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ABSTRACT

Edge and Internet of Things (IoT) applications have attracted sig-

ni�cant attention from both industry and academia due to their

immense potential. As a result, the database community—through

communications such as the recent database Seattle reports—has

recognized the criticality of developing a new breed of data man-

agement systems speci�cally tailored for IoT and edge applications.

These systems need to be distributed across edge locations to e�ec-

tively handle the unique challenges posed by these environments.

However, the development of such databases remains largely mini-

mal in both industry and academia.

Over the past �ve years, our team has conducted extensive re-

search and collaborated with industry partners to bring an edge-

cloud database to market and to investigate the reasons behind the

limited progress and adoption of distributed edge-cloud databases.

As part of our e�orts, we have developed a distributed edge-cloud

database called AnyLog and deployed it with numerous industry

partners in di�erent IoT and smart city sectors. Our interactions

with many technical teams from diverse industries have provided

invaluable insights into the challenges and opportunities associated

with distributed edge-cloud data management.

In this paper, we present a comprehensive summary of our �nd-

ings, drawing from our �ve-year experience in the �eld. We high-

light the real challenges faced in distributed edge-cloud data man-

agement and discuss the opportunities that lie within. Furthermore,

we showcase the capabilities of edge-cloud databases using AnyLog,

illustrating our insights about the challenges and opportunities of

edge-cloud databases.

1 INTRODUCTION

IoT and edge applications encompass a diverse range of applica-

tions that heavily rely on IoT devices (including Internet-connected

sensors, PLCs, appliances, and cameras) and edge devices (includ-

ing wearables, virtual and augmented reality headsets/glasses, and

mobile phones). These applications typically have a subset of these

properties: low-latency requirement, sporadic connectivity, and

generating vast amounts of data continuously. With their increas-

ing popularity and predicted status as billion-dollar industries, they

are anticipated to play a pivotal role in advancing and sustaining

various sectors. Industries like smart cities and spaces, industrial

and automation systems, personalized healthcare, immersive virtual

and augmented reality, mobile gaming, and surveillance heavily
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Figure 1: An example of an AnyLog Edge-Cloud deployment.

AnyLog nodes are deployed on the Edge across buildings,

end-user and smart city devices, andmicro data centers. Each

AnyLog node is decentralized, where it can be added and/or

removed independently. AnyLog nodes coordinate through

a decentralized protocol that orchestrates and synchronizes

the process of the distributed nodes and the data that they

store.

depend on the successful deployment and data infrastructure of IoT

and edge applications.

As IoT and edge applications continue to advance, it becomes

increasingly apparent that e�cient and scalable data management

systems tailored speci�cally for these environments are essential.

These systems should possess the ability to reliably process and

analyze huge amounts of data in real-time, enabling timely decision-

making and unlocking the full potential of IoT and edge applications.

The database and storage communities have emphasized this in

documents such as the most recent “Seattle Report on Database

Research” [2] and the “Data Storage Research Vision 2025” Report

on NSF Visioning [4].

While signi�cant e�orts have been made to develop databases

and stream-processing systems for IoT and edge data [1, 5, 7, 17–

19, 23, 24], most of these solutions still adhere to the traditional

paradigm of centralization, where data is sent to centralized nodes

either directly or through multiple processing levels between the

edge and central location. Other solutions rely on centralization

di�erently, where queries and control are orchestrated by a central-

ized node (e.g., a gateway orchestrating data processing across a

sensor network) [11, 14]. Unfortunately, this centralized approach

falls short in supporting edge-cloud databases as it lacks the crucial

characteristic of being in close proximity to both the data sources
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and users. Without such close proximity, properties such as low-

latency requirements and tolerating sporadic connectivity cannot

be supported. In addition, the functionalities needed at the edge

span beyond a single product—at the edge, developers need to

shoehorn multiple products (relational databases, object stores,

stream processors, data brokers, and more). In addition, they need

to independently manage security, high availability, user and data

authentication, and integrate all of that with a platform that is able

to orchestrate and monitor the distributed edge resources. This

approach creates proprietary software stacks intermingled with

domain knowledge and assumptions which leads to data silos and

setups that are hard to deploy, manage, and scale.

What is needed is a distributed and decentralized edge-cloud

database architecture—where nodes are distributed at the Edge in

close proximity to users. These Edge nodes can operate indepen-

dently of the rest of the network, are co-located with IoT/edge de-

vices, or deployed on infrastructure in proximity to them (Figure 1).

This edge platform needs to o�er the needed edge functionalities as

uni�ed and integrated services, that are easily deployed, managed,

and automatically scalable.

The absence of distributed edge-cloud databases in the industry

and the limited number of recent academic e�orts on this topic raise

the question of why this crucial need remains largely unaddressed.

Over the past �ve years, our team has actively pursued research

and development in the �eld of edge-cloud databases from both

industry and academic perspectives. It all began with a vision we

outlined in a previous paper published in CIDR 2020 [3], setting the

stage for our comprehensive exploration of this area. Taking the in-

dustry standpoint, we embarked on building AnyLog, a distributed

and decentralized edge-cloud database. This solution has been de-

ployed across numerous industry partners representing diverse

sectors, including smart spaces, IoT, and industrial automation ap-

plications. To gain deeper insights into the challenges and relevance

of edge-cloud databases within these industries, we engaged with

many technical teams in the IoT/edge domain, fostering fruitful

discussions about their speci�c technical goals and requirements

in relation to edge-cloud databases.

Simultaneously, from an academic standpoint, we dedicated our

e�orts to investigating various crucial aspects of data management

in the context of edge-cloud databases. This encompassed exploring

topics such as indexing and storage [13], transaction processing [9],

distributed coordination and consensus [15], e�cient analytics [20],

as well as trust and security [10, 16, 21]. Through presentations and

discussions with members of the research community, we sought to

understand the position of edge-cloud research within the broader

goals of the database and storage communities.

Our activities over the past �ve years have yielded insights and

deepened our understanding of the real challenges and opportuni-

ties that lie ahead in the realm of building distributed edge-cloud

databases. In this paper, we aim to summarize these experiences

and insights with the goal of inspiring future research and indus-

try products that can help in advancing and realizing edge-cloud

databases.

In the remainder of this paper, we �rst provide an overview

of AnyLog and how its distributed edge-cloud nature makes it

di�erent from existing databases in Sections 2 and 3. Then, we

describe the prototype and scenarios of AnyLog in Section 4. The

paper concludes in Section 5.

2 ANYLOG: AN EDGE-CLOUD DATABASE

AnyLog aims to transform the Edge1 to a data infrastructure that

is simple to scale and manage. Another way to view this is that

AnyLog aims to extend cloud computing and data management

functionalities to resources on the Edge.

At its core, AnyLog is implemented in 2 layers (Figure 2): The

�rst is a data layer that brings data management functionalities to

Edge nodes. These functionalities include a local (and pluggable)

database that hosts data locally and is integrated with upper layers

(such as a rule engine). AnyLog has connectors to several widely-

used databases such as PostgreSQL, SQLite [8], and MongoDB (the

connectors are extensible to integrate with the user’s DBMS of

choice). The functionalities are o�ered as services on each AnyLog

node and are enabled by native commands. This approach makes

deployment simple; by selecting services from an integrated and

uni�ed stack, a user con�gures the pro�le of each node, rather than

developing proprietary solutions or integrating functionalities from

diverse products. For example, when AnyLog is deployed, the user

enables services that will make the AnyLog Node appear to data

sources as a data broker, ingest data to the local databases, create

schema based on ingested data, make the data secure, authenticate

users, o�er a rule engine that can act on data, events and machine

state, make the data Highly Available, and more.

The second layer is the coordination layer. The coordination

layer maintains a decentralized ledger of meta-information and

system con�gurations and makes the information available to all

the member nodes. This includes node memberships (i.e., what

nodes are part of the AnyLog network), data maps (i.e., where data

is stored, how it is replicated and distributed, the list of tables and

their schema), and information that governs the access to data and

the propagation of data from data producers to AnyLog nodes. The

decentralized ledger is a separate module that can be implemented

in various ways as long as it provides an interface that maintains a

consistent log of updates to the various information maintained by

the ledger. AnyLog currently has di�erent ledger implementations

that a user can choose from including ones based on permission-

less and permissioned blockchain as well as a gossip-based log

replication protocol.

The data and coordination layers achieve two important design

concepts in AnyLog:

1. Data virtualization through virtual tables:AnyLogmakes

the distributed data appear as a uni�ed collection of data.

More speci�cally, using data virtualization, users and appli-

cations interact with a set of virtual tables. The data itself

remains in-place (distributed and hosted in local databases

of the Edge nodes). A query to a virtual table is satis�ed by

the nodes that contain data of that virtual table.

2. Resource Virtualization through �uid virtual nodes:

AnyLog makes the distributed resources (all the nodes where

AnyLog is deployed such as switches, gateways, and servers)

1Throughout this paper, we use the term Edge to represent the edge of the network
where the users and devices are located. This includes end-user devices such as wear-
ables and access points, base stations, and edge data centers which are clusters of
machines deployed on-premises in university campuses, companies, smart cities, etc.
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Figure 2: System overview of an Edge-Cloud AnyLog deployment.

managed as a single “virtual” node. A virtual node can repre-

sent one or more physical nodes and two virtual nodes may

intersect in some of the virtual resources that they represent.

We call this a �uid virtual node. With this setup, a user can

query and monitor the status of a particular machine, or a

group of machines using a single call. For example, a user

can request—in a single call—the CPU usage of all the edge

nodes deployed in California.

By allowing the management of distributed data from a single

point, and by allowing the monitoring and management of edge

resources from a single point, the Edge becomes as simple and

intuitive environment as the Cloud: Applications query for the

list of (virtual) databases, then select a table, then request the list

of columns in the table, and issue a query. This is no di�erent

than querying a centralized (or a cloud-based) database. In the

same manner, users can query the shared metadata dynamically

for a pro�le of nodes (e.g. nodes in California, nodes associated

with a data owner, nodes assigned with the data generated from

a particular machine, etc.) and join the metadata response with a

query for a speci�c state (e.g. disk usage, con�guration setting, etc.)

to an aggregate response from the identi�ed nodes.

3 KEY DIFFERENCES TO EXISTING
TECHNOLOGIES

AnyLog edge-cloud design represents many architectural di�er-

ences from existing centralized, distributed, and cloud-based plat-

forms. We list the main di�erences that we aim to showcase in the

demonstration below:

Data decentralization rather than data partitioning. Any-

Log is di�erent from distributed databases (such as CockroachDB [22],

Spanner [6], and CosmosDB [12]) in that rather than partitioning

the data by a key, with AnyLog, each node is a candidate to host

any data item. This approach is important for Edge data as we aim

to keep data in place, where it is generated whereas a partitioned

key will force the data to move to a target node (determined by the

key) unrelated to the need in data locality. In addition, the nature

of edge data management is that new nodes continuously join (or

drop from) the network. This dynamic nature of the Edge will not

be served well when the data is partitioned by a key as data will

need to be continuously redistributed. With AnyLog, when a node

receives data assigned to a (virtual) table, the node will register itself

as being one of the nodes managing the table’s data (once) on the

shared metadata. From thereon, the node will participate in queries

that consider the table’s data. This approach allows nodes to imme-

diately join the network and there is no need for synchronization

or redistribution of data.

Decentralization of resources. The traditional distributed

databases aim at a relatively small number of nodes whereas Any-

Log scales to a large number of nodes. The reason is that for a

given query, only a subset of nodes participate in the query pro-

cess and the remaining nodes are not impacted (i.e., a query to

provide the electricity usage in San Francisco in the last 2 hours

would be processed only on the subset of nodes with electricity

usage in San Francisco, whereas the entire network may serve data

related to all cities in the world as well as data of other use cases,

and these nodes are not involved in the query for electricity us-

age in SF). By distributing the data to multiple nodes, a query is

processed on multiple nodes concurrently with a high degree of

parallelism. Whenever possible, functions are pushed to the edge

nodes minimizing data transfer. Regardless if functions are pushed,

this setup is e�cient as it avoids the overhead of centralizing the

data. Also, this approach scales horizontally. Companies can adjust
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Figure 3: AnyLog Test Network (TestNet). Each green dot

represents a location that hosts one or more AnyLog nodes.

to the needed performance by dynamically adding nodes. Each

added node increases the distribution of the data and therefore the

degree of parallelism.

Orchestration across independent local databases. AnyLog

is a platform that is layered on top of local databases; it makes the

group of all local databases at the Edge appear as a single machine,

and it provides functionality not only to manage distributed data,

but also to manage the edge resources. For example, the network

will satisfy lookups on access statistics, disk, and networking usage.

The shared metadata serves as a single point to control all the

distributed nodes. If a policy is added (to the metadata) or changed,

it becomes available to all the nodes, and nodes are designed such

that their functionality and operations are derived from the policies

(and con�gurations). Each AnyLog node maintains a rule engine

that can act on data and resource state and o�ers APIs (like REST

and Pub-Sub) to connect to data sources and applications.

4 ANYLOG FUNCTIONALITY SHOWCASE

We present a demonstration of AnyLog’s main features such as data

and resource virtualization (Section 2) as well as its key di�erences

compared to traditional distributed databases (Section 3). In this sec-

tion, we describe our experimental setup—which we have utilized

in our demonstrations with many industry and academic teams—

that we will utilize in this section. Then, we will present a mock-up

of how the functionality overview will be structured (given space

limitation, we only discuss this part for a representative subset of

the demonstration).

4.1 AnyLog Test Network

The AnyLog Test Network (TestNet) is a decentralized network of

nodes with AnyLog deployed and con�gured on each node (Fig-

ure 3). 20 Nodes participate in the TestNet and these nodes are

deployed all over the world.

The nodes in the network coordinate using a shared metadata

layer that is hosted in a decentralized ledger (blockchain). The

shared metadata is a collection of JSON scripts (we call each script

a policy), and the blockchain serves as a platform that makes the

policies available to all the participating nodes consistently (regard-

less of the nodes or users that created the policies). For example,

when data is streamed from a device to a node, the node determines

if a schema that satis�es the data exists (on the shared metadata). If

a schema exists, the node will use the existing schema to host the

data in a local database. If the schema does not exist, the node will

create the schema, represent the schema as a policy, and publish

Figure 4: An overview of the demo setup of cameras moni-

toring tra�c and sending data to AnyLog nodes with infor-

mation about car speeds.

the schema to be part of the shared metadata (so it will be available

to a di�erent node that ingests similar data).

Unlike the metadata, the data is hosted in local databases on

the participating nodes. The architecture is such that users can

determine the physical database (which can be di�erent on each

node). This is done as di�erent setups may have di�erent prefer-

ences for the database to use. In the TestNet, we use PostgreSQL

for larger nodes, SQLite for switches and gateways, and MongoDB

for unstructured data (to host video and images). By default, the

created schemas are based on the self-describing nature of the de-

vice data (there is a variety of platforms that satisfy the device API

and deliver self-describing data, for example, EdgeX Foundry2). In

addition, AnyLog o�ers a high-level scripting language that can

map the structure of ingested data to a target structure or enforce a

target schema whenever the default mapping (to create the schema

or satisfy the schema) is not su�cient.

On each node, the data is organized by time, and as most queries

to sensor data provide a time interval, lookups are directed to the

relevant rows (rather than full table scans). The partitioning by

time allows to remove and archive old data without downtime,

and in most deployments users place a rule (on the rule engine)

that removes old partitions (i.e., keep the most recent partitions or

remove old partitions if disk space is under a threshold).

Queries, commands, and user requests are sent to AnyLog nodes

using a REST interface. A request can be issued to any one of the

AnyLog nodes in the network, and the AnyLog node receiving the

request (or query or command) acts as an Orchestrator by routing

the request to the peer nodes that need to process the request or

with the relevant data. The participating node processes the request

locally and replies to the Orchestrator that organizes the replies

and returns a uni�ed reply to the user or application.

4.2 Demo Structure

The proposed demo showcases the unique challenges, features, and

opportunities of edge-cloud data management with AnyLog. The

following is a representative set of the demonstration parts.

2https://www.edgexfoundry.org/
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(a) The client interface to write SQL queries and send them to

an AnyLog node

(b) An example of the SQL response to a query asking about

cars and their speed

(c) An example showing streaming the video that corresponds

to a data entry in the response

Figure 5: Screenshots of the client interface to be used in the

demo of AnyLog

The demo will utilize a video analytics application. The applica-

tion is for tra�c management, where a group of cameras streams

images from roads and intersections to AnyLog nodes (Figure 4).

Three cameras with integrated AI continuously process images and

extract information about detected cars and their speeds. Then, the

AI generates a data record for the time intervals (that contains the

number of cars identi�ed, the speed, location, and other informa-

tion) and sends it to the closest AnyLog node. The AnyLog node

that receives the data, stores the records in a table that corresponds

to the schema of the records (called the tra�c table), and the images

are stored, on the same local node using a blob database.

Virtual tables. The �rst feature that is presented in the demo

is the concept of virtual tables. In the demo, we send a command

to the AnyLog network (speci�cally, to a node in the network) to

display the virtual tables (i.e., the command is get virtual tables,

which serves as exploring the list of tables). The output of this

command is the list of all databases, and for each database, the list

of all tables. One of these tables is the tra�c table which contains

the information about the tra�c video generated by the AI process.

User queries. The next part of the demo is to show how the user

issues queries to retrieve data from the tra�c table without the need

to know which are the nodes that host the table’s data (to support

an administrator, users can query the network to determine, for

each virtual table, which are the nodes that host the data). To make

the demo more intuitive, we have built a client interface shown

in Figure 5. The client interface enables users to send AnyLog-

speci�c commands (e.g., get virtual tables;) and SQL queries about

the data in the virtual tables that are managed by the network. The

screenshots in the �gure show the initial interface (Figure 5(a)) with

the di�erent options that the user can choose and a text space to

write commands and SQL queries. When the user sends a request, it

is sent to the AnyLog node speci�ed by the chosen IP address. This

node will either process the request or act as an Orchestrator to

determine the target peer nodes, deliver the request, and aggregate

and unify the reply from the peers that are involved in the process.

Figure 5(b) shows the response to a query to list all cars in the

tra�c table that were recorded in the previous hour ordered by their

speed (the following SQL query is shortened for ease of exposition):

SELECT start_ts , end_ts , num_cars , speed

FROM traffic

WHERE start_ts >= NOW() - 1hour and end_ts <= NOW()

ORDER BY speed;

The response to the query is collected from all AnyLog nodes

that contain data relevant to the tra�c virtual table (2 nodes support

the tra�c table in the demo), without specifying in the query which

are the nodes that host the data. These target nodes are determined

transparently by the Orchestrator by considering the information

contained in the query text and the information in the metadata.

In the next part, we show a feature of AnyLog for multimedia

data. Each data item in the tra�c table represents the AI deriva-

tives (like speed) associated with the video segment. These video

segments are maintained in-place using an object database in the

local AnyLog node and are not centralized. If the user is interested

in streaming the video assigned to an AI insight, (e.g., the video of a

speeding car), then the user can click on that data item. The AnyLog

client interface then sends a request to stream the corresponding



CIDR’24, January 14-17, 2024, Chaminade, USA Nawab and Shadmon

Figure 6: The steps in the demo scenario to show the seamless

plug-and-play deployment of AnyLog nodes and the decen-

tralization of data and resources.

video clip from the AnyLog node at the Edge. Figure 5(c) shows the

outcome of such a request.

Decentralization. The next part of the demo (Figure 6) will

showcase the decentralization nature of the AnyLog Network. In

this part, during the normal operation of AnyLog, we will add a

new AnyLog node. We will show how the process of joining and

participating in the AnyLog network is seamless. First, the new

AnyLog node Ċ sends its information to the rest of the network as a

new policy published in the decentralized ledger. Once the policy is

added, AnyLog nodes can coordinate with node Ċ . Then, we make

one of the cameras send frames to the new node Ċ . When the node

Ċ receives the data for the tra�c virtual table, it discovers that data

with the same schema and table name exist by querying the policies

in the ledger. Therefore, it only needs to register itself as a node that

hosts data for the tra�c table (this process only needs to be done

once). This makes node Ċ a node that will be considered (by the

Orchestraor node) when queries to the tra�c table are issued. Note

that this process is e�cient as there is no redistribution of data and

as the new node Ċ joins the process without any dependencies on

peer members or external (to the node) processes.

Other features. Due to space limits, we do not describe in detail

the other features and properties of AnyLog that we will include

in the demo. However, we list them here brie�y. These features

and scenarios include sending commands that inquire about nodes’

statistics and hardware utilization, tolerating failures and nodes

disappearing, complex queries that manipulate data from various

virtual tables, and consistency issues that may arise due to the

decentralized nature of AnyLog coordination.

5 CONCLUSION

AnyLog is bridging this gap by delivering a single and uni�ed stack

that replaces engineering e�orts with services that are enabled on

edge nodes and delivers a complete and integrated solution that: (a)

allows a plug-and-play approach to deploying edge instances, (b)

has a protocol that treats and serves all the decentralized data as a

single uni�ed collection of data, (c) treats and monitors all the edge

resources as a single uni�ed machine, and (d) scales horizontally to

address the growth of the data at the edge to services the edge data

with low latency to AI processes and edge and cloud applications.

All of that is without the performance and monetary overheads of

centralizing the data.
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