

)2 . . . (⇢(1)d )2 2(⇢(1)
1
⇢(1)
2

) . . . 2(⇢(1)d�1
⇢(1)d )

...
...

...
...

...

(⇢(K)

1
)2 (⇢(K)

2
)2 . . . (⇢(K)

d )2 2(⇢(K)

1
⇢(K)

2
) . . . 2(⇢(K)

d�1
⇢(K)

d )

1

CCA 2 RK⇥D.(26)

With the choice of K in Remark 9, K > D, we approximate Y by solving an over-
determined linear problem

ÃY = 2D>, (27)

where Ã is defined as in (26) except that ⇢(j)i in the matrix entries is replaced by

⇢̃(j)i . The regression solution is given by Ỹ = 2(Ã>Ã)�1Ã>D>. Here Ỹij = Ỹ (j)
i ,

i = 1, . . . , D, j = 1, . . . , n. Here, each row of Ỹ is denoted as Ỹp = (Ỹ (1)

p , . . . , Ỹ (n)
p ) 2

R1⇥n, which is an estimator of Yp.

4. Apply SVD to

2R̃> := 2D� (ÃỸ)> 2 Rn⇥K . (28)

Let the leading d left singular vectors be denoted as  ̂ = [ ̂1, . . . ,  ̂d] 2 Rn⇥d, which
is an estimator of  = [ 1, . . . , d], where  j are the leading d left singular vectors

of R as defined in (24). We define P̂ =  ̂ ̂
>
as the estimator for P =   >, where

the last equality is valid due to Proposition 2.1(3).

Figure 2 shows the manifold learning results on a torus with randomly distributed data.
One can see that error of the first-order local SVD method is O(N�1/2) whereas second-
order method is O(N�1).

Theoretically, we can deduce the following error bound.

Theorem 3.2 Let the assumptions in Theorem 3.1 be valid, particularly ⇢ ⇠ ✏1/2. Suppose
that the matrix D 2 Rn⇥K is defined as in Step 1 of the algorithm with a fixed K is chosen
as in Remark 9 in addition to K > D = 1

2
d(d+ 1). Assume that kAk2/2(A) = K!(✏3/2)

as ✏! 0, where 2(A) denotes the condition number of matrix A based on spectral matrix
norm, k · k2, and the eigenvalues {�i}i=1,...,n of R>B>BR, where R>

2 Rn⇥K as defined
in (25), are simple with spectral gap gi := minj 6=i |�i � �j | > c✏ for some c > 0 and all

i = 1, . . . , n. Here, B := IK � Ã(Ã
>
Ã)

�1

Ã>
2 RK⇥K . Let P̂ =  ̂ ̂

>
be the second-order

estimator of P, where columns of  ̂ are the leading d left singular vectors of R̃ as defined
in (28). Then, with high probability,

kP̂�PkF = O(✏),

as ✏! 0.
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(a) max of Frob. norm error (b) mean of Frob. norm error
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Figure 2: 2D torus in R3. Comparison of convergence rates between 1st-order SVD and
our 2nd-order SVD for approximating the tangential projection matrix P. Panels
(a) and (b) show the maximum and the mean of Frobenius norm errors, respec-
tively. The error of ||P̃�P||F is O(N�1/2) for the 1st-order SVD whereas the
error of ||P̂�P||F is O(N�1) for our 2nd-order SVD. The K = 40 nearest neigh-
bors are fixed for all the simulations. The data points are uniformly distributed
in intrinsic coordinates [0, 2⇡) ⇥ [0, 2⇡) and are then mapped onto the torus in
Euclidean space.

The assumption of kAk2/2(A) = K!(✏3/2) as ✏ ! 0 is to ensure that the perturbed
matrix, Ã, is still full rank. As we will show, this condition arises from the fact that the
minimum relative size of the perturbation for the perturbed matrix to be not full rank is

1

2(A)
, i.e.,

min

(
kÃ�Ak2

kAk2
: Ã is not full rank

)
=

1

2(A)
.

The simple eigenvalues and spectral gap conditions in the theorem above are two tech-
nical assumptions needed for applying the classical perturbation theory of eigenvectors
estimation (see e.g. Theorem 5.4 of Demmel (1997)), which allow one to bound the angle
between eigenvectors of unperturbed and perturbed matrices by the ratio of the perturba-
tion error and the spectral gap as we shall see in the proof below. One can employ the
result in Theorem 3.2 whenever BR can be approximated by R̃ su�ciently well (with an
error smaller than the spectral gap of the corresponding eigenvalue). One can see from Fig.
2(b) that the asymptotics break down when N decreases to around 500. Moreover, when
N is around 500, the max norm errors are already large up to at least 0.3 for both 1st-order
and 2nd-order methods as seen from Fig. 2(a).

While we have no access to R>B>BR, since it can be accurately estimated by R̃>R̃
in the sense of kR̃>R̃�R>B>BRk2 = O(✏2) as we shall see in the following proof, let us
investigate the eigenvalues of the approximate matrix R̃>R̃ (or equivalently the singular
values of 2R̃>). Figures 3(a) and (b) show the first two singular values of 2R̃> and their
di↵erence for the torus and sphere examples, respectively. One can see the spectral gap |�̃1�
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(a) Torus, singular values of 2R̃> (b) Sphere, singular values of 2R̃> (c) Pointwise Frobenius norm error
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Figure 3: 2D torus and 2D sphere in R3. Comparison of the 1st singular value �̃1
of 2R̃> (red dots), the 2nd singular value �̃2 of 2R̃> (green dots), and their
di↵erence |�̃1� �̃2| (blue dots) for (a) 2D torus and (b) 2D unit sphere examples.
(c) Pointwise Frobenius norm errors, kP̂ � PkF , for the 2D torus (green dots)
and 2D sphere (red dots) examples. The horizontal axis corresponds to one of
the intrinsic coordinate � 2 [0, 2⇡). Randomly distributed N = 3600 data points
are used on the manifolds.

�̃2| on the same scale of �̃1 and �̃2 almost surely, regardless whether the geometry is highly
symmetric (e.g. the sphere) or not (e.g. torus) for a fixed N . This empirical verification
suggests that the two assumptions (simple eigenvalues and spectral gap condition) are not
unreasonable. In fact, in Fig. 3(c), we found that the corresponding pointwise Frobenius
norm errors, kP̂�PkF , for the torus and sphere examples using the 2nd order SVD method
are small, especially for the highly symmetric sphere. While these examples suggest that the
eigenvalues are most likely simple for randomly sample data of any fixed N , we believe that
one can use other results from perturbation theory that may require di↵erent assumptions
if the eigenvalues are non-simple. See, for instance, Chapter 2, Section 6.2 of Kato (2013).

We are now ready to prove Theorem 3.2.

Proof Recall thatT = (⌧1, . . . , ⌧d) 2 Rn⇥d is a set of orthonormal tangent vectors such that
P = TT>. Also recall that T̃ = (t̃1, . . . , t̃d) 2 Rn⇥d is the d approximated tangent vectors
such that P̃ = T̃T̃>. Then there exists some orthogonal matrix O 2 Rd⇥d such that we
have T̃ = TO+O(✏1/2) based on the first-order approximation result kP̃�PkF = O(✏1/2).

This claim can be verified as follows. First, since columns of T̃ are eigenvectors of P̃
corresponding to eigenvalue one, it is clear that Pt̃i = P̃t̃i + (P � P̃)t̃i = t̃i + O(✏1/2).
This also means that (Pt̃i)>(Pt̃j) = �i,j + O(✏1/2) for i 6= j. Since columns of PT̃ are
in span{⌧1, . . . , ⌧d}, then it is clear that there exists an orthogonal matrix O such that
PT̃ = TO + O(✏1/2). Thus, T̃ = P̃T̃ = PT̃ + O(✏1/2) = TO + O(✏1/2), where the second
equality follows from the fact that P̃�P = O(✏1/2) for each entry.

Let TO = (t1, . . . , td) 2 Rn⇥d, and we have t̃j � tj = O(✏1/2) for j = 1, . . . , d. We can
write

⇢(i)j = D>
i tj +O(✏),
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using the fact that components of Di are O(✏1/2). Based on Step 2 of the Algorithm above
and Theorem 3.1, we have in high probability, for any i = 1, . . . ,K,

|⇢̃(i)j � ⇢(i)j | = |D>
i (t̃j � tj)|+O(✏)  kDikkt̃j � tjk+O(✏)  c✏1/2✏1/2 +O(✏)  2c✏.

for some c > 0, as ✏! 0, using the fact that kDik = O(✏1/2). This implies that,

|⇢̃(k)i ⇢̃(k)j � ⇢(k)i ⇢(k)j |  |⇢̃(k)i ||⇢̃(k)j � ⇢(k)j |+ |⇢(k)j ||⇢̃(k)i � ⇢(k)i | = O(✏3/2),

where we used again |⇢j | = O(✏1/2). This means, kA � Ãk2 
p
KDkA � Ãkmax =

O(K✏3/2).
We note that the components of each row of matrix A forms a homogeneous polynomial

of degree-2, so they are linearly independent. Since the data points are uniformly sampled
from [�

p
✏,
p
✏]d, for large enough samples, K > D, these sample points will not lie on a

subspace of dimension strictly less than d. Thus, A is not degenerate and rank(A) = D
almost surely.

Furthermore, there exists a constant C > 0 such that,

kA� Ãk2

kAk2


CK✏3/2

kAk2
<

1

2(A)
,

where we used the assumption kAk2/2(A) = K!(✏3/2), as ✏! 0 for the last inequality, to
ensure that the perturbed matrix Ã is still full rank.

From (24), one can deduce,

Y|{z}
O(1)

= (A>A)�1A>
| {z }

O(
1
⇢2

)

(2D>
� 2R)| {z }

O(⇢2)

+O(⇢), (29)

where the leading order terms on both sides are O(1) since both terms A and 2D>
� 2R

are O(⇢2). Since Ã is full rank, we can solve the regression problem in (27) as,

Ỹ = 2(Ã
>
Ã)

�1

Ã>D>. (30)

Using (29) and (30), one has

2R̃ = 2D>
� ÃỸ = [2D>

�AY] + [AY � ÃỸ]

= [2R+O(⇢3)] + [A(A>A)�1A>(2D>
� 2R) +O(⇢3)� Ã(Ã

>
Ã)

�1

Ã>2D>]

= 2R+ (A(A>A)�1A>
� Ã(Ã

>
Ã)

�1

Ã>)(2D>
� 2R)� Ã(Ã

>
Ã)

�1

Ã>2R+O(⇢3)

= (A(A>A)�1A>
� Ã(Ã

>
Ã)

�1

Ã>)| {z }
O(⇢)

(2D>
� 2R)| {z }

O(⇢2)

+(IK � Ã(Ã
>
Ã)

�1

Ã>)2R| {z }
O(⇢)

+O(⇢3)

= (IK � Ã(Ã
>
Ã)

�1

Ã>)2R+O(⇢3).

25



Harlim, Jiang and Peoples

The key point here is to notice that the remaining term 2BR, whereB := IK�Ã(Ã
>
Ã)

�1

Ã>,
is in the tangent space and all the normal direction terms up to order of O(⇢2) are can-
celled out. Then, one can identify span{⌧1, . . . , ⌧d} (or span of the leading d-eigenvectors
of R>B>BR corresponding to nontrivial spectra) by computing the leading d-eigenvectors
of R̃>R̃. Moreover,

kR̃>R̃�R>B>BRk1  kR̃>
k1kR̃�BRk1 + kR̃>

�R>B>
k1kBRk1 = O(⇢4).

Similarly, kR̃>R̃ � R>B>BRk1 = O(⇢4). Therefore, kR̃>R̃ � R>B>BRk2 = O(⇢4) =
O(✏2).

Let { i}i=1,...,n and { ̃i}i=1,...,n be the unit eigenvectors of R>B>BR and R̃>R̃, re-
spectively. By Theorem 5.4 of (Demmel, 1997) and the assumption on the spectral gap of
R>B>BR, gi > c✏ for some c > 0, the acute angle between  i and  ̃i satisfies,

sin(2✓)  2
kR>B>BR� R̃>R̃k2

gi
= O(✏),

where the constant in the big-oh notation above depends on n. Then,

k i �  ̃ik
2 = k ik

2 + k ̃ik
2
� 2 >

i  ̃i = 2(1� cos(✓)) = 4 sin2
✓
✓

2

◆
= O(✏2). (31)

By Proposition 2.1(3), it is clear that P :=   >. Based on the step 4 of the Algorithm,
P̂ :=  ̂ ̂> and from the error bound in (31), the proof is complete.

Remark 10 The result above is consistent with the intuition that the scheme is of order
⇢2 = O(✏). The numerical result in the torus suggests a rate of ✏ = O(N�1). For general
d-dimensional manifolds, the error rate for the second-order method is expected to be ✏ ⇠
N�2/d, due to the fact that ⇢ / N�1/d.

4. Spectral Convergence Results

In this section, we state spectral convergence results for the symmetric estimator G>G to
the Laplace-Beltrami operator �M , as well as analogous results for the symmetric estimator
of the Bochner Laplacian P⌦H>HP⌦ to the Bochner Laplacian �B on vector fields. For
definitions of the operators and estimators of this section, please see Sections 2.2 and 2.6.
To keep the section short, we only present the proof for the spectral convergence of the
Laplace-Beltrami operator. We document the proofs of the intermediate bounds needed
for this proof in Appendices B, C.1 and C.2. We should point out that the symmetry
of discrete estimators G>G and P⌦H>HP⌦ allows the convergence of the eigenvectors
to be proved as well. Since the proof of eigenvector convergence is more technical, we
present it in Appendix C.3. The same techniques used to prove convergence results for the
Laplace-Beltrami operator are used to show the results for the Bochner Laplacian acting
on vector fields, thanks to the similarity in definitions for the Bochner Laplacian and the
Laplace-Beltrami operator and the similarity in our discrete estimators. Since these proofs
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follow the same arguments as those for the Laplace-Beltrami operator, we document them
in Appendix D. While we suspect the proof technique can also be used to show the spectral
convergence for the Hodge and Lichnerowicz Laplacians, the exact calculation can be more
involved since the weak forms of these two Laplacians have more terms compared to that
of the Bochner Laplacian.

4.1 Spectral Convergence for Laplace-Beltrami

Given a data set of points X = {x1, . . . xN} ⇢ M and a function f : M ! R, recall that
the interpolation I�sf only depends on f(x1), . . . , f(xN ). Hence, I�s can be viewed, after

restricting to the manifold, as a map either from {f : M ! R} ! C↵� (n�d)
2 (M), or as a

map

I�s : RN
! C↵� (n�d)

2 (M).

For details regarding the loss of regularity which occurs when restricting to the d-dimensional
submanifold M ⇢ Rn, see the beginning of Section 2.3 in (Fuselier and Wright, 2012). For
the Laplace-Beltrami operator, our focus is on continuous estimators, so we presently regard
I�s as a map

I�s : {f : M ! R} ! C↵� (n�d)
2 (M).

Based on Theorem 10 in (Fuselier and Wright, 2012), one can deduce the following inter-
polation error.

Lemma 4.1 Let �s be a kernel whose RKHS norm equivalent to Sobolev space of order
↵ > n/2. Then there is su�ciently large N = |X| such that with probability higher than

1� 1

N , for all f 2 H↵� (n�d)
2 (M), we have

kI�sf � fkL2(M) = O
⇣
N

�2↵+(n�d)
2d

⌘
.

Proof See Appendix B.2.

To ensure that derivatives of interpolations of smooth functions are bounded, we must
have an interpolator that is su�ciently regular. While many results in this paper hold
whenever the RKHS induced by I�s is norm equivalent to a Sobolev space of order ↵ > n/2,
we require slightly higher regularity to prove spectral convergence. In particular, we assume
the following.

Assumption 4.1 (Su�ciently Regular Interpolator) Assume that I�s has an RKHS
norm equivalent to H↵(Rn) with ↵ � n/2 + 3.

This assumption allows us to conclude that whenever f 2 C1(M), we have the following
equation: kI�sfkW 2,1(M) = O(1), where the constants depend on M, kfkW 2,1(M), and
kfkH↵�(n�d)/2(M)

. This assumption will be needed for the uniform boundedness of random
variables in the concentration inequality in the following lemmas. This statement is made
reported concisely as Lemma B.3 in Appendix B. Before we prove the spectral convergence
result, let us state the following two concentration bounds that will be needed in the proof.
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Lemma 4.2 Let f, h 2 C1(M). Then with probability higher than 1� 2

N ,

��h�Mf, hiL2(M) � hgradgI�sf, gradgI�shiL2(X(M))

��  CN
�2↵+(n�d)

2d ,

as N ! 1, where the constant C depends on k�MfkL2(M) + k�MI�shkL2(M).

Proof See Appendix C.1. In the course of the proof, we note that the prove inherits the
interpolation error rate in Lemma 4.1.

For the discretization, we need to define an appropriate inner product such that it is
consistent with the inner product of L2(M) as the number of data points N approaches
infinity. In particular, we have the following definition.

Definition 11 Given two vectors f ,h 2 RN , we define

hf ,hiL2(µN ) :=
1

N
f>h.

Similarly, we denote by k · kL2(µN ) the norm induced by the above inner product.

We remark that when f and h are restrictions of functions f and h, respectively, then the
above can be evaluated as hf ,hiL2(µN ) =

1

N

PN
i=1

f(xi)h(xi).
By the su�ciently regular interpolator in Assumption 4.1, it is clear that the concen-

tration bound in the lemma above converges as N ! 1. The next concentration bound is
as follows:

Lemma 4.3 Let f, h 2 C1(M). Let the su�ciently regular interpolator Assumption 4.1
be valid. Then with probability higher than 1� 2

N ,

���hG>Gf ,hiL2(µN ) � hgradgI�sf, gradgI�shiL2(X(M))

���  C

p
logN
p
N

for some constant C > 0, as N ! 1.

Proof See Appendix C.2.

The main results for the Laplace-Beltrami operator are as follows. First, we have the
following eigenvalue convergence result.

Theorem 4.1 (convergence of eigenvalues: symmetric formulation) Let �i denote the i-th
eigenvalue of �M , enumerated �1  �2  . . . , and fix some i 2 N. Assume that G is as
defined in (6) with interpolation operator that satisfies the hypothesis in Assumption 4.1.
Then there exists an eigenvalue �̂i of G>G such that

����i � �̂i
���  O

⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
, (32)

with probability greater than 1� 12

N .
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Proof Enumerate the eigenvalues of G>G and label them �̂1  �̂2  · · ·  �̂N . Let
S
0
i ✓ C1(M) denote an i-dimensional subspace of smooth functions on which the quantity

maxf2Si

hG>
GRNf,RNfiL2(µN )

kRNfkL2(µN )
achieves its minimum. Let f̃ 2 S

0
i be the function on which the

maximum maxf2S0
i
h�Mf, fiL2(M) occurs. WLOG, assume that kf̃k2L2(M)

= 1. Assume that

N is su�ciently large so that by Hoe↵ding’s inequality
���kRN f̃k2L2(µN )

� 1
���  Constp

N
 1/2,

with probability 1 �
2

N , so that kRN f̃k2L2(µN )
is bounded away from zero. Hence, we can

Taylor expand
hG>

GRN f̃ ,RN f̃iL2(µN )

kRN f̃k2
L2(µN )

to obtain

hG>GRN f̃ , RN f̃iL2(µN )

kRN f̃k2L2(µN )

= hG>GRN f̃ , RN f̃iL2(µN ) �
ConsthG>GRN f̃ , RN f̃iL2(µN )

p
N

.

By Lemmas 4.2 and 4.3, with probability higher than 1� 4

N , we have that

���hG>GRN f̃ , RN f̃iL2(µN ) � h�M f̃ , f̃iL2(M)

��� = O
⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

Combining the two bounds above, we obtain that with probability higher than 1� 6

N ,

h�M f̃ , f̃iL2(M) 
hG>GRN f̃ , RN f̃iL2(µN )

kRN f̃k2L2(µN )

+O
⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

Since f̃ is the function on which h�Mf, fiL2(M) achieves its maximum over all f 2 S
0
i, and

since certainly

hG>GRN f̃ , RN f̃iL2(µN )

kRN f̃k2L2(µN )

 maxf2S0
i

hG>GRNf,RNfiL2(µN )

kRNfk2L2(µN )

,

we have the following:

maxf2S0
i
h�Mf, fiL2(M)  maxf2S0

i

hG>GRNf,RNfiL2(µN )

kRNfk2L2(µN )

+O
⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

But we assumed that S 0
i is the exact subspace on which maxf2Si

hG>
GRNf,RNfiL2(µN )

kRNfk2
L2(µN )

achieves

its minimum. Hence,

maxf2S0
i
h�Mf, fiL2(M)  �̂i +O

⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

But the left-hand-side certainly bounds from above by the minimum of maxf2Sih�Mf, fiL2(M)

over all i-dimensional smooth subspaces Si. Hence,

�i  �̂i +O
⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.
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The same argument yields that �̂i  �i + O
⇣
N� 1

2

⌘
+ O

⇣
N

�2↵+(n�d)
2d

⌘
, with probability

higher than 1� 6

N . This completes the proof.

The first error term in (32) can be seen as coming from discretizing a continuous oper-
ator, while the second error term in (32) comes from the fact that continuous estimators in
our setting di↵er from the true Laplace-Beltrami by pre-composing with interpolation. The
convergence holds true for eigenvectors, though in this case, the constants involved depend
heavily on the multiplicity of the eigenvalues.

The convergence of eigenvector result is stated as follows.

Theorem 4.2 Let ✏�`
:= |�` � �̂`| denote the error in approximating the `-th distinct

eigenvalue, �`, as defined in Theorem 4.1. Let Assumption 4.1 be valid. For any `, there
is a constant c` such that whenever ✏�`�1

, ✏�`+1
< c`, then with probability higher than

1 �

⇣
2m2

+5m+24

N

⌘
, where m is the geometric multiplicity of eigenvalue �`, we have the

following situation: for any normalized eigenvector u of G>G with eigenvalue �̂`, there is
a normalized eigenfunction f of �M with eigenvalue �` such that

kRNf � ukL2(µN ) = O
⇣
N� 1

4

⌘
+O

⇣
N

�2↵+(n�d)
4d

⌘
.

As the proof is more technical, we present it in Appendix C. It is important to note that
the results of this section use analytic P. This allows us to conclude that, depending on the
smoothness of the kernel, any error slower than the Monte-Carlo convergence rate observed
numerically is introduced through the approximation of P, as discussed in the previous
section.

4.2 Spectral Convergence for the Bochner Laplacian

The Bochner Laplacian on vector fields is defined in such a way that makes the theoretical
discussion in this setting almost identical to that of the Laplace-Beltrami operator. Hence,
we relegate the proofs of the results below to Appendix D. We emphasize that the results
below will also rely on the Assumption 4.1 which allows us to have a stable interpolator of
smooth vector fields. In particular, as a corollary to Lemma B.5, the Assumption 4.1 gives
kI�suk

2

W 2,1(X(M))
= O(1) for any vector field u 2 X(M) whose components are C1(M)

functions. Details regarding the previous statement are found in Appendix B.
The main results for the Bochner Laplacian are as follows. First, we have the following

eigenvalue convergence result.

Theorem 4.3 (convergence of eigenvalues: symmetric formulation) Let �i denote the i-th
eigenvalue of �B, enumerated �1  �2  . . . . Let Assumption 4.1 be valid. For some fixed
i 2 N, there exists an eigenvalue �̂i of P⌦H>HP⌦ such that

����i � �̂i
���  O

⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
,

with probability greater than 1�
�
4n+4

N

�
.
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The same rate holds true for convergence of eigenvectors, just as in the Laplace-Beltrami
case. In fact, the proof of convergence of eigenvectors follows the same argument in Sec-
tion C.3. Before stating the main result, we have the following definition.

Definition 12 Given two vectors U,V 2 RnN representing restrictions of vector fields,
define discrete inner product L2(µN,n) in the following way:

hU,ViL2(µN,n)
=

1

N

nX

j=1

Uj
·Vj ,

where Uj
2 RN , U = ((U1)>, . . . , (Un)>)>, and similarly for Vj and V.

With this definition, we can formally state the convergence of eigenvectors result for the
Bochner Laplacian.

Theorem 4.4 Let ✏�`
:= |�` � �̂`| denote the error in approximating the `-th distinct

eigenvalue, following the notation in Theorem 4.3. Let the Assumption 4.1 be valid. For
any `, assume that there is a constant c` such that if ✏�`�1

, ✏�`+1
< c`, then with probability

higher than 1 �
⇣
2m2

+2m+3nm+8n+8

N

⌘
, we have the following situation: for any normalized

eigenvector U of P⌦H>HP⌦ with eigenvalue �̂`, there is a normalized eigenvector field v
of �B with eigenvalue �` such that

kRNv �UkL2(µN,n)
= O

⇣
N� 1

4

⌘
+O

⇣
N

�2↵+(n�d)
4d

⌘
,

where m is the geometric multiplicity of eigenvalue �`.

Proofs of the results for the Bochner Laplacian can be found in Appendix D.

5. Numerical Study of Eigenvalue Problems

In this section, we first discuss two examples of eigenvalue problems of functions defined on
simple manifolds: one being a 2D generalized torus embedded in R21 and the other 4D flat
torus embedded in R16. In these two examples, we will compare the results between the
Non-symmetric and Symmetric RBFs, which we refer to as NRBF and SRBF respectively,
using analytic P and the approximated P̂. In the first example, we further compare with
di↵usion maps (DM) algorithm, which is an important manifold learning algorithm that
estimates eigen-solutions of the Laplace-Beltrami operator. When the manifold is unknown,
as is often the case in practical applications, one does not have access to analytic P. Hence,
it is most reasonable to compare DM and RBF with P̂. While DM algorithm can be
implemented with a sparse approximation via the K-Nearest Neighbors (KNN) algorithm,
we would like to verify how SRBF P̂, which is a dense approximation, performs compared to
DM for various degree of sparseness (including not using KNN as reported in Appendix E).
Next, we discuss an example of eigenvalue problems of vector fields defined on a sphere.
Numerically, we compare the results between the RBF method and the analytic truth. Since
the size of our vector Laplacian approximation is Nn⇥Nn, the current RBF methods are
only numerically feasible for data sets with small ambient dimension n.
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5.1 Numerical Setups

In the following, we introduce our numerical setups for NRBF, SRBF, and DM methods
of finding approximate solutions to eigenvalue problems associated to Laplace-Beltrami or
vector Laplacians on manifolds.

Parameter specification for RBF: For the implementation of RBF methods, there are
two groups of kernels to be used. One group includes infinitely smooth RBFs, such as
Gaussian (GA), multi-quadric (MQ), inverse multiquadric (IMQ), inverse quadratic (IQ),
and Bessel (BE) (Fornberg et al., 2011; Flyer and Bengt, 2015; Fornberg and Lehto, 2011).
The other group includes piecewise smooth RBFs, such as Polyharmonic spline (PHS),
Wendland (WE), and Matérn (MA) (Flyer and Bengt, 2015; Fuselier and Wright, 2009;
Wendland, 1995, 2005). In this work, we only apply GA and IQ kernels and test their nu-
merical performances. To compute the interpolant matrix � in (3), all points are connected
and we did not use KNN truncations. The shape parameter s is manually tuned but fixed
for di↵erent N when we examine the convergence of eigenmodes.

Despite not needing a structured mesh, many RBF techniques impose strict requirements
for uniformity of the underlying data points. For uniformly distributed grid points, it often
occurs that the operator approximation error decreases rapidly with the number of data N
until the calculation breaks down due to the increasing ill-conditioning of the interpolant
matrix � defined in (3) (Tarwater, 1985; Schaback, 1995; Flyer and Bengt, 2015). In this
numerical section, we consider data points randomly distributed on manifolds, which means
that two neighboring points can be very close to each other. In this case, the interpolant
matrix � involved in most of the global RBF techniques tends to be ill-conditioned or
even singular for su�ciently large N . In fact, one can show that with inverse quadratic
kernel, the condition number of the matrix � grows exponentially as a function of N . To
resolve such an ill-conditioning issue, we apply the pseudo inversion instead of the direct
inversion in approximating the interpolant matrix �. In our implementation, we will take
the tolerance parameter of pseudo-inverse around 10�9

⇠ 10�4.

If the parametrization or the level set representation of the manifold is known, we
can apply the analytic tangential projection matrix P for constructing the RBF Laplacian
matrix. If the parametrization is unknown, that is, only the point cloud is given, we can first
learn P̂ using the 2nd-order SVD method and then construct the RBF Laplacian. Notice
that we can also construct the Laplacian matrix using P̃ estimated from the 1st-order SVD
(not shown in this work). We found that the results of eigenvalues and eigenvectors using
P̃ are not as good as those using P̂ from our 2nd-order SVD. We also notice that the
estimation of P and the construction of the Laplacian matrix can be performed separately
using two sets of points. For example, one can use 10, 000 points to approximate P but
use only 2500 points to construct the Laplacian matrix. This allows one to leverage large
amounts of data in the estimation of P, while too much data may not be computationally
feasible with graph Laplacian-based approximators such as the di↵usion maps algorithm.

For SRBF, the estimated sampling density is needed if the distribution of the data set
is unknown. Note that for NRBF, the sampling density is not needed for constructing
Laplacian. In our numerical experiments, we apply the MATLAB built-in kernel density
estimations (KDEs) function mvksdensity.m for approximating the sampling density. We
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also apply Silverman’s rule of thumb (Silverman, 2018) for tuning the bandwidth parameter
in the KDEs.

Eigenvalue problem solver for RBF: For NRBF, we apply the non-symmetric estimator
in (9) for solving the eigenvalue problem. The NRBF eigenvectors might be complex-valued
and are only linearly independent (i.e., they are not necessarily orthonormal). For SRBF,
we apply the symmetric estimator in (10) for solving the generalized eigenvalue problem.
When the sampling density q is unknown, we employ the symmetric formulation with the
estimated sampling density q̃(x) obtained from the KDE.

Since we used pseudo inversion to resolve the ill-conditioning issue of �, the resulting
RBF Laplacian matrix will be of low rank, L, and will have many zero eigenvalues, depend-
ing on the choice of tolerance in the pseudo-inverse algorithm. Two issues naturally arise
in this situation. First, it becomes di�cult to compute the eigenspace corresponding to the
zero eigenvalue(s), especially for the eigenvector-field problem. At this moment, we have
not developed appropriate schemes to detect the existence of the nullspace and estimate the
harmonic functions in this nullspace if it exists. Second, finding even the leading nonzero
eigenvalues (that are close to zero) can be numerically expensive. Based on the rank of the
RBF �, for symmetric approximation, one can use the ordered real-valued eigenvalues to
attain the nontrivial L eigenvalues in descending (ascending) order when L is small (large).
For the non-symmetric approximation, one can also employ a similar idea by sorting the
magnitude of the eigenvalues (since the eigenvalues may be complex-valued). This naive
method, however, can be very expensive when the number of data points N is large and
when the rank of the matrix L is neither O(10) nor close to N .

Comparison of eigenvectors for repeating eigenvalues: When an eigenvalue is non-
simple, one needs to be careful in quantifying the errors of eigenvectors for these repeated
eigenvalues since the set of true orthonormal eigenvectors is only unique up to a rotation
matrix. To quantify the errors of eigenvectors, we apply the following Ordinary Least Square
(OLS) method. Let F = (f1, . . . , fm) be the true eigenfunctions located at X corresponding
to one repeated eigenvalue �i with multiplicity m, and let Ũ = (ũ1, . . . , ũm) be their DM
or RBF approximations. Assume that the linear regression model is written as F = Ũ�+",
where " is an N ⇥m matrix representing the errors and � is a m⇥m matrix representing
the regression coe�cients. The coe�cients matrix � can be approximated using OLS by
�̂ = (Ũ>Ũ)�1(Ũ>F). The rotated DM or RBF eigenvectors can be written as a linear
combination, V̂ = Ũ�̂, where these new V̂ = (v̂1, . . . , v̂m) are in Span{ũ1, . . . , ũm}. Finally,
we can quantify the pointwise errors of eigenvectors between fj and v̂j for each j = 1, . . . ,m.
For eigenvector fields, we can follow a similar outline to quantify the errors of vector fields.
Incidentally, we mention that there are many ways to measure eigenvector errors since the
approximation of the rotational coe�cient matrix � is not unique. Here, we only provide a
practical metric that we will use in our numerical examples below.
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5.2 2D General Torus

In this section, we investigate the eigenmodes of the Laplace-Beltrami operator on a general
torus. The parameterization of the general torus is given by

x =

2

66666664

x1

x2

...
xn�2

xn�1

xn

3

77777775

=

2

666666664

(a+ cos ✓) cos�
(a+ cos ✓) sin�

...
2

n�1
(a+ cos ✓) cos n�1

2
�

2

n�1
(a+ cos ✓) sin n�1

2
�qP(n�1)/2

i=1

1

i2 sin ✓

3

777777775

, (33)

where the two intrinsic coordinates 0  ✓,�  2⇡ and the radius a = 2 > 1. The Riemannian
metric is

g =

"
bn�1

2
0

0 n�1

2
(a+ cos ✓)2

#
, (34)

where bn�1
2

:=
P(n�1)/2

i=1

1

i2 . We solve the following eigenvalue problem for Laplace-Beltrami
operator:

�g k =
�1

(a+ cos ✓)

"
@

@✓

 
(a+ cos ✓)

1

bn�1
2

@ k

@✓

!
+

@

@�

✓
2

n� 1

1

(a+ cos ✓)

@ k

@�

◆#
= �k k,

(35)
where �k and  k are the eigenvalues and eigenfunctions, respectively. After separation of
variables (that is, we set  k = �k (�)⇥k (✓) and substitute  k back into (35) to deduce the
equations for �k and ⇥k ), we obtain:

d2�k

d�2
+m2

k�k = 0,

d

d✓

✓
(a+ cos ✓)

d⇥k

d✓

◆
�

bn�1
2
m2

k

n�1

2
(a+ cos ✓)

⇥k = �bn�1
2

(a+ cos ✓)�k⇥k.

The eigenvalues to the first equation are m2

k = k2 with k = 0, 1, 2, . . . and the associated
eigenvectors are �k = {1, sin k�, cos k�}. The second eigenvalue problem can be written in
the Sturm–Liouville form and then numerically solved on a fine uniform grid with N✓ points
{✓j = 2⇡j

N✓
}
N✓�1

j=0
(Pryce, 1993). The eigenvalues �k associated with the eigenfunctions  k

obtained above are referred to as the true semi-analytic solutions to the eigenvalue problem
(35).

In our numerical implementation, data points are randomly sampled from the gen-
eral torus with uniform distribution in intrinsic coordinates. For this example, we also
show results based on the di↵usion maps algorithm with a Gaussian kernel, K✏(x, y) =

exp(�kx�yk2
4✏ ), where ✏ denotes the bandwidth parameter to be specified. The sampling

density is estimated using the KDE estimator proposed by Loftsgaarden and Quesenberry
(1965). For an e�cient implementation, we use the K-nearest neighbors algorithm to avoid
computing the graph a�nity between pair of points that are su�ciently far away. In Ap-
pendix E, additional numerical results for other choices of K (including K = N or no KNN
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Figure 4: 2D general torus in R21. Comparison of eigenfunctions of Laplace -Beltrami
for k = 2, 9, 13 among NRBF using P and P̂, SRBF using P and P̂, and DM
using K = 100. For NRBF, IQ kernel with s = 0.5 is used, and for SRBF, IQ
kernel with s = 0.1 is used. For DM with K = 100, the auto-tuned algorithm for
the bandwidth ✏ is used. The horizontal and vertical axes correspond to ✓ and
�, respectively. N = 2500 randomly distributed data points on the manifold are
used for computing the eigenvalue problem. The eigenvectors are then generalized
onto the 32⇥ 32 well-sampled grid points {✓i,�j} = {

2⇡i
32

, 2⇡j
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}
31
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for plotting.

35



Harlim, Jiang and Peoples
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Figure 5: 2D general torus in R21. Comparison of (a) eigenvalues, (b) error of eigen-
values, and (c) error of eigenvectors, among NRBF, SRBF, and DM. For NRBF,
IQ kernel with s = 0.5 is used, and for SRBF, IQ kernel with s = 0.1 is used.
For SRBF, the KDE estimated q̃ is used. Randomly distributed N = 2500 data
points on the manifold are used for solving the eigenvalue problem.

being used) are reported. It is worth noting that the additional results in Appendix E
suggest that the accuracy of the estimation of eigenvectors does not improve for any values
of K that we tested. To further check the numerical optimality of the choice of bandwidth
parameter ✏, we also empirically check whether an improved estimate can be attained by
varying ✏ around the auto-tuned value. We found that the auto-tuned method is more
e↵ective when K is relatively small, which motivates the use of small K in verifying the
numerical convergence. Figure 6 shows the sensitivity of the estimates as ✏ is varied for
fixed K = 100 and N = 2500. For the convergence result, we choose K ⇠

p
N following

the theoretical guideline in Calder and Trillos (2022) that guarantees a convergence rate
of ✏ = O

�
(KN )2/d

�
. Once K is fixed, the parameter ✏ is selected based on the auto-tuned

algorithm introduced in Coifman et al. (2008). Specifically, we set K = 60, 100, 144, 200 for
N = 1024, 2500, 5000, 10000, respectively.

To apply NRBF, we use IQ kernel with s = 0.5. To apply SRBF, we use IQ kernel with
s = 0.1. Figure 4 shows the comparison of eigenfunctions for modes k = 2, 9, 13 among the
semi-analytic truth, NRBF with P and P̂, SRBF with P and P̂, and DM. One can see from
the first row of Fig. 4 that when k = 2 is very small, all the methods can provide excellent
approximations of eigenfunctions. For larger k, such as 9 and 13, NRBF methods with P
or P̂ provide more accurate approximations compared to SRBF with P and P̂ and DM. In
fact, the eigenvectors obtained from NRBF with P are accurate and very smooth as seen
from the second column of Fig. 4. On the other hand, SRBF with P̂ does not produce
eigenvectors that are qualitatively much better than those of DM.

Figure 5 further quantifies the errors of eigenvalues and eigenfunctions for all the meth-
ods. One can see that NRBF with P performs much better than all other methods on
this 2D manifold example. When the manifold is unknown, one can diagnose the manifold
learning capabilities of the symmetric and non-symmetric RBF using P̂ compared to DM.
One can see that NRBF with P̂ (red curve) performs better than the other two methods.
One can also see that DM (blue curve) performs slightly better than SRBF with P̂ (cyan
curve) in estimating the leading eigenvalues but somewhat worst in estimating eigenvalues
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corresponding to the higher modes (Fig. 5(b)). In terms of the estimation of eigenvectors,
they are comparable (blue and cyan curves Fig. 5(c)). Additionally, SRBF with P (yel-
low curve) and SRBF with P̂ (cyan curve) produce comparable accuracies in terms of the
eigenvector estimation. This result, where no advantage is observed using the analytic P
over the approximated P̂, is consistent with the theory which suggests that the error bound
is dominated by the Monte-Carlo error rate provided smooth enough kernels are used.

(a) Error of Spectra vs. parameter (b) Error of Eigenfunctions vs. parameter

10−2 10−1 10010−3

10−2

10−1

100

Ab
so

lu
te

 E
rro

r o
f S

pe
ct

ra

Parameter

 

 

DM, low k

SRBF P, low k

SRBF P̂, low k

 

 
DM, high k

SRBF P, high k

SRBF P̂, high k

10−2 10−1 10010−3

10−2

10−1

100

ℓ
2
-n
o
rm

E
rr
o
r

Parameter

 

 
DM, low k

SRBF P, low k

SRBF P̂, low k

 

 
DM, high k

SRBF P, high k

SRBF P̂, high k

Figure 6: 2D general torus in R21. Sensitivity of (a) eigenvalues and (b) eigenfunctions
with respect to the parameter (bandwidth for DM and shape parameter for SRBF
using true P and SRBF using estimated P̂). The blue, yellow and cyan curves
denote the average error of eigenvalues or eigenvectors over modes 2-5 (low k),
while the red, green, and black curves denote the average error of eigenvalues or
eigenvectors over modes 21-30 (high k). For SRBF, IQ kernel is used and shape
parameter s ranges from 10�2 to 100. For DM, K = 100 nearest neighbors are
used and bandwidth ✏ ranges from 10�2 to 100. In this experiment, we fixed the
N = 2500 data points which are randomly distributed on the general torus with
uniform distribution in the intrinsic coordinates.

In the previous two figures, we showed the SRBF estimates corresponding to a specific
choice of s = 0.1. Now let us check the robustness of the method with respect to other
choices of the shape parameter. In Fig. 6, we show the errors in the estimation of eigenvalues
and eigenvectors. Specifically, we report the average errors of low modes (between modes
2-5) for DM (blue), SRBF with P (yellow), and SRBF with P̂ (cyan). For these low modes,
notice that with the optimal shape parameter, s = 0.4, the eigenvalue estimates from SRBF
with P̂ are slightly less accurate than the di↵usion maps. For this shape parameter value,
the SRBF with P̂ produces an even more accurate estimation of the leading eigenvalues.
However, the accuracy of the SRBF eigenvectors decreases slightly under this parameter
value. We also report the average errors of high modes (between modes 21-30) for DM (red),
SRBF with P (green), and SRBF with P̂ (black). For these high modes, both SRBFs are
uniformly more accurate than DM in the estimation of eigenvalues, but the accuracies of
the estimation of eigenvectors are comparable. More comparisons can be found in Appendix
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E. Overall, SRBF and DM show comparable results for the eigenvalue problem. For both
SRBF and DM, the eigenvalue estimates are sensitive to the choice of the parameter while
the eigenvector estimates are not. Based on numerical experiments with a wide range of
parameters, we empirically found that DM has a slight advantage in the estimation of
leading spectrum while the SRBF has a slight advantage in the estimation of non-leading
spectrum.

In Fig. 7, we examine the convergence of eigenvalues and eigenvectors for NRBF with
P̂ in the case of unknown manifold. For NRBF with P̂, since the eigenvalues are complex
value, Fig. 7(a) displays all the eigenvalues on a complex plane. Here are four observations
from our numerical results:

1. When N increases, more eigenvalues with large magnitudes flow to the “tail” as a
cluster packet.

2. The magnitude of imaginary parts decays as N increases.

3. For the leading modes with small magnitudes, NRBF eigenvalues converge fast to the
real axis and converge to the true spectra at the same time.

4. It appears that all of the eigenvalues lie in the right half plane with positive real parts
for this 2D manifold as long as N is large enough (N > 1000). Notice that this result
is consistent with the previous result reported in (Fuselier and Wright, 2013). In that
paper, the authors considered the negative definite Laplace-Beltrami operator and
numerically observed that all eigenvalues are in the left half plane with negative real
parts for many complicated 2D manifolds for large enough data.

In Fig. 7(b)-(d), we would like to verify that the convergence rate of the NRBF is dominated
by the error rate in the estimation of P. In all numerical experiments in these panels, we
solve eigenvalue problems of discrete approximation with a fixed 2500 data points as in
previous examples. Here, we verify the error rate in terms of the number of points used to
construct P̂, which we denote as Np. For the 2D manifolds, we found that the convergence
rate (panel (b)) for the leading 12 modes decay with the rate N�1

p , which is consistent with
the theoretical rate deduced in Theorem 3.2 and the discussion in Remark 10. This rate is
faster than the Monte-Carlo rate even for randomly distributed data. In panels (c)-(d), we
report the detailed errors in the eigenvalue and eigenvector estimation for each mode. This
result suggests that if N is large enough (as we point out in bullet point 4 above), one can
attain accurate estimation by improving the accuracy of the estimation of P̂ by increasing
the sample size, Np.

In Fig. 8, we examine the convergence of eigenvalues and eigenvectors for DM and
SRBF with P̂ in the case of the unknown manifold. Previously in Figs. 4-6, we showed
result with N = 2500 fixed, now we examine the convergence rate as N increases. For DM
and SRBF with P̂, the Laplacian matrix is always symmetric positive definite, so that their
eigenvalues and eigenvectors must be real-valued and their eigenvalues must be positive.
Figures 8(c)-(e) display the errors of eigenvalues and eigenvectors for DM and SRBF for
N = 1024, 2500, 5000, 10000. For robustness, we report estimates from 16 experiments,
where each estimate corresponds to independent randomly drawn data (see thin lines). The
thicker lines in each panel correspond to the average of these experiments. One can observe
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(a) Conv. of NRBF wrt N (b) Conv. of NRBF wrt P̂
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Figure 7: 2D general torus in R21. Convergence of eigenvalues and eigenvectors for the
NRBF method. Here N denotes the number of points for solving the eigen-
value problem, while Np denotes the number of points for estimating P̂. (a)
Convergence of eigenvalues with respect to N for NRBF using P̂. In panel (a),
N data points are used for both approximating P̂ and evaluating NRBF matri-
ces. In panels (c) and (d), shown is the convergence of NRBF eigenvalues and
NRBF eigenfunctions with respect to P̂ for varying values of Np, but with fixed
N = 2500 data points used for solving the NRBF eigenvalue problem. (b) For
each Np, plotted are the averages of errors of eigenvalues or eigenfunctions for
the leading 12 modes (2nd-13rd modes). The convergence rate of eigenvalues and
eigenfunctions are both N�1

p . IQ kernel with s = 0.5 was fixed for all cases. The
data points are randomly distributed on the general torus according to a uniform
distribution in the intrinsic coordinates.
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(a) Conv. of Eigenvalues (b) Conv. of Eigenfunctions
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Figure 8: 2D general torus in R21. Convergence of (a) eigenvalues and (b) eigenfunctions
for DM and SRBF using P̂. For each N , the average error of eigenvalues or
eigenvectors over the leading four modes (2nd-5th modes) are plotted. For SRBF,
IQ kernel with s = 0.1 was fixed for each N . Comparison of errors of eigenvalues
for (c1) DM, (d1) SRBF using estimated sampling density q̃, and (e1) SRBF using
the true sampling density q are shown. Plotted in (c2)-(e2) are the corresponding
comparison of errors of eigenvectors. For each N , 16 independent trials are run
and depicted by light color. For each N , the average of all 16 trials are depicted
by dark color. For each trial, randomly distributed data points on the manifold
are used for computation.

40



Radial basis approximation of tensor fields on manifolds

from Figs. 8(a) and (b) that the errors of the leading four modes for both methods are
comparable and decay on the order of N�1/2. This rate is consistent with Theorems 4.1
and 4.2 with smooth kernels for the SRBF. On the other hand, this rate is faster than the

theoretical convergence rate predicted in (Calder and Trillos, 2022), N� 1
d+4 . One can also

see that SRBF using KDE q̃ (red dash-dotted curve) provides a slightly faster convergence
rate for the error of eigenfunction compare to those of SRBF with analytic q, which is
counterintuitive. In the next example, we will show the opposite result, which is more
intuitive. Lastly, more detailed errors of the eigenvalues and eigenvectors estimates for each
leading mode are reported in Figs. 8(c)-(e), from which one can see the convergence for
each leading mode for both SRBF and DM. One can also see the slight advantage of SRBF
over DM in the estimation of non-leading eigenvalues while the slight advantage of DM
over SRBF in the estimation of leading eigenvalues (consistent to the result with a fixed
N = 2500 shown in Figs. 5 and 6).

5.3 4D Flat Torus

We consider a d�dimensional manifold embedded in R2md with the following parameteri-
zation,

x =
1

p
1 + · · ·+m2

0

B@
cos(t1), sin(t1), · · · cos(mt1), sin(mt1),

... · · · · · · · · ·
...

cos(td), sin(td), · · · cos(mtd), sin(mtd)

1

CA ,

with 0  t1  2⇡, · · · , 0  td  2⇡. The Riemannian metric is given by a d ⇥ d identity
matrix Id. The Laplace-Beltrami operator can be computed as �gu = �

Pd
i=1

@2u
@t2i

. For

each dimension ti, the eigenvalues of operator �
@2

@t2i
are {0, 1, 1, 4, 4, . . . , k2, k2, . . .}. The

exact spectrum and multiplicities of the Laplace-Beltrami operator on the general flat torus
depends on the intrinsic dimension d of the manifold. In this section, we study the eigen-
modes of Laplace-Beltrami operator for a flat torus with dimension d = 4 and ambient
space R2md = R16. In this case, the spectra of the flat torus can be calculated as

spectra 0 1 2 3 4
mode k 1 2 ⇠ 9 10 ⇠ 33 34 ⇠ 65 66 ⇠ 89

, (36)

where the eigenvalues 0, 1, 2, 3, 4 have multiplicities of 1, 8, 24, 32, 24, respectively. Our mo-
tivation here is to investigate if RBF methods su↵er from curse of dimensionality when
solving eigenvalue problems.

Numerically, data points are randomly distributed on the flat torus with uniform distri-
bution. To apply NRBF, we use GA kernel with s = 0.5. To apply SRBF, we use IQ kernel
with s = 0.3. Figure 9 shows the results of eigenvalues and eigenfunctions for NRBF with
P and P̂, and SRBF with P̂. One can see from Figs. 9(b) and (c) that when N = 30000
is large enough, NRBF with P (black dashed curve) performs much better than the other
methods. One can also see that NRBF with P̂ (red curve) and SRBF with P̂ (cyan curve)
are comparable when the manifold is assumed to be unknown.

For the NRBF method using P̂, all the four observations in Example 5.2 persist. How-
ever, we should point out that for the last observation (for all numerical eigenvalues in the
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Figure 9: 4D flat torus in R16. Comparison of (a) eigenvalues, (b) error of eigenvalues,
and (c) error of eigenvectors, among NRBF and SRBF. For NRBF, GA kernel with
s = 0.5 is used, and for SRBF, IQ kernel with s = 0.3 is used. The N = 30, 000
data points are randomly distributed on the flat torus.

right half plane with positive real parts) to hold, the number of points N has to be around
20000 as can be seen from Fig. 10(a). When N = 10000 is not large enough, there are
many irrelevant eigenvalues with negative real parts (blue crosses), which is a sign of spec-
tral pollution. Moreover, the leading eigenvalues (yellow dots) are not close to the truth
(red circles) [the inset of Fig. 10(a)]. When N increases to 20000 or 30000, the irrele-
vant eigenvalues do not completely disappear (they appear near eigenvalues with larger real
components) even though NRBF eigenvalues (magenta and green dots) lie in the right half
plane. Here, the leading NRBF eigenvalues (dark green dots) approximate the truth (red
circles) more accurately [the inset of Fig. 10(a)].

For NRBF, we also repeat the experiment with N = 10000 data points using the analytic
P. We found that the profile of blue crosses in Fig. 10(a) still persists even if the analytic
P was used to replace the approximated P̂ [not shown]. The only slight di↵erence was that
the errors of the leading modes became smaller if P̂ was replaced with P [red and black
curves in Fig. 9(b)]. This numerical result suggests that these irrelevant eigenvalues (blue
crosses in Fig. 10(a)) are due to not enough data points rather than the inaccuracy of P̂.

In contrast, when (N = 30000) data points are used, we already observed in Fig. 9(b)
and (c) that NRBF with P (black dashed curve) performs much better than NRBF with P̂
(red solid curve). One can expect the errors of the NRBF with P̂ (red curve in Fig. 9(b))
to decay to the errors of the NRBF with P (black curve in Fig. 9(b)) as the data points
used to learn the tangential projection matrices P̂ is increased (beyond 30, 000 points) while
the same fixed N = 30000 data points are used to construct the Laplacian matrix for the
eigenvalue problem. This scenario is practically useful since the approximation of P̂ is
computationally cheap even with a large number of data, whereas solving the eigenvalue
problem of a dense, non-symmetric RBF matrix is very expensive when N is large. In Figs.
10(b) and (c) for NRBF, we demonstrate the improvement with this estimation scenario,
especially with respect to the number of points Np used to construct P̂. We found that

the rate is N�1/2
p which is consistent with our expectation as noted in Remark 10 for 4-

dimensional examples.
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(a) Conv. of NRBF Eigenvals. (b) Conv. of NRBF wrt P̂
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Figure 10: 4D flat torus in R16. (a) Convergence of eigenvalues with respect to N for
NRBF using P̂. For panel (a), N data points are used for both approximating
P̂ and evaluating NRBF matrices. The leading modes in legend are referred to
as the 89 numerical NRBF eigenvalues closest to the truth listed in equation
(36). Convergence of (c) NRBF eigenvalues and (d) NRBF eigenfunctions with
respect to P̂ estimated from di↵erent Np number of points. For panels (c) and
(d), the same N = 30, 000 data points are used for evaluating NRBF matrices
but di↵erent Np data points are used for approximating P̂ at those 30, 000 data

points. In panel (b), plotted is the convergence rate of O(N�1/2
p ) for the leading

8 modes (2nd-9th modes). GA kernel with s = 0.5 was fixed for all N . The
data points are randomly distributed on the flat torus.
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(a) Conv. of Eigenvalues (c) KDE q̃, Eigenvalues (e) KDE q̃, Eigenfuncs.
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Figure 11: 4D flat torus in R16. Convergence of (a) eigenvalues and (b) eigenvectors for
SRBF using P̂ averaged over the first eight modes (2nd-9th modes). In (c),
and (d) we plot the error of eigenvalues for each mode, while in (e), and (f)
we plot the error of eigenvectors. For each panel, IQ kernel with s = 0.3 was
used. Panels (c) and (d) show the errors of eigenvalues using the estimated
sampling density q̃ and true sampling density q, respectively. Panels (e) and
(f) show the corresponding errors of eigenvectors. In each of these panels, 16
independent trials are run and depicted by light color. The average of all 16
trials are depicted by dark color. The data points used for computation are
randomly distributed on the manifold.
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We also inspect the convergence of NRBF when the dimension of the manifold varies. In
particular, we compare the numerical result with a 3D flat torus example in R12 as well as
a 5D flat torus example in R20. For the 3D flat torus, we found that irrelevant eigenvalues
appear in the left half plane when N = 3, 000, and those eigenvalues disappear when N
increases to 10, 000 [not shown]. For the 5D flat torus, we found that irrelevant eigenvalues
always exist in the left half plane even when N increases to 30, 000 [not shown]. Based on
these experiments, we believe that more data points are needed for accurate estimations of
the leading order spectra of NRBF in higher dimensional cases. This implies that NRBF
methods su↵er from curse of dimensionality.

We now analyze the results of SRBF. Figure 11 displays the errors of eigenmodes for
SRBF for N = 5000, 10000, and 30000. One can see from Figs. 11(a) and (b) that the errors
of eigenvalues and eigenvectors of the leading eight modes decrease on order of N�1/2 for
SRBF with P̂ and true q. The convergence can also be examined for each leading mode for
SRBF using P̂ and true q in Figs. 11(d) and (f). However, the convergence is not clear for
SRBF using P̂ and KDE q̃ as shown in Figs. 11(a)-(c)(e). This implies that P̂ is accurate
enough, whereas the sampling density q̃ is not. We suspect that the use of KDE for the
density estimation in 4D may not be optimal. This leaves room for future investigations
with more accurate density estimation methods.

5.4 2D Sphere

In this section, we study the eigenvector field problem for the Hodge, Bochner and Lich-
nerowicz Laplacians, on a 2D unit sphere. The parameterization of the unit sphere is given
by

x =

2

4
x
y
z

3

5 =

2

4
sin ✓ cos�
sin ✓ sin�

cos ✓

3

5 , for
✓ 2 [0,⇡]
� 2 [0, 2⇡)

, (37)

with Riemannian metric given as,

g =


1 0
0 sin2 ✓

�
. (38)

The analytical solution of the eigenvalue problem for the Laplace-Beltrami operator on
the unit sphere consists of the set of Laplace’s spherical harmonics with corresponding
eigenvalue � = l(l + 1) for l 2 N+. In particular, the leading spherical harmonics can be
written in Cartesian coordinate as

 = xi, for � = 2,
 = 3xixk � �ikr2, for � = 6,
 = 15xixkxn � 3�ikr2xn � 3�knr2xi � 3�nir2xk, for � = 12,

(39)

for indices i, k, n = 1, 2, 3, where (x1, x2, x3) = (x, y, z) and r2 = x2 + y2 + z2.
We start with the analysis of spectra and corresponding eigenvector fields of Hodge

Laplacian on a unit sphere. The Hodge Laplacian defined on a k-form is

�H = dk�1d
⇤
k�1

+ d⇤kdk,
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which is self-adjoint and positive definite. Here, d is the exterior derivative and d⇤ is the
adjoint of d given by

d⇤k�1
= (�1)d(k�1)+1

⇤ dd�k⇤ : ⌦k(M) ! ⌦k�1(M),

where d denotes the dimension of manifold M and ⇤ : ⌦k(M) ! ⌦d�k(M) is the standard
Hodge star operator. Obviously, one has dd = 0 and d⇤d⇤ = 0 and the following diagram:

⌦0(M)
d0

GGGGGGBF GGGGGG

d⇤
0

⌦1(M)
d1

GGGGGGBF GGGGGG

d⇤
1

⌦2(M)
d2

GGGGGGBF GGGGGG

d⇤
2

· · · ,

with ⌦0(M) = C1(M). We note that Hodge Laplacian �H reduces to Laplace-Beltrami
�M when acting on functions. To obtain the solution of the eigenvalue problem for Hodge
of 1-form, we can apply the results from (Folland, 1989) or we can provide one derivation
based on the following proposition:

Proposition 5.1 Let M be a d�dimensional manifold and �H be the Hodge Laplacian on
k-form. Then,
(1) ⌦k(M) = imdk�1 � im d⇤k � ker�H .
(2) � (�H) \{0} = �

�
dk�1d⇤k�1

�
\{0} [ � (d⇤kdk) \{0}.

(3) � (dkd⇤k) \{0} = � (d⇤kdk) \{0} for k = 0, 1, . . . , d.
(4) � (dkd⇤k) = �

�
d⇤d�k�1

dd�k�1

�
for k = 0, 1, . . . , d� 1.

Proof (1) is the Hodge Decomposition Theorem. The proof of (2) and (3) can be referred to
as pp 138 of (Jost and Jost, 2008). For (4), we first show that � (dkd⇤k) ✓ �

�
d⇤d�k�1

dd�k�1

�
.

Assume that dkd⇤k↵ = �↵ for ↵ 2 ⌦k+1(M). Taking Hodge star ⇤ at both sides, one arrives
at the result, (�1)dk+1

⇤ dk ⇤ dd�k�1 ⇤ ↵ = d⇤d�k�1
dd�k�1(⇤↵) = � ⇤ ↵. Vice versa one can

prove � (dkd⇤k) ◆ �
�
d⇤d�k�1

dd�k�1

�
.

Corollary 5.1 Let M be a 2D surface embedded in R3 and �H = ] (dd⇤ + d⇤d) [ be the
Hodge Laplacian on vector fields X(M). Then, the non-trivial eigenvalues of Hodge Lapla-
cian, � (�H), are identical with the non-trivial eigenvalues of Laplace-Beltrami operator,
� (�M ) \{0}, where the number of eigenvalues of the Hodge Laplacian doubles those of
the Laplace-Beltrami operator. Specifically, the corresponding eigenvector fields to nonzero
eigenvalues are PrR3 and n ⇥ rR3 , where  is the eigenfunction of Laplace-Beltrami
�M and n is the normal vector to surface M .

Proof First, we have � (d0d⇤0) \{0} = � (d⇤
0
d0) \{0} = � (�M ) \{0} using Proposition 5.1

(3). Second, we have � (d⇤
1
d1) \{0} = � (d0d⇤0) \{0} = � (�M ) \{0} using Proposition 5.1

(3) and (4). Using Proposition 5.1 (2), we obtain the first part in Corollary 5.1. That is,
the eigenvalues of Hodge Laplacian for 1-forms or vector fields are exactly of eigenvalues
of Laplace-Beltrami, and the number of each eigenvalue of Hodge Laplacian doubles the
multiplicity of the corresponding eigenspace of the Laplace-Beltrami operator.

To simplify the notation, we use d to denote dk for arbitrary k, which is implicitly
identified by whichever k�form it acts on. We now examine the eigenforms. Assume that
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 is an eigenfunction for the Laplace-Beltrami operator �M associated with the eigenvalue
�, that is, �M = d⇤

0
d0 = � . Then, one can show that d 2 ⌦1(M) is an eigenform of

�H ,
�Hd = (dd⇤ + d⇤d) d = dd⇤d = d� = �d . (40)

One can also show that ⇤d 2 ⌦1(M) is an eigenform,

�H ⇤ d = (dd⇤ + d⇤d) ⇤ d = d⇤d ⇤ d 

= � ⇤ d ⇤ d ⇤ d = ⇤dd⇤d = ⇤d� = � ⇤ d , (41)

where we have used d⇤
1
= (�1)2(1)+1

⇤ d0⇤ and d⇤
0
= (�1)1 ⇤ d1⇤. Thus, based on Hodge

Decomposition Theorem 5.1 (1), harmonic forms and above eigenforms d and ⇤d form a
complete space of ⌦1(M).

Last, we compute the corresponding eigenvector fields. The corresponding eigenvector
field for d is

]d = gij i
@

@✓j
= PrR3 . (42)

Assume that
�
✓1, ✓2

 
is the local normal coordinate so that the Riemannian metric is locally

identity gij = �ij at point x. The corresponding eigenvector field for ⇤d is

] ⇤ d = ] ⇤  id✓
i = ]�12ij  

id✓j = ]
�
 1d✓2 �  2d✓1

�

= �
@ 

@✓2
@

@✓1
+
@ 

@✓1
@

@✓2
= �(rR3 ·

@x

@✓2
)
@

@✓1
+ (rR3 ·

@x

@✓1
)
@

@✓2

= rR3 ⇥ (
@x

@✓2
⇥
@x

@✓1
) = n⇥rR3 , (43)

where the equality in last line holds true for 2D surface in R3.

Based on (42) and (43), one can immediately obtain the leading eigenvalues and corre-
sponding eigenvector fields for Hodge Laplacian. When �H = 2, the 6 corresponding Hodge
eigen vector fields are

U1,2,3 = n⇥rR3 =

2

4
y �z 0
�x 0 z
0 x �y

3

5 , U4,5,6 = PrR3 =

2

4
xz xy �y2 � z2

yz �x2
� z2 xy

�x2
� y2 zy xz

3

5 ,

where U1,2,3 are computed from the curl formula (43) and U4,5,6 are computed from the
projection formula (42) by taking  = xi (i = 1, 2, 3) in (39). When �H = 6, the 10 Hodge
eigenvector fields are

U7⇠11 = n⇥rR3 =

2

4
�xz y2 � z2 xy 0 �yz
yz �xy z2 � x2 xz 0

x2 � y2 xz �yz �xy xy

3

5 ,

U12⇠16 = PrR3 =

2

4
y � 2x2y z � 2x2z �2xyz x� x3 �xy2

x� 2xy2 �2xyz z � 2y2z �x2y y � y3

�2xyz x� 2xz2 y � 2yz2 �x2z �y2z

3

5 ,

where U7⇠11 are computed from the curl (43) and U12⇠16 are computed from the projection
(42) by taking  = 3xixk � �ikr2 in (39).
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For the Bochner Laplacian, we notice that it is di↵erent from the Hodge Laplacian
by a Ricci tensor and Ricci curvature is constant on the sphere. Therefore, the Bochner
and Hodge Laplacians share the same eigenvector fields but have di↵erent eigenvalues. We
examined that U1⇠6 are eigenvector fields for �B = 1 and U7⇠16 are eigenvector fields for
�B = 5. In general, the spectrum are �B = l(l + 1) � 1 for the Bochner Laplacian and
�H = l(l + 1) for the Hodge Laplacian for l 2 N+.

For the Lichnerowicz Laplacian, we can verify that U1,2,3 are in the null space ker�L,
which is often referred to as the Killing field. We can further verify that U4,5,6 correspond to
�L = 2, U7⇠11 correspond to �L = 4, and U12⇠16 correspond to �L = 10. Moreover, we verify
that U17⇠23 corresponds to �L = 10, where U17⇠23 are computed from the curl equation
(43) by taking  = 15xixkxn � 3�ikr2xn � 3�knr2xi � 3�nir2xk. We refer to the eigenvalues
� associated with the eigenvector fields U obtained above as the analytic solutions to the
eigenvalue problem of vector Laplacians.
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Figure 12: 2D Sphere in R3. Comparison of eigen-vector fields of Bochner Laplacian for
k = 1, 16 among NRBF using P and P̂, and SRBF using P and P̂. Black dots
correspond the poles where the vector fields vanish. For NRBF, GA kernel with
s = 1.0 is used, and for SRBF, IQ kernel with s = 0.5 is used. The N = 1024
data points are randomly distributed on the manifold.

In the following, we compute eigenvalues and associated eigenvector fields of the Hodge,
Bochner, and Lichnerowicz Laplacians on a unit sphere. We use uniformly random sample
data points on the sphere for one trial comparison in most of the following figures, except
for Fig. 15 in which we use well-sampled data points for verifying the convergence of the
SRBF method. Figure 12 displays the comparison of eigenvector fields of Bochner Laplacian
for k = 1 and 16. When P is used, we have examined that these vector fields at each point
are orthogonal to the normal directions n = x = (x, y, z) of the sphere. When P̂ is used
(i.e. in an unknown manifold scenario), the vector fields lie in the approximated tangent
space which is orthogonal to the normal x within numerical accuracy. Based on Hairy ball
theorem, a vector field vanishes at one or more points on the sphere. Here, we plot the
poles where the vector field vanishes with black dots.
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(a) NRBF, Eigenvalues (b) NRBF, Error of Eigenvalues (c) NRBF, Error of Eigenvectors
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(d) SRBF, Eigenvalues (e) SRBF, Error of Eigenvalues (f) SRBF, Error of Eigenvectors
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Figure 13: (Color online) 2D Sphere in R3. Comparison of (a)(d) eigenvalues, (b)(e) error
of eigenvalues, and (c)(f) error of eigenvector-fields for Hodge, Bochner, Lich-
nerowicz Laplacians. (a)(b)(c) correspond to NRBF and (d)(e)(f) correspond
to SRBF results. For NRBF, GA kernel with s = 1.0 is used, and for SRBF,
IQ kernel with s = 0.5 is used. The data points are randomly distributed with
N = 1024.
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(a) NRBF, Boch. Eigenvalues (b) NRBF, Hodge Eigenvalues (c) NRBF, Lich. Eigenvalues
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Figure 14: 2D Sphere in R3. Convergence of eigenvalues for NRBF using P̂ for (a)
Bochner, (b) Hodge, and (c) Lichnerowicz Laplacians. GA kernel with s = 1.0
was fixed for di↵erent N . The data points are randomly distributed.

Figure 13 displays the comparison of the leading eigenvalues and eigenvector fields for
the Hodge, Bochner, and Lichnerowicz Laplacians. For NRBF, one can see from Fig. 13(a)-
(c) that both eigenvalues and eigenvector fields can be approximated very accurately using
either the analytic P or estimated P̂. This small error result can be expected using analytic
P for the known manifold. It is a little unexpected that the estimation produces such a small
error result using estimated P̂ when the manifold is unknown. After further inspection, we
found that our 2nd order SVD provides a super-convergence for P̂ on this particular 2D
sphere example. For SRBF, one can see from Fig. 13(d)-(f) that eigenvalues and eigenvector
fields can be approximated within certain errors for both P and P̂. This means that the
Monte-Carlo error dominates the error for P̂ in this example.

To inspect more of these spectra, we compare the leading eigenvalues of the truth,
NRBF, and SRBF with P̂ up to k = 80 in Table 3. For NRBF, one can see from Table 3
that the leading NRBF eigenvalues are often in excellent agreement with the truth. Then,
irrelevant eigenvalues may appear but are followed by the true eigenvalues again. For
instance, the first 30 Bochner eigenvalues are accurately approximated, the 31st ⇠ 40th

eigenvalues are irrelevant (spectral pollution), and 41st ⇠ 58th eigenvalues become very
accurate again. To further understand the irrelevant spectra phenomenon, we also solve the
problem with di↵erent kernels and/or tune di↵erent shape parameters. Interestingly, we
found that the leading

p
N ⇠ 30 true eigenvalues can always be accurately approximated

even under di↵erent kernels or shape parameters. Unfortunately, the irrelevant eigenvalues
also appear with di↵erent values starting from at least k �

p
N for di↵erent kernels or shape

parameters [not shown here]. In these experiments, the data points are always fixed. In
contrast, SRBFs do not exhibit such an issue despite the fact that the eigenvalue estimates
are not as accurate as NRBFs. Several advantages of SRBF are that their eigenvalues are
real-valued, well-ordered, and do not produce irrelevant estimates.

Figure 14 shows the convergence of eigenvalues of NRBF methods for vector Laplacians.
The data in this figure are randomly distributed. One can see that the four observations
in Example 5.2 are still valid for the behavior of NRBF eigenvalues. Figure 15 shows the
convergence of eigenvalues and eigenvectors of the SRBF method for vector Laplacians. For
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Table 3: 2D sphere in R3. Comparison of eigenvalues of Bochner, Hodge, and Lichnerowicz
Laplacians from NRBF and SRBF using approximated P̂. The N = 1024 data
points are randomly distributed on the sphere. The eigenvalues of NRBF are
shown with their absolute values when they are complex. For NRBF, GA kernel
with s = 1.0 is used, and for SRBF, IQ kernel with s = 0.5 is used.

k Boch Boch Boch Hodg Hodg Hodg Lich Lich Lich k Boch Boch Boch Hodg Hodg Hodg Lich Lich Lich
True NRBF SRBF True NRBF SRBF True NRBF SRBF True NRBF SRBF True NRBF SRBF True NRBF SRBF

1 1 1.0 0.85 2 2.0 1.63 0 – – 41 19 19.0 15.7 20 20.0 15.3 28 28.0 19.0
2 1 1.0 0.87 2 2.0 1.75 0 – – 42 19 19.0 15.8 20 20.0 15.5 28 28.0 19.8
3 1 1.0 0.90 2 2.0 1.76 0 – – 43 19 19.0 16.1 20 20.0 15.8 28 28.0 20.4
4 1 1.0 0.91 2 2.0 1.82 2 2.0 1.69 44 19 19.0 16.1 20 20.0 15.8 28 28.0 20.7
5 1 1.0 0.93 2 2.0 1.88 2 2.0 1.80 45 19 19.0 16.4 20 20.0 16.2 28 28.0 21.4
6 1 1.0 0.94 2 2.0 1.89 2 2.0 1.82 46 19 19.0 16.6 20 20.0 16.4 28 28.0 21.6
7 5 5.0 4.09 6 6.0 4.51 4 4.0 3.17 47 19 19.0 17.0 20 20.0 16.5 28 28.0 22.1
8 5 5.0 4.14 6 6.0 4.91 4 4.0 3.25 48 19 19.0 17.1 20 20.0 16.7 28 28.0 22.7
9 5 5.0 4.30 6 6.0 4.96 4 4.0 3.38 49 29 19.0 18.9 30 30.0 16.8 28 28.0 23.3
10 5 5.0 4.34 6 6.0 5.10 4 4.0 3.44 50 29 19.0 19.2 30 30.0 17.3 28 28.0 23.9
11 5 5.0 4.38 6 6.0 5.14 4 4.0 3.56 51 29 19.0 19.7 30 30.0 17.4 38 33.1 24.2
12 5 5.0 4.42 6 6.0 5.24 10 10.0 7.17 52 29 19.0 20.1 30 30.0 17.6 38 33.4 24.9
13 5 5.0 4.49 6 6.0 5.43 10 10.0 7.55 53 29 19.0 20.9 30 30.0 17.7 38 33.9 25.6
14 5 5.0 4.52 6 6.0 5.56 10 10.0 7.90 54 29 19.0 21.1 30 30.0 17.8 38 34.5 26.2
15 5 5.0 4.67 6 6.0 5.62 10 10.0 7.97 55 29 19.0 21.4 30 30.0 17.9 38 35.0 26.4
16 5 5.0 4.72 6 6.0 5.78 10 10.0 8.05 56 29 19.0 21.5 30 30.0 18.2 38 35.2 26.8
17 11 11.0 8.27 12 12.0 7.92 10 10.0 8.17 57 29 19.0 22.1 30 30.0 18.4 38 36.5 27.0
18 11 11.0 8.46 12 12.0 8.38 10 10.0 8.30 58 29 19.0 22.3 30 30.0 18.6 38 36.9 27.3
19 11 11.0 8.65 12 12.0 8.64 10 10.0 8.32 59 29 19.1 22.6 30 30.0 18.7 38 36.9 27.8
20 11 11.0 8.80 12 12.0 9.26 10 10.0 8.55 60 29 19.1 22.9 30 30.0 18.8 40 37.7 28.0
21 11 11.0 8.90 12 12.0 9.44 10 10.0 8.77 61 29 19.5 23.6 30 30.0 19.0 40 37.9 28.3
22 11 11.0 9.03 12 12.0 9.61 10 10.0 8.82 62 29 20.1 23.9 30 30.0 19.1 40 37.9 28.7
23 11 11.0 9.13 12 12.0 9.74 10 10.0 8.99 63 29 20.1 24.2 30 30.0 19.2 40 38.0 29.3
24 11 11.0 9.27 12 12.0 9.99 18 18.0 12.2 64 29 20.6 24.4 30 30.0 19.5 40 38.0 29.4
25 11 11.0 9.47 12 12.0 10.2 18 18.0 12.7 65 29 20.9 24.8 30 30.0 19.6 40 38.0 30.2
26 11 11.0 9.56 12 12.0 10.5 18 18.0 13.2 66 29 21.1 25.2 30 30.0 19.8 40 38.0 30.7
27 11 11.0 9.87 12 12.0 10.6 18 18.0 13.4 67 29 21.6 25.7 30 30.0 20.0 40 38.0 31.3
28 11 11.0 9.98 12 12.0 10.9 18 18.0 13.6 68 29 21.6 25.7 30 30.0 20.1 40 38.0 31.5
29 11 11.0 10.3 12 12.0 11.4 18 18.0 13.8 69 29 21.8 26.1 30 30.0 20.5 40 38.0 32.4
30 11 11.0 10.5 12 12.0 11.6 18 18.0 14.1 70 29 22.0 26.2 30 30.0 20.7 40 38.0 32.6
31 19 16.7 13.3 20 20.0 11.7 18 18.0 14.7 71 41 22.4 26.9 42 42.0 20.7 40 38.0 33.7
32 19 16.8 13.5 20 20.0 12.6 18 18.0 15.6 72 41 22.8 27.0 42 42.0 21.0 40 38.5 33.7
33 19 17.1 13.7 20 20.0 12.8 22 22.0 15.9 73 41 23.3 27.4 42 42.0 21.1 54 40.0 34.8
34 19 17.4 13.8 20 20.0 13.1 22 22.0 16.3 74 41 23.7 27.6 42 42.0 21.2 54 40.0 34.9
35 19 17.7 14.1 20 20.0 13.8 22 22.0 16.6 75 41 24.3 28.0 42 42.0 21.6 54 40.0 35.7
36 19 18.0 14.4 20 20.0 13.9 22 22.0 17.2 76 41 25.4 28.2 42 42.0 21.7 54 40.0 35.9
37 19 18.5 14.6 20 20.0 14.2 22 22.0 17.3 77 41 25.8 28.6 42 42.0 21.9 54 40.0 36.4
38 19 18.6 14.8 20 20.0 14.6 22 22.0 17.7 78 41 29.0 28.8 42 42.0 22.0 54 40.0 36.8
39 19 18.6 15.2 20 20.0 14.7 22 22.0 18.3 79 41 29.0 29.2 42 42.0 22.3 54 40.0 37.2
40 19 18.9 15.3 20 20.0 15.1 28 28.0 18.7 80 41 29.0 29.5 42 42.0 22.5 54 40.0 38.7
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(a) SRBF, Conv. of Eigenvalues (b) SRBF, Conv. of Eigenvectors
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Figure 15: 2D Sphere in R3. The data points are uniformly well-sampled on the manifold
and the true sampling density q was used. Convergence of (a) eigenvalues and
(b) eigenvectors for the average of the leading 16 modes for Bochner and Hodge
Laplacians, and the average of the leading 20 modes for the Lichnerowicz Lapla-
cian for SRBF using P̂ and true q are shown. Plotted in the second row are
the errors of eigenvalues for (c1) Hodge, (d1) Bochner, and (e1) Lichnerowicz
Laplacians for each leading mode for SRBF. Plotted in (c2)-(e2) are the corre-
sponding errors of eigenvectors. IQ kernel with s = 0.5 was fixed for SRBF with
di↵erent N .
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an e�cient computational labor, we show results with well-sampled data points {✓i,�j},
defined as equally spaced points in both direction of the intrinsic coordinates [0,⇡]⇥ [0, 2⇡)
such that the total number of points are N = 322, 452, 712, 1002. We use the approximated
P̂ and the true sampling density q to construct the Laplacians. One can see from Figs.
15(a) and (b) that the errors of eigenvalues and eigenvectors for all vector Laplacians decay
on order of N�1. More details can be found in Figs. 15(c)-(e) for the leading eigenmodes.
Notice that for the well-sampled data, the errors here are relatively small compared to those
in the case of random data shown in Figs. 13(d)-(f). Also, notice that the error rates here
decay on order of N�1 for well-sampled data, which is faster than Monte Carlo error rates
of N�1/2 for random data.

6. Summary and Discussion

In this paper, we studied the Radial Basis Function (RBF) approximation to di↵erential
operators on smooth, closed Riemannian submanifolds of Euclidean space, identified by
randomly sampled point cloud data. We summarize the findings in this paper and conclude
with some open issues that arise from this study:

• The classical pointwise RBF formulation is an e↵ective and accurate method for ap-
proximating general di↵erential operators on closed manifolds. For unknown mani-
folds, i.e., identified only by point clouds, the approximation error is dominated by
the accuracy of the estimation of local tangent space. With su�cient regularity on
the functions and manifolds, we improve the local SVD technique to achieve a second-
order accuracy, by appropriately accounting for the curvatures of the manifolds.

• The pointwise non-symmetric RBF formulation can produce very accurate estimations
of the leading eigensolutions of Laplacians when the size of data used to construct the
RBF matrix N is large enough and the projection operator P is accurately estimated.
We empirically found that the accuracy is significantly better than those produced by
the graph-based method, which is supported by the results in Figure 5. In Figure 7,
for su�ciently large N , one can further improve the estimates by increasing Np � N ,
the number of points used to estimate P. While the second-order local SVD method
is numerically e�cient even for large Np, the ultimate computational cost depends
on the size of N as we are solving the eigenvalue problem of dense, non-symmetric
matrices of size N⇥N for Laplace-Beltrami or nN⇥nN for vector Laplacians. When
both N and Np are not large enough, this approximation produces eigensolutions
that are not consistent with the spectral properties of the Laplacians in the sense that
the eigenvalue estimates can be complex-valued and do not correspond to any of the
underlying real-valued spectra. Since the spectral accuracy of NRBF relies on a very
accurate estimation of the projection operator P, we believe that this method may
not be robust when the data is corrupted by noise, and thus, may not be reliable for
manifold learning.

• The proposed symmetric RBF approximation for Laplacians overcomes the issues in
the pointwise formulation. The only caveat with the symmetric formulations is that
this approximation may not be as accurate as the pointwise approximation whenever
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the latter works. Based on our analysis, the error of SRBF is dominated by the error of
discretizing integrals in the weak formulation of appropriate Hilbert spaces, provided
su�ciently smooth kernels are used. See Theorems 4.1 and 4.2 for the approxima-
tion of eigenvalues and eigenfunctions of the Laplace-Beltrami operator, respectively.
See Theorems 4.3 and 4.4 for the approximation of eigenvalues and eigenvector fields
of Bochner Laplacian, respectively. Empirically, we found that SRBF consistently
produces more accurate estimations of the non-leading eigenvalues and less accurate
estimations of the leading eigenvalues compared to those obtained from di↵usion maps
algorithm for Laplacians acting on functions. These encouraging results suggest that
the symmetric RBF discrete Laplacian approximation is potentially useful to com-
plement graph-based methods when d ⌧ n ⌧ N , which arises in many PDE models
on unknown sub-manifolds of moderately high dimensions, e.g., n = O(10). Unlike
graph-based approaches, which are restricted to approximating Laplacians, the gen-
eral formulation in this paper supports PDE applications involving other di↵erential
operators. In a companion paper (Yan et al., 2023), we have introduced a spectral
Galerkin framework to solve elliptic PDEs based on SRBF.

• The main limitation of this formulation is that it is not scalable for manifold learning
problems where n = O(N). One of the key computational issues with this formula-
tion is that it requires n number of dense N ⇥ N matrices Gi to be stored, which
is memory intensive when n = O(N). Further memory issues are encountered in
the approximation of operators on vector fields and higher-order tensor fields. For in-
stance, in our formulation, a Laplacian on vector fields is numerically resolved with an
nN ⇥ nN matrix, which again requires significant memory whenever n = O(N). An
alternative approach to avoid this significant memory issue is to resort to an intrinsic
approach (Liang and Zhao, 2013), where the authors use approximate tangent vectors
to directly construct the metric tensor with a local polynomial regression and subse-
quently resolve the derivatives on manifolds using local tangent coordinates. While
they have demonstrated fast convergence of their method for solving PDEs on rela-
tively low dimensional manifolds with low co-dimensions and their approach has been
implemented to approximate di↵erential operators on vector fields on 2-dimensional
surfaces embedded in R3 (Gross et al., 2020), in all of their examples the manifolds are
well-sampled in the sense that the data points are visually regularly spaced. It remains
unclear how accurate and stable this method is on randomly sampled data as in our
examples. In addition, the intrinsic formulation may be di�cult to implement since
the local representation of a specific di↵erential operator requires a separate hardcode
that depends on the inverse and/or derivatives of the metric tensor components that
are being approximated.

• Parameter tuning: There are two key parameters to be tuned whenever RBF is used.
First is the tolerance parameter in the pseudo-inverse, which determines the rank of
the discrete approximation. A smaller tolerance parameter value increases the con-
dition number, while too large of a tolerance parameter value reduces the number of
non-trivial eigensolutions that can be estimated. Second, is the shape parameter of
the RBF kernel. More accurate approximations seem to occur with smaller values of
shape parameters, which yields a denser matrix such that the corresponding eigen-
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value problem becomes expensive, especially for large data. This is the opposite of
the graph-based approach which tends to be more accurate with smaller bandwidth
parameters (inversely proportional to shape parameters) which induce sparser matri-
ces. In a forthcoming paper, we will avoid parameter tuning by replacing the radial
basis interpolant with a local polynomial interpolant defined on the estimated tangent
space.

• For the discrete approximation corresponding to an unweighted L2-space, one needs
to de-bias the sampling distribution induced by the random data with appropriate
Monte-Carlo sampling weights (or density function). When the sampling density of
the data is unknown, one needs to approximate it as in the graph-based approxima-
tion. Hence, the accuracy of the estimation depends on the accuracy of the density
estimation, which we did not analyze in this paper as we only implement the classical
kernel density estimation technique. In the case when the operator to be estimated
is defined weakly over an L2-space that is weighted with respect to the sampling dis-
tribution, then one does not need to estimate the sampling density function. This
is in contrast to the graph Laplacian-based approach. Particularly, graph Laplacian
approximation based on the di↵usion maps asymptotic expansion imposes a “right
normalization” over the square root of the approximate density.

• For the non-symmetric approximation of the Laplacians, the spectral consistency of
the approximation in the limit of large data still remains open. While this approxima-
tion is subject to spectral pollution, it is worthwhile to consider or develop methods to
identify spectra without pollution, following ideas in Colbrook and Townsend (2024).

• While we believe the symmetric formulation should be robust to small amplitude
noises in the ambient space as numerically studied in our companion paper (Yan
et al., 2023), this claim remains to be theoretically justified. Particularly, further
investigation is needed to extend Theorem 3.1 for noisy data.
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Appendix A. More Operators on Manifolds

A.1 Proof for Proposition 2.2

We first provide the proof for equation (13) in Proposition 2.2.
Proof From a direct calculation, we have
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where we have used (12) in the first equality above. Using the fact that
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where we have used the fact that @2
X

@✓k@✓p
is a linear combination of partials of X with

Christo↵el symbols as coe�cients, plus a vector n orthogonal to the tangent space. Plug-
ging this to (44) yields Equation (13).

In the remainder of this appendix, we now show explicitly how other di↵erential oper-
ators can be approximated using the tangential projection formulation. In particular, we
derive formulas for approximations of the Lichnerowicz and Hodge Laplacians, as well as
the covariant derivative. Before deriving such results, we explicitly compute the matrix
form of divergence of a (2, 0) tensor field, which will be needed in the following subsections.
Throughout the following calculations, we will use the following shorthand notation for
simplification:

vjk,s := vmk�j
sm +

@vjk

@✓s
+ vjm�k

sm,

where v = vjk @
@✓j ⌦

@
@✓k

is a (2, 0) tensor field. While we do not prove convergence in the
probabilistic sense, the authors suspect that techniques similar to those used in Section
4 can be used to obtain the convergence results for the other di↵erential operators. In
Section 5, convergence is demonstrated numerically for the approximations derived in this
appendix.

A.2 Derivation of Divergence of a (2,0) Tensor Field

Let v be a (2, 0) tensor field of v = vjk @
@✓j ⌦

@
@✓k

. The divergence of v is defined as

divr1 (v) = Cr
1(rv)

for r = 1 or r = 2, where Cr
1
denotes the contraction. More explicitly, the divergence

divr1 (v) can be calculated as,

divr1 (v) = Cr
1
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, (45)
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where vjk,s = vmk�j
sm + @vjk

@✓s + vjm�k
sm. For any p 2 M , we can extend v to V , defined on a

neighborhood of p with ambient space representation
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,

so that V |p = v|p agrees at p 2 M . We show the following formula for the divergence for a
(2, 0) tensor field:

divr1 (v) = PCr
1

�
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�
, (46)

where the right hand side is defined as
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Here, P3 is as defined in (14) and P3 acts on the last 1-form component dXm. For r = 1,
RHS of (46) can be calculated as,
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where the second line follows from Leibniz rule. Unraveling definitions, one obtains
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where we have used that Pv = v for v 2 X(M), which holds for the first and second terms
above. Using the definition of projection tensor and the ambient space formulation of the
connection for the third term above, one obtains
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Following the same steps, we can obtain divr1 (v) = PCr
1

�
P3r̄RnV

�
for r = 2. In matrix

form, the divergence of a (2, 0) tensor field can be written as

divr1 (v) = Ptrr1
�
Pr̄Rn (V )

�
.

The above formula is needed when deriving approximations for the Lichnerowicz and Hodge
Laplacian.

A.3 RBF Approximation for Lichnerowicz Laplacian

The Lichnerowicz Laplacian can be computed as
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In matrix form, (47) can be written as,
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at each x 2 M . One also has the following formula for the Lichnerowicz Laplacian:

�Lu = �div11

⇣
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>
⌘

for a vector field u 2 X(M). Hence, after extension to Euclidean space, the Lichnerowicz
Laplacian can be written in a matrix form in the following way:
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where Sym(PgradRnUP) = PgradRnUP+ (PgradRnUP)> is a (2, 0) tensor field.
We now provide the non-symmetric approximation to the Lichnerowicz Laplacian acting

on a vector field U . Following the notation and methodology used for the Bochner Laplacian,
one can approximate Lichnerowicz Laplacian as,
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where V̄i := HiU = [Vi1, . . . ,Vin]
>

is the ith row of the tensor V = [Vij ]
n
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symmetric operator can be written in detail as
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Then Lichnerowicz Laplacian can be written as
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where V|i = [V1i, . . . ,Vni]
>
is the ith column of the tensor V = [Vij ]

n
i,j=1

.
We now write the approximate Lichnerowicz Laplacian in (50) in terms of U. Since

V̄i := HiU, we only need to focus on V|i for i = 1, . . . , n. Since the (2, 0) tensor Vij =
[gradgu]ij , we see that the ith column of [Vij ]

n
i,j=1

can be calculated as,

V |i =

2

6664

V1i

V2i
...

Vni

3

7775

n⇥1

=

2

66664

G1U1
G1U2

· · · G1Un

G2U1
G2U2

. . .
...

...
. . .

. . .
...

GnU1
· · · · · · GnUn

3

77775

n⇥n

2

6664

P 1i

P 2i
...

Pni

3

7775

n⇥1

=

2

6664

P 1iG1U1 + · · ·+ PniG1Un

P 1iG2U1 + · · ·+ PniG2Un

...
P 1iGnU1 + · · ·+ PniGnUn

3

7775

n⇥1

=

2

66664

P 1iG1 P 2iG1 · · · PniG1

P 1iG2 P 2iG2

. . .
...

...
. . .

. . .
...

P 1iGn · · · · · · PniGn

3

77775

n⇥n

2

6664

U1

U2

...
Un

3

7775

n⇥1

:= SiU. (51)

After discretization using RBF approximation, above (51) can be approximated by

V|i =

2

66664

diag (p1i)G1 diag (p2i)G1 · · · diag (pni)G1

diag (p1i)G2 diag (p2i)G2

. . .
...

...
. . .

. . .
...

diag (p1i)Gn · · · · · · diag (pni)Gn

3

77775

Nn⇥Nn

2

6664

U1

U2

...
Un

3

7775

Nn⇥1

:= SiU,

where pij = (P ij(x1), . . . , P ij(xN )) 2 RN⇥1. Then, Lichnerowicz Laplacian in (50) can be
derived as,

U 7! �[H1

�
V̄1 +V|

1

�
+ · · ·+Hn

�
V̄n +V|n

�
]

= � [H1 (H1 + S1) + · · ·+Hn (Hn + Sn)]U.

Thus, the symmetric operator can be expressed as

Sym

2

64
H1U
...

HnU

3

75 =

2

64
(H1 + S1)U

...
(Hn + Sn)U

3

75 , (52)

and Lichnerowicz Laplacian matrix given by �H1 (H1 + S1) � · · · �Hn (Hn + Sn) can be
used to study the spectral properties of the Lichnerowicz Laplacian numerically.
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A.4 RBF Approximation for Hodge Laplacian

The Hodge Laplacian is initially defined on k forms as

�H = (dd⇤ + d⇤d) ,

where the Hodge Laplacian is positive definite. Here, d is the exterior derivative and d⇤ is
the adjoint of d given by

d⇤ = (�1)dr+d+1
⇤ � d � ⇤ : ⌦r(M) ! ⌦r�1(M),

where ⇤ is Hodge star operator. See (Chow et al., 2007) for details. The Hodge Laplacian
acting on a vector field u = uk @

@✓k
is defined as

�Hu = ] (dd⇤ + d⇤d) [u,

where ] and [ are the standard musical isomorphisms. First, we can compute

]dd⇤[u = ]d(�gjkuj,k) = �gjkui,ij
@

@✓k
= �gradg (divg (u)) , (53)

where [u = uid✓i = gijujd✓i. Next, we can compute

]d⇤d[u = ]d⇤d
�
uid✓

i
�
= ]d⇤(

1

2!
(uj,i � ui,j) d✓

i
^ d✓j) = ]

⇣
�gij (uk,ij � ui,kj) d✓

k
⌘

= �gijuk,ij
@

@✓k
+ gkjui,ji

@

@✓k
= �div11(gradgu) + div21(gradgu), (54)

where in last equality we have used definitions of gradient and divergence. Lastly, from (53)
and (54), we can compute the Hodge Laplacian as

�Hu = ] (d⇤d + dd⇤) [u = �

⇣
gijuk,ij � gkjui,ji + gjkui,ij

⌘ @

@✓k

= �Bu+ gjk
�
ui,ji � ui,ij

� @

@✓k
= �Bu+ gjkumRmj

@

@✓k
⌘ �Bu+Ri(u), (55)

where the Ricci identity was used in the second line. One can see from (55) that the
Hodge Laplacian �H is di↵erent from the Bochner Laplacian �B by a Ricci tensor Ri(u) ⌘
gjkumRmj

@
@✓k

(see pp 478 of (Chow et al., 2007) for k-form for example).
Now we present the Hodge Laplacian written in matrix form. First, using previous

formulas for the divergence and gradient, we have

]dd⇤[u = �gradg (divg (u)) = �PgradRn

�
tr11
⇥
Pr̄RnU

⇤�
.

Secondly, we have

]d⇤d[u = �gijuk,ij
@

@✓k
+ gkjui,ji

@

@✓k
= �div11(gradgu) + div21(gradgu)

= �Ptr11
�
Pr̄Rn(PgradRnUP)

�
+Ptr21

�
Pr̄Rn(PgradRnUP)

�
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Then, we can calculate Hodge Laplacian as

�Hu = ] (d⇤d + dd⇤) [u = �

⇣
gijuk,ij � (gkjui,ji � gjkui,ij)

⌘ @

@✓k

= �div11(gradgu) +
⇥
div21

�
gradgu

�
� gradg (divg (u))

⇤

= �Ptr11
�
Pr̄Rn(PgradRnUP)

�

+
⇥
Ptr21

�
Pr̄Rn(PgradRnUP)

�
�PgradRn

�
tr11
⇥
Pr̄RnU

⇤�⇤
, (56)

where the last line holds at each x 2 M . The first term of (56) indeed is the Bochner
Laplacian �Bu. Hence, it only remains to compute the second and third terms. At each
x 2 M , we can write the second term as

Ptr21
�
Pr̄RnV

�
=

2

64
P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

3

75

n⇥n

2

64

Pn
k=1

GkV1k
...Pn

k=1
GkVnk

3

75

n⇥1

=

2

64
P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

3

75

n⇥n

2

64
G1V11 + G2V12 + · · ·+ GnV1n

...
G1Vn1 + G2Vn2 + · · ·+ GnVnn

3

75

n⇥1

,(57)

and write the third term as

PgradRn

�
tr11
⇥
Pr̄RnU

⇤�
= PgradRn

 
nX

k=1

GkUk

!
=

2

64
G1

...
Gn

3

75

 
nX

k=1

GkUk

!
. (58)

Substituting (57),(58), as well as the formula for the Bochner Laplacian, into (56), we obtain
the formula for Hodge Laplacian.

Another way to write the Hodge Laplacian is given by

��Hu = div11(gradgu)� div21(gradgu) + gradg (divg (u))

= div11(gradgu� (gradgu)
>) + gradg (divg (u)) . (59)

The first term, involving the anti-symmetric part of gradgu, after pre-composing with the
interpolating operator, can be approximated by

Ant

2

64
H1U
...

HnU

3

75 =

2

64
(H1 � S1)U

...
(Hn � Sn)U

3

75 .

Thus, we only need to consider the RBF approximation for the last term gradg (divg (u))
in (59). Using the formula for gradient of a function and divergence of a vector field in (58)
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directly, we can obtain that

gradg (divg (u))

=

2

64
G1

...
Gn

3

75
nX

i=1

GiU
i =

2

64
G1

Pn
i=1

GiU i

...
Gn
Pn

i=1
GiU i

3

75 =

2

64
G1

...
Gn

3

75
⇥
G1 · · · Gn

⇤
2

64
U1

...
Un

3

75

=

2

66664

G1G1 G1G2 · · · G1Gn

G2G1 G2G2

. . .
...

...
. . .

. . .
...

GnG1 · · · · · · GnGn

3

77775

n⇥n

2

6664

U1

U2

...
Un

3

7775

n⇥1

.

After discretization, we obtain that this term can be approximated by

U 7!

2

66664

G1G1 G1G2 · · · G1Gn

G2G1 G2G2

. . .
...

...
. . .

. . .
...

GnG1 · · · · · · GnGn

3

77775

Nn⇥Nn

2

6664

U1

U2

...
Un

3

7775

Nn⇥1

:= TU.

It follows that the Hodge Laplacian matrix can be approximated by

�̄H = � (H1 (H1 � S1) + · · ·+Hn (Hn � Sn))�T. (60)

A.5 RBF Approximation for Covariant Derivative

In the following, we examine ruy = Pr̄UY via direct calculation, where the RHS will be
defined below. Let u = ui @

@✓i 2 X(M) and y = yi @
@✓i 2 X(M) be two vector fields, where

ui, yi 2 C1(M) are smooth functions. Then, the covariant derivative is defined as

ruy = ukyi,k
@

@✓i
= uk

✓
@yi

@✓k
+ yj�i

jk

◆
@

@✓i
,

where the covariant derivative operator r : X(M) ⇥ X(M) ! X(M) takes vector fields u
and y in X(M) to a vector field ruy in X(M). We can rewrite covariant derivative as

ruy = uk
✓
�rsg

ij @X
r

@✓j
@Y s

@✓k

◆
@

@✓i
= uk�rsg

ij @X
r

@✓j

✓
@Y s

@Xm

@Xm

@✓k

◆✓
@Xp

@✓i
@

@Xp

◆

= �rs
@Xp

@✓i
gij
@Xr

@✓j
@Y s

@Xm
Um @

@Xp

=

✓
�rs

@Xp

@✓i
gij
@Xr

@✓j
dXs

⌦
@

@Xp

◆✓
Um @Y k

@Xm

@

@Xk

◆
:= Pr̄UY, (61)

where the first line follows from the chain rule, the second line follows from Um = uk @Xm

@✓k
,

and the last line defines r̄UY ⌘ Um @Y k

@Xm
@

@Xk for the covariant derivative in Euclidean space.
In matrix-vector form, (61) is straightforward to write as

ruy = Pr̄UY =

2

64
P 11 · · · P 1n
...

. . .
...

Pn1 · · · Pnn

3

75

2

64

@Y 1

@X1 · · ·
@Y 1

@Xn

...
. . .

...
@Y n

@X1 · · ·
@Y n

@Xn

3

75

2

64
U1

...
Un

3

75 . (62)
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The RBF approximation for covariant derivative is slightly di↵erent from above linear
Laplacian operators since it is nonlinear involving two vector fields U and Y as in (62).
We first compute the covariant derivative r̄UY in Euclidean space. For each Y r, its RBF
interpolant we can use the RBF interpolant to evaluate the rth row of r̄UY in (62) at all
node locations. This yields

r̄UYr :=
nX

k=1

@I�sY
r

@Xk
Uk
���
X

2 RN .

Concatenating all the r̄UYr for r = 1, . . . , n to form an augmented vector r̄UY =
(r̄UY1, . . . , r̄UYn) 2 RNn⇥1, we can obtain the RBF formula for covariant derivative
as

Pr̄UI�sY = P⌦
r̄UY. (63)

Appendix B. Interpolation Error

In this appendix, we develop results regarding interpolation error in the probabilistic setting.
Namely, we formally state and prove interpolation results for functions, vector fields, and
(1, 1) tensor fields. The setting for this section is self-contained, and can be summarized
as follows. Let X = {x1, . . . , xN} be finitely many uniformly sampled data points of a
closed, smooth Riemannian manifold M of dimension d, embedded in a higher dimensional
Euclidean space M ✓ Rn. We assume additionally that the injectivity radius ◆(M) is
bounded away from zero from below by a constant r > 0.

B.1 Probabilistic Mesh Size Result

In this setting, we have the following result from (Croke, 1980):

Lemma B.1 (Proposition 14 in (Croke, 1980)) Let B�(x) denote a geodesic ball of radius
� around a point x 2 M . For � < ◆(M)/2, we have

Vol(B�(x)) � C(d)�d,

where C(d) is a constant depending only on the dimension d of the manifold.

Consider the quantity

hX,M = sup
x2M

min
xi2X

kx� xikg,

often referred to as mesh-size. We will show that this quantity converges to 0, in high
probability, after N ! 1. Here, k · kg denotes the geodesic distance.

Lemma B.2 We have the following result regarding the mesh size hX,M :

PX⇠U (hX,M > �)  exp(�CN�d).

Here, C = C(d)/Vol(M), and U denotes the uniform distribution on M .
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Proof Suppose hX,M > �, so there is x 2 M such that minxi2X kx � xikg � �. So
B�(x) \ X = ;. In other words, each xi 2 X is in M \ B�(x). This has measure

1 �
Vol(B�(x)
Vol(M)

 1 � C�d. Hence, minxi2X kx � xikg � � occurs with probability less than

(1� C�d)N  exp(�CN�d). This completes the proof.

B.2 Interpolation of Functions, Vector Fields, and (2,0) Tensors

Given a radial basis function �s : M ⇥M ! R, consider the interpolation map

I�sf =
NX

i=1

ci�s(·, xi), (64)

where ci’s are chosen so that I�sf |X = f |X . In the following discussion, we assume that
the kernel �s is a Mercer kernel that is at least C2. Our probabilistic interpolation result
relies heavily on Theorem 10 from (Fuselier and Wright, 2012). We adapt this theorem to
our notation and state it here, for convenience.

Theorem B.1 (adapted from Corollary 13 in Fuselier and Wright (2012)) Let M be a
d-dimensional submanifold of Rn, and let �s be a kernel with RKHS norm equivalent to a
Sobolev space of order ↵ > n/2. Let also 2  q  1, and 0  µ  ↵� n/2+d/q � 1. Then
there exists a constant hM such that whenever a finite node set X satisfies hX,M < hM ,

then for all f 2 H↵� (n�d)
2 (M), we have

kf � I�sfkWµ,q(M)  Ch
↵� (n�d)

2 �µ�n(1/2�1/q)
X,M kfk

H↵� (n�d)
2 (M)

.

The above result is stated to proof Lemma 4.1.

Proof of Lemma 4.1: By Lemma B.2, choosing � =
⇣
logN
CN

⌘
1/d

, we have that hX,M =

O
�
N�1/d

�
with probability 1 �

1

N . For N su�ciently large, it follows that hX,M  hM ,
where hM is as in Theorem B.1. Hence, the hypotheses of Theorem B.1 are satisfied (with
q = 2 and µ = 0) and we have that

kI�sf � fkL2(M) = O(h↵�(n�d)/2
X,M ).

Using the scaling of the mesh size with N , we obtain the desired result. ⌅
When the interpolator is su�ciently regular, the same result from Fuselier and Wright

(2012) can be used to obtain convergence in certain Sobolev spaces. While this is not
necessary for our results, we do need Sobolev norms of interpolated functions I�sf to be
bounded independent of N . We state and proof this result in the following lemma.

Lemma B.3 Let �s be a kernel with RKHS norm equivalent to a Sobolev space of order

↵ � n/2 + 3. Then for any f 2 H↵� (n�d)
2 (M), we have

kI�sfkW 2,1(M) = O(1),

for all su�ciently large N with probability higher than 1� 1

N .
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Proof Let 0  µ  ↵� n/2� 1. It follows from Theorem B.1 that there is a constant hM
such that if hX,M  hM , then for all f 2 H↵�(n�d)/2(M), we have

kf � I�sfkWµ,1(M)  h↵�n/2�µ
X,M kfkH↵�(n�d)/2(M)

.

By the same argument as Lemma 4.1, this occurs with probability 1 �
1

N for su�ciently
large N . Since ↵ � n/2 + 3 suggests that ↵ � n/2 � 1 � 2, so µ = 2 lies in the valid
parameter regime, we have that

kf � I�sfkW 2,1(M) = O(1),

where the constant depends on the manifold and kfkH↵�(n�d)/2(M)
. Hence

kI�sfkW 2,1(M)  kf � I�sfkW 2,1(M) + kfkW 2,1(M) = O(1),

where the above constant depends on the manifold, kfkH↵�(n�d)/2(M)
, and kfkW 2,1(M).

This completes the proof.

For the interpolation of vector fields, recall that given a vector field u = ui @
@✓i on M , we

can extend it to a smooth vector field U = U i @
@Xi defined on an open Rn neighborhood of

M . Moreover, if U and V are extensions of u and v respectively, then we have that

hu, vix =

2

6664

U1(x)
U2(x)

...
Un(x)

3

7775
·

2

6664

V 1(x)
V 2(x)

...
V n(x)

3

7775
,

at each x 2 M , where h·, ·ix denotes the Riemannian inner product, and · denotes the
standard Euclidean inner product. Recall that the interpolation of a vector field is defined
component-wise in the ambient space coordinates:

I�su = I�sU
i @

@Xi
,

where again U i denotes the ambient space components of the extension of u to a neighbor-
hood of M . We are now ready to prove the following lemma.

Lemma B.4 For any u = ui @
@✓i 2 X(M), we have that with probability 1� n

N ,

ku� I�sukL2(X(M)) = O
⇣
N

�2↵+(n�d)
2d

⌘
.

Proof Notice that

ku� I�suk
2

L2(X(M))
=

Z

M
hu� I�su, u� I�suixdVol(x) =

nX

i=1

Z

M
(U i(x)� I�sU

i(x))2dVol(x).

Using Lemma 4.1 n times, we see that with probability higher than 1� n
N ,

✓Z

M
(U i(x)� I�sU

i(x))2dVol(x)

◆
1/2

= O
⇣
N

�2↵+(n�d)
2d

⌘
. i = 1, 2, . . . , n.
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Hence,

ku� I�sukL2(X(M)) = O
⇣
N

�2↵+(n�d)
2d

⌘
.

which complete the proof.

Similar to before, consider the norm

kuk2W 2,1(X(M))
:=

nX

i=1

kU i
k
2

W 2,1(M)
,

where u is a vector field with ambient space coe�cients U i as before. The exact same
reasoning as Lemma B.3 applied to each coe�cient yields a result analogous to Lemma B.3
but for the interpolation of vector fields. We now state the result.

Lemma B.5 Let �s be a kernel with RKHS norm equivalent to a Sobolev space of order
↵ � n/2 + 3. For any vector field u with ambient space coe�cients U i satisfying U i

2

H↵� (n�d)
2 (M), we have

kI�suk
2

W 2,1(X(M))
= O(1)

for su�ciently large N , with probability higher than 1� n
N .

Similarly, if a = aij
@
@✓i ⌦

@
@✓j is a (2, 0) tensor field, we can extend a to A = Aij

@
@Xi ⌦

@
@Xj ,

defined on an Rn neighborhood of M . Moreover, if a and b are (2, 0) tensor fields on M
with extensions A and B respectively, we have that

ha, bix = tr(A(x)>B(x)),

for each x 2 M , whereA(x), B(x) are thought of n⇥nmatrices with componentsAij(x), Bij(x)
respectively. We can now prove the following lemma.

Lemma B.6 For any a =
P

ij aij
@
@✓i ⌦

@
@✓j 2 T (2,0)TM , we have that with probability 1� n2

N ,

ka� I�sakL2(T (2,0)TM)
= O

⇣
N

�2↵+(n�d)
2d

⌘
.

Proof Again, notice that

ha� I�sa, a� I�saix =
nX

j=1

nX

i=1

(Aij(x)� I�sAij(x))
2,

for every x 2 M . Integrating the above over M and using Lemma 4.1 n2 times, we see that

✓Z

M
ha� I�sa, a� I�saixdVol

◆
1/2

= O
⇣
N

�2↵+(n�d)
2d

⌘
,

with probability higher than 1� n2

N . This completes the proof.
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Appendix C. Proof of Spectral Convergence: the Laplace-Beltrami

Operator

In this appendix, we study the consistency of the symmetric matrix,

G>G =
nX

i=1

G>
i Gi,

as an approximation of the Laplace-Beltrami operator. We begin by focusing on the contin-
uous (unrestricted) operator acting on a fixed, smooth function f ,

P
i(GiI�s)

⇤(GiI�s)f and
prove its convergence to �Mf with high probability. Such results depend on the accuracy
with which I�s can approximate f and its derivatives. We then quantify the error obtained
when restricting to the data set and constructing a matrix. Finally, we prove convergence of
eigenvalues and eigenvectors. Since the estimator in this case is symmetric, convergence of
eigenvalues requires only a weak convergence result. To prove convergence of eigenvectors,
however, we need convergence of our estimator in L2 sense.

For the discrete approximation, we consider an inner product over restricted functions
which is consistent with the inner product of L2(M) as the number of data points N
approaches infinity. The notation for this discrete inner product is given in Definition 11.
In the remainder of this section, we will use the notation based on the following definition
to account for all of the errors.

Definition 13 Denote the L2 norm error between I�sf and f by ✏f , i.e.,

✏f := kI�sf � fkL2(M).

For concentration bound, we will also define a parameter 0  �f  1 to probabilistically char-

acterize an upper bound for ✏f . For example, Lemma 4.1 states that ✏f = O
⇣
N

�2↵+(n�d)
2d

⌘
,

with probability higher than 1� �f , where �f = 1/N .

For the next spectral result, we define the formal adjoint of gradgI�s to be the unique linear
operator (gradgI�s)

⇤ : X(M) ! C1(M) satisfying

h(gradgI�s)f, uiL2(X(M)) = hf, (gradgI�s)
⇤uiL2(M)

for any f 2 C1(M), u 2 X(M). Before proving the spectral convergence results, we prove
a number of necessary pointwise and weak convergence results.

C.1 Pointwise and Weak Convergence Results: Interpolation Error

Using Cauchy-Schwarz, paried with the fact that the formal adjoint of gradg is �divg, we
immediately have the following Lemma.

Lemma C.1 Let f 2 C1(M), and let u 2 X(M). Then with probability higher than 1��f ,

��hgradgf � gradgI�sf, uiL2(X(M))

��  ✏fkdivg(u)kL2(M).

A little more work also yields the following.
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Lemma C.2 Let f 2 C1(M). Then with probability higher than 1� �f ,
���kgradgfk2L2(X(M))

� kgradgI�sfk
2

L2(X(M))

���  ✏f
�
k�MfkL2(M) + k�MI�sfkL2(M)

�
.

Proof Without ambiguity, we use the notation h·, ·i for both inner products with respect
to L2(M) and L2(X(M)) in the derivations below to simplify the notation. We begin by
adding and subtracting the mixed term hgradgf, gradgI�sfi :

��kgradgfk2 � hgradgf, gradgI�sfi+ hgradgf, gradgI�sfi � kgradgI�sfk
2
��


��kgradgfk2 � hgradgf, gradgI�sfi

��+
��hgradgf, gradgI�sfi � kgradgI�sfk

2
�� .

By the previous lemma, the first term is ✏fk�MfkL2(M), while the second term is
✏fk�MI�sfkL2(M).

We also need the following result for studying the convergence of eigenvectors.

Corollary C.1 Let f 2 C1(M). Then with probability higher than 1� �f ,

kgradgf � gradgI�sfk
2

L2(X(M))
 ✏f

�
k�MfkL2(M) + k�MI�sfkL2(M)

�
.

Proof Expanding yields

kgradgf � gradgI�sfk
2

L2(X(M))
= hgradgf, gradgfi � hgradgf, gradgI�sfi

� hgradgI�sf, gradgfi+ hgradgI�sf, gradgI�sfi.

Grouping the first two and last two terms, the desired result is immediate.

We now prove Lemma 4.2 which states that �Mf can be weakly approximated.

Proof of Lemma 4.2 We again add and subtract a mixed term.

h�Mf, hi �
⌦
gradgI�sf, gradgI�sh

↵

= h�Mf, hi � hgradgf, gradgI�shi+ hgradgf, gradgI�shi �
⌦
gradgI�sf, gradgI�sh

↵
.

The first two terms are bounded by ✏hk�MfkL2(M) while the second two terms are bounded
by ✏fk�MI�shkL2(M) with a total probability higher than 1 � �f � �h. Two repeated uses
of Lemma 4.1 yield the final result. ⌅

Using similar arguments as above, we now have a convergence in L2 norm result.

Lemma C.3 Let f 2 C1(M), and denote (gradgI�s)
⇤(gradgI�s)f by h. With probability

higher than 1� �f � ��Mf � �h,

k�Mf � hk2L2(M)
 ✏fk�

2

MfkL2(M) + ✏�Mfk�MfkL2(M)

+ ✏hk�MfkL2(M) + ✏fk�MI�shkL2(M).

Proof Expanding k�Mf � (gradgI�s)
⇤(gradgI�s)fk

2

L2(M)
yields

k�Mf � (gradgI�s)
⇤(gradgI�s)fk

2

L2(M)

= h�Mf,�Mfi � h�Mf, (gradgI�s)
⇤(gradgI�s)fi � h(gradgI�s)

⇤(gradgI�s)f,�Mfi

+ h(gradgI�s)
⇤(gradgI�s)f, (gradgI�s)

⇤(gradgI�s)fi.
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We use the previous Lemma twice, once on the first two terms (which gives an error of
✏�Mfk�MfkL2(M)+ ✏fk�MI�s�MfkL2(M)) and once on the last two terms (which gives an
error of ✏hk�MfkL2(M) + ✏fk�MI�shkL2(M)). This completes the proof.

Remark 14 Note that since each estimated function in this section lies within the RKHS
space, it follows from Lemma 4.1 that the error (denoted by ✏ with a subscript) converges
with specified rate as N ! 1. Moreover, Lemma B.3 ensures that no norms on the right-
hand-side of the above estimates blow-up as N ! 1.

C.2 Pointwise and Weak Convergence Results: Empirical Error

We now quantify the error obtained when discretizing our estimators on the data set X.
The results of this section are primarily based on the law of large numbers. First, we prove
Lemma 4.3.

Proof of Lemma 4.3 Using the fact that gradgI�sf = (G1I�sf,G2I�sf, . . . ,GnI�sf)
> as

defined in (4), it is clear that,

hgradgI�sf, gradgI�sfiL2(X(M)) =

Z

M

nX

i=1

(GiI�sf(x)) (GiI�sh(x)) dVol(x),

and we can see immediately that the result follows from a concentration inequality on the

random variable
Pn

i=1
(GiI�sf(x)) (GiI�sh(x)). The range of I�s is in C↵� (n�d)

2 (M), and
by the Assumption 4.1 along with Lemma B.3, since Gi are simply di↵erential operators,
we see that the random variable is bounded by a constant C (depending on the kernel �s,
as well as f). By Hoe↵ding’s inequality, we obtain,

PX

⇣���hG>Gf ,hiL2(µN ) � hgradgI�sf, gradgI�shiL2(X(M))

��� � ✏
⌘
 2exp

✓
�2✏2N

c

◆
,

for some constant c > 0. Take N�1 = exp
⇣
�2✏2N

c

⌘
, solve for ✏, the proof is complete. ⌅

Since G is simply the restricted version of gradgI�s , the same reasoning as above gives
the following result, which will be needed to prove convergence of eigenvectors.

Lemma C.4 Let f 2 C1(M). Let Assumption 4.1 be valid. Then

PX

⇣���kG>
Gf �RN�Mfk2L2(µN ) � k(gradgI�s)

⇤(gradgI�s)f ��Mfk2L2(M)

��� � ✏
⌘
 2exp

✓
�2✏2N

C

◆
,

for some constant C > 0.

C.3 Proof of Eigenvector Convergence

We now prove the convergence of eigenvectors. The outline of this proof follows the ar-
guments in the convergence analysis found in (Calder and Trillos, 2022) and (Peoples and
Harlim, 2021). It is important to note that since the matrix G>G is symmetric, there
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exists an orthonormal basis of eigenvectors of G>G, which is key in the following proof of
Theorem 4.2.
Proof Fix some ` 2 N. For convenience, we let ✏�`

denote the error in approximating the
`-th eigenvalue, from the previous section. Similarly, we let ��`

denote the quantity such
that eigenvalue approximation occurs with probability higher than 1 � ��`

. Let m be the
geometric multiplicity of the eigenvalue �`, i.e., there is an i such that �i+1 = �i+2 = · · · =
�` = · · · = �i+m. Let

c` =
1

2
min {|�` � �i|, |�` � �i+m+1|} .

By Theorem 4.1, if ✏�i , ✏�i+m+1 < c`, then with probability 1� ��i � ��i+m+1 ,

|�̂i � �i| < c`, |�̂i+m+1 � �i+m+1| < c`.

Let û1, . . . ûN be an orthonormal basis of L2(µN ) consisting of eigenvectors of G>G, where
ûj has eigenvalue �̂j . Let S be the m dimensional subspace of L2(µN ) corresponding to the
span of {ûj}

i+m
j=i+1

, and let PS (resp. P?
S ) denote the projection onto S (resp. orthogonal

complement of S). Let f be a norm 1 eigenfunction of �M corresponding to eigenvalue �`.
Notice that

P?
S RN�Mf = �`P

?
S RNf = �`

X

j 6=i+1,...,i+m

hRNf, ûjiL2(µN )ûj .

Similarly,

P?
S G>GRNf =

X

j 6=i+1,...,i+m

�̂jhRNf, ûjiL2(µN )ûj .

Hence,
���P?

S RN�Mf � P?
S G>GRNf

���
L2(µN )

=
���

X

j 6=i+1,...,i+m

(�` � �̂j)hRNf, ûjiL2(µN )ûj

���
L2(µN )

� min
n
|�` � �̂i|, |�` � �̂i+m+1|

o���
X

j 6=i+1,...,i+m

hRNf, ûjiL2(µN )ûj

���
L2(µN )

� min
n
|�` � �̂i|, |�` � �̂i+m+1|

o���P?
S RNf

���
L2(µN )

.

But P?
S is an orthogonal projection, so

min
�
|�` � �̂i|, |�` � �̂i+m+1|

 ��P?
S RNf

��
L2(µN )


��P?

S RN�Mf � P?
S G>GRNf

��
L2(µN )


��RN�Mf �G>GRNf

��
L2(µN )

.

Without loss of generality, assume that min{|�` � �̂i|, |�` � �̂i+m+1|} = |�` � �̂i|. Notice
that

|�` � �̂i| �
���|�` � �i|� |�i � �̂i|

��� > c`,

by the hypothesis. Hence,

kP?
S RNfk2L2(µN )


1

c2`
kRN�Mf �G>GRNfk2L2(µN )

.
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By Lemma C.4 paired with Lemma C.3, this upper bound is smaller than

✏fk�
2

MfkL2(M) + ✏�Mfk�MfkL2(M) + ✏hk�MfkL2(M) + ✏fk�MI�shkL2(M) +O
�
N� 1

2
�
,

with probability higher than 1� 2

N � �f � ��Mf � �h, where h is defined as in Lemma C.3.
Notice that P?

S RNf = RNf � PSRNf . Hence, if {f1, f2, . . . , fm} are an orthonormal basis
for the eigenspace corresponding to �`, applying the above reasoning m times, we see that
with a total probability of 1� 2

N � �f1 � ��Mf1 � �h1 � · · ·�
2

N � �fm � ��Mfm � �hm ,

kRNfj � PSRNfjk
2

L2(µN )


1

c2`

⇣
✏fjCfjk�

2

MfjkL2(M) + 2✏�Mfjk�MfjkL2(M)

+ ✏hjk�MfjkL2(M) + ✏fjk�MI�shjkL2(M) +O
�
N� 1

2
�⌘

:= Error(j), (65)

for j = 1, 2, . . .m. Let C` denote an upper bound on the essential supremum of the eigen-
vectors {f1, f2, . . . , fm}. For any i, j,

��fi(x)fj(x)�
Z

M
fj(y)fi(y)dµ(y)

��  C2

` (1 + Vol(M)).

Hence, using Hoe↵ding’s inequality with ↵ = 2
p
2C`

q
log(N)

N , with probability 1� 2

N ,

�����
1

N

NX

l=1

fi(xl)fj(xl)�

Z

M
fi(y)fj(y)dµ(y)

����� < ↵.

Since {f1, . . . , fm} are orthonormal in L2(M), by Hoe↵ding’s inequality used m2 times, we

see that probability higher than 1� 2m2

N ,

hRNfi, RNfjiL2(µN ) = �ij +O

✓
1

p
N

◆
.

Hence, with a total probability higher than 1 � ��i � ��i+m+1 �
2m2

N �
2

N � �f1 � ��Mf1 �

�h1 � · · ·�
2

N � �fm � ��Mfm � �hm , we have that

hPSRNfi, PSRNfjiL2(µN ) = hRNfi, RNfjiL2(µN ) � hRNfi � PSRNfi, RNfj � PSRNfjiL2(µN )

= �ij +O

✓
1

p
N

◆
+
p
Error(i)

p
Error(j),

where Error(j) is as defined in (65). Letting v1 =
PSRNf1

kPSRNf1kL2(µN )
, we see that

kPSRNf1 � v1k
2

L2(µN )
= O

�
1/
p

N
�
+O

�
Error(1)

�
.

Similarly, letting ṽ2 = PSRNf2 �
hPSRNf1,PSRNf2iL2(µN )

kPSRNf1k2L2(µN )

PSRNf1 and v2 = ṽ2
kṽ2kL2(µN )

, it is

easy to see that

kPSRNf2 � ṽ2k
2

L2(µN )
= O

�
1/
p

N
�
+O

�
Error(2)

�
,
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and hence,
kPSRNf2 � v2k

2

L2(µN )
= O

�
1/
p

N
�
+O

�
Error(2)

�
.

Continuing in this way, we see that the Gram-Schmidt procedure on {PSRNfj}mj=1
, yields

an orthonormal set of m vectors {vj}
m
j=1

spanning S such that

kPSRNfj � vjk
2

L2(µN )
= O

�
1/
p

N
�
+O

�
Error(j)

�
, j = 1, 2, . . . ,m,

and therefore

kRNfj � vjkL2(µN )  kRNfj � PSRNfjkL2(µN ) + kPSRNfj � vjkL2(µN )

= 2
q
O
�
1/
p

N
�
+O

�
Error(j)

�
, j = 1, 2, . . . ,m.

Therefore, for any eigenvector u =
Pm

j=1
bjvj with L2(µN ) norm 1, notice that f =Pm

j=1
bjfj is a L2(M) norm 1 eigenfunction of �M with eigenvalue �`. Indeed,

�Mf =
mX

j=1

bj�Mfj = �`f,

and

kfk2L2(M)
= hf, fiL2(M) =

mX

i=1

mX

j=1

bibjhfi, fjiL2(M) =
mX

j=1

b2j = 1,

where the last equality follows from the fact that

kuk2L2(µN )
= k

mX

i=1

bivik
2

L2(µN )
=

mX

i=1

b2i = 1.

Moreover, the function f also satisfies

kRNf � uk2L2(µN )


mX

j=1

|bj |
2
kRNfj � vjk

2

L2(µN )
= O

�
1/
p

N
�
+

mX

j=1

O
�
Error(j)

�
.

Using Lemma 4.1 and collecting the probabilities, the above holds with probability higher

than 1�
⇣
2m2

+5m+24

N

⌘
. Moreover, each Error(j) is on the order ofO

⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

Taking the square root yields the final result. This completes the proof.

Appendix D. Proof of Spectral Convergence: the Bochner Laplacian

In this appendix, we discuss theoretical results concerning the Bochner Laplacian approxi-
mated by the symmetric matrix

P⌦H>HP⌦ =
nX

i=1

P⌦H>
i HiP

⌦.
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This appendix is organized analogously to Appendix C which studies the spectral conver-
gence of the symmetric approximation to the Laplace-Beltrami operator. Since the discus-
sion of spectral convergence involves interpolating (2, 0) tensor fields and approximating
the corresponding continuous inner products with discrete ones, we begin by giving a brief
discussion of these details. We then investigate the continuous counterpart of the above
discrete estimator, and prove its convergence in terms of interpolation error to the Bochner
Laplacian in the weak sense, as well as in L2(X(M)) sense. After applying law of large
numbers results to quantify the error obtained by discretizing to the data set, we prove
spectral convergence results.

We note that Lemma B.4, which is the analogue of Lemma 4.1 for vector fields, is
especially useful for this section. Its proof is simply an application of Lemma 4.1 n times.
Similarly, an interpolation of (2, 0) tensor-fields result is needed. This can also be found
in Lemma B.6, and is essentially an application of Lemma 4.1 n2 times. We also need the
following definition, analogous to Definition 13, but in the setting of vector fields.

Definition 15 Denote the L2 norm error between the vector fields I�sv and v by ✏v, i.e.,

✏v := kI�sv � vkL2(X(M).

We will also define a parameter 0  �v  1 to probabilistically characterize an upper bound

for ✏v. For example, Lemma B.4 states that ✏v = O
⇣
N

�2↵+(n�d)
2d

⌘
with probability higher

than 1� �v, where �v = n/N .

D.1 Interpolation of (2,0)-Tensor Fields and Approximation of Inner Products

In the Bochner Laplacian discussion, we need to interpolate (2, 0) tensor fields, and ap-
proximate the corresponding continuous inner product with a discrete inner product. We
outline the strategy for doing so presently. Given a (2, 0) tensor field a = aij

@
@✓i ⌦

@
@✓j , we

can extend a to A = Aij
@

@Xi ⌦
@

@Xj , defined on a neighborhood of M in Rn, and write it as

an n ⇥ n matrix in the basis @
@Xi ⌦

@
@Xj . We define I�sA to be the (2, 0) tensor field with

components I�sAij in the above ambient space basis. Recall that if a, b 2 T (2,0)TM , then
by definition to the Riemannian inner product at x is given by

ha, bix =
X

i,j,k,l

aijbkl

⌧
@

@✓i
,
@

@✓k

�

x

⌧
@

@✓j
,
@

@✓l

�

x

.

Performing a change of basis to the ambient space coordinates, a computation shows that

ha, bix = tr(A(x)>B(x)),

where A,B are the extensions of a, b and thought of as n ⇥ n matrices written w.r.t. the
ambient space coordinates. Hence, defining the restriction of a (2, 0) tensor field A =
Aij

@
@Xi ⌦

@
@Xi to be the tensor RNA 2 Rn⇥n⇥N with components,

(RNA)ijk = Aij(xk),
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it follows that the inner product on Rn⇥n⇥N given by

hRNA,RNBiL2(µN,n⇥n)
:=

1

N

NX

k=1

tr
⇣
A(xk)

>B(xk)
⌘
,

approximates the continuous inner product on (2, 0) tensor fields over M . In a previous
notion of discrete (2, 0) tensor fields [U1, . . . ,Un] 2 RnN⇥n, each column Ui was thought
of as a restricted vector field, equipped with the inner product,

h[U1, . . . ,Un], [V1, . . . ,Vn]iL2(µN,N⇥n)
:=

1

N

nX

i=1

Ui ·Vi.

These two notions are equivalent in the following sense. Define � : RnN⇥n
! Rn⇥n⇥N by

�E(i�1)N+k,j = Ei,j,k i, j = 1, 2, . . . , n and k = 1, . . . , N,

where E(i�1)N+k,j denotes the nN⇥n matrix with a one in entry ((i�1)N+k, j) and zeros
elsewhere. Similarly for Ei,j,k. One can easily check that � is an isometric isomorphism
between the two inner product spaces defined above. In what follows, we will use this
identification to consider H : RnN

! RnN⇥n as a map with range in Rn⇥n⇥N . This will
be useful for computing the adjoint. Denote by L2(µN,n) the inner product on RnN which
approximates L2(X(M)):

hU,ViL2(µN,n)
=

1

N

nX

j=1

Uj
·Vj ,

where Uj
2 RN , and U = ((U1)>, . . . , (Un)>)>. Using the identification above, it is simple

to check that the transpose of �H : RnN
! Rn⇥n⇥N with respect to inner products defined

above is given by,

[Ũ1, . . . , Ũn] 7! [U1, . . . ,Un] 7!
X

i

H>
i U

i,

where [Ũ1, . . . , Ũn] 2 Rn⇥n⇥N . Since � is an isometric isomorphism, H>�>�H = H>H.
This shows that H>H : RnN

! RnN is indeed given by the formula,

H>H =
X

i

H>
i Hi,

which will be used extensively in the following calculations.

D.2 Pointwise and Weak Convergence Results: Interpolation Error

Using Cauchy-Schwarz, along with the fact that the formal adjoint of gradg acting on vector

fields is �div11 as defined in (19), we immediately have the following result.

Lemma D.1 Let u 2 X(M), and let a 2 T (2,0)TM . Then with probability higher than
1� �u, ��hgradgu� gradgI�su, aiL2(T (2,0)TM)

��  ✏ukdiv
1

1(a)kL2(X(M)).
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We also have the following norm result.

Corollary D.1 Let u 2 X(M). Then with probability higher than 1� �u,

kgradgu� gradgI�suk
2

L2(T (2,0)TM)
 ✏u

�
k�BukL2(X(M)) + k�BI�sukL2(X(M))

�
.

Proof Note that,

kgradgu� gradgI�suk
2 = hgradgu, gradgui � hgradgu, gradgI�sui � hgradgI�su, gradgui

+ hgradgI�su, gradgI�sui.

Grouping the first two and last two terms, the desired result is immediate.

Using the same reasoning as before, we can deduce a weak convergence result.

Lemma D.2 Let v, w 2 X(M). Then with probability higher than 1� �v � �w,
���h�Bv, wiL2(X(M)) � hgradgI�sv, gradgI�swiL2(T (2,0)TM)

���

 ✏wk�BvkL2(X(M)) + ✏vk�BI�swkL2(X(M)).

Proof We again add and subtract a mixed term,

h�Bv, wi � hgradgv, gradgI�swi+ hgradgv, gradgI�swi �
⌦
gradgI�sv, gradgI�sw

↵
.

The first two terms are bounded by ✏wk�BvkL2(X(M)) while the second two terms are
bounded by ✏vk�BI�swkL2(X(M)).

Similarly, we can derive an L2 convergence result. First, similar to the previous section, let
us denote the formal adjoint of gradgI�s : X(M) ! T (2,0)TM by (gradgI�s)

⇤ : T (2,0)TM !

X(M). The exact same proof as before yields the following Lemma.

Lemma D.3 Let v 2 X(M), and denote by w the vector field (gradgI�s)
⇤(gradgI�s)v.

With probability higher than 1� �v � ��Bv � �w,

k�Bv � wk2  ✏�Bvk�Bvk + ✏vk�BI�s�Bvk

✏wk�Bvk + ✏vk�BI�sgradgwk.

Proof Expanding k�Bv � (gradgI�s)
⇤(gradgI�s)vk

2 yields

k�Bv � (gradgI�s)
⇤(gradgI�s)vk

2 = h�Bv,�Bvi � h�Bv, (gradgI�s)
⇤(gradgI�s)vi

� h(gradgI�s)
⇤(gradgI�s)v,�Bvi

+ h(gradgI�s)
⇤(gradgI�s)v, (gradgI�s)

⇤(gradgI�s)vi.

We use the previous Lemma twice, once on the first two terms (which gives an error of
✏�Bvk�Bvk + ✏vk�BI�s�Bvk) and once on the last two terms (which gives an error of
✏wk�Bvk+ ✏vk�BI�sgradgwk). This completes the proof.

Remark 16 Similar to Remark 14 for the Laplace-Beltrami operator, we note that Lemma
B.4 guarantees all estimation error terms (errors indicated by ✏ with corresponding sub-
script) converge as N ! 1. Additionally, it follows from Lemma B.5, since the Bochner
Laplacian is obtained from second order di↵erential operators on the ambient space coe�-
cients of each vector field, that no norm terms on the right-hand-side of each estimate above
blow up as N ! 1.
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D.3 Pointwise and Weak Convergence Results: Empirical Error

The following is a simple concentration result.

Lemma D.4 Let u, v 2 X(M). Additionally, let Assumption 4.1 be valid. Then

P
⇣���hHP

⌦RNu,HP
⌦RNviL2(µN,n⇥n) � hgradgI�su, gradgI�sviL2(T (2,0)TM)

��� � ✏
⌘
 2exp

✓
�2✏2N

C

◆
,

for some constant C > 0.

Proof We note that

hgradgI�su, gradgI�svi =

Z

M
tr
⇣
[H1U, . . .HnU ]> [H1V, . . .HnV ]

⌘
dVol(x)

=

Z

M

nX

i=1

hHiU,HiV ix dVol(x) =

Z

M

nX

i=1

hHiPU,HiPV ix dVol(x),

where U and V are extensions of u, v onto an Rn neighborhood ofM . The last equality comes
from the fact that since U, V extend u, v, then at each point x 2 M , we have PU = U,PV =
v. We can see immediately that the result follows by using a concentration inequality on
the random variable

Pn
i=1

hHiPU,HiPV ix. Plugging in to Hoe↵ding’s inequality and using
smoothness assumptions, along with Assumption 4.1 and Lemma B.5, gives the desired
result.

Again, H is simply the restricted version of gradgI�s , as defined in (17). Hence, the same
reasoning as above yields the norm convergence result, which plays a part in proving the
convergence of eigenvectors.

Lemma D.5 Let v 2 X(M). Additionally, let Assumption 4.1 be valid. Then

P
⇣���kP⌦

H
>
HP

⌦v �RN�Bvk2L2(µN ,n) � k(gradgI�s)
⇤(gradgI�s)v ��Bvk2L2(X(M))

��� � ✏
⌘
 2exp

✓
�2✏2N

C

◆
,

for some constant C > 0.

D.4 Proof of Spectral Convergence

Here, we prove Theorem 4.3, the convergence of eigenvalue result for the Bochner Laplacian
operator.
Proof Enumerate the eigenvalues of P⌦H>HP⌦ and label them �̂1  �̂2  · · ·  �̂N . Let
S
0
i ✓ X(M) denote an i-dimensional subspace of smooth functions on which the quantity

maxv2Si

hP⌦
H

>
HP

⌦RNv,RNviL2(µN,n)

kRNvkL2(µN,n)
achieves its minimum. Let ṽ 2 S

0
i be the smooth vector

field on which the maximummaxv2S0
i
h�Bv, vi occurs. WLOG, assume that kṽk2L2(X(M))

= 1.

Assume that N is su�ciently large so that by Hoe↵ding’s inequality
���kRN ṽk2L2(µN,n)

� 1
��� 

Constp
N

 1/2, with probability 1 � 2

N , and thus kRN ṽk2L2(µN,n)
is bounded away from zero.

Hence, we can Taylor expand the denominator term of
hP⌦

H
>
HP

⌦RN ṽ,RN ṽiL2(µN,n)

kRN ṽk2
L2(µN,n)

to obtain

hP⌦
H

>
HP

⌦RN ṽ, RN ṽiL2(µN,n)

kRN ṽk2
L2(µN,n)

= hP⌦
H

>
HP

⌦RN ṽ, RN ṽiL2(µN,n) �
ConsthP⌦

H
>
HP

⌦RN ṽ, RN ṽiL2(µN,n)p
N

.
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Note that with probability higher than 1� 2

N , we have that

���hP⌦H>HP⌦RN ṽ, RN ṽiL2(µN,n)
� hgradgI�s ṽ, gradgI�s ṽiL2(T (1,1)(TM))

��� = O
⇣
N� 1

2

⌘
,

by Lemma D.4, choosing ✏ =
q

log(N)

N1/2 and ignoring log factors. Combining with Lemma

D.2 and plugging in the result from Lemma B.4, we obtain that

h�B ṽ, ṽiL2(X(M)) 
hP⌦H>HP⌦RN ṽ, RN ṽiL2(µN,n)

kRN ṽk2L2(µN,n)

+O
⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
,

with total probability higher than 1 �
2n+2

N . Since ṽ = argmaxv2S0
i
h�Bv, viL2(X(M)), and

since,

hP⌦H>HP⌦RN ṽ, RN ṽiL2(µN,n)

kRNvkL2(µN,n)

 maxv2S0
i

hP⌦H>HP⌦RNv,RNviL2(µN,n)

kRNvkL2(µN,n)

,

we have the following:

maxv2S0
i
h�Bv, viL2(X(M))  maxv2S0

i

hP⌦H>HP⌦RNv,RNviL2(µN,n)

kRNvkL2(µN,n)
+O

⇣
N� 1

2

⌘
+O

⇣
N� 2↵+(n�d)

2d

⌘
.

Since S
0
i is the exact subspace on which maxv2Si

hP⌦
H

>
HP

⌦RNv,RNviL2(µN,n)

kRNvkL2(µN,n)
achieves its

minimum, then

maxv2S0
i
h�Bv, viL2(X(M))  �̂i +O

⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

But the left-hand-side certainly bounds above the minimum of maxv2Sih�Bv, viL2(X(M))

over all i-dimensional smooth subspaces Si. Hence,

�i  �̂i +O
⇣
N� 1

2

⌘
+O

⇣
N

�2↵+(n�d)
2d

⌘
.

The same argument yields that �̂i  �i + O
⇣
N� 1

2

⌘
+ O

⇣
N

�2↵+(n�d)
2d

⌘
, with probability

higher than 1� 2+2n
N . This completes the proof.

Remark 17 Since the exact same proof as the eigenvector convergence for the Laplace
Beltrami operator is valid, we do not rewrite it in full detail. Instead, we simply note that
while Theorem 4.2 is proved using Theorem 4.1, as well as Lemmas 4.1, C.3, and C.4,
similarly, we have that Theorem 4.4 can be proved with the exact same argument, using
instead Theorem 4.3, along with Lemmas B.4, D.3, and D.5. Statements and proofs of the
lemmas mentioned above can be found in the present section.
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Appendix E. Additional Numerical Results with Di↵usion Maps

In this section, we report additional numerical results with di↵usion maps on the 2D torus
example to support the conclusion in Section 5.2. Particularly, we would like to demonstrate
that other choices of nearest neighbor parameter, K, and kernel bandwidth parameter, ✏,
do not improve the accuracy of the estimates, and thus, the particular choice of K and ✏ in
Section 5.2 is representative.

Figure 16 shows the eigenvector estimates for mode k = 13. Each row in these figures
corresponds to manually tuned ✏ for a fixed K. In the last row, we also include the auto-
tuned ✏ (using the method that was originally proposed in Coifman et al. (2008)). One
can see that the auto-tuned ✏ seems to only work for smaller values of K. The denser the
matrix, the estimates seem to be more sensitive to the choice of ✏. On the other hand,
one can also see that qualitatively the eigenvector estimates for various choices of K and ✏
(including K = N) are not very di↵erent from those with smaller values of K. In Figure 17,
we give further details on errors in the estimation of eigenvalues and eigenvectors for each
K and ✏. As a baseline, we plot the errors corresponding to SRBF P̂. Overall, one can
see that when K is small, the leading eigenvalues can be more accurately estimated by DM
with an appropriate choice of ✏. For larger K (e.g. K = 400, 2500, see panel (d)), one can
see ✏ = 0.05 leads to accurate estimation of only the leading eigenvalues (red curves) but
for ✏ = 0.2 the non-leading spectra becomes more accurate in the expense of less accurate
leading eigenvalue estimation. At the same time, the accuracy in the estimation of the
corresponding eigenfunction is more or less similar for any choice of K, confirming the
qualitative results shown in Figure 16. Indeed if one chooses K = 400 and ✏ = 0.2, while
the errors of the estimation of eigenvalues are smaller than those of SRBF P̂ (compare grey
and cyan curves in panel (d) in Figure 17), the corresponding eigenvector estimate for mode
k = 13 does not qualitatively reflect on an accurate estimation at all (see row 4, column 5
in Figure 16).

Based on the results in Figure 17 panel (f), Notice that the best estimate corresponds
to the case of K = 100 (red curves). Based on this empirical result, we present the case
K = 100 with auto-tuned ✏ in Figures 4-6.

References

Douglas N Arnold, Richard S Falk, and Ragnar Winther. Finite element exterior calculus,
homological techniques, and applications. Acta numerica, 15:1–155, 2006.

Douglas N Arnold, Richard S Falk, and Ragnar Winther. Finite element exterior calculus:
from Hodge theory to numerical stability. Bulletin of the American mathematical society,
47(2):281–354, 2010.

Omri Azencot, Maks Ovsjanikov, Frederic Chazal, and Mirela Ben-Chen. Discrete deriva-
tives of vector fields on surfaces - an operator approach. Acm Transactions on Graphics,
34(3):1–13, 2015.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

78



Radial basis approximation of tensor fields on manifolds

manually-tuned ✏, mode k = 13
K = 50, ϵ = 0.025

0 3 6
0

3

6
K = 50, ϵ = 0.05

0 3 6
0

3

6
K = 50, ϵ = 0.075

0 3 6
0

3

6
K = 50, ϵ = 0.1

0 3 6
0

3

6
K = 50, ϵ = 0.2

0 3 6
0

3

6
K = 50, ϵ = 0.4

 

 

0 3 6
0

3

6

−0.1

0

0.1

K = 100, ϵ = 0.025

0 3 6
0

3

6
K = 100, ϵ = 0.05

0 3 6
0

3

6
K = 100, ϵ = 0.075

0 3 6
0

3

6
K = 100, ϵ = 0.1

0 3 6
0

3

6
K = 100, ϵ = 0.2

0 3 6
0

3

6
K = 100, ϵ = 0.4

 

 

0 3 6
0

3

6

−0.1

0

0.1

K = 200, ϵ = 0.025

0 3 6
0

3

6
K = 200, ϵ = 0.05

0 3 6
0

3

6
K = 200, ϵ = 0.075

0 3 6
0

3

6
K = 200, ϵ = 0.1

0 3 6
0

3

6
K = 200, ϵ = 0.2

0 3 6
0

3

6
K = 200, ϵ = 0.4

 

 

0 3 6
0

3

6

−0.1

0

0.1

K = 400, ϵ = 0.025

0 3 6
0

3

6
K = 400, ϵ = 0.05

0 3 6
0

3

6
K = 400, ϵ = 0.075

0 3 6
0

3

6
K = 400, ϵ = 0.1

0 3 6
0

3

6
K = 400, ϵ = 0.2

0 3 6
0

3

6
K = 400, ϵ = 0.4

 

 

0 3 6
0

3

6

−0.1

0

0.1

K = 2500, ϵ = 0.025

0 3 6
0

3

6
K = 2500, ϵ = 0.05

0 3 6
0

3

6
K = 2500, ϵ = 0.075

0 3 6
0

3

6
K = 2500, ϵ = 0.1

0 3 6
0

3

6
K = 2500, ϵ = 0.2

0 3 6
0

3

6
K = 2500, ϵ = 0.4

 

 

0 3 6
0

3

6

−0.1

0

0.1

auto-tuned ✏, mode k = 13
K = 50, ϵ = 0.063

0 3 6
0

3

6
K = 100, ϵ = 0.10

0 3 6
0

3

6
K = 200, ϵ = 0.16

0 3 6
0

3

6
K = 400, ϵ = 0.27

0 3 6
0

3

6
K = 800, ϵ = 0.38

0 3 6
0

3

6
K = 2500, ϵ = 0.54

 

 

0 3 6
0

3

6

−0.1

0

0.1

Figure 16: 2D general torus in R21. Mode k = 13. Comparison of eigenfunctions of
Laplace -Beltrami among various DMs with di↵erent K-nearest neighbors and
bandwidth ✏. Panels from the first row to the fifth row correspond to manually-
tuned ✏ for K = 50, 100, 200, 400, 2500, respectively. Panels in the last row
correspond to auto-tuned ✏ for various K. The randomly distributed N = 2500
data points on the manifold are used for computing the eigenvalue problem.
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(a) K = 50 manually tuned ✏ (b) K = 100 manually tuned ✏
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(c) K = 200 manually tuned ✏ (d) K = 400 manually tuned ✏
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Figure 17: 2D general torus in R21. Comparison of errors of eigenvalues and errors of
eigenvectors for DM among various parameters. Panels (a)-(e) correspond to
manually-tuned ✏ for K = 50, 100, 200, 400, 2500, respectively. Panel (f) corre-
sponds to auto-tuned ✏ for various K. The randomly distributed N = 2500 data
points on the manifold are used for solving the eigenvalue problem.
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