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ABSTRACT

This paper studies privacy in the context of complex decision sup-
port queries composed of multiple conditions on different aggregate
statistics combined using disjunction and conjunction operators.
Utility requirements for such queries necessitate the need for pri-
vate mechanisms that guarantee a bound on the false negative and
false positive errors. This paper formally defines complex decision
support queries and their accuracy requirements, and provides al-
gorithms that proportion the existing budget to optimally minimize
privacy loss while supporting a bounded guarantee on the accuracy.
Our experimental results on multiple real-life datasets show that
our algorithms successfully maintain such utility guarantees, while
also minimizing privacy loss.

1 INTRODUCTION

We consider the privacy-preserving execution of complex aggregate
queries over d-dimensional data. Consider, for instance, a dataset
containing medical records of patients and their respective diseases
with the following schema: PATIENT_DATA(patient_name, age, gen-
der, disease, disease_type). An analytical query of interest over such
data, listed below in SQL, identifies prevalent viral diseases that
afflict vulnerable populations such as the elderly (age over 65) or
children (age below 5).

SELECT disease, count(x) FROM PATIENT_DATA
WHERE disease_type = 'viral'

GROUP BY disease

HAVING (count(*) > c1 AND avg(age) > 65)
OR (count(*) > c2 AND avg(age) < 5)

Such queries often arise in decision support (DS) applications [17,
25, 47, 50] as part of online analytical processing (OLAP) [5]. OLAP
plays a crucial role in exploring data to produce valuable insight
that facilitates informed decision-making. For instance, businesses
and organizations utilize decision support to evaluate KPIs [9] (Key
Performance Indicators), metrics which gauge progress towards an
intended goal by computing metrics based on aggregate statistics.
Multiple KPIs are often used in tandem to evaluate the performance
of businesses, e.g., sales volume and retention rate to infer growth.
Such KPIs are instances of complex aggregate queries composed
of multiple conditions comparing different aggregate statistics to
their respective thresholds, combined using AND/OR operators.
Other use cases for such complex queries include clinical decision
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support applications [44, 46, 50] which use complex queries to
diagnose and classify diseases (e.g. the previously defined query),
building management systems [14, 53] that ensure building code
compliance by comparing aggregate statistics to policy thresholds,
and supply management systems [7, 35] which optimize operations
by analyzing statistics as they relate to existing benchmarks or
user-defined criteria.

It follows that data sources used by decision support applica-
tions often contain sensitive information about individuals, and
releasing aggregated statistics from such sources can lead to severe
privacy leaks [8, 20]. Differential privacy [18, 19] is a popular and
effective notion that provides a formal guarantee on privacy by
hiding individual records while releasing aggregate statistics, but
this is done at the expense of accuracy by adding noise to the data.
Traditionally, privacy-preserving query answering uses a "privacy-
first" architecture that provides formally defined privacy guarantees
while maximizing the utility of data given [21, 26]. Recent work
[23, 24, 34, 43] has argued the advantages of a dual "utility-first"
approach instead, wherein a desired level of utility is specified and
privacy maximized given this requirement. This approach is far
more suitable in decision support setting, as it not only provides
a guarantee on the query answer and therefore confidence in the
decision made based on it, but it also offers the opportunity for
higher privacy provided that the utility requirements are met at a
lower level of invasiveness.

In the context of decision support, utility requirements consist
of more than one metric. In particular, DS queries answered by a
differentially private mechanism, result in two types of errors: false
positives (FP) and false negatives (FN). These errors are the basis
of statistical hypothesis testing [15], a widely established method
used in multiple fields [3, 42, 45] which determines the validity of a
hypothesis based on sample data. The testing results in either a Type
I error (FP) or Type II error (FN) which are subsequently compared
to pre-set bounds to make a decision about said hypothesis. DS
can be considered a direct application of hypothesis testing, as
it uses queries based on statistical methods to make an informed
decision. It is thus critical for a differentially-private DS framework
to enforce utility bounds on both false positive and negative errors
in order to guarantee the validity of its query results.

Prior work [23, 24] has studied the utility-first approach but their
scope is limited, especially in the context of DS queries. Firstly, they



only focus on simple queries which do not have multiple condi-
tions comparing different aggregate statistics to their respective
thresholds, i.e. can only answer a query with a single condition
in the HAVING clause (e.g. count(*) > c1). Secondly, they do not
properly tackle the dual utility requirements of DS (i.e., FP and
FN). APEx [23], which does not differentiate between the two error
types (viz., FP and FNs) considering them both as errors, offers
error bounds only for data point that are far from the threshold
specified in queries. Errors (i.e., misclassification of points as FP
and FNs) in an uncertainty region close to the threshold, remain
unbounded. MIDE [24], overcomes this limitation of APEx and
offers formal utility bounds irrespective of where data points lie,
but it only provides bounds on false negatives. Given a set bound
on FN, it uses a heuristic approach to explore the trade-off between
privacy loss and the FP error. It does so by weakening the classifying
threshold in such a way that a desired FN bound can be reached at
a significantly lower privacy loss while incurring a small penalty
on the FP. Moreover, both APEx and MIDE consider simple queries.
In this paper, we study a comprehensive approach to solving
the problem of answering complex DS queries in a differentially
private manner so as to offer dual utility bounds on both FP and
FN while minimizing privacy loss. To address the complexity of
the query, the intuition behind our approach is to decompose the
original query into multiple simple queries with single aggregate
functions (i.e. with known query sensitivities) which can be an-
swered by differentially private mechanisms. Such mechanisms can
then be composed by using the respective AND/OR operators used
in the original query to link the aggregate functions. The main chal-
lenge, then, lies in finding a methodology to similarly decompose
or proportion the overall utility bounds across the simple queries
(i.e. how to assign allowed error bounds per sub-query to meet
the overall accuracy requirement of the final query), as well as the
privacy budget, to subsequently guarantee these bounds in a way
that optimally minimizes privacy loss. One possible solution could
be to divide the utility budgets equally across the multiple condi-
tions, but such an approach, as we will see, is sub-optimal, seeing
as different aggregate threshold queries may require a higher error
tolerance depending on the selected data distribution.
Alternatively, we propose ProBE (Proportioning Privacy Budget
in Complex Exploratory Decision Support Queries), a framework
that optimally partitions the privacy/utility budget across the in-
dividual simple queries such that the required utility bounds are
guaranteed at the lowest overall privacy loss possible. We postulate
this as a multi-criteria optimization problem which aims to min-
imize privacy loss given the constraints enforced by the desired
FN/FP bounds. This approach faces two main challenges: it firstly
requires quantifying the trade-off between FN and FP errors as well
as the trade-off between privacy loss itself and the two errors; sec-
ondly, it requires the formulation of the utility bounds as well as the
privacy loss as differentiable functions in terms of variables derived
from the simple queries. We successfully address these challenges
in our approach in the context of the disjunction and conjunction
of such queries, and solve a multi-variate optimization problem
which yields an apportionment technique for such bounds/budgets.
We then propose new algorithms which implement this apportion-
ment framework by adapting previously proposed mechanisms in a
way that answers complex DS queries with the appropriate utility
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guarantees. We subsequently discuss the additional complexities
and address our approach to solving them. Our main contributions
are as follows:

o We formally define privacy-preserving complex decision
support queries and their accuracy requirements.

e We postulate proportioning the privacy budget for complex
decision support queries as a multi-criteria optimization
problem and solve it using the method of Lagrange Multi-
pliers.

e We propose algorithms that build upon and modify previ-
ous mechanisms to implement our budget proportioning
technique to support complex decision support queries.

e We evaluate our approach against real-world datasets in
different domains and show the efficacy of our approach.

The organization of this paper is as follows: Section 2 provides
background on differential privacy. Section 3 defines complex deci-
sion support queries and their accuracy requirements. In Section
4, we propose our ProBE technique to optimally apportion the pri-
vacy budget for such queries. Section 5 implements ProBE through
two algorithms and proposes additional optimizations. Section 6
evaluates our algorithms on multiple real datasets using complex
queries. Lastly, we discuss related work in Section 7 and future
work directions in Section 8.

2 BACKGROUND

We use existing differential privacy concepts as a basis for our work.
Given an input dataset D € D, an algorithm satisfies differential
privacy [19] if its output does not significantly change when adding
or removing a single tuple in D. Formally:

Definition 2.1 (e-Differential Privacy (DP)). A randomized mech-
anism M : D — O satisfies e-differential privacy if
P[M(D)=0
PIMD) =01 _ o) (1)
P[M(D’) = O]
for any set of outputs O C O, and any pair of neighboring databases
D,D’ such that |D\D’ UD’\D| = 1. The privacy metric € represents
the privacy budget. A higher € value implies higher privacy loss,
whereas a lower € implies strong privacy guarantees.

In

Differential privacy offers important properties [19, 31] that
allow for composability of multiple DP mechanisms and assessment
of their privacy loss.

THEOREM 2.2 (SEQUENTIAL COMPOSITION). Let My, ..., My bek al-
gorithms that satisfy €;-differential privacy. The sequence of My, ..., My
provides Zle €i-differential privacy.

When a randomized algorithm runs a e-differentially private
algorithm repeatedly until a stopping condition is met, it does not
satisfy e-differential privacy because the number of iterations is
not known prior to its execution. Its overall privacy loss, however,
can be determined after the output is returned. A metric used for
these algorithms is ex-post differential privacy [33]. Formally,

Definition 2.3 (Ex-Post Differential Privacy). Let & : O — (RsoU
{o0}) be a function on the outcome space of mechanism M : D —
O. Given an outcome O = M(D), M satisfies &(O)-ex-post differ-
ential privacy if for all O € O,
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P[M(D) = 0]

max Ino o1

D,p:D~D’ P[M(D’) = 0]

for any set of outputs O C O, and any pair of neighboring

databases D,D’ such that |D\D’ U D’\D| = 1. Ex-post differentially

private mechanisms also benefit from composability properties.

Specifically, the Sequential Composition theorem (Def. 2.2) holds

for ex-post DP mechanisms as well [49], i.e. the sequence of ex-post

DP mechanisms results in a differentially private mechanism with
privacy loss equal to the sum of ex-post privacy losses €;.

<&(0) @

The Laplace mechanism [19] is a widely used differentially pri-
vate algorithm that achieves e-differential privacy by adding noise
drawn from the Laplace distribution. This noise is also calibrated
to the sensitivity of the query.

Definition 2.4 (Sensitivity). The sensitivity of a functiong : D —
Rd, denoted Ag, is defined as the maximum L; distance between all
pairs of neighboring databases D and D’ differing in at most one
element.

-9(D") I ®)

The sensitivity of a function highly depends on the aggregate statis-
tic queried. For instance, the sensitivity of a counting query is 1.

Ag = D
g = ax, I 9(D)

THEOREM 2.5 (LAPLACE MECHANISM (LM)). Given a function
f: D — R, the Laplace Mechanism that outputs (D) + 1 is
e-differentially private, where n is a d-length vector of independent
samples drawn from a Laplace distribution with the probability den-

sity function p(x|A) = %e"xv’l where A = Af /€.

3 PROBLEM DEFINITION

In this section, we first formalize the decision support queries and
their utility requirements, and then present the problem which
answers these queries with DP and utility guarantees.

3.1 Query and Utility Definitions

A DS query consists of a set of aggregate threshold queries described
below. These atomic aggregate threshold queries are connected
through logical operators (i.e., U and N), which we refer to as the
conjunction or disjunction of multiple such queries. Specifically, an
aggregate threshold query returns the set of objects in a dataset,
deferred to as predicates, whose aggregate values exceed the set
thresholds. We present the formal definitions as follows.

Aggregate Threshold Query. An aggregate threshold query, de-

noted by Qg( )>C?
tion g(.), which includes any function whose sensitivity can be
computed (e.g. AVG or COUNT); (ii) the set of predicates A =
{A1, A2, ..., A} which represent the objects that the query iterates
over to check for condition satisfaction (e.g. the set of diseases in
the previous query example); (iii) a set of corresponding thresholds
C = {cy, ¢, ..., cx } for each predicate, and (iv) an optional filter f
which can be any selection condition on any column of the record.
We use Df to denote all the tuples that satisfy the filter. Each pred-
icate A; takes in a tuple from filtered tuples DS and outputs True or

False based on its value. We let Df be the set of tuples in DY that
evaluate A; to be True. This query returns all the predicates that

consists of the following: (i) an aggregate func-

SELECT disease,count(*) FROM PATIENT_DATA
WHERE disease_type ='viral'

GROUP BY disease

HAVING (count(*) > c1 AND avg(age) > 65)
OR (count(*) > c2 AND avg(age) < 5)

SELECT disease,count(*) FROM PATIENT_DATA
WHERE disease_type ='viral'

GROUP BY disease

HAVING count(*) > c1

AND OR AND

SELECT disease,count(*) FROM PATIENT_DATA
WHERE disease_type ='viral

GROUP BY disease

HAVING count(*) > c2

SELECT disease, count(*) FROM PATIENT_DATA
WHERE disease_type ='viral'

GROUP BY disease

HAVING avg(age) < 5

SELECT disease, Count(*) FROM PATIENT_DATA
WHERE disease_type ='viral'

GROUP BY disease

HAVING avg(age) >

Figure 1: Complex decision support query decomposed into
four atomic queries with single HAVING conditions but sim-
ilar predicates connected by AND/OR operators.

have an aggregate over their satisfying tuples g(D{ ') greater than
their respective threshold ¢, i.e.,

Q;\()J»C)>C(D) ={hieal 8(D{i) > ci} (4)

This is similar to a group-by-having query in SQL. Given a patient
dataset with schema PATIENT _DATA(patient_name, age, gender,
disease, disease_type , the following is an example of an aggregate
threshold query:

SELECT disease FROM PATIENT_DATA
WHERE disease_type = 'viral'
GROUP BY disease HAVING count(*) > c

The WHERE clause disease_type = viral’ is an example of a filter f.
The set disease = {d;, i € [1,k]} is an example of a set of k predi-
cates A. count() is the aggregate function g(.) and c is the threshold,
which is the same for all the predicates. An aggregate threshold
can also include g(D{i) < ¢; type inequalities by simply modeling
such a condition as the negation of Eq. (4) and thus returning the
negation of its results. In the context of complex DS queries, we
refer to a single aggregate threshold query as an atomic query Qq;,
which is the basic, irreducible form a complex DS query can take.
Complex Decision Support Queries. We consider a complex
DS query 07 to be a set of atomic aggregate threshold queries
Qays .- Qa, connected by the AND/OR operators (N, U), where
these n atomic queries share the same set of predicates A, but have
different filters ¥ = {fi, ..., fn}, aggregate functions G = {g1, ....gn}
and thresholds C = {c1,...,cn}.

Essentially, we deconstruct a query composed of multiple aggre-
gate functions compared to their respective thresholds into separate,
atomic aggregate threshold queries with a single function-threshold
pair. Figure 1 shows an example of the decomposition process for
the complex DS query previously introduced. The atomic queries
contain single conditions comparing an aggregate function g; to
its respective threshold c;, and their results are subsequently com-
posed back together using the AND/OR operators defined in the
original query. To formally define this concept, we make use of a
Context-Free Grammar (CFG) as shown below.

Definition 3.1 (Complex DS Query CFG). Consider the grammar
G = (N,Z,P,S) where the complex DS query is a non-terminal



symbol N = {Q»%}, the atomic aggregate threshold query is a
terminal symbol 3 = {Q,}, and S = Q7 is the starting symbol.
The production rules P are:

oM = 0, (5)
M — QM 0 QM (5b)
oM — oMy oM (50)

Using this grammar, we can recursively compose complex deci-

sion queries with any combination of AND/OR operators. Specif-
ically, by using production rule 5a and 5b we produce a complex
query composed of atomic queries connected only by the AND oper-
ator like 0% = 01nQsN, ..., NQ,, which we refertoasa conjunc-
tion query. Similarly, by using production rules 5a and 5¢c we derive
a query composed of OR operators only QA’T =Q1UQ2U,...,UQy,
which we refer to as a disjunction query.
Utility Measures. Decision support applications, as mentioned
previously, require setting a bound on the false negative and false
positive errors while minimizing privacy loss. We define these
bounds formally below.

Definition 3.2 (Bound on the False Negative Rate (FNR)/ False Posi-
tive Rate(FPR)). Let M : D — O be a randomized mechanism that
answers a complex decision support query Q% composed of n
atomic aggregate threshold queries Q1, Qa, ..., Qn with the same
predicates A and different filters F. We say M satisfies (i) a f-bound
on the FNR if for any database D € D, for all predicates A; € A, the
following holds:

P[hi g M(D) AL € QAT (D =D)] < B (6)

(ii) a @-bound on the FPR if for any database D € D, for all predi-
cates A; € A, the following holds:

Pl e MD)AX ¢ M (D =D)] <« ()

In other words, Eq. (6) represents a bound f on the FNR, i.e. the
probability that a predicate A; is not in the result of mechanism M
given it is in the result of query 0N for all predicates. Similarly,
Eq. (7) represents a bound a on the FPR, i.e. the probability that
a predicate A; given it is in the result of M but not in the result
of QM7 for all predicates. We specify D = D as the probability
of a predicate being in the result of the query considers the data
distribution, but for the rest of the paper we use D for simplicity.

Note that in our framework, the  and a accuracy bounds are
user-set parameters and depend largely on the nature of the overar-
ching decision support application; for instance, a medical diagnosis
application may choose to emphasize the FNR over the FPR if the
absence of disease detection is more crucial than an erroneous
detection. This model is motivated by similar models used in ap-
proximate query processing [6] where users specify confidence
intervals, or statistical inference which is used to control false neg-
ative and/or positive errors [29]. Additionally, we choose to focus
on FNR/FPR over other accuracy measures due to the nature of
the queries we tackle, which return a set of objects rather than
aggregate values. For instance, a different metric such as variance
error may yield a high error value for a specific query whereas the
returned set remains unchanged, thus not precisely reflecting the
accuracy of the results.
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Figure 2: Trade-off between false negatives FN, false positives
FP and the privacy budget ¢ in (i) with APEx and (ii) with
MIDE.

3.2 ProBE Problem Definition

Given a complex decision support query 07 on a dataset D com-
posed of atomic queries Qg ..., Qq, in the structure of query tree T,
we want to develop a differentially private mechanism Mpgopz (T)
that answers the overall query such that privacy loss € is minimized
subject to a f-bound on FNR and a-bound on FPR.

Primitives for Atomic Queries and Limitations. We show two
mechanisms from prior work to illustrate their utility guarantees

for a simple atomic aggregate threshold query Q;\(f) .c and then

present the problem formulation that builds on top of these mecha-
nisms for complex decision support queries.

The first mechanism is the Laplace mechanism used by APEx [23]
to answer atomic queries, but it fails to offer either bounded FPR or
bounded FNR. It adds noise to the aggregate value per predicate
and compares the result to its corresponding threshold ¢; given a
bound on the overall error rate and a region u around the threshold
in which the error is unbounded as inputs (i.e. error tolerance
region). However, this mechanism does not offer the f-bound on
FNR guarantee for predicates which have aggregates too close to
their thresholds, i.e. their aggregates are in the region [¢; —u, ¢; +u].
We refer to u as the uncertain region, which factors into determining
the privacy budget needed to achieve the f guarantee outside of said

region by using € = M. It follows that a larger uncertain
region u implies smaller privacy loss, at the expense of increased
false negatives and positives alike. Conversely, a smaller u would
lead to less unbounded errors, but would increase privacy loss as
a result. Figure 2(i) shows this relationship between FP/FN and e,
where increasing € leads to an equal decrease in FP/FN and vice
versa.

The second mechanism, known as Threshold Shift Laplace Mech-
anism (TSLM) designed by MIDE [24] offers a one-sided guarantee
on either bounded FNR or bounded FPR. TSLM generalizes the thresh-
old ¢; by shifting c; to ¢; — u so that the entire uncertain region (i.e.
the unbounded error) resides on the left side of the old threshold,
and compares this new threshold to the noisy aggregate. Figure
2 (ii) shows the effect of this approach on the trade-off between
FN/FP and €, where shifting the threshold by u results in a weaker
classifier which achieves a lower bound on FN at the same € but
at a higher FP. By setting the privacy budget € = w as
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defined in [23], this solution guarantees a f-bound on FNR for all
predicates.

Threshold Shift Laplace Mechanism (TSLM): Given an
atomic aggregate threshold query Q:;EJ'F) . > by setting the privacy

budget to € = w where u is the generalized parameter
used to shift threshold C to C —u, the Threshold Shift mechanism

achieves a f-bound on FNR.

Through the threshold shift mechanism, the uncertain region
is shifted to [¢; — 2u, ¢;], thus providing a formal bound f on the
FNR without incurring additional privacy cost, but doing so at the
expense of the FPR due to the unbounded error being entirely made
of false positives. Due to the nature of this algorithm, it does not
provide any sort of bound on the FPR but rather increases them
due to the trade-off between the FNR and FPR resulting from the
shift. This is due to the fact that the increase in FPR resulting from
the shift depends entirely on the data distribution, hence the FPR
cannot be pre-determined before running the mechanism.

Optimization Problem for Complex Queries. Minimizing the
privacy loss while bounding both FPR and FNR before running a DP
mechanism is difficult to achieve unless data distribution is known
ahead. Hence, we formulate a hybrid approach instead, wherein
one of the two constraints is fixed in our optimization problem
and chosen to generate possible solutions, whereas the second
constraint is used post-optimization to algorithmically relax the
solution in such a way that ensures its bound is upheld. For the rest
of our paper, we consider the constraint on FNR as our optimization
problem constraint, and FPR to be our post-optimization constraint,
but a mirrored problem (i.e. flipping the constraints) is supported
by our approach as well. The choice of constraints relies on the
nature of the DS application and its intended use cases.

As each atomic query Qq; can be individually answered using
a randomized mechanism M, (8;) : D — O; X R* that takes an
FNR bound f; and outputs a query answer and ex-post privacy
loss €; (e.g. mechanisms presented in [24]), we want to use the
outputs of such mechanisms Oy, and privacy budgets ¢; as inputs
for our mechanism Mpgoge (T). Thus, the aim of ProBE is to generate
functions that apportion the overall FNR bound in terms of each
atomic query’s FNR bound to formulate a minimization problem for
privacy loss €prope = fe(€1, .., €n). Specifically, we want to generate
a function f(f1, ... Bz) which apportions the § bound into each
Pi such that FNR < f, and e(eq, .., €,) is minimized. We therefore
obtain a constrained optimization problem defined as:

minimize fe(€q, .., €n)
€1..€n

subjectto  fg(B1..... fn) < B
We first solve this optimization problem given the single constraint
on FNR in Section 4, where we first develop ProBE instantiated
with the f-bound on FNR. We then relax our solution by enforcing
the post-optimization constraint on FPR in Section 5.

®

4 PROBE FRAMEWORK

In this section, we first present optimization techniques for complex
decision support queries that consist of a single connection opera-
tor (conjunction or disjunction) with the purpose of guaranteeing

a fi-bound on FNR. We then generalize our approach to queries
combining both conjunction/disjunction operators for n atomic
queries.

4.1 Query Conjunction Mechanism

Consider a conjunction query composed of a conjunction operator
that links two atomic aggregate threshold queries Q = Q1 N Q5. Our
optimization problem has two differentially private mechanisms, M;
and M of the same type, that answer Q1 and Qo, respectively. One
way to combine the independent outputs of M; and M; for the final
answer of Q is to find their intersection M (D) = M; (D) N My(D).
We define this step as query conjunction mechanism.

Definition 4.1 (Query Conjunction Mechanism). Let randomized
mechanism M; : © — O; with a differential privacy guarantee
satisfy a f;-bound on FNR for aggregate threshold query Q;. We can
answer query Q which is a conjunction of 2 aggregate threshold
queries Q1 N Q2 using mechanism M where M(D) = M;(D) N
Mz (D).

B-Bound on False Negative Rate. As per Sec. 3.2, we know that
a mechanism M; that answers an individual aggregate threshold
query has an associated f;-bound on FNR. To derive the appor-
tioning function fg for the FNR for Q in terms of 1 and f;, we
generate a confusion matrix (Figure 3) by running M; and M, on
Q1 and Q respectively and classifying their outcomes, as well as
classifying their conjunction and disjunction. As seen in Figure 3,
the conjunction mechanism M = M; N M results in a false negative
in any of the three cases (A,B,C). As M; and M, are mechanisms of
independent randomness, their outcomes are independent from one
another given the true query answer, though the atomic queries
themselves Q1 and Q2 may not be independent. Note that because
the three cases are mutually exclusive, we can simply add their
probabilities to obtain the overall probability of M resulting in a
false negative. Thus, we can deduce the overall FNR as the three
lines below. For any predicate A; € A,

P[Aj¢M(D)|2; € Q™ (D))

P[1j€ M1(D)|A; €Q1(D)]-P[A; € My(D)|A; €Q2(D)]
P[1;¢ My(D)|A; €Q1(D)]-P[A; € My(D)|A; € Q2(D)]
P[1;¢ My(D)|A; €Q1(D)]-P[1; ¢ Mz (D)|A; € Q2(D)]
(1—=FNRy)-FNR2+(1 —FNRy)-FNR{+FNR1-FNR; (9)
= FNR; +FNRy, — FNR; - FNR, (10)
< FNR;+FNR; < p1+ 2

nm+ + 1

The last inequality holds due to the $;-bound guarantee on FNR;
provided by M;. Hence, we obtain the function:

Jp(B1,B2) = 1+ B2 (11)
The detailed analysis can be found in Appendix A.1.

Privacy Loss. We apply the sequential composition theorem of
differential privacy (Def. 2.2) to compose the privacy loss of the two
sub-mechanisms of M. Hence, the budget apportioning function of
Mis

€= fe(er,e2) = €1+ e (12)
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Figure 3: Classification of conjunction of outputs M; and

M, resulting from running the mechanisms on Q1, Q. False

negative (FN) outcomes are highlighted in red.

This means that our optimization problem is now as follows.
minimize €+ €

(13)
subjectto 1+ f2 < f

We consider the primitive mechanism for atomic queries, TSLM [24],
described in Sec. 3.2 to illustrate the optimization. In this case, we
can use the privacy budget ¢; = w which guarantees a

Bi-bound on FNR. Thus, we rewrite the € apportioning function as
follows:

fe(€1,62) = € te
Ag11In(1/(261)) N AgaIn(1/(2f2))
u uz

In(1/2) 0 +1In(1/26p)

~In((2B1) = (2B2) ) (14)

To minimize €, we thus need to maximize

dgp g
(B1) 1 (B2) (15)

Our optimization problem is now as follows. We want to min-
imize € by maximizing the expression defined in Eq. (15), subject
to the f-bound constraint from problem (13). In other words, we
aim to find the local maxima of such a multivariate function given
the inequality constraint on its variables. This type of constrained
optimization problem can thus be solved with the Lagrange Multi-
pliers method [4], as this method aims to determine the extrema
of a function composed of multiple variables given an equality or
inequality constraint. The Lagrange method achieves this by refor-
mulating the optimization problem into a set function called the
Lagrangian function. Solving this function yields the proportioning
technique below. A complete proof can be found in Appendix A.1.

THEOREM 4.2. Given a conjunction query Q = Q1 N Q2 answered
by a conjunction mechanism M(D) = M;(D) N Ma(D) where M;
implements TSLM and € = €1 + €2, we achieve minimum privacy loss
€ by budgeting the f-bound on FNR as:

ﬁ _ uzAglﬂ
! ulAgg + uzAgl ’

) = ulAggﬁ
ulAgz + uzAgl

(16)

Generalized n-Query Conjunction. We extend the previous ap-
proach to generalize it over the conjunction of n-aggregate thresh-
old queries. Consider a query Q = Q1 N... N Qy, where each atomic
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query Q; is answered with TSLM M; that has an associated FNR
bound f;. By decomposing the conjunctions into (n — 1) 2-way
conjunctions, we can generalize our previous fe and fg functions
into:

minimize 37, €;

(17)

subjectto T B < B
Using the Lagrange Multipliers method again, we obtain the appor-
tionment technique below:

THEOREM 4.3. Given a complex DS query Q™F composed of n
aggregate threshold queries connected by n—1 conjunctions, we achieve
minimum privacy loss € by budgeting the f-bound on FNR as:

Agip T (ux)

Bi = =
et T2 (uxAgy)

Vi={12...n} (18)

Thus, by setting the individual f; bounds for sub-queries Q;
according to Eq. (18), we provide a mathematical guarantee that
privacy loss € is optimally minimized while also maintaining the
p-bound guarantee on FNR.

Note that other DP composition theorems could be used to ex-
press € as a function of the individual €;, including the Advanced
Composition Theorem [19], but this would change the formulation
of our optimization problem. Similarly, other mechanisms may be
used to provide DP guarantees presuming that they also offer a
pB-bound on FNR, but will require different derivations to solve
the optimization problem. Using relaxations of DP such as Rényi
differential privacy [41] or f-differential privacy [10] is, however,
non-trivial, as the expression of privacy loss € in terms of the
or a error rates used (i.e. as defined in [24]) may not necessarily
hold. Thus, they require extensive analysis to formulate a baseline
expression of privacy loss before solving the optimization problem.

4.2 Query Disjunction Mechanism

Similarly to the previous section, we model a privacy-preserving
mechanism on a query composed of two atomic aggregate threshold
queries linked by the disjunction operator 9F = Q; U Q,, where
Q1 and Q» are answered by two differentially private mechanisms
M;j and M respectively. The overall mechanism is the union of the
two sub-mechanisms M (D) = M; (D) U Ma(D).

Definition 4.4 (Query Disjunction Mechanism). Let mechanism
M; : D — O; with a differential privacy guarantee satisfy a f;-
bound on FNR for aggregate threshold query Q;. We can answer
query Q which is a disjunction of 2 aggregate threshold queries
Q1 U Q3 using mechanism M where M (D) = M;(D) U My(D).

B-Bound on False Negative Rate. Similarly to the conjunction
mechanism, each randomized mechanism M; ran on an individual
aggregate threshold query in a disjunction has an associated f;-
bound on FNR. We thus derive the apportioning function fg for
the overall false negative rate FNR for Q in terms of f; by deriving
and using a confusion matrix similar to Figure 3 for disjunction.
Thus, by similar analysis (shown in Appendix A.1), the overall FNR
can be upper bounded by the three lines below. For any predicate
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Ai €A,
P[Aj¢M(D)|A; e QM (D)]
< P[Aj¢ Mi(D)|A;201(D)]-P[Aj¢M2(D)|Aj€Q2(D)]
+ P[Aj¢ M1(D)|Aj€Q1(D)]-P[Aj ¢ M2(D)|A; €Q2(D)]
+ P[Aj¢ M1(D)|Aj€Q1(D)]-P[A; € M2(D)|A; €Q2(D)]

TNR; - FNRy + FNR; - TNRy + FNRyFNR;
TNR;-FNR, + FNR{(TNR; + FNRy)
< FNR;+FNR; < By + s

Again, we simplify this expression by providing an upper bound
on the FNR by removing negative clauses. We thus obtain the
apportioning function:

FNR < fp(B.p) =P1+P2< B (19)

Privacy Loss. Similar to conjunction, we use the sequential compo-

sition theorem of differential privacy (Def. 2.2) to compose the

privacy loss of the two sub-mechanisms of M. Assuming that

each sub-mechanism uses TSLM, we can again use the budget

_ Agiln(1/(28:)
0

€ , which guarantees a f;-bound on FNR. Thus,

1
overall privacy loss can be minimized by maximizing

(B () e (20)

Since our fe and fg functions in the case of disjunctions are identical
to that of conjunctions, our optimization problem for both are
the same. Using the Lagrange method therefore yields the same
apportionment technique. Thus, Theorems 4.2 and 4.3 hold for
disjunction as well, which are formally shown in Appendix A.1 and
A.2 respectively.

4.3 Combined Conjunctions/Disjunctions

Consider a complex decision support query Q> comprised of a set
of n atomic aggregate threshold queries Qq,, ..., Qq,, connected by
disjunctions or conjunctions. Such a query corresponds to a binary
operator tree T where each operator is either a conjunction (N) or
a disjunction (U). To execute Q™ we first evaluate each of the
atomic queries, then recursively combine their outcomes based on
the connecting operators in the operator tree T to determine the
results.

Our challenge, therefore, lies in generalizing our apportionment
technique such that, given a query tree T, we determine the f
budget distribution across all atomic queries such that the f-bound
is guaranteed while minimizing privacy loss . We show through the
example below how to express the f as a function of the f; given a
tree structure, then formalize the problem of optimal apportionment
given any tree.

Example 4.1. Consider an example query Q71 = Q1 U (Q2 N Q3)
shown in Figure 4(a). We refer to the sub-query associated with
a node by its node-id (e.g., in Figure 4(a) node n; corresponds to
sub-query Q1.). For Q7;, we can derive the FNR by first deriv-
ing individual FNRs for the sub-tree Q,, = Q2 U Q3 using the
2-conjunction mechanism, where the two sub-trees Oy, and Qp,
can in turn be executed using the 2-disjunction mechanism. We thus
obtain B, = f2 + B3, fn, = P1 and Py, + fn, < P. By substitution,

Qn  Nn nsU nlJ
Qn,  Qn mQ,  nQ,nQ  nQ
) (b)

3

Figure 4: The figure shows the query trees for (a) Q1 = Q1 U
(Q2NQ3), and (b) Orz = (Q1 U Q2) N (Q1 U Q3)

we obtain the false negative rate constraint

Bi+Ba+ps<p (21)
Let us further consider query Qr, = (Q1 U Q2) N (Q1 U Q3) shown
in Figure 4(b). Executing the same recursive steps for Qr; yields

2b1+ Pt P < p (22)

In the example above, note that for Qr1, leaf nodes in T'1 cor-
respond to unique atomic queries while in Q7y, the atomic query
Q7 appears twice in T2. Let us denote the number of occurrences
of a atomic query Q; in the leaf nodes of a tree by o;. Thus, in T'1,
the values of 01, 02, and o3 are all 1, whereas in T2 02, and o3 are
1, while the value of 05 is 2, leading to the difference in the FNR
constraint for T1 and T2. More specifically, given a tree T with
Qa,> - Qa, sub-queries and corresponding oy, ..., 0n occurrences,
the overall FNR for query Q™F can be expressed as

fp(B1, B2, s Bn) = 011 + 02f2 + ... + 0nfPn < B (23)
A formal proof of the above is provided in Appendix A.2. As for
privacy loss, we must run the atomic mechanisms M; on each leaf
node in order to maintain their independent randomness. Therefore,
the €; budget allocated for each sub-query must be divided across
its occurrences as well, i.e. 0;¢;. Thus, our apportionment problem
for a given tree is now
minimize X7 0;€;
(24)
subjectto  Z7_,0;8i < 8
We use the Lagrange Multipliers method to yield the theorem below.

THEOREM 4.5. Given a complex decision support query Q™ with
query tree T composed of n aggregate threshold queries with an asso-
ciated o; number of occurrences within the tree, we achieve minimum
privacy loss € by budgeting the f-bound on FNR as:

Agi BT (ux)

n,x+
Z=1 | B y(”xoyAgy)

Bi = Vi={1,2,..,n} (25)

Note that a query Q*F may be represented by multiple equiv-
alent trees, due to the distributive property of logical operators.
In Example 4.1 for instance, Q71 and Qr, have equivalent query
trees T1 and T2, where T2 is obtained from distributing the OR
operator over the AND operator. From Eq. (21) and (22), however,
we can infer that a distributed query tree, i.e. a query with a higher
number of nodes, may cause the overall privacy loss of the query
to increase, because it allocates a lower f; to one or more given
sub-queries Q;.

Thus, the ProBE mechanism aims to generate the optimal query
tree with the least number of leaf nodes to minimize any addi-
tional distribution of the § budget. We can use Boolean function
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Algorithm 1 ProBE Mechanism Overview. DS query Q&% =

[T,{Q1(g1,¢1); -, On(gn, cn)}], maximum privacy budget €mayx,
dataset D, accuracy requirements (S-FNR, a-FPR)

1: procedure PROBE(O™7, €pmax, D, B a)

2: Tree minimization (Q¢, 0) < minimize(Q) [37]

3 (Of, €7, Qc) < PHASEONE(Qc, 0, €max, D, B)

4 (Of, ef) «— PHASETWO(Q¢, 0, €max, D, f, a, Ef, Of)
5 return O o €F

minimization algorithms such as [37] to return the compact tree
representation of the query T.. Our mechanism subsequently ex-
tracts the number of occurrences o; from T, for each atomic query
which will be used to compute the §; budget as in Eq. (25).

5 IMPLEMENTING PROBE

Now that we have determined our f budget apportionment tech-
nique, we can implement ProBE by individually running mecha-
nisms M; on the atomic queries Q; based on apportionment dis-
cussed in the previous section, then combining the results following
the conjunction/disjunction operators as depicted in the query tree.
However, simply implementing this framework incurs an arbitrary
cost on the FPR when bounding the FNR as previously explained in
§3.2. To address this, we develop an additional optimization which
aims to provide an algorithmic bound on false positives.

In this section, we propose a two-phase algorithm that imple-
ments the ProBE apportionment framework to answer complex
decision support queries with minimal privacy loss and bounds on
utility. The overall algorithm is depicted in Algorithm 1. We first
use a boolean minimization algorithm (Quine-McCluskey) [37] to
minimize our query tree in order to obtain the occurrences of each
sub-query within the query tree o and the tokenized version of
this minimal tree Q. (line 2). We subsequently run the two phases
(lines 3-4). The first phase of the algorithm traverses the query
tree and implements the apportionment framework from Section 4,
which solves the optimization problem to guarantee the f-bound
on FNR. The second phase then relaxes this solution by providing
a post-optimization bound on the FPR. We first discuss Phase One,
wherein we set the initial uncertain region parameter u to a large
value in order to potentially obtain minimal privacy loss. Phase
Two subsequently checks if the resulting false positives in Phase
One exceed the FPR bound. If not, it uses intermediate results from
Phase One to determine the next optimal uncertain region uop;
such that the @ bound on FPR is met. Finally, we propose an itera-
tive, entropy-based variant of the ProBE algorithm which further
optimizes privacy loss in terms of Min-Entropy [24].

5.1 Phase One of ProBE

The first phase of the ProBE algorithm is detailed in Algorithm 2.
This algorithm takes the minimized query Q, the set of occurrences
of each sub-query o as well as the maximum privacy loss allowed
€max and the FNR bound f. For each query node in the query tree,
we first compute the initial uncertain region, which we set to a
large percentage (30%) of its range of values. We also compute its
corresponding FNR bound f; according to Eq. (25) (lines 3-5). Note
that because we are using a two-phase algorithm, we allocate half

Algorithm 2 First Phase of ProBE Mechanism.

1: procedure PHASEONE(Qc, 0, €max, D, f)

2: Initialize global budget variable ey « 0
3 for query node Q; € Q. do

4 u; < 0.3 % range(Q;)

Agi (B/2) T ()

5: i — i

bi 20 1Y (ucoyAgy)
6: flag; = True
7 Of « TRAVERSE(Qc.root)

8: return Of, Efs O¢

9: function TRAVERSE(node)

10: if node is conjunction then

11: O; < Traverse(node.left)

12: if Oy is empty, then skip node.right and return O;

13: else, O, < TrRaVERSE(node.right)

14: return O; N Oy

15: else if node is disjunction then

16: O; < TRrRAVERSE(node.left)

17: O, « TrAVERsE(node.right)

18: return O; U Oy

19: else if node is a query Q; then

20: if flag = True then

21: 0i, €i,Gi « Tswm (Q;, uj, fi, D)

22: Update global budget ef < €f +€;

23: flag; = False

24: if €f > €max then

25: Terminate program and return ‘Query Denied’.
return O;

of the f budget to each phase. However, we explore different f allo-
cation strategies across the two phases in Appendix F (Additional
Experiments). We also store a general flag parameter flag;, which
indicates if the DP mechanism (in this case, TSLM) should be run
if the sub-query is encountered in the traversal. These parameters
are stored within the node itself Q;.

The algorithm can now begin traversing the tree in a pre-order
traversal ( i.e. starting from the root and executing the leaf nodes
left to right). We first check if a leaf node is either a query or
an operator. If it is an operator, we recursively call the traversal
function in order to reach the leftmost leaf query node and then
the rightmost leaf query node (lines 10-13/15-17). Depending on
the nature of the operator (conjunction or disjunction), we either
intersect the results of the left and right traversal (line 14) or union
the results (line 18).

If the current node is a query Q;, then we execute the TSLM
mechanism provided that the flag; is True. Thus, TSLM is run with
the appropriate f; and u;, which returns predicates whose noisy
values are greater than their respective shifted thresholds ¢; — u;
into the result set O;, the noisy values set G;, as well as the resulting

Agiln(1/2B:i) .
% (line

privacy loss €; computed with the equation ¢; = -
21). The resulting ¢; is subsequently accumulated into the global
privacy budget variable €, and the execution flag flag; is changed
to False (lines 22-23). If the current privacy loss € is above our max-
imum tolerated privacy loss €mqx, the query is denied. Otherwise,

the output of the current node O; is returned (line 25).
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Skipping for conjunction queries. For the conjunction of n ag-
gregate threshold queries, we note that the result of running a
privacy-preserving mechanism like M(D) = M;(D) N My(D)...
N M (D) on such a query can be determined as false if one sub-
mechanism M; (D) is evaluated as false due to the nature of the
intersection operator. We exploit this fact by adding an optimization
which skips the evaluation of sub-queries in conjunctions if any of
the previous sub-queries return an empty set, thus further minimiz-
ing overall privacy loss. We implement this in line 12, where, upon
returning the traversal results of the left node, if the output Oy is
an empty set, we can automatically skip the execution of the right
node and return the Oj result itself. Note that due to the recursive
nature of this traversal, any subsequent conjunctions will also be
skipped until a disjunction operator is met or the query terminates.

5.2 Phase Two of ProBE

The second phase of the ProBE Mechanism is depicted in Algorithm
3. This algorithm takes the f, @ bounds, as well as the maximum
budget €max. It also takes the resulting output Oype and privacy
loss €pne from Phase One. The query Q; also includes the previously
derived parameters (e.g. the noisy aggregates G; and the f; bound)
resulting from Phase One. The algorithm starts by estimating the
number of false positives as a result of running Phase One for each
query node Q; (line 4). We first describe the approach to derive the
FPR estimate below.

Estimating the Bound on FPR. At the beginning of Phase Two,
we first determine an upper bound on the FPR resulting from Phase
One. If the latter is within the user-specified & bound, we can skip
the second phase of the algorithm, otherwise we rerun some of
the query nodes with an additional privacy budget. We empirically
measure the FPR of each mechanism M; for sub-query Q; by the
ratio between the number of false positives |FP| and the number of
negatives |N|. However, we cannot compute the truthful number
of false positives and negatives without looking at the data, which
consumes an additional privacy budget. Hence, we derive (i) an
upper bound for the number of false positives and (ii) a lower bound
for the number of negatives, to get an upper bound for FPR.

We first obtain the following observed results based on the noisy
aggregates from Phase One:

Opp — {/1] e A | Gilj] > ci}
Op — {/lj € AN Gilj] > ci —ui}
On — {4j e A| Gi[j] < ci —u;}

where G;[j] is the noisy aggregate for predicate j in the ith sub-
query Q;. In particular, Op and Oy, are the reported positives and
negatives for Q; by Phase One. Oy, are the predicates with large
noisy counts which are “definitely positive”.

A naive upper bound for the number of false positives is |Op],
which includes all the reported positives. However, among them,
the predicates in Op, have noisy aggregates much larger than the
testing threshold ¢; — u; in TSLM, which are unlikely to be false
positives. If all the definitely positive predicates in Op, had true
counts < ¢ — 2u; (at worst case), they would have a noisy aggregate
> ¢ — u; and thus become a false positive with a probability < f;
by the property of Laplace noise. Therefore, we can have an upper

Algorithm 3 Second Phase of ProBE Mechanism.

1: procedure PHASETWO(Q¢, 0, €max, b &, €ones Oone)
2 Let Of « {} €f < €one

3 for query node Q;(G;, ci, uj, Bi, flagi) € Q. do
4: fests rest < ESTIMATEFPs(Q;, Oone)
5
6
7

Ly,

Compute allowed false positives fmax < 7

if fest > fmax then
Search uops < the largest u such that running
ESTIMATEFPS(Qj, Oone) returns fest < frmax

8: Set flag; < True to rerun TSLM
9: Of « TRAVERSE(Qc.root)
10: if updated fes; > finax for any Q; then Terminate program

and return ‘Query Denied’
11: return Of, €f

bound for the number of false positives:
[FP| < |Op = Oppl +10ppl - Bi (26)
The number of negatives |N| is greater than |O,| — |FN|, where
|FN| is the truthful number of false negatives. By the f5;-FNR prop-
erty of TSLM, we have |FN| < S;(|Gi|—|N|), where |G;| is the total
number of predicates in the input to query Q;. Hence, we have this
inequality
IN| = |On| = |FN| = |On| = pi(1Gi| = IN]).

Solving this inequality by moving all the terms involving the un-
known |N|, we have a lower bound to |N|,

|On| - BilGil

N| >
INI A

(27)

Algorithm 4 Estimating FPs.

function EsTIMATEFPS(Q; (G, ¢, ui, Bi, flagi), Oone)
Opp — {).J €A | Gi[j] > Ci}
Op — {4 e A Gilj] > ¢i —wi}
On — {4 € A| Gilj] < ci —u;}
Opp < Opp N Opne, Op — Op M Oone, On — Op = Opne
Upper bound for FPs fes; = [Op — Opp| + |Opp| * fi

Lower bound for Negatives res; = %
1

return fegs, rest

The process of deriving an upper bound on the FPR is formalized
in the function ESTIMATEFPs. We retrieve the Opp, Op Opn. We then
compute the upper bound on FP and lower bound on N according
to Eq. (26) and (27) (lines 17-18).

This algorithm also offers an additional optimization based on
the nature of the operator (i.e. conjunction/disjunction), through
which certain elements in the uncertain region can be eliminated
in the first step. We illustrate this through the example below.

Example 5.1. Consider an example query Q = Q1 N Q2. Consider
a predicate A; s.t. its noisy value falls within the uncertain region
[c1 — u1,¢1] of Qg i.e. is undecided, but falls within [—co, c2 — 2us]
of Q3 i.e. decidedly negative. We know that due to the nature of
the N operator, the result of intersecting the values for A; from
Q1 and Q, will be negative without classifying A; in Q;. We can
therefore eliminate A; from the set of potential false positives within
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Figure 5: Illustration of sets Op, Opp, O on noisy values of
predicates for Phase One. In Phase Two, we identify a new
uop: such that the newly observed positive set Ofo based on
> ¢—uop; is reduced from Oy, by a size of fes; — finax (indicated
by dots changing from red to blue) if the number of estimated
false positives fes; in Phase One is greater than the allowed
number of false positives fqx.

the uncertain region to be used for the second phase. Conversely,
consider the query Q = Q1 UQ5 and a predicate A5 s.t. A1 is reported
as negative, i.e. falling into [—oco0, ¢1 — u1] (it is in Oy,), but its noisy
value for Qy falls within [cp, co] of Q5 i.e. decidedly positive. We
know that the U operator only requires one element to be positive
for the result to be positive as well, so A1 can be classified as positive
and thus removed from O,,.

The above optimization is illustrated in line 16, where we only
keep predicates in Op and Op;, which have appeared in the results of
Phase One Oype, and we similarly only keep the negative predicates
which are not in Ogpe . The estimated upper bound on false positives
is stored in fzs; and the lower bound on negatives in res;. With these
estimates for the FPR, the rest of the second step can be executed.

Resetting the Uncertain Region u,;. After retrieving the upper
bound on the current FPR, the second step algorithm first checks if
the upper bound on FPs f¢g; is higher than the allowed number of
FPs fmax. The latter value is derived from the bound «, which is
divided equally amongst sub-queries i.e. «/n. We prove that this
allocation ensures overall a in Appendix A.3. The bound is then
multiplied by the estimated number of negatives stored in reg;.

If the bound is exceeded, we compute the next uyp; at which
the "extra" false positives i.e. fes; — finax would reside outside the
new threshold ¢ — uop; as shown in Figure 5. In this way, the newly
observed positives become O},, and its size is fest — frmax smaller
than Op. Hence, the newly estimated false positive negatives based
on Eq. (26) are also reduced by that if |Op — Opp| 2 fest = finax. We
do so by retrieving the noisy value of the cutoff predicate where
the number of extra FPs would reside to the left of. This noisy value
becomes our new lower bound for the uncertain region, i.e. ¢; —uop¢.
We thus solve for 4,y from this equality. Upon obtaining the new
uncertain region, we can now rerun the TSLM algorithm with uop;
and f; as parameters and accumulate the privacy loss resulting
from this second phase. We do so by setting each execution flag
flag; for the appropriate query nodes, then running the TRAVERSE
function again (lines 8-9). We recompute the estimated FPs fes;
after execution (line 10) by calling the estimation function again,
and if the f,4x FP bound is not met, then the query is denied and
the algorithm exits, otherwise the resulting output and privacy loss
Of, €f are returned.
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THEOREM 5.1. Algorithm 1 satisfies emax-DP, a f-bound on the
False Negative Rate and an a-bound on the False Positive Rate if the
query is not denied.

Proof of the theorem above can be found in Appendix A.4.

5.3 Multi-Step Entropy-based Algorithm

ProBE assigns different privacy levels to different predicates due
to the early elimination of data points at the first step, meaning
predicates that go on to the second step have a higher privacy loss
€. This concept is captured through the definition of Predicate-wise
DP (PWDP)[24], a fine-grained extension of differential privacy
which quantifies the different levels of privacy loss data points may
have in multi-step algorithms.

Naturally, a measure to quantify this new definition of privacy is
needed. Previous work tackles this problem by proposing a new pri-
vacy metric for PWDP entitled Min-Entropy [24] Hmin which mea-
sures a lower bound on the level of uncertainty given the set of pred-
icates and their respective privacy levels © = {(A1, €1), ..., (A, €x) }-
the Data Dependent Predicate-Wise Laplace Mechanism (DDP-
WLM) also introduced in [24] maximizes min-entropy (i.e. maxi-
mizing the lower bound on uncertainty) in an iterative algorithm
by also using the noisy aggregate values obtained from previous
iterations to compute the best privacy level € at which Min-Entropy
is maximized for the set of elements in the uncertain region. This
algorithm similarly guarantees a f-bound on FNR for a single aggre-

gate threshold query by setting the privacy loss to € = M
but it does so by setting a starting privacy level €5 as well as a
maximum level e, prior to execution which is spent across a fixed
number of iterations m. In each iteration, the privacy budget is
further distributed across fine-grained steps my and the privacy
level with the highest min-entropy is chosen as the next iteration’s
budget. It follows that the uncertain region parameter u is, again,
chosen statically at the beginning, and therefore does not provide
a bound on false positives.

We propose ProBE-Ent, a multi-step entropy-based algorithm
which integrates DDPWLM with ProBE in order to not only answer
complex DS queries with minimized entropy, but also to provide
a post-facto bound on FPs. Instead of having a fixed starting e,
we internally choose a starting up and compute the initial privacy
level. Within the first step of DDPWLM, we run the FP estimation
algorithm (Algorithm 4) in order to compute the optimal uncertain
region parameter uyp;. We use this new uncertain region as an up-
per bound for the algorithm, i.e. we compute the €,, upper bound
that represents the exit condition for the algorithm. Additionally,
we provide a ff budget optimization which exploits the multi-step
nature of the algorithm in a way that provides a potentially higher
budget if previous sub-queries exit early. This is done by redistribut-
ing any remaining f; which was not used in the current sub-query
(due to early exit) to subsequent sub-queries, thus fully utilizing the
B bound given and consequently minimizing the overall privacy
loss. We provide a more detailed version of this algorithm with
complete definitions in Appendix C.

6 EXPERIMENTS

In this section, we evaluate the ProBE algorithms previously ex-
plained on different real-life datasets based on various decision
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support application types. We assess their performance (in terms
of resulting privacy and utility) over a varying number of complex
queries, and over examples of queries modeled after frequently
used KPIs. Our experiments prove that all ProBE achieves its util-
ity guarantees, while also successfully minimizing privacy loss for
different levels of query complexity.

6.1 Experimental Setup

Datasets. To evaluate our approach, we use three real-world datasets
from different domains. The first dataset, NYCTaxi, is comprised of
New York City yellow taxi trip records in 2020 [1], where the data
consists of 17 attributes and approximately 3 million records. The
second data set, UCIDataset, is comprised of occupancy data in 24
buildings at the University of California, Irvine campus collected
from April to May 2019 [40]. This data consists of 18 attributes
and 5 million records. The final dataset, TurkishMarketSales, stores
records of sale transactions at a chain supermarket across Turkey
in 2017 [2], where the data consists of 1.2 million records and 26
attributes.

Query Benchmarks. For each dataset, we model several mean-
ingful aggregate threshold queries as summarized in Table 1. In
this paper, we present our experimental results for the COUNT ag-
gregate function only. Queries with other aggregate functions (e.g.
AVERAGE), which show similar results, are included in Appendix E.
As per our previous definition of conjunction/disjunction queries,
all of our sub-queries have the same predicates but different filters
on certain attributes (e.g. sub-queries on the UCI dataset all check
the same 41 rooms every day for 14 days for the count of records
with filters on different attributes). For the Sales dataset specifically,
we model our queries based on frequently used retail and sales
KPIs. Table 2 summarizes the KPIs used, their respective definitions,
and the aggregate functions used to represent them. For example,
to illustrate the User Retention Rate KPI, we evaluate the distinct
count of customers who visited a specific business in a specific time
period. For the UCI and NYTaxi datasets, which do not have clearly
defined KPIs, we select meaningful queries that are modeled based
on anomaly detection or performance evaluation scenarios typi-
cally used in decision support applications, for example, selecting
statistics based on specific demographics (e.g. age, gender, etc.) or
specific performance criteria (e.g. fare amount is above the norm
for a specific location). For each query, we select the corresponding
threshold using the Z-score outlier detection method, to further
emulate the concept of anomaly detection that decision support
applications implement.

Algorithms. We test our ProBE approach and compare it against
the Naive approach mentioned in the Introduction. This Naive
approach simply proportions the FNR bound f into equal parts
across the sub-queries Q; and calls sub-mechanisms with this f;.
This approach does not optimize the privacy budget given the j
constraint, nor does it offer utility guarantees on both f or a. In
other words, this baseline is an extension of [24] where the  budget
is split evenly across sub-queries. We do not evaluate our approach
against the algorithm in [23], as [24] is directly based on it with
the additional focus on bounding the FNR only. We also evaluate
two variations of our ProBE framework; the two-step approach of
ProBE using the Naive approach (i.e. splitting the  budget equally
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between sub-queries) as its Phase One entitled ProBE-Naive, and the
entropy-based iterative variation described in §5.3 entitled ProBE-
Ent.

Parameters. For all four algorithms, we set a FNR bound of § =
0.05, a maximum privacy loss of €qx = 5. For ProBE-based algo-
rithms, we choose a large starting uncertain region of up = 30%
of the value range, and set a FPR bound of a = 0.1. For the Naive
algorithm we choose u = 12% as a default but explore other values
in the experiments; we set this smaller default value due to the fact
that the FPR is not bound in the Naive approach, meaning that a
large u would result in a very high FPR. We run each algorithm
over 100 iterations.

6.2 Experimental Results

Privacy Results. We use ex-post differential privacy, denoted by
€, as our privacy metric to evaluate the performance of our ProBE
optimization as implemented in the previously mentioned algo-
rithms!. We assess all four algorithms on exclusive conjunction,
exclusive disjunction, and a randomized combination of both for
a varying number of sub-queries (1 to 6) in order to evaluate the
effect of the operator on privacy loss and utility. We only include
conjunction and the combination in Figure 6, as disjunction yields
the same results. Note that in the case of a single sub-query, the
Naive and ProBE algorithms would yield the same privacy results
provided that the second step of ProBE is not triggered.

As expected, the experiments show that ProBE-based algorithms
achieve their respective bounds on the FPR and FNR. Furthermore,
they achieve these bounds with minimal privacy loss. While the
FPR and FNR bounds are set to 0.1 and 0.05 respectively, the actual
rates are even smaller, while the maximum e ranges from 1.5 in the
Sales dataset to about 5 for the NYTaxi dataset. This difference is
due to the underlying data distribution, which might trigger more
predicates to be reran in the second step in order to guarantee the o
bound. In contrast, the Naive algorithm results in a linear increase
on the privacy budget, as well as high values specifically for the FPR.
The iterative, entropy-based algorithm ProBE-Ent achieves close or
the lowest privacy loss overall. This is due to the fact that ProBE-
Ent makes use of the underlying data distribution to progressively
compute the results of the query at the lowest privacy cost, while
also allowing for early stopping at a much lower privacy loss if all
predicates are properly classified outside of the uncertain region. As
expected, the privacy loss increases as the number of sub-queries
increases, but the Naive algorithm has a linear increase, whereas
ProBE is less affected by the increasing complexity. The nature
of the query (conjunction versus combination) does not cause a
significant difference in pattern for privacy loss for the same data
set.

Comparison of Naive versus Optimized Phase One. By ana-
lyzing the difference in results between the ProBE-Naive and ProBE
algorithms, we are able to highlight the importance of the § budget
optimization performed by ProBE in Phase One. In cases where
query sensitivities and domain sizes dramatically differ (i.e. result-
ing in vastly different uncertain regions) across sub-queries, the
optimal distribution would be to allocate a smaller  budget for the
sub-query with the larger uncertain region u as they are inversely

'We include the additional privacy results in terms of Min-Entropy in the Appendix.
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Dataset Attributes used Predicates # of predicates p
UCI Dataset *, age, userType, gender, groupName, office room, date 41(rooms)*14(days)=574
Turkish Market Sales *, region, netTotal, customerld, category, gender city, date 43 (cities)*14(days)=602
NYTaxi *, fareAmnt, totalAmnt, paymentType, location, storeFwdFlag | location, date | 34(location)*15(days)=476
Table 1: Datasets used for experiments and respective attributes/predicates used
Sales KPI Definition Query Equivalent
Sales Volume # of sales Q1: SELECT a GROUP BY a HAVING COUNT(*) > C

Regional Sales Volume # of sales in region

Q2: SELECT a WHERE region="A" GROUP BY a HAVING COUNT(*) >C

User Retention Rate # of customers per period

Qs3: SELECT a GROUP BY a HAVING COUNT(DISTINCT(customerId)) > C

Conversion Rate # of sales / # of customers

Qy4: SELECT a GROUP BY a HAVING COUNT(DISTINCT(customerld)) > C

Table 2: KPI-based Queries used for Sales Dataset experiments

correlated (a direct reflection of the trade-off between FN and FP),
and allocate a larger f§ to the sub-query with a smaller u. In cases
such as this, the Naive approach would result in a non-optimal equal
distribution of the § budget and subsequently a higher privacy loss.
We see this difference in privacy loss in Figure 6 in specific cases
such as the Sales (row 2) and UCI (row 3) datasets where the addi-
tion of specific sub-queries results in a much higher privacy loss
depending on underlying the data distribution.

Accuracy Results. To evaluate our algorithms, we use two ac-
curacy metrics, the FNR, which is defined as the number of false
negatives divided by the total number of positives, and the FPR,
defined as the number of false positives divided by the total num-
ber of negatives. These metrics are averaged over the number of
iterations run per algorithm, which we set to 100. We again use the
default value of § = 0.05 for the bound on FNR and «a = 0.1 for the
bound on FPR. We use the same uncertain region parameters as
previously mentioned.

All algorithms achieve the guaranteed bound of = 0.05 as seen
in Figure 6 (columns 3-4), where the FNR is zero as the number of
sub-queries increases for all datasets, hence the overlap of solid
lines (FNR) for all algorithms. For the Naive algorithm, the FPR
mostly sees a steady increase both in the conjunction-only and
combination queries, whereas ProBE-based algorithms successfully
meet the bound on FPR « at a lower privacy loss due to the upper
bound estimation and dynamic re-computation of the uncertain
region parameter uop¢. The pattern, however, largely depends on
the data distribution of the underlying dataset; e.g. for the Sales
dataset we note that the FPR decreases as the number of sub-queries
increases, which may be attributed to selectivity of the query along
with the distance of the data points from their respective thresholds.

Varying Uncertain Region. We vary the uncertain region param-
eter u for the Naive algorithm by setting its values to {5, 10, ..., 30}%
of the data range on the Sales dataset in order to evaluate its perfor-
mance compared to ProBE-based algorithms, which internally set
their u (first by setting its initial value to a conservative 30% then by
recomputing it in the second step). We use the query Q1 U (Q2NQ3)
where Q1, Q2, Q3 refer to the first three KPIs from Table 2, and the
thresholds are computed using the outlier method again. We fix the
other parameters to f = 0.05 and a = 0.1.

Figure 7(a-b) shows that as the uncertain region increases, pri-
vacy loss declines for all algorithms as expected, seen in Figure 7a.
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We see that for the Naive algorithm, the FPR steadily increases as
the uncertain region increases, whereas the privacy loss € steadily
decreases as the u increases. This shows not only the direct cor-
relation between false positives and u, but also the extent of the
trade-off between privacy loss and the FPR. For our ProBE algo-
rithms, since they do not take the parameter u but rather internally
set it in an optimal way, the privacy level and FPR are constant
across plots. The FNR does not change for any algorithm due to
the upheld  bound guarantee.

Query Trees and Operator Distribution. As discussed in §4.3, the
structure of a query tree has an effect on privacy loss. To evaluate
the impact of operator distribution (i.e. distributing a conjunction
over a disjunction and vice versa) we run ProBE-based algorithms
and Naive algorithms for the two queries illustrated in Figure 4
(c-d): Or = Q1 U (Q2 N Q3) and Qpy = (Q1 U Q2) N (Q1 U Q3). We
run these queries on the Sales dataset with the default parameters
of f = 0.05, as well as a uncertain region parameter of uy = 12%
for the Naive algorithm. Figure 7 shows that the distributed query
Qyr incurs a higher ex-post privacy cost than the grouped query Qr
for all algorithms. Similarly, the FPR for the Naive algorithm sees a
slightly higher value for query Qjr as compared to the original query
Qr. Experiments ran on distributing the AND operator over or (i.e.
01N(Q2UQ3) vs. (Q1NQ2)U(Q1NQ3)) showed similar results. This
is attributed to the fact that Q; was allocated an additional privacy
budget due to its second occurrence in Qyy, thus incurring a higher
cost on the overall privacy loss due to the use of the Sequential
Composition theorem.

Varying  and @ Parameters. We analyze the effect of selecting
different values for the user-set FNR bound f and FPR bound a
on all four algorithms. We vary the two bounds by setting their
values to {0.025, 0.05,0.075, 0.1, 0.125,0.15} on the Taxi dataset with
a 3-disjunction query (i.e. Q1 U Q2 U Q3). Figure 8 (a) shows that
varying f causes privacy loss € to decrease as f§ increases across all
algorithms, which is to be expected due to the inverse correlation
between € and f. The accuracy measures depicted in Figure 8 (b), i.e.
the FNR and FPR, are not significantly impacted as their respective
bounds are met by the ProBE-based algorithms. Conversely Figure
8 (c-d) depicts the effect of varying the a bound on FPR. As the
Naive algorithm does not support a mechanism to bound the FPR,
the privacy and accuracy results remain constant. On the other
hand, we note that the privacy loss € also decreases as the a bound
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Figure 6: Privacy Loss in terms of Ex-Post DP ¢ (cols 1,2) and Accuracy in terms of FNR and FPR (cols 3,4) for 1-6 sub-queries at
B = 0.05 for Conjunction (cols 1,3) and Combined Conjunction/Disjunction (cols 2,4) using NYTaxi (row 1), Sales (row 2) and
UCI (row 3) data. The Accuracy plots have two axes, left for FNR (with a range of [0,0.75]) and right for FPR (with a range of

[1076,1072] ).

is increased for ProBE-based algorithms. This is attributed to the
fact that, as the @ bound increases, the probability of Phase Two
being run decreases as the tolerance for FP errors is higher, thus
avoiding the additional privacy cost of the second step. However,
this decrease is dependent upon the data distribution and how
many elements are in the uncertain region; if the estimated FPR is
lower than a smaller bound (e.g. 0.1) then increasing « will have
no additional on privacy loss, hence the somewhat constant FPR
between 0.1 — 0.15 for the ProBE-based algorithms. In terms of
accuracy, the FNR and FPR similarly do not see a significant change,
as their respective bounds are met regardless of their values. Setting
a value for the § and « bounds are thus entirely dependent on
the use case of the decision support application built upon our
ProBE algorithm and its purpose, as well as the underlying data
distribution. Therefore, ProBE allows the user the flexibility of

13

exploring the trade-off between privacy and accuracy in a way that
meets their various requirements.

7 RELATED WORK

Differential Privacy [18, 19] has become a well-studied standard for
privacy-preserving data exploration and analysis [12, 27, 48, 51].
Various work has been proposed to answer queries with DP, such as
range queries [16, 30, 54], and linear counting queries [32, 38, 39].
This body of work, however, is not applicable to the aggregate
threshold queries that our solution considers. Join queries [11, 13,
28, 52] may be more applicable to such queries (specifically for
conjunctions), but they do not encompass the full scope of the
complex queries we tackle, nor does recent work apply a utility-
first approach to their solutions.

Accuracy-constrained systems for differentially private data anal-
ysis have been proposed in recent years [23, 33, 34, 36], which allow
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Figure 8: Ex-Post DP (¢) and Accuracy (FNR, FPR) Results for varying f (a-b) and « (c-d) values on Taxi data.

data analysts to interactively specify accuracy requirements over
their queries while providing a formal privacy guarantee. However,
these solutions either do not specifically focus on decision support
queries (CacheDP [36], Ligett et al. [33]), or do not take into ac-
count their asymmetric utility accuracy requirements (APEx [23]
and DPella [34]).

The problem of incorporating differential privacy in decision
support applications has been tackled in MIDE [24], which we have
previously described and extended in our work. Other solutions
such as Fioretto et al. [22] also studies decision support on differen-
tially private data, but does so from a fairness lens by proposing
recommendations to mitigate bias resulting from making decisions
on DP data. Detailed related work can be found in Appendix C.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed ProBE, an optimization framework which
enables the execution of complex decision support queries under
utility requirements on the false positive and negative rates at a
minimal privacy loss. A natural generalization of our framework is
implementing it with different DP mechanisms. One such mecha-
nism defined in [24] explores a more fine-grained definition of DP,
where predicates have different privacy budgets, thus necessitating

a new metric to quantify this privacy loss entitled Min-Entropy. We
thus extend the entropy-based algorithm from [24] to answer com-
plex queries with guarantees on both error rates as formalized in
Appendix C. Another interesting direction would be to implement
the ProBE framework with other widely used DP mechanisms such
as the exponential mechanism [19] or the matrix mechanism [32]
to compare their performance to the algorithms previously used.
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A PROOFS
A.1 Proofs for Single Operator Queries (FNR)

1. Proof For 2-Query Conjunction. Consider a complex decision
support query Q composed of two atomic aggregate threshold
queries Q = Q1 N Q2. Q1 and Q are answered by TSLM M, M,
respectively, and mechanism M = M; N Mj is used to answer query
Q. If My and M, guarantee an FNR bound of 1 and f2 respectively,
then M has an FNR bound of 1 + fs.

Proor. VA; € A,
Let A be the event that A; € M;(D), B be the event that A; € My(D),
C be the event that A; € Q1(D) and D be the event that A; € Q2(D).
The probability of false negatives can be derived as:
FNR = P[A ¢ Mi(D) N Mz(D)|A; € Q1(D) N Q2(D)]
= P[AB|CD] = P[AV B|CD] = P[ABV AB Vv AB|CD]
P[(ABV ABV AB) A CD]
P[CD]
_ P[(ABACD)V (ABACD)V (ABACD)] (28)
- P[CD]
Given that the three clauses are mutually exclusive events
P[AB A CD] + P[AB A CD] + P[AB A CD]
P[CD]
P[AB|CD] + P[AB|CD] + P[AB|CD]
We know that M; and M, are mechanisms of independent ran-
domness, i.e. add random noise. This means that A is indepen-

dent of B given CD and vice versa. Therefore we can rewrite
P[AB|CD] = P[A|CD]P[B|CD]. We obtain:

= P[A|CD]P[B|CD] + P[A|CD]P[B|CD] + P[A|CD]P[B|CD]

There is a conditional independence between A and D given C due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between B and C given D. Thus, we can
rewrite P[A|CD]P[B|CD] = P[A|C]P[B|D]. Therefore,
= P[A|C]P[BID] + P[A|C]P[B|D] + P[A|C]P[B|D]

Knowing that FNR; = P[A|C], FNR; = P[B|D], TPR; = P[A|C]
and TPR; = P[B|D], we substitute:

= FNRy-TPRy +TPR; - FNRy + FNRy - FNR,

= FNRy(1-FNRy) + (1 — FNR;)FNR, + FNR{FNR;

= FNR; + FNR; — FNR{FNR;

< FNR;+FNRy < f1+ fo (29)

]

16

Nada Lahjouji, Sameera Ghayyur, Xi He, and Sharad Mehrotra

2. Proof For 2-Query Disjunction. Consider a complex decision
support query Q composed of two atomic aggregate threshold

queries Q = Q1 U Q2. Q1 and Q2 are answered by TSLM M;, Mz
respectively, and mechanism M = M; U M; is used to answer query

Q.If My and M, guarantee an FNR bound of 1 and f2 respectively,
then M has an FNR bound of 1 + f2.

Proor. VA; € A,
Let A be the event that A; € My (D), B be the event that A; € My(D),
C be the event that A; € Q1 (D) and D be the event that A; € Q2(D).
The probability of false negatives can be derived as:
FNR P[i ¢ Mi(D) N M(D)|Ai € Q1(D) N Q2(D)]
P[AV B|C V D]
P[(AB) A (CD v CD v CD)]
P[CV D]
Given that the three clauses are mutually exclusive events

P[(AB) A CD] + P[(AB) A CD] + P[(AB) A CD]

P[CV D]
_ P[(AB)|CD]P[CD] _P[(AB)|CD]P[CD]
P[CV D] P[CV D]
P[(AB)|CD]P[CD]
T T Plevol
< P[AB|CD] + P[AB|CD] + P[AB|CD]

We know that M; and M, are mechanisms of independent ran-
domness, i.e. add random noise. This means that A is indepen-
dent of B given CD and vice versa. Therefore we can rewrite
P[AB|CD] = P[A|CD]P[B|CD]. We obtain:

= P[A|CD]P[B|CD] + P[A|CD]P[B|CD] + P[A|CD]P[B|CD]
There is a conditional independence between A and D given C due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between B and C given D. Thus, we can
rewrite P[A|CD]P[B|CD] = P[A|C]P[B|D]. Therefore,

= P[A|C]P[B|D] + P[A|C]P[B|D] + P[A|C]P[B|D]

Knowing that FNR; = P[A|C], FNR, = P[B|D], TNR; = P[A|C]
and TNR; = P|[B|D], we substitute:
TNR; - FNRy + FNR; - TNRy + FNR; - FNRy
TNR; - FNR; + FNRi(TNRz + FNRy)
< FNRy; +FNRy < 1+ P2

(30)

O

3. Proof for Theorem 4.2. Given a disjunction/conjunction query
Q answered by a disjunction/conjunction mechanism M(D) where
M,; is a Threshold Shift Laplace mechanism and € = €1 + €2, we
achieve minimum privacy loss € and a f-bound on FNR by budget-
ing f as:

U A 91 ﬁ
ulAgg + uzAgl P2 =

ulAgzﬁ

1 =
ﬂ u1Agz + ugAg1

(31)
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Proor. Consider a complex decision support query Q composed
of two atomic aggregate threshold queries connected by the disjunc-
tion or conjunction operator. For both conjunction and disjunction
mechanisms, we obtained the optimization problem of:

Ag1

(B1) = (,32) "
subjectto 1+ B2 < B

maximize
(32)

from Eq. (11), (15) for conjunction and Eq. (19), (20) for disjunction.
We use the Lagrange Multipliers method to solve this constrained
optimization problem, which consists of solving the Lagrangian
function that sets the gradient of the function equal to the gradient
of the constraint multiplied by the Lagrange Multiplier A. We solve
for A below:

(o )

= A (f1+p2)
/5 d/?’
Agg g A
(b gy A2 (33)
uz
Similarly,
((/31) W (ﬁz) & ) = A(P1+p2)
ﬁ ﬂ
A,
(B Mg D 2 (34
From setting Equations (33) and (34) equal we obtain,
Bi= uzf2lgy b= u11Ag2
uiAgy uzAg1
Substituting in the original optimization inequality constraint,
uzfolgr,
por (B =
_ ulAgzﬁ
B = ———
ulAgz + uzAgl
Similarly,
u1p1Ag2
+ — =
B+ ( w2t ) B
ﬂl _ ugAglﬂ

u1Ags + u2Agy

A.2 Proofs of PROBE Generalization for
n-Queries

Proof for Theorem 4.3. Given a complex decision support query

OMF composed of n aggregate threshold queries connected by n—1

conjunctions/disjunctions, we achieve minimum privacy loss € by

budgeting the false negative bound f as:

AgiB 1T ()
+
S § y(uxAgy>

Proor. We will consider exclusive conjunction for this proof
because the false negative rate equation is identical for both 2-
way conjunction and disjunction. Consider the conjunction of n

j=1{1,2 .. n} (35)

Bj=
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ag/gregate threshold queries Q1, Qo, ..., Qn, where Qj; is defined as
Qg 0)>C; (D) = {A; €A|gJ(D ’)>cjl} All Qj have the same pred-
icates A = A, A3, ..., A but different filters f;, aggregate function
g;j(.) and threshold C; = Cjps - Cjg- Let mechanism M; : D — O;
satisfy a f;-bound on FNR for aggregate threshold query Q;. We can
answer query Q which is a conjunction of n aggregate threshold
queries using mechanism M where M(D) = M;(D)NMa(D)N...N
My, (D). First, we formally define M’s overall false negative rate
bound for exclusive conjunction.

We can evaluate mechanism M by sequentially evaluating the
2-way conjunction of each pair of sub-mechanisms (M;, Mj41). Let
M; i+1 be the resulting conjunction mechanism. For an even number
of queries n we obtain:

M(D) = Mi2(D) N M34(D) N ... A\ Mp—1p

Each mechanism M; ;41 has the resulting FNR bound of §; + fi+1
according to Theorem 4.2, e.g. My 2 has an FNR bound of f1; =
1 + P2. We subsequently run the 2-way conjunction mechanism
on every pair (M; j+1, Mit2 i+3). We obtain:

M(D) = Mi1234(D) N ... "\ Mp—3n—2n—1n(D)

Where each mechanism M; ;1 i+2i+3 will have the FNR bound
Bii+1 + Pirzirs €8 Proza = Pra+ Paa = P1+ o + 3 + fa. We
can thus recursively run the 2-way conjunction mechanism in this
subsequent manner to obtain:

Pi+Pe+..+Pu<p

For an odd number of atomic queries n we similarly recursively
group sub-mechanisms in pairs except for the last sub-mechanism
M, which will be paired last with the mechanism composed of nq
sub-mechanisms. We thus obtain the same result.

Second, we define mechanism M’s overall privacy loss € in terms
of n-bounds f1, fa, ...fn. For conjunction and disjunction alike, we
use the sequential composition theorem (Def. 2.2) to compute the
final privacy loss. Formally,

(36)

€ = €1+e+..+¢€,

1 1
o n<1/u(lzﬁ1>> + gy n<1/u<2252>) 4.+ g

In(1/(28n))
Un

Agy Agy Agn
= In(1/2f1) = +In(1/2f2) “2 +...+1In(1/2p;,) un
Agy Agn Agn
= —In(2f1) “ —1In(2p2) 2 —..—1n(2p,) un
Agy Agy Agn
= —In((2B1) 1 (2f2) *2 ... (2Bn) “n')
To minimize € we thus need to maximize:

Agy Agy Agn
Jp(Pr. B, s fn) = (1) *t (B2) 2 ... (Bn) om (37)
We thus use the Lagrange method to solve the following optimiza-
tion problem:

maximize fy(B1. oo r) = (B1) 5 () % . ()

subjectto i1+ fo+...+Pn < f

(38)

Applying the Lagrangian function to our optimization problem,



we obtain n- functions-

d,B - ((B1) w (B2) B (ﬁn) ) _Adﬁ (Pr+ P2+ ...+ Bn)
,3 - ((p1) ' (B2) B (ﬁn) ) Sy b (Pr+ P2+ ...+ Bn)
Lo 5 3
m((ﬁl) 1 (f2) ¥z o (Pn) wn ) = E(ﬁ1+ﬁz+...+ﬂn)
Solving the equations results in,
S ) 5 ) g =
A-‘” S () 8 ) ) B =
2 ) 5 ) ) T =
By setting every comblnatlon of equations equal, we obtain:
Agr _ Aga . _ Agn

Prur Pz T Paun
Solving for individual f;,

B = Pauzlg1 _ PsusAgy _ _ Pntnlgy
u1Ago u1Ags3 u1Agn
g, = Puwbe: fswsbg - fuunlgy
uzAgy uzAAgs3 u2Agn
By = BruiAgn _ PoupAgn  Pn-1un-1Agn
" unAgl - unAQZ T unAgn—l

We can now substitute fj; in the original constraint to solve for

individual f;:

u1A u1A
p = ﬁ1+ﬁ1 1Ag2 ...+'Bl 1Agn
U293 unlgy
For 1 we obtain:
B
b = L (Ag: . Agn
(1+A91( . +u—n))
_ B
- A n A n A n n—
(1 + Augll( GoUsly... Up+ 95“;7;!;3 uu: HAGnUaUs... U 1))
_ p
(14w (ZEC T w00
Agl H;,ifl w
~ Ag ﬁnn#l
Agy 1—1"”t Ui +uy Z"”ﬂ l_[;-l:jfti’l ujAg;
Ag ﬁHnl;&l
I ujng;
Similarly,
5 Ag2B T i AgnB T i
2 = —¢ n = —;t
= H7=J1 lujAg,' = Hj:ﬁ lujAg,-
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Thus, we can generalize the expression fori € 1,2,...,n
Agif T ()

*
n T (urdgy)

Bi = Vi={1,2..n} (39)

[m]

Proof for Theorem 4.5. Given a complex decision support query
OMF with query tree T composed of n aggregate threshold queries
with an associated o; number of occurrences within the tree, we
achieve minimum privacy loss € by budgeting the f-bound on FNR
as:
n, x#z
Bi=— Agip Ty (ux) Vi={1,2,...n} (40)
y=1 Hx:l (“xoyAgy)

Proor. We first prove that the apportioning function fg that
optimally apportions the FNR bound f over the sub-queries given
a query tree T is:

n
fp(BrBose ) = D 0ifi < B (41)
i=1
We prove this by induction as follows:
Base case: Query tree with two nodes. consider a complex query
OMF with compact query tree T composed of n = 2 leaf nodes
containing two sub-queries Q1, Q2 with occurrences 01 = 02 =1
connected by an operator N or U. It follows from Appendix A.2 that
the apportioning of the FNR in terms of f; is:

15 (B, B2) Pr+pPe<p

fppy = o1frtofa<p

Therefore condition (41) holds for the base case of n = 2.
Induction step: Suppose that for a query tree T of size n = k

nodes containing m sub-queries Q1, Q2, ..., Qm with occurrences
01,02, ...,0m , the FNR is apportioned in terms of ; and bound by

B as:

m
f3(B1. Bas o ) = D 0iffi < B (42)
i=1
Now we show that the condition holds for n = k + 1. Let T be a
compact query tree composed of n = k + 1 nodes containing m sub-
queries Q1, Q2, ..., O, With occurrences o1, 02, ..., 0, connected by
an operator N or U. We refer to the right sub-tree as Tg and the left
sub-tree as Ty . Each sub-tree contains the sub-queries Q1, Qo, ..., Om
with local occurrences Ty .0; or Tg.o; which add up to the overall
occurrence number in the tree T.0;,i.e.Vi € m

T.0; = Ty .0; + Tg.0; (43)

For the right sub-tree Tg, we know that the condition (42) holds for
n = k. Therefore the FNR for Tr in terms of f; is:

m
P = ) Tr-0ifi (44)
i=1
Similarly for the left sub-tree T;, we obtain the FNR,

m
n= ). TLoifi (45)
i=1
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For overall tree T, we know from 2-way conjunction/disjunction
that:
Tpr (B Bas s Bm) = Py, + Prp < B

Substituting in Eq. (44) and (45) we obtain:

Tpr (B, B2, . Bm) Z Tp.0ifi + Z Troifi < p
i=1

m
Z Tp.0ifi + Tr.0ifi <
F

From Eq. (43) we obtain

fpr(Br e Bm) = Y Toifi < B
i=1

Therefore Eq. (42) holds for all query trees T with m atomic aggre-
gate threshold queries.

Second, we derive the apportionment of §; from Eq. (40). To do
so, we derive our optimization problem which minimizes € given
the constraint from Eq. (41). Given that we run each sub-query Q;
using M; based on its number of occurrences o; in query tree T, its
privacy budget will be proportional to the number of occurrences,
i.e. the loss will be o;¢; for each Q;. This means that the overall
privacy loss, when using the Sequential Composition theorem, will
be e = Zl'.’:l oj€;. As we use TSLM for the sub-mechanisms M;, we
Ag; B/ P

Ji U

can use the formulation of €; = )| Substituting in:

ln(l/(2ﬂz))

i

0iAg;
=—mewi
i=1

= —In((2p) (2B

To minimize € we thus need to maximize:

onlAgn
- (2Bn) n

3B Bos - B ﬂmwz (46)
So our optimization problem is updated to:
%iAgi
maximize l—[ (Bi)
(47)

n
subject to Z oifi < B
i=1
We thus apply the Lagrange Multipliers Method as with the previous
proof to obtain:

Agif Hn X (ux)

Vi={1,2,..,n}
y=1 Hx:l Y (uxoyAgy)

Bi= (48)

O
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A.3 Proofs For FPR Bounds

1. Proof For 2-Query Conjunction. Consider a complex decision
support query Q composed of two atomic aggregate threshold
queries Q = Q1 N Q2. Q1 and Q2 are answered by TSLM M;, My
respectively, and mechanism M = M; N M; is used to answer query
Q. If M; and M, guarantee an FPR bound of a7 and ay respectively,
then M has an FPR bound of a; + a. If we set @; = a/n, we obtain
a a bound on FPR.

PrOOF. VA; € A,
Let A be the event that A; € M;(D), B be the event that A; € My(D),
C be the event that 1; € Q1 (D) and D be the event that A; € Q2(D).
The probability of false positives can be derived as:

FPR = P[A € Mi(D) N My(D)|A; ¢ Q1(D) N Qa(D)]
= P[AB|CD] = P[AB|CV D] = P[AB|CD v CD Vv CD]
_ P[ABACDVCD VCD]
- P[CcD]
P[(ABACD) V (ABACD) Vv (AB A CD)]
= (49)
P[CD]

Given that the three clauses are mutually exclusive events

P[AB A CD] + P[AB A CD] + P[AB A CD]

P[CD]
_ P[AB|CD]P[CD] . P[AB|CD]P[CD]
B P[CD] P[CD]
P[AB|CD]P[CD]
P[CD]

IA

P[AB|CD] + P[AB|CD] + P[AB|CD]

We know that M; and M, are mechanisms of independent ran-
domness, i.e. add random noise. This means that A is indepen-
dent of B given CD and vice versa. Therefore we can rewrite
P[AB|CD] = P[A|CD]P[B|CD]. We obtain:

= P[A|CD]P[B|CD] + P[A|CD]P[B|CD] + P[A|CD]P[B|CD]
There is a conditional independence between A and D given C due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between B and C given D. Thus, we can
rewrite P[A|CD]P[B|CD] = P[A|C]P|B|D]. Therefore,
= P[A|C]P[B|D] + P[A|C]P[B|D] + P[A|C]P[B|D]
Knowing that FPR; = P[A|C], FPR, = P[B|D], TPR; = P[A|C]

and TPR, = P[B|D], we substitute:

= FPRy -TPRy +TPRy - FPRy + FPRy - FPRy

= FPRy - TPRy + FPRy(FPRy + TPRy)

< FPR{+FPRy < a1 + a2 (50)
So if we set &3 = a2 = @/2, then FPR < « . O

2. Proof For 2-Query Disjunction. Consider a complex decision
support query Q composed of two atomic aggregate threshold
queries Q = Q1 U Q2. Q1 and Q3 are answered by TSLM Mj, M,
respectively, and mechanism M = M; U M; is used to answer query
Q.If M; and M; guarantee an FPR bound of ; and ay respectively,
then M has an FPR bound of a3 + ay. If we set @; = a/n, we obtain
a o bound on FPR.



ProoF. VA; € A,
Let A be the event that A; € M;(D), B be the event that A; € My(D),
C be the event that A; € Q1(D) and D be the event that A; € Q2(D).
The probability of false positives can be derived as:

FPR P[A; € M1(D) N Mz(D)|A; ¢ Q1(D) N Q2(D)]
P[AV B|CV D]
P[(ABV ABV AB) A CD]

P[CV D]
Given that the three clauses are mutually exclusive events
P[AB A CD] +P[AB A CD] + P[AB A CD]

P[CV D]

P[AB|CD] + P[AB|CD] + P[AB|CD]

We know that M; and M, are mechanisms of independent ran-
domness, i.e. add random noise. This means that A is indepen-
dent of B given CD and vice versa. Therefore we can rewrite
P[AB|CD] = P[A|CD]P|[B|CD]. We obtain:

= P[A|CD]P[B|CD] + P[A|CD]P[B|CD] + P[A|CD]P[B|CD]
There is a conditional independence between A and D given C due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between B and C given D. Thus, we can
rewrite P[A|CD]P[B|CD] = P[A|C]P[B|D]. Therefore,

= P[A|C]P[B|D] + P[A|C]P[B|D] + P[A|C]P[B|D]
Knowing that FPR; = P[A|C], FPR, = P[B|D], TNR; = P[A|C]
and TNRy = P[B|D], we substitute:
= TNRy - FPRy + FPRy - TNRy + FPR; - FPRy

(1 — FPRy)FPRy + FPR{(1 — FPRy) + FPR{FPR,
< FPRy + FPRy — FPR{FPR, < FPR; + FPRy < a7 + a{51)

So if we set a1 = ay = /2, then FPR < a. O

Generalization of FPR bound. By using a similar proof by in-
duction as in Appendix A.2 (Proof for Theorem 4.5), we obtain
the bound on FPR given any query T, where each sub-query Q;
of n sub-queries, with an associated o; number of occurrences, as

follows:
n
FPR < Z oicti
i=1

If we set @; = a/20; for each sub-query, then FPR < a.

A.4 Proof of ProBE Algorithm

Proof for Theorem 5.1. Algorithm 2 satisfies emax-DP, a f-bound

on the False Negative Rate and a a bound on the False Positive Rate.
Proor. First, we show the proof that TSLM offers the guarantee

that for an atomic aggregate threshold query Qg,, setting the pri-

vacy budget to €; = w guarantees the FNR is bounded
by pi as defined in [24]. Fof all predicates A; € A:

P[4 ¢ M(D)|J; € Q(D)]
Plg(D]) +ni < ci —uilg(D] ) > ci]
o= In(1/2p)

P['?iﬁ—ui]STSﬂ

IA
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Second, we prove that setting f per iteration to /2 upholds a
bound on the overall mechanism’s FNR.

We know that the FNR is bounded as FNR < Y, f;. Therefore,
if we set Bstep = B2 where step = i € {1,2}, then we obtain
FNR < /2 + /2 = B. Therefore the FNR is bounded by .

Third, the algorithm satisfies €px-DP.

(i) Phase One of ProBE adds noise from the Laplace Distribution
according to the Laplace Mechanism[19], i.e. with a mean of 0
and a standard deviation of 1/¢;. This means that Phase one is €;-
differentially private. (ii) Phase Two of ProBE similarly adds noise
from the Laplace Distribution according to the Laplace Mechanism
with a newly computed €; privacy budget, making phase two €;-
differentially private. (iii) Because the two phases are executed
sequentially, their composition (i.e. the overall ProBE mechanism)
is €; + ej-differentially private. (iv) It follows that ProBE satisfies
€max-DP as it checks that the current privacy budget (i.e. €; + €;)
does not exceed the limit of €,,4x.

Fourth, the algorithm satisfies the a-bound on FPR because we
estimate an upper bound on the FPR by deriving an upper bound
on FP and a lower bound on N. Thus, since FPR < FPRes;, then
enforcing a bound on the upper bound FPR.s; < « (by exiting the
algorithm if it is exceeded) will enforce a bound on the actual FPR.
i.e. FPR < FPRes; < a = FPR < a.

O

B PROBE COMPUTATIONAL COMPLEXITY
ANALYSIS

We analyze the computational complexity of ProBE as it relates to
regular SQL queries by using the example query below:
SELECT disease, count(*) FROM PATIENT_DATA
WHERE disease_type ='viral'
GROUP BY disease
HAVING (count(*) > c1 AND avg(age) > 65)
If executed over an SQL system such as MySQL, the query eval-
uation plan would be:
(1) Full Table Scan on PATIENT_DATA
(2) GROUP BY disease attribute
(3) Compute aggregations on count () and on avg(age) based
on the tuples in a group per group and filter matching
groups based on the count(*) > c1 and avg(age) > 65 condi-
tions
(4) Return matching groups
In ProBE, if we break the query into sub-queries and execute
them separately then apply the conjunction or disjunction as dis-
cussed in the paper, the approach will correspond to the following
plan:
For Q1:
(1) Full Table Scan on PATIENT_DATA
(2) GROUP BY disease attribute
(3) Compute aggregations with noise on count(*) based on the
tuples in a group per group and filter matching groups
based on count(*) > c1 condition
For Q2:
(1) Full Table Scan on PATIENT_DATA
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(2) GROUP BY disease attribute
(3) Compute aggregations with noise on avg(age) based on
the tuples in a group per group and filter matching groups
based on avg(age) > 65 condition
And lastly:

(1) Compute conjunction of Q1 and Q2
(2) Return matching groups
In the execution plan above, if we have k operators (i.e. conjunc-

tions and/or disjunctions), the technique will result in a computa-
tional complexity of almost k times. Note that when we scan for
each of the sub-queries, we do not need to do this scan indepen-
dently. Indeed, a better plan would be:

(1) Full Table Scan on PATIENT_DATA

(2) GROUP BY disease attribute

(3) Compute all aggregations with noise i.e. count(*) and avg(age)
and filter matching groups based on the count(*) > c1 and
avg(age) >65 conditions
Compute conjunction of Q1 and Q2
Return matching groups

4)
®)
The above execution plan would meet our requirement, and has
complexity similar to the original SQL plan, but will require an
in-database implementation to be slightly modified to achieve the
above. Our goal in this paper is primarily to develop the foundation
for answering complex queries in a differentially private manner
and not on optimizing the query performance in terms of execution
time. Nonetheless, this aspect of optimizing the execution of our
algorithm is a very interesting direction of future work.

Note that implementation of the GROUP BY operation has to
be special in that all possible groups to be returned (i.e. all the
diseases) must be pre-determined, as opposed to the SQL GROUP
BY implementation which does not have knowledge of the existing
groups. This issue applies to both second and third plan.

C DETAILED MULTI-STEP ENTROPY-BASED
ALGORITHM

The two-step algorithm ProBE assigns different privacy levels to
different predicates due to the early elimination of data points at
the first step, meaning predicates that go on to the second step have
a higher privacy loss €. This concept is captured through the defini-
tion of Predicate-wise DP (PWDP)[24], a fine-grained extension of
differential privacy which quantifies the different levels of privacy
loss data points may have in multi-step algorithms. Formally,

Definition C.1 (Predicate-wise Differential Privacy (PWDP)). Given
a set of mutually exclusive predicates and their corresponding
privacy budgets ® = {(Ay, €1), ..., (A, €¢)}, we say a randomized
mechanism M satisfies 0-PWDP if for all i, for any neighboring
databases D and D’ differing in at most one record that satisfies A;,
the following holds:
P[M(D) € 0] < e“P[M(D’) € O] (52)
Naturally, a measure to quantify this new definition of privacy is
needed Previous work tackles this problem by proposing a new pri-
vacy metric for PWDP entitled Min-Entropy [24] Hpmin which mea-
sures a lower bound on the level of uncertainty given the set of pred-
icates and their respective privacy levels ® = {(A1, €1), ..., (A, €x) }-
Formally,
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Definition C.2 (PWDP Min-Entropy). The Min-Entropy of a ©-
predicate-wise differentially private mechanism with © = {(A1, €1),
wess (Ag> €) } is defined as:

Himin(©) = min Zle — pilog pi

e €i . €;
.t. < pi <
s Yje€i pis Yie
where p; is the probability that a random tuple x will take a value ¢

that satisfies A;.

Vie [L,k] and Zip; =1 (53)

—€;

the Data Dependent Predicate-Wise Laplace Mechanism (DDP-
WLM) also introduced in [24] maximizes min-entropy (i.e. maximiz-
ing the lower bound on uncertainty) in a multi-step algorithm by
also using the noisy aggregate values obtained from previous itera-
tions to compute the best privacy level € at which Min-Entropy is
maximized for the set of elements in the uncertain region. This algo-
rithm similarly guarantees a f-bound on FNR for a single aggregate
threshold query by setting the privacy loss to € = w, but
it does so by setting a starting privacy level €; as well as a maximum
level e, prior to execution which is spent across a fixed number of
iterations m in a way that maximizes min-entropy. In each iteration,
the privacy budget is further distributed across fine-grained steps
my and the privacy level with the highest min-entropy is chosen
as the next iteration’s budget. It follows that the uncertain region
parameter u is, again, chosen statically at the beginning, then cho-
sen to minimize privacy loss rather than in a way that can provide
a bound on false positives.

We modify this algorithm by integrating our two-step algorithm
ProBE into its framework in order to not only answer complex DS
queries, but also to provide a post-facto bound on false positives.
Our modified algorithm is entitled ProBE-Ent as described in Algo-
rithm 5. Instead of having a fixed starting €;, we internally choose
a starting up and compute the initial privacy level (line 7). Within
the first step of DDPWLM, we run the FP estimation algorithm
(Function in Algorithm 3) in order to compute the optimal uncer-
tain region parameter up;. We use this new uncertain region as an
upper bound for the algorithm, i.e. we compute the €, upper bound
that represents the exit condition for the algorithm. Additionally,
we provide a f§ budget optimization which exploits the multi-step
nature of the algorithm in a way that provides a potentially higher
budget if previous sub-queries exit early.
f-Budget Redistribution. In the case of multi-step algorithms, we
exploit their iterative nature to further optimize f budget allocation
during execution. Given that certain queries may terminate early (if
an iteration j < m yields no predicates within the uncertain region),
the assigned f; for such a query may not be fully used and may thus
be wasted. We exploit the progressive nature of such algorithms
to further optimize the privacy budget: if the previous sub-query
terminates before the m-th step of its run, we can redistribute the
leftover false negative rate budget to subsequent sub-queries, thus
fully utilizing the false negative rate bound given and consequently
minimizing the overall privacy loss. For each sub-query, we calcu-
late the remaining f budget after running the MSPWLM algorithm
by subtracting the used f; budget from the overall § (line 9). For
subsequent sub-queries, we check if the remaining f budget frem
from the previous iteration is higher than 0. If this is not the case,



Algorithm 5 ProBE Entropy-based Mechanism. Q = {Qy, ..., Qn},

u = {ug,...un}, 0 = {01,...on}, Ag = {Ag1,...Agn}, t =
{t1, ... thn—1} where t; = 0 if conjunction, 1 if disjunction

1: procedure ENTPROBE(Q, D, u, 5, 0, Ag, €max, m, mg, t)
2 Let Of<—{},ef<—0,ﬁrem —0
3 fori=1,..,ndo
4: if frem > 0 then
5 update overall FNR budget f < Brem
6 Q “— {Ql’, ceey Qg}(' )
Agi BT (o _ AgiIn(1/(2i/m))
7: ﬁi — o; Z:I H;,:x;ty(qugy)ﬁs = U
8: O, €1, Busea < DDPWLM(Q;, Ui, Bis €max, €5, M, mf)
9: Brem < 0if Bi = Pysea else f— Pyseq
10: ef — ef + €
11: if €f < €max then
12: if type = 0 then
13: Of<—Oi ifOfZ(Delse Of<—OfﬂOi
14: return Oy, ef ifO; =0
15: else if type = 1 then
16: Of — Of U 0;
17: else
18: return ‘Query Denied’
19: return Of, €f

then we use the ProBE optimization with the original § and all the
sub-queries. Otherwise, we update the overall f to the remaining
Prem and re-run the ProBE optimization using only the subsequent
sub-queries Q;, . .., O (lines 4-6). To illustrate this algorithm, we
use the example below.

Example C.1. Consider a 3-step PPWLM run with a conjunction
query composed of 4 aggregate threshold queries; if the first query
finishes executing after its 1st step, its leftover overall false negative
rate will be f — Af;, where Af; = %ﬁl. Therefore we re-compute
the false negative rates for subsequent queries f, i3, f4 using Eq.
(25) with f/ = p — ABy and with the Qy, O3, Q4 leftover queries.

D DETAILED RELATED WORK

Differential Privacy [18, 19] has become a well-studied standard for
privacy-preserving data exploration and analysis [12, 27, 48, 51].
Various work has proposed frameworks for answering specific
query types, such as range queries [16, 30, 54], and linear counting
queries [32, 38, 39]. This body of work, however, is not applicable
to the aggregate threshold queries that our solution considers, nor
does it take the approach of accuracy-first, which aims to minimize
privacy loss given an accuracy constraint. Join queries may be
more applicable to such queries, as conjunction-only queries may
be written as join queries. However, such an approach complicates
the queries at hand: the join operator is known for having high
sensitivity resulting in low accuracy when answering such queries.
Additionally, recent algorithms tackling join queries [11, 13, 28, 52]
do not provide accuracy guarantees in terms of FNR or FPR, and
their data-dependent nature make it difficult to successfully enforce
error bounds.

Multiple accuracy-constrained systems for differentially private
data analysis have been proposed in recent years [23, 33, 34, 36],
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which allow data analysts to interactively specify accuracy require-
ments over their queries while providing a formal privacy guarantee.
However, these solutions do not specifically focus on decision sup-
port queries and do not take into account their specific accuracy
requirements. CacheDP [36] proposes a query engine that uses pre-
vious answers stored in a differentially private cache to lower the
overall privacy budget, but this framework does not support aggre-
gate threshold queries, and hence is not applicable to our problem
of complex DS queries. The system APEx [23], and programming
framework DPella [34] both allow data analysts to provide accuracy
bounds for differentially private query answering, and both support
aggregate threshold queries (also referred to as iceberg counting
queries), but neither support complex decision support queries
which are compositions of atomic queries, nor do they incorporate
the asymmetric utility characteristic (i.e. the importance of the false
negative rate) that decision support queries have. Ligett et al. [33],
which we extend in our work through the use of the ex-post DP
notion, uses empirical error to determine the best privacy budget e.
Such an approach is not suitable for aggregate threshold queries, as
the sensitivity of the error would result in a high privacy loss, and
the testing for empirical error incurs an additional cost to privacy.

The problem of incorporating differential privacy in decision
support has been tackled in MIDE [24], which our work extends.
MIDE [24] makes use of the asymmetric utility feature in DS appli-
cations to formally define strict accuracy guarantees in terms of the
false negative rate , and proposes novel mechanisms to answer DS
queries at a minimal privacy loss while upholding such guarantees.
However, this work only addressed simple atomic queries, rather
than complex DS queries composed of multiple aggregate statistics
evaluated against their respective thresholds. Other work such as
Fioretto et al. [22] also studies decision support on differentially
private data, but does so from a fairness lens. It tackles aggregate
threshold queries, but proposes solutions to mitigate bias resulting
from making decisions on such data, rather than optimizing privacy
loss or providing formal accuracy guarantees.

E LAGRANGE MULTIPLIERS METHOD

The Lagrange Multipliers method [4] is a optimization technique
used to maximize or minimize multivariate functions subject to
equality or inequality constraints. Given an objective function f, the
goal is to find the extremum of such a function given a constraint
function g. The intuition behind this method is that if f and g attain
an extremum at x*, then one of the level curves of f and g are
tangent at x*, meaning that their gradients Vf and Vg are parallel.
This implies that the gradient of the constraint function Vg is a
multiple of the objective function gradient V f, and this multiple is
referred to as a Lagrange Multiplier A. The relationship between the
gradients and the multiplier is depicted in the Lagrangian Function,
which is the equation:

Vf(x) = AVg(x)
Solving this equation for the multiplier A thus yields the optimal

variable expression which can be substituted into the constraint
function to obtain the corresponding extrema. Formally,

THEOREM E.1 (LAGRANGE MULTIPLIERS METHOD). Let f : RY -
R be the objective function, and g : R — R be the constraint
function where both functions are C1. If f attains a local extremum at
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x* such that rank(D(g(x*)) = n given the constraint function, then
there exists a unique multiplier A such that:

Vf(x") = AVg(x") (54)

F ADDITIONAL EXPERIMENTS

Min-Entropy Privacy Results. We extend our experiments to in-
clude Min-Entropy denoted Hj,in (©) as part of our privacy metrics
used to evaluate the performance of all algorithms. We use the same
parameters as the main paper: we set a FNR bound of § = 0.05, a
FPR bound of @ = 0.1, a maximum privacy loss of €yax = 5, a start-
ing uncertain region of uy = 30%|D| for ProBE-based algorithms
(the original ProBE algorithm, the ProBE-Naive variation with the
Naive first step, and the ProBE-Ent entropy-based variation) and
a default u = 12% for the Naive algorithm. We run each algorithm
over a 100 iterations and vary the number of sub-queries from 1 to
6.

In terms of Min-entropy Hmin(©), the closer to 1 the results
are (meaning that the lower bound on uncertainty is extremely
high) the better. The results in Figure 9 thus show that ProBE-
Ent outperforms other algorithms and stays constant or suffers
only from a small decrease as the number of sub-queries increases.
This directly follows from the fact that ProBE-Ent is designed to
maximize min-entropy at each iteration, regardless of the number
of sub-queries. Other algorithms suffer from a decrease in min-
entropy as the number of sub-queries increase, as it is inversely
correlated to the ex-post DP loss €.

Varying f budget split across phases. We evaluate the privacy
loss and accuracy measures of our proposed ProBE algorithm when
varying the distribution of the overall f bound budget across the
two phases of the algorithm. We use the following combinations of
percentages: {10%—90%, 90% — 10%, 50% — 50%, 40% — 60%, 60% —40%,
} where the first percentage is allocated to Phase One of ProBE and
the second is allocated to Phase Two. We use a simple disjunction
query Q1 U Q2 on the Taxi dataset with the fixed parameter of
a = 0.1 and vary the 8 value from the default # = 5-10~2 to a much
smaller value of 5 - 107°. Our results are shown in Table 3. The
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different distributions used for the  budget do not significantly
impact the privacy loss €. There is no direct correlation observed
between privacy loss and the § distribution across the two phases,
as we observe that although the lowest privacy loss achieved is
when 90% of f is allocated to the Phase One, this is not the case
for the 60% allocation. We additionally note that the FPR is the
highest when Phase One is allocated 90% of ff and lowest when 90%
is allocated to Phase Two, but the FPR bound of a = 0.1 is upheld
regardless of the split. As predicted from the inverse relationship
between privacy loss and the FNR bound of f, the smaller the
value, the higher privacy loss € is as seen in Table 3. When using
smaller values of f§, we note that the FNR as well as FPR bounds
are still upheld, but the optimal distribution of the § budget across
phases cannot be discerned despite varying f§ values and remains a
non-trivial optimization problem.

AVERAGE aggregate function conjunction-only privacy
and accuracy results. We model queries for the Sales dataset
which use the AVERAGE aggregate function based on meaningful
KPIs typically used in decision support applications (e.g. average

transaction value). We include the results for conjunction-only
complex queries in Figure 10 with a varying number of sub-queries

from 1 to 6. We use the same default parameters to evaluate the
performance of the Naive, ProBE, ProBE-Naive and ProBE-Ent
algorithms. We set u = 12% for single-step algorithms, uy = 30%
for multi-step algorithms and f = 0.05, « = 0.1, as well as m = 4
steps and my = 3 fine-grained steps for ProBE-Ent. Our privacy
results in terms of ex-post privacy loss € and min-entropy Hpin
show that AVERAGE queries have similar results as COUNT queries
but with a higher range of values for €, with ProBE-Ent having the
lowest privacy loss and highest min-entropy. The higher average for
privacy loss is due to the sensitivity of the query being higher (AVG
often has a higher sensitivity than COUNT). The accuracy results
in terms of false negative rate (FNR) and false positive rate (FPR)
show that all algorithms again achieve the bounded guarantees of
B = 0.05, and the multi-step algorithms achieve the FPR bound of
a.
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Overall § | Phase One f % | Phase Two 8 % | Privacy loss ¢ | FNR FPR
10 90 4.55-1072 0 1.81-1073
40 60 4.56-1072 0 3.03-1073
5.1072 50 50 4.44 1077 0 2.40 - 1073
60 40 4.80-1072 0 3.01-1073
90 10 4.16 - 10772 0 5.45-1073
10 90 5.46 - 1072 0 1.21-1073
40 60 5.66 - 1072 0 1.81-1073
5.1074 50 50 5.12- 1072 0 4.84-1073
60 40 5.32-1077 0 3.63-107°
90 10 5.15- 1072 0 1.21-1073
10 90 8.15- 1072 0 1.2-1073
40 60 8.36 - 1077 0 3.07-107%
5.107°¢ 50 50 8.12-1072 0 1.21-1073
60 40 8.18- 1077 0 6.06 - 10~ %
90 10 8.09-10772 0 1.12-1073

Table 3: Privacy loss and Accuracy when varying the f§ budget distribution across the two ProBE Phases

Naive ProBE Naive ProBE Naive ProBE
ProBE-Naive ProBE-Ent ProBE-Naive ProBE-Ent ProBE-Naive ProBE-Ent
10 1.00 10
0.951
0.8 0.8
> >0.851 >
Q0.6 Q Q0.6
o o o
=} =} =]
0.4 075 c 0.4
w w w
0.2 0.651 0.2
0.0 0.0
1 2 3 4 5 6 05 2 3 4 5 6 1 2 3 4 5 6
Number of Sub-Queries Number of Sub-Queries Number of Sub-Queries
Naive ProBE Naive ProBE Naive ProBE
ProBE-Naive ProBE-Ent ProBE-Naive ProBE-Ent ProBE-Naive ProBE-Ent
1.0 | 1007 1.0
0.951
0.8 0.8
> >0.85 >
Q0.6 Q Q0.6
e e 2
€04 €075 o4
w w w
0.2 0.651 0.2
0.0 0.0
1 2 3 4 5 6 0.55 1 2 3 4 5 6 1 2 3 4 5 6
Number of Sub-Queries Number of Sub-Queries Number of Sub-Queries

Figure 9: Privacy Loss in terms of Min-Entropy Hpin(©) for 1-6 sub-queries at § = 0.05 and o = 0.1 for Conjunction (row 1) and
Combined Conjunction/Disjunction (row 2) using NYTaxi (column 1), Sales (column 2) and UCI (column 3) data.

Naive FNR Naive FPR
ProBE-Naive FNR ProBE-Naive FPR
Naive ProBE Naive ProBE ProBE FNR ProBE FPR
ProBE-Naive - ProBE-Ent ProBE-Naive + ProBE-Ent ProBE-Ent FNR ProBE-Ent FPR
3.0 1.0 0.75 107t
2.5 -2
0.8 0.50 10
c20 >
Q 1073
2 o006 o« o
» 15 s =20.25 o
o [T —4 W
810 uc_' 0.4 10
05 02 0.00 107
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(a) Ex-Post DP ¢ (b) Min-Entropy £(©) (c) FNR and FPR

Figure 10: Privacy (¢,4(0)) and Accuracy (FNR, FPR) Results for AVG functions at f = 0.05 and « = 0.1 on the Sales dataset.
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