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ABSTRACT

Edge and Internet of Things (IoT) applications have attracted sig-
nificant attention from both industry and academia due to their
immense potential. As a result, the database community—through
communications such as the recent database Seattle reports—has
recognized the criticality of developing a new breed of data man-
agement systems specifically tailored for IoT and edge applications.
These systems need to be distributed across edge locations to effec-
tively handle the unique challenges posed by these environments.
However, the development of such databases remains largely mini-
mal in both industry and academia.

Over the past five years, our team has conducted extensive re-
search and collaborated with industry partners to bring an edge-
cloud database to market and to investigate the reasons behind the
limited progress and adoption of distributed edge-cloud databases.
As part of our efforts, we have developed a distributed edge-cloud
database called AnyLog and deployed it with numerous industry
partners in different IoT and smart city sectors. Our interactions
with many technical teams from diverse industries have provided
invaluable insights into the challenges and opportunities associated
with distributed edge-cloud data management.

In this paper, we present a comprehensive summary of our find-
ings, drawing from our five-year experience in the field. We high-
light the real challenges faced in distributed edge-cloud data man-
agement and discuss the opportunities that lie within. Furthermore,
we showcase the capabilities of edge-cloud databases using AnyLog,
illustrating our insights about the challenges and opportunities of
edge-cloud databases.

1 INTRODUCTION

IoT and edge applications encompass a diverse range of applica-
tions that heavily rely on IoT devices (including Internet-connected
sensors, PLCs, appliances, and cameras) and edge devices (includ-
ing wearables, virtual and augmented reality headsets/glasses, and
mobile phones). These applications typically have a subset of these
properties: low-latency requirement, sporadic connectivity, and
generating vast amounts of data continuously. With their increas-
ing popularity and predicted status as billion-dollar industries, they
are anticipated to play a pivotal role in advancing and sustaining
various sectors. Industries like smart cities and spaces, industrial
and automation systems, personalized healthcare, immersive virtual
and augmented reality, mobile gaming, and surveillance heavily
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Figure 1: An example of an AnyLog Edge-Cloud deployment.
AnyLog nodes are deployed on the Edge across buildings,
end-user and smart city devices, and micro data centers. Each
AnyLog node is decentralized, where it can be added and/or
removed independently. AnyLog nodes coordinate through
a decentralized protocol that orchestrates and synchronizes
the process of the distributed nodes and the data that they
store.

depend on the successful deployment and data infrastructure of IoT
and edge applications.

As IoT and edge applications continue to advance, it becomes
increasingly apparent that efficient and scalable data management
systems tailored specifically for these environments are essential.
These systems should possess the ability to reliably process and
analyze huge amounts of data in real-time, enabling timely decision-
making and unlocking the full potential of IoT and edge applications.
The database and storage communities have emphasized this in
documents such as the most recent “Seattle Report on Database
Research” [2] and the “Data Storage Research Vision 2025” Report
on NSF Visioning [4].

While significant efforts have been made to develop databases
and stream-processing systems for IoT and edge data [1, 5, 7, 17—
19, 23, 24], most of these solutions still adhere to the traditional
paradigm of centralization, where data is sent to centralized nodes
either directly or through multiple processing levels between the
edge and central location. Other solutions rely on centralization
differently, where queries and control are orchestrated by a central-
ized node (e.g., a gateway orchestrating data processing across a
sensor network) [11, 14]. Unfortunately, this centralized approach
falls short in supporting edge-cloud databases as it lacks the crucial
characteristic of being in close proximity to both the data sources
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and users. Without such close proximity, properties such as low-
latency requirements and tolerating sporadic connectivity cannot
be supported. In addition, the functionalities needed at the edge
span beyond a single product—at the edge, developers need to
shoehorn multiple products (relational databases, object stores,
stream processors, data brokers, and more). In addition, they need
to independently manage security, high availability, user and data
authentication, and integrate all of that with a platform that is able
to orchestrate and monitor the distributed edge resources. This
approach creates proprietary software stacks intermingled with
domain knowledge and assumptions which leads to data silos and
setups that are hard to deploy, manage, and scale.

What is needed is a distributed and decentralized edge-cloud
database architecture—where nodes are distributed at the Edge in
close proximity to users. These Edge nodes can operate indepen-
dently of the rest of the network, are co-located with IoT/edge de-
vices, or deployed on infrastructure in proximity to them (Figure 1).
This edge platform needs to offer the needed edge functionalities as
unified and integrated services, that are easily deployed, managed,
and automatically scalable.

The absence of distributed edge-cloud databases in the industry
and the limited number of recent academic efforts on this topic raise
the question of why this crucial need remains largely unaddressed.
Over the past five years, our team has actively pursued research
and development in the field of edge-cloud databases from both
industry and academic perspectives. It all began with a vision we
outlined in a previous paper published in CIDR 2020 [3], setting the
stage for our comprehensive exploration of this area. Taking the in-
dustry standpoint, we embarked on building AnyLog, a distributed
and decentralized edge-cloud database. This solution has been de-
ployed across numerous industry partners representing diverse
sectors, including smart spaces, IoT, and industrial automation ap-
plications. To gain deeper insights into the challenges and relevance
of edge-cloud databases within these industries, we engaged with
many technical teams in the IoT/edge domain, fostering fruitful
discussions about their specific technical goals and requirements
in relation to edge-cloud databases.

Simultaneously, from an academic standpoint, we dedicated our
efforts to investigating various crucial aspects of data management
in the context of edge-cloud databases. This encompassed exploring
topics such as indexing and storage [13], transaction processing [9],
distributed coordination and consensus [15], efficient analytics [20],
as well as trust and security [10, 16, 21]. Through presentations and
discussions with members of the research community, we sought to
understand the position of edge-cloud research within the broader
goals of the database and storage communities.

Our activities over the past five years have yielded insights and
deepened our understanding of the real challenges and opportuni-
ties that lie ahead in the realm of building distributed edge-cloud
databases. In this paper, we aim to summarize these experiences
and insights with the goal of inspiring future research and indus-
try products that can help in advancing and realizing edge-cloud
databases.

In the remainder of this paper, we first provide an overview
of AnyLog and how its distributed edge-cloud nature makes it
different from existing databases in Sections 2 and 3. Then, we
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describe the prototype and scenarios of AnyLog in Section 4. The
paper concludes in Section 5.

2 ANYLOG: AN EDGE-CLOUD DATABASE

AnyLog aims to transform the Edge! to a data infrastructure that
is simple to scale and manage. Another way to view this is that
AnyLog aims to extend cloud computing and data management
functionalities to resources on the Edge.

At its core, AnyLog is implemented in 2 layers (Figure 2): The
first is a data layer that brings data management functionalities to
Edge nodes. These functionalities include a local (and pluggable)
database that hosts data locally and is integrated with upper layers
(such as a rule engine). AnyLog has connectors to several widely-
used databases such as PostgreSQL, SQLite [8], and MongoDB (the
connectors are extensible to integrate with the user’s DBMS of
choice). The functionalities are offered as services on each AnyLog
node and are enabled by native commands. This approach makes
deployment simple; by selecting services from an integrated and
unified stack, a user configures the profile of each node, rather than
developing proprietary solutions or integrating functionalities from
diverse products. For example, when AnyLog is deployed, the user
enables services that will make the AnyLog Node appear to data
sources as a data broker, ingest data to the local databases, create
schema based on ingested data, make the data secure, authenticate
users, offer a rule engine that can act on data, events and machine
state, make the data Highly Available, and more.

The second layer is the coordination layer. The coordination
layer maintains a decentralized ledger of meta-information and
system configurations and makes the information available to all
the member nodes. This includes node memberships (i.e., what
nodes are part of the AnyLog network), data maps (i.e., where data
is stored, how it is replicated and distributed, the list of tables and
their schema), and information that governs the access to data and
the propagation of data from data producers to AnyLog nodes. The
decentralized ledger is a separate module that can be implemented
in various ways as long as it provides an interface that maintains a
consistent log of updates to the various information maintained by
the ledger. AnyLog currently has different ledger implementations
that a user can choose from including ones based on permission-
less and permissioned blockchain as well as a gossip-based log
replication protocol.

The data and coordination layers achieve two important design
concepts in AnyLog:

1. Data virtualization through virtual tables: AnyLog makes
the distributed data appear as a unified collection of data.
More specifically, using data virtualization, users and appli-
cations interact with a set of virtual tables. The data itself
remains in-place (distributed and hosted in local databases
of the Edge nodes). A query to a virtual table is satisfied by
the nodes that contain data of that virtual table.

2. Resource Virtualization through fluid virtual nodes:
AnyLog makes the distributed resources (all the nodes where
AnyLog is deployed such as switches, gateways, and servers)

Throughout this paper, we use the term Edge to represent the edge of the network
where the users and devices are located. This includes end-user devices such as wear-

ables and access points, base stations, and edge data centers which are clusters of
machines deployed on-premises in university campuses, companies, smart cities, etc.
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Figure 2: System overview of an Edge-Cloud AnyLog deployment.

managed as a single “virtual” node. A virtual node can repre-
sent one or more physical nodes and two virtual nodes may
intersect in some of the virtual resources that they represent.
We call this a fluid virtual node. With this setup, a user can
query and monitor the status of a particular machine, or a
group of machines using a single call. For example, a user
can request—in a single call-the CPU usage of all the edge
nodes deployed in California.

By allowing the management of distributed data from a single
point, and by allowing the monitoring and management of edge
resources from a single point, the Edge becomes as simple and
intuitive environment as the Cloud: Applications query for the
list of (virtual) databases, then select a table, then request the list
of columns in the table, and issue a query. This is no different
than querying a centralized (or a cloud-based) database. In the
same manner, users can query the shared metadata dynamically
for a profile of nodes (e.g. nodes in California, nodes associated
with a data owner, nodes assigned with the data generated from
a particular machine, etc.) and join the metadata response with a
query for a specific state (e.g. disk usage, configuration setting, etc.)
to an aggregate response from the identified nodes.

3 KEY DIFFERENCES TO EXISTING
TECHNOLOGIES

AnyLog edge-cloud design represents many architectural differ-
ences from existing centralized, distributed, and cloud-based plat-
forms. We list the main differences that we aim to showcase in the
demonstration below:

Data decentralization rather than data partitioning. Any-
Log is different from distributed databases (such as CockroachDB [22],
Spanner [6], and CosmosDB [12]) in that rather than partitioning

the data by a key, with AnyLog, each node is a candidate to host
any data item. This approach is important for Edge data as we aim
to keep data in place, where it is generated whereas a partitioned
key will force the data to move to a target node (determined by the
key) unrelated to the need in data locality. In addition, the nature
of edge data management is that new nodes continuously join (or
drop from) the network. This dynamic nature of the Edge will not
be served well when the data is partitioned by a key as data will
need to be continuously redistributed. With AnyLog, when a node
receives data assigned to a (virtual) table, the node will register itself
as being one of the nodes managing the table’s data (once) on the
shared metadata. From thereon, the node will participate in queries
that consider the table’s data. This approach allows nodes to imme-
diately join the network and there is no need for synchronization
or redistribution of data.

Decentralization of resources. The traditional distributed
databases aim at a relatively small number of nodes whereas Any-
Log scales to a large number of nodes. The reason is that for a
given query, only a subset of nodes participate in the query pro-
cess and the remaining nodes are not impacted (i.e., a query to
provide the electricity usage in San Francisco in the last 2 hours
would be processed only on the subset of nodes with electricity
usage in San Francisco, whereas the entire network may serve data
related to all cities in the world as well as data of other use cases,
and these nodes are not involved in the query for electricity us-
age in SF). By distributing the data to multiple nodes, a query is
processed on multiple nodes concurrently with a high degree of
parallelism. Whenever possible, functions are pushed to the edge
nodes minimizing data transfer. Regardless if functions are pushed,
this setup is efficient as it avoids the overhead of centralizing the
data. Also, this approach scales horizontally. Companies can adjust
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Figure 3: AnyLog Test Network (TestNet). Each green dot
represents a location that hosts one or more AnyLog nodes.

to the needed performance by dynamically adding nodes. Each
added node increases the distribution of the data and therefore the
degree of parallelism.

Orchestration across independent local databases. AnyLog
is a platform that is layered on top of local databases; it makes the
group of all local databases at the Edge appear as a single machine,
and it provides functionality not only to manage distributed data,
but also to manage the edge resources. For example, the network
will satisfy lookups on access statistics, disk, and networking usage.
The shared metadata serves as a single point to control all the
distributed nodes. If a policy is added (to the metadata) or changed,
it becomes available to all the nodes, and nodes are designed such
that their functionality and operations are derived from the policies
(and configurations). Each AnyLog node maintains a rule engine
that can act on data and resource state and offers APIs (like REST
and Pub-Sub) to connect to data sources and applications.

4 ANYLOG FUNCTIONALITY SHOWCASE

We present a demonstration of AnyLog’s main features such as data
and resource virtualization (Section 2) as well as its key differences
compared to traditional distributed databases (Section 3). In this sec-
tion, we describe our experimental setup—which we have utilized
in our demonstrations with many industry and academic teams—
that we will utilize in this section. Then, we will present a mock-up
of how the functionality overview will be structured (given space
limitation, we only discuss this part for a representative subset of
the demonstration).

4.1 AnyLog Test Network

The AnyLog Test Network (TestNet) is a decentralized network of
nodes with AnyLog deployed and configured on each node (Fig-
ure 3). 20 Nodes participate in the TestNet and these nodes are
deployed all over the world.

The nodes in the network coordinate using a shared metadata
layer that is hosted in a decentralized ledger (blockchain). The
shared metadata is a collection of JSON scripts (we call each script
a policy), and the blockchain serves as a platform that makes the
policies available to all the participating nodes consistently (regard-
less of the nodes or users that created the policies). For example,
when data is streamed from a device to a node, the node determines
if a schema that satisfies the data exists (on the shared metadata). If
a schema exists, the node will use the existing schema to host the
data in a local database. If the schema does not exist, the node will
create the schema, represent the schema as a policy, and publish
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the schema to be part of the shared metadata (so it will be available
to a different node that ingests similar data).

Unlike the metadata, the data is hosted in local databases on
the participating nodes. The architecture is such that users can
determine the physical database (which can be different on each
node). This is done as different setups may have different prefer-
ences for the database to use. In the TestNet, we use PostgreSQL
for larger nodes, SQLite for switches and gateways, and MongoDB
for unstructured data (to host video and images). By default, the
created schemas are based on the self-describing nature of the de-
vice data (there is a variety of platforms that satisfy the device API
and deliver self-describing data, for example, EdgeX Foundry?). In
addition, AnyLog offers a high-level scripting language that can
map the structure of ingested data to a target structure or enforce a
target schema whenever the default mapping (to create the schema
or satisfy the schema) is not sufficient.

On each node, the data is organized by time, and as most queries
to sensor data provide a time interval, lookups are directed to the
relevant rows (rather than full table scans). The partitioning by
time allows to remove and archive old data without downtime,
and in most deployments users place a rule (on the rule engine)
that removes old partitions (i.e., keep the most recent partitions or
remove old partitions if disk space is under a threshold).

Queries, commands, and user requests are sent to AnyLog nodes
using a REST interface. A request can be issued to any one of the
AnyLog nodes in the network, and the AnyLog node receiving the
request (or query or command) acts as an Orchestrator by routing
the request to the peer nodes that need to process the request or
with the relevant data. The participating node processes the request
locally and replies to the Orchestrator that organizes the replies
and returns a unified reply to the user or application.

4.2 Demo Structure

The proposed demo showcases the unique challenges, features, and
opportunities of edge-cloud data management with AnyLog. The
following is a representative set of the demonstration parts.

2https://www.edgexfoundry.org/
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Figure 5: Screenshots of the client interface to be used in the
demo of AnyLog
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The demo will utilize a video analytics application. The applica-
tion is for traffic management, where a group of cameras streams
images from roads and intersections to AnyLog nodes (Figure 4).
Three cameras with integrated Al continuously process images and
extract information about detected cars and their speeds. Then, the
Al generates a data record for the time intervals (that contains the
number of cars identified, the speed, location, and other informa-
tion) and sends it to the closest AnyLog node. The AnyLog node
that receives the data, stores the records in a table that corresponds
to the schema of the records (called the traffic table), and the images
are stored, on the same local node using a blob database.

Virtual tables. The first feature that is presented in the demo
is the concept of virtual tables. In the demo, we send a command
to the AnyLog network (specifically, to a node in the network) to
display the virtual tables (i.e., the command is get virtual tables,
which serves as exploring the list of tables). The output of this
command is the list of all databases, and for each database, the list
of all tables. One of these tables is the traffic table which contains
the information about the traffic video generated by the AI process.

User queries. The next part of the demo is to show how the user
issues queries to retrieve data from the traffic table without the need
to know which are the nodes that host the table’s data (to support
an administrator, users can query the network to determine, for
each virtual table, which are the nodes that host the data). To make
the demo more intuitive, we have built a client interface shown
in Figure 5. The client interface enables users to send AnyLog-
specific commands (e.g., get virtual tables;) and SQL queries about
the data in the virtual tables that are managed by the network. The
screenshots in the figure show the initial interface (Figure 5(a)) with
the different options that the user can choose and a text space to
write commands and SQL queries. When the user sends a request, it
is sent to the AnyLog node specified by the chosen IP address. This
node will either process the request or act as an Orchestrator to
determine the target peer nodes, deliver the request, and aggregate
and unify the reply from the peers that are involved in the process.

Figure 5(b) shows the response to a query to list all cars in the
traffic table that were recorded in the previous hour ordered by their
speed (the following SQL query is shortened for ease of exposition):

SELECT start_ts, end_ts, num_cars, speed

FROM traffic

WHERE start_ts >= NOW() - Thour and end_ts <= NOW()
ORDER BY speed;

The response to the query is collected from all AnyLog nodes
that contain data relevant to the traffic virtual table (2 nodes support
the traffic table in the demo), without specifying in the query which
are the nodes that host the data. These target nodes are determined
transparently by the Orchestrator by considering the information
contained in the query text and the information in the metadata.

In the next part, we show a feature of AnyLog for multimedia
data. Each data item in the traffic table represents the Al deriva-
tives (like speed) associated with the video segment. These video
segments are maintained in-place using an object database in the
local AnyLog node and are not centralized. If the user is interested
in streaming the video assigned to an Al insight, (e.g., the video of a
speeding car), then the user can click on that data item. The AnyLog
client interface then sends a request to stream the corresponding
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Figure 6: The steps in the demo scenario to show the seamless
plug-and-play deployment of AnyLog nodes and the decen-
tralization of data and resources.

video clip from the AnyLog node at the Edge. Figure 5(c) shows the
outcome of such a request.

Decentralization. The next part of the demo (Figure 6) will
showecase the decentralization nature of the AnyLog Network. In
this part, during the normal operation of AnyLog, we will add a
new AnyLog node. We will show how the process of joining and
participating in the AnyLog network is seamless. First, the new
AnyLog node N sends its information to the rest of the network as a
new policy published in the decentralized ledger. Once the policy is
added, AnyLog nodes can coordinate with node N. Then, we make
one of the cameras send frames to the new node N. When the node
N receives the data for the traffic virtual table, it discovers that data
with the same schema and table name exist by querying the policies
in the ledger. Therefore, it only needs to register itself as a node that
hosts data for the traffic table (this process only needs to be done
once). This makes node N a node that will be considered (by the
Orchestraor node) when queries to the traffic table are issued. Note
that this process is efficient as there is no redistribution of data and
as the new node N joins the process without any dependencies on
peer members or external (to the node) processes.

Other features. Due to space limits, we do not describe in detail
the other features and properties of AnyLog that we will include
in the demo. However, we list them here briefly. These features
and scenarios include sending commands that inquire about nodes’
statistics and hardware utilization, tolerating failures and nodes
disappearing, complex queries that manipulate data from various
virtual tables, and consistency issues that may arise due to the
decentralized nature of AnyLog coordination.

5 CONCLUSION

AnyLog is bridging this gap by delivering a single and unified stack
that replaces engineering efforts with services that are enabled on
edge nodes and delivers a complete and integrated solution that: (a)
allows a plug-and-play approach to deploying edge instances, (b)
has a protocol that treats and serves all the decentralized data as a
single unified collection of data, (c) treats and monitors all the edge
resources as a single unified machine, and (d) scales horizontally to
address the growth of the data at the edge to services the edge data
with low latency to Al processes and edge and cloud applications.
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All of that is without the performance and monetary overheads of
centralizing the data.
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