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ABSTRACT

This paper studies privacy in the context of complex decision sup-
port queries composed of multiple conditions on di�erent aggregate
statistics combined using disjunction and conjunction operators.
Utility requirements for such queries necessitate the need for pri-
vate mechanisms that guarantee a bound on the false negative and
false positive errors. This paper formally de�nes complex decision
support queries and their accuracy requirements, and provides al-
gorithms that proportion the existing budget to optimally minimize
privacy loss while supporting a bounded guarantee on the accuracy.
Our experimental results on multiple real-life datasets show that
our algorithms successfully maintain such utility guarantees, while
also minimizing privacy loss.

1 INTRODUCTION

We consider the privacy-preserving execution of complex aggregate
queries over 3-dimensional data. Consider, for instance, a dataset
containing medical records of patients and their respective diseases
with the following schema: PATIENT_DATA(patient_name, age, gen-

der, disease, disease_type). An analytical query of interest over such
data, listed below in SQL, identi�es prevalent viral diseases that
a�ict vulnerable populations such as the elderly (age over 65) or
children (age below 5).

SELECT disease, count(*) FROM PATIENT_DATA

WHERE disease_type = 'viral'

GROUP BY disease

HAVING (count(*) > c1 AND avg(age) > 65)

OR (count(*) > c2 AND avg(age) < 5)

Such queries often arise in decision support (DS) applications [17,
25, 47, 50] as part of online analytical processing (OLAP) [5]. OLAP
plays a crucial role in exploring data to produce valuable insight
that facilitates informed decision-making. For instance, businesses
and organizations utilize decision support to evaluate KPIs [9] (Key
Performance Indicators), metrics which gauge progress towards an
intended goal by computing metrics based on aggregate statistics.
Multiple KPIs are often used in tandem to evaluate the performance
of businesses, e.g., sales volume and retention rate to infer growth.
Such KPIs are instances of complex aggregate queries composed
of multiple conditions comparing di�erent aggregate statistics to
their respective thresholds, combined using AND/OR operators.
Other use cases for such complex queries include clinical decision

support applications [44, 46, 50] which use complex queries to
diagnose and classify diseases (e.g. the previously de�ned query),
building management systems [14, 53] that ensure building code
compliance by comparing aggregate statistics to policy thresholds,
and supply management systems [7, 35] which optimize operations
by analyzing statistics as they relate to existing benchmarks or
user-de�ned criteria.

It follows that data sources used by decision support applica-
tions often contain sensitive information about individuals, and
releasing aggregated statistics from such sources can lead to severe
privacy leaks [8, 20]. Di�erential privacy [18, 19] is a popular and
e�ective notion that provides a formal guarantee on privacy by
hiding individual records while releasing aggregate statistics, but
this is done at the expense of accuracy by adding noise to the data.
Traditionally, privacy-preserving query answering uses a "privacy-
�rst" architecture that provides formally de�ned privacy guarantees
while maximizing the utility of data given [21, 26]. Recent work
[23, 24, 34, 43] has argued the advantages of a dual "utility-�rst"
approach instead, wherein a desired level of utility is speci�ed and
privacy maximized given this requirement. This approach is far
more suitable in decision support setting, as it not only provides
a guarantee on the query answer and therefore con�dence in the
decision made based on it, but it also o�ers the opportunity for
higher privacy provided that the utility requirements are met at a
lower level of invasiveness.

In the context of decision support, utility requirements consist
of more than one metric. In particular, DS queries answered by a
di�erentially private mechanism, result in two types of errors: false
positives (FP) and false negatives (FN). These errors are the basis
of statistical hypothesis testing [15], a widely established method
used in multiple �elds [3, 42, 45] which determines the validity of a
hypothesis based on sample data. The testing results in either a Type
I error (FP) or Type II error (FN) which are subsequently compared
to pre-set bounds to make a decision about said hypothesis. DS
can be considered a direct application of hypothesis testing, as
it uses queries based on statistical methods to make an informed
decision. It is thus critical for a di�erentially-private DS framework
to enforce utility bounds on both false positive and negative errors
in order to guarantee the validity of its query results.

Prior work [23, 24] has studied the utility-�rst approach but their
scope is limited, especially in the context of DS queries. Firstly, they
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only focus on simple queries which do not have multiple condi-
tions comparing di�erent aggregate statistics to their respective
thresholds, i.e. can only answer a query with a single condition
in the HAVING clause (e.g. 2>D=C (∗) > 21). Secondly, they do not
properly tackle the dual utility requirements of DS (i.e., FP and
FN). APEx [23], which does not di�erentiate between the two error
types (viz., FP and FNs) considering them both as errors, o�ers
error bounds only for data point that are far from the threshold
speci�ed in queries. Errors (i.e., misclassi�cation of points as FP
and FNs) in an uncertainty region close to the threshold, remain
unbounded. MIDE [24], overcomes this limitation of APEx and
o�ers formal utility bounds irrespective of where data points lie,
but it only provides bounds on false negatives. Given a set bound
on FN, it uses a heuristic approach to explore the trade-o� between
privacy loss and the FP error. It does so byweakening the classifying
threshold in such a way that a desired FN bound can be reached at
a signi�cantly lower privacy loss while incurring a small penalty
on the FP. Moreover, both APEx and MIDE consider simple queries.

In this paper, we study a comprehensive approach to solving
the problem of answering complex DS queries in a di�erentially
private manner so as to o�er dual utility bounds on both FP and
FN while minimizing privacy loss. To address the complexity of
the query, the intuition behind our approach is to decompose the
original query into multiple simple queries with single aggregate
functions (i.e. with known query sensitivities) which can be an-
swered by di�erentially private mechanisms. Such mechanisms can
then be composed by using the respective AND/OR operators used
in the original query to link the aggregate functions. The main chal-
lenge, then, lies in �nding a methodology to similarly decompose
or proportion the overall utility bounds across the simple queries
(i.e. how to assign allowed error bounds per sub-query to meet
the overall accuracy requirement of the �nal query), as well as the
privacy budget, to subsequently guarantee these bounds in a way
that optimally minimizes privacy loss. One possible solution could
be to divide the utility budgets equally across the multiple condi-
tions, but such an approach, as we will see, is sub-optimal, seeing
as di�erent aggregate threshold queries may require a higher error
tolerance depending on the selected data distribution.

Alternatively, we proposeProBE (Proportioning PrivacyBudget
in Complex Exploratory Decision Support Queries), a framework
that optimally partitions the privacy/utility budget across the in-
dividual simple queries such that the required utility bounds are
guaranteed at the lowest overall privacy loss possible. We postulate
this as a multi-criteria optimization problem which aims to min-
imize privacy loss given the constraints enforced by the desired
FN/FP bounds. This approach faces two main challenges: it �rstly
requires quantifying the trade-o� between FN and FP errors as well
as the trade-o� between privacy loss itself and the two errors; sec-
ondly, it requires the formulation of the utility bounds as well as the
privacy loss as di�erentiable functions in terms of variables derived
from the simple queries. We successfully address these challenges
in our approach in the context of the disjunction and conjunction
of such queries, and solve a multi-variate optimization problem
which yields an apportionment technique for such bounds/budgets.
We then propose new algorithms which implement this apportion-
ment framework by adapting previously proposed mechanisms in a
way that answers complex DS queries with the appropriate utility

guarantees. We subsequently discuss the additional complexities
and address our approach to solving them. Our main contributions
are as follows:

• We formally de�ne privacy-preserving complex decision
support queries and their accuracy requirements.

• We postulate proportioning the privacy budget for complex
decision support queries as a multi-criteria optimization
problem and solve it using the method of Lagrange Multi-
pliers.

• We propose algorithms that build upon and modify previ-
ous mechanisms to implement our budget proportioning
technique to support complex decision support queries.

• We evaluate our approach against real-world datasets in
di�erent domains and show the e�cacy of our approach.

The organization of this paper is as follows: Section 2 provides
background on di�erential privacy. Section 3 de�nes complex deci-
sion support queries and their accuracy requirements. In Section
4, we propose our ProBE technique to optimally apportion the pri-
vacy budget for such queries. Section 5 implements ProBE through
two algorithms and proposes additional optimizations. Section 6
evaluates our algorithms on multiple real datasets using complex
queries. Lastly, we discuss related work in Section 7 and future
work directions in Section 8.

2 BACKGROUND

We use existing di�erential privacy concepts as a basis for our work.
Given an input dataset � ∈ D, an algorithm satis�es di�erential
privacy [19] if its output does not signi�cantly change when adding
or removing a single tuple in � . Formally:

De�nition 2.1 (n-Di�erential Privacy (DP)). A randomized mech-
anism" : D → O satis�es n-di�erential privacy if

;=
% [" (�) = $]

% [" (�′) = $]
f n ($) (1)

for any set of outputs$ ¦ O, and any pair of neighboring databases
� ,�′ such that |�\�′ ∪�′\� | = 1. The privacy metric n represents
the privacy budget. A higher n value implies higher privacy loss,
whereas a lower n implies strong privacy guarantees.

Di�erential privacy o�ers important properties [19, 31] that
allow for composability of multiple DP mechanisms and assessment
of their privacy loss.

Theorem 2.2 (Seqential Composition). Let"1, ..., ": be : al-

gorithms that satisfy n8 -di�erential privacy. The sequence of"1, ..., ":

provides
∑:
8=1 n8 -di�erential privacy.

When a randomized algorithm runs a n-di�erentially private
algorithm repeatedly until a stopping condition is met, it does not
satisfy n-di�erential privacy because the number of iterations is
not known prior to its execution. Its overall privacy loss, however,
can be determined after the output is returned. A metric used for
these algorithms is ex-post di�erential privacy [33]. Formally,

De�nition 2.3 (Ex-Post Di�erential Privacy). Let E : O → (Rg0 ∪

{∞}) be a function on the outcome space of mechanism" : D →

$ . Given an outcome $ = " (�), " satis�es E($)-ex-post di�er-
ential privacy if for all $ ∈ O,
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max
�,� ′ :�∼� ′

;=
% [" (�) = $]

% [" (�′) = $]
f E($) (2)

for any set of outputs $ ¦ O, and any pair of neighboring
databases � ,�′ such that |�\�′ ∪�′\� | = 1. Ex-post di�erentially
private mechanisms also bene�t from composability properties.
Speci�cally, the Sequential Composition theorem (Def. 2.2) holds
for ex-post DP mechanisms as well [49], i.e. the sequence of ex-post
DP mechanisms results in a di�erentially private mechanism with
privacy loss equal to the sum of ex-post privacy losses n8 .

The Laplace mechanism [19] is a widely used di�erentially pri-
vate algorithm that achieves n-di�erential privacy by adding noise
drawn from the Laplace distribution. This noise is also calibrated
to the sensitivity of the query.

De�nition 2.4 (Sensitivity). The sensitivity of a function 6 : D →

R
3 , denoted �6, is de�ned as the maximum !1 distance between all

pairs of neighboring databases � and �′ di�ering in at most one
element.

�6 = max
∀�,� ′

∥ 6(�) − 6(�′) ∥1 (3)

The sensitivity of a function highly depends on the aggregate statis-
tic queried. For instance, the sensitivity of a counting query is 1.

Theorem 2.5 (Laplace Mechanism (LM)). Given a function

5 : D → R
3 , the Laplace Mechanism that outputs 5 (�) + [ is

n-di�erentially private, where [ is a d-length vector of independent

samples drawn from a Laplace distribution with the probability den-

sity function ? (G |_) =
1

2_
4−|G |/_ where _ = �5 /n .

3 PROBLEM DEFINITION

In this section, we �rst formalize the decision support queries and
their utility requirements, and then present the problem which
answers these queries with DP and utility guarantees.

3.1 Query and Utility De�nitions

A DS query consists of a set of aggregate threshold queries described
below. These atomic aggregate threshold queries are connected
through logical operators (i.e., ∪ and ∩), which we refer to as the
conjunction or disjunction of multiple such queries. Speci�cally, an
aggregate threshold query returns the set of objects in a dataset,
deferred to as predicates, whose aggregate values exceed the set
thresholds. We present the formal de�nitions as follows.

Aggregate Threshold Query. An aggregate threshold query, de-

noted by &
Λ,5

g(.)>�
, consists of the following: (i) an aggregate func-

tion g(.), which includes any function whose sensitivity can be
computed (e.g. AVG or COUNT); (ii) the set of predicates Λ =

{_1, _2, ..., _: } which represent the objects that the query iterates
over to check for condition satisfaction (e.g. the set of diseases in
the previous query example); (iii) a set of corresponding thresholds
� = {21, 22, ..., 2: } for each predicate, and (iv) an optional �lter 5
which can be any selection condition on any column of the record.
We use � 5 to denote all the tuples that satisfy the �lter. Each pred-
icate _8 takes in a tuple from �ltered tuples � 5 and outputs True or

False based on its value. We let �
5

_8
be the set of tuples in � 5 that

evaluate _8 to be True. This query returns all the predicates that

Figure 1: Complex decision support query decomposed into

four atomic queries with single HAVING conditions but sim-

ilar predicates connected by AND/OR operators.

have an aggregate over their satisfying tuples 6(�
5

_8
) greater than

their respective threshold 28 , i.e.,

&
Λ,5

g(.)>�
(�) = {_8 ∈ Λ | g(�

5

_8
) > 28 } (4)

This is similar to a group-by-having query in SQL. Given a patient
dataset with schema %�)��#)_��)�(patient_name, age, gender,

disease, disease_type , the following is an example of an aggregate
threshold query:

SELECT disease FROM PATIENT_DATA

WHERE disease_type = 'viral'

GROUP BY disease HAVING count(*) > c

The WHERE clause disease_type = ’viral’ is an example of a �lter 5 .
The set 38B40B4 = {38 , 8 ∈ [1, :]} is an example of a set of : predi-
cates Λ. 2>D=C () is the aggregate function6(.) and 2 is the threshold,
which is the same for all the predicates. An aggregate threshold

can also include g(�
5

_8
) < 28 type inequalities by simply modeling

such a condition as the negation of Eq. (4) and thus returning the
negation of its results. In the context of complex DS queries, we
refer to a single aggregate threshold query as an atomic query &08 ,
which is the basic, irreducible form a complex DS query can take.

Complex Decision Support Queries. We consider a complex
DS query &Λ,F to be a set of atomic aggregate threshold queries
&01 , ..., &0= connected by the AND/OR operators (∩,∪), where
these = atomic queries share the same set of predicates Λ, but have
di�erent �lters F = {51, ..., 5=}, aggregate functionsG = {61, ..., 6=}

and thresholds C = {21, ..., 2=}.
Essentially, we deconstruct a query composed of multiple aggre-

gate functions compared to their respective thresholds into separate,
atomic aggregate threshold queries with a single function-threshold
pair. Figure 1 shows an example of the decomposition process for
the complex DS query previously introduced. The atomic queries
contain single conditions comparing an aggregate function 68 to
its respective threshold 28 , and their results are subsequently com-
posed back together using the AND/OR operators de�ned in the
original query. To formally de�ne this concept, we make use of a
Context-Free Grammar (CFG) as shown below.

De�nition 3.1 (Complex DS Query CFG). Consider the grammar
� = (#, Σ, %, () where the complex DS query is a non-terminal
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symbol # = {&Λ,F}, the atomic aggregate threshold query is a
terminal symbol Σ = {&0}, and ( = &Λ,F is the starting symbol.
The production rules % are:

&Λ,F → &0 (5a)

&Λ,F → &Λ,F81 ∩&Λ,F82 (5b)

&Λ,F → &Λ,F81 ∪&Λ,F82 (5c)

Using this grammar, we can recursively compose complex deci-
sion queries with any combination of AND/OR operators. Specif-
ically, by using production rule 5a and 5b we produce a complex
query composed of atomic queries connected only by the AND oper-
ator like&Λ,F

= &1∩&2∩, . . . ,∩&= , whichwe refer to as a conjunc-
tion query. Similarly, by using production rules 5a and 5c we derive
a query composed of OR operators only&Λ,F

= &1∪&2∪, . . . ,∪&= ,
which we refer to as a disjunction query.

Utility Measures. Decision support applications, as mentioned
previously, require setting a bound on the false negative and false
positive errors while minimizing privacy loss. We de�ne these
bounds formally below.

De�nition 3.2 (Bound on the False Negative Rate (FNR)/ False Posi-

tive Rate(FPR)). Let" : D → $ be a randomized mechanism that
answers a complex decision support query &Λ,F composed of =
atomic aggregate threshold queries &1, &2, . . . , &= with the same
predicates Λ and di�erent �lters � . We say" satis�es (i) a V-bound
on the FNR if for any database � ∈ D, for all predicates _8 ∈ Λ, the
following holds:

% [_8 ∉ " (�) ' _8 ∈ &
Λ,F (D = �)] f V (6)

(ii) a U-bound on the FPR if for any database � ∈ D, for all predi-
cates _8 ∈ Λ, the following holds:

% [_8 ∈ " (�) ' _8 ∉ &Λ,F (D = �)] f U (7)

In other words, Eq. (6) represents a bound V on the FNR, i.e. the
probability that a predicate _8 is not in the result of mechanism"

given it is in the result of query &Λ,F for all predicates. Similarly,
Eq. (7) represents a bound U on the FPR, i.e. the probability that
a predicate _8 given it is in the result of " but not in the result
of &Λ,F for all predicates. We specify D = � as the probability
of a predicate being in the result of the query considers the data
distribution, but for the rest of the paper we use � for simplicity.

Note that in our framework, the V and U accuracy bounds are
user-set parameters and depend largely on the nature of the overar-
ching decision support application; for instance, a medical diagnosis
application may choose to emphasize the FNR over the FPR if the
absence of disease detection is more crucial than an erroneous
detection. This model is motivated by similar models used in ap-
proximate query processing [6] where users specify con�dence
intervals, or statistical inference which is used to control false neg-
ative and/or positive errors [29]. Additionally, we choose to focus
on FNR/FPR over other accuracy measures due to the nature of
the queries we tackle, which return a set of objects rather than
aggregate values. For instance, a di�erent metric such as variance
error may yield a high error value for a speci�c query whereas the
returned set remains unchanged, thus not precisely re�ecting the
accuracy of the results.

Figure 2: Trade-o� between false negatives FN, false positives

FP and the privacy budget n in (i) with APEx and (ii) with

MIDE.

3.2 ProBE Problem De�nition

Given a complex decision support query &Λ,F on a dataset � com-
posed of atomic queries&01 , ..., &0= in the structure of query tree) ,
we want to develop a di�erentially private mechanism"probe () )

that answers the overall query such that privacy loss n is minimized
subject to a V-bound on FNR and U-bound on FPR.

Primitives for Atomic Queries and Limitations. We show two
mechanisms from prior work to illustrate their utility guarantees

for a simple atomic aggregate threshold query &
Λ,5

6 ( ·)>�
and then

present the problem formulation that builds on top of these mecha-
nisms for complex decision support queries.

The �rst mechanism is the Laplacemechanism used byAPEx [23]
to answer atomic queries, but it fails to o�er either bounded FPR or

bounded FNR. It adds noise to the aggregate value per predicate
and compares the result to its corresponding threshold 28 given a V
bound on the overall error rate and a region D around the threshold
in which the error is unbounded as inputs (i.e. error tolerance
region). However, this mechanism does not o�er the V-bound on
FNR guarantee for predicates which have aggregates too close to
their thresholds, i.e. their aggregates are in the region [28 −D, 28 +D].
We refer toD as the uncertain region, which factors into determining
the privacy budget needed to achieve the V guarantee outside of said

region by using n =
�6 ln(1/(2V )

D . It follows that a larger uncertain
region D implies smaller privacy loss, at the expense of increased
false negatives and positives alike. Conversely, a smaller D would
lead to less unbounded errors, but would increase privacy loss as
a result. Figure 2(i) shows this relationship between FP/FN and n ,
where increasing n leads to an equal decrease in FP/FN and vice
versa.

The second mechanism, known as Threshold Shift Laplace Mech-
anism (TSLM) designed by MIDE [24] o�ers a one-sided guarantee
on either bounded FNR or bounded FPR. TSLM generalizes the thresh-
old 28 by shifting 28 to 28 −D so that the entire uncertain region (i.e.
the unbounded error) resides on the left side of the old threshold,
and compares this new threshold to the noisy aggregate. Figure
2 (ii) shows the e�ect of this approach on the trade-o� between
FN/FP and n , where shifting the threshold by D results in a weaker
classi�er which achieves a lower bound on FN at the same n but
at a higher FP. By setting the privacy budget n =

�6 ln(1/(2V )
D as
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de�ned in [23], this solution guarantees a V-bound on FNR for all
predicates.

Threshold Shift Laplace Mechanism (TSLM): Given an

atomic aggregate threshold query&
Λ,5

6 ( ·)>�
, by setting the privacy

budget to n =
�6 ln(1/(2V )

D where D is the generalized parameter
used to shift threshold� to�−D, the Threshold Shift mechanism
achieves a V-bound on FNR.

Through the threshold shift mechanism, the uncertain region
is shifted to [28 − 2D, 28 ], thus providing a formal bound V on the
FNR without incurring additional privacy cost, but doing so at the
expense of the FPR due to the unbounded error being entirely made
of false positives. Due to the nature of this algorithm, it does not
provide any sort of bound on the FPR but rather increases them
due to the trade-o� between the FNR and FPR resulting from the
shift. This is due to the fact that the increase in FPR resulting from
the shift depends entirely on the data distribution, hence the FPR
cannot be pre-determined before running the mechanism.

Optimization Problem for Complex Queries.Minimizing the
privacy loss while bounding both FPR and FNR before running a DP
mechanism is di�cult to achieve unless data distribution is known
ahead. Hence, we formulate a hybrid approach instead, wherein
one of the two constraints is �xed in our optimization problem
and chosen to generate possible solutions, whereas the second
constraint is used post-optimization to algorithmically relax the
solution in such a way that ensures its bound is upheld. For the rest
of our paper, we consider the constraint on FNR as our optimization
problem constraint, and FPR to be our post-optimization constraint,
but a mirrored problem (i.e. �ipping the constraints) is supported
by our approach as well. The choice of constraints relies on the
nature of the DS application and its intended use cases.

As each atomic query &08 can be individually answered using
a randomized mechanism "0 (V8 ) : D → O8 × R

+ that takes an
FNR bound V8 and outputs a query answer and ex-post privacy
loss n8 (e.g. mechanisms presented in [24]), we want to use the
outputs of such mechanisms $� , and privacy budgets n8 as inputs
for ourmechanism"probe () ). Thus, the aim of ProBE is to generate
functions that apportion the overall FNR bound in terms of each
atomic query’s FNR bound to formulate a minimization problem for
privacy loss nprobe = 5n (n1, .., n=). Speci�cally, we want to generate
a function 5V (V1, ..., V=) which apportions the V bound into each
V8 such that �#' f V , and n (n1, .., n=) is minimized. We therefore
obtain a constrained optimization problem de�ned as:

minimize
n1 ..n=

5n (n1, .., n=)

subject to 5V (V1, ..., V=) f V
(8)

We �rst solve this optimization problem given the single constraint
on FNR in Section 4, where we �rst develop ProBE instantiated
with the V-bound on FNR. We then relax our solution by enforcing
the post-optimization constraint on FPR in Section 5.

4 PROBE FRAMEWORK

In this section, we �rst present optimization techniques for complex
decision support queries that consist of a single connection opera-
tor (conjunction or disjunction) with the purpose of guaranteeing

a V-bound on FNR. We then generalize our approach to queries
combining both conjunction/disjunction operators for = atomic
queries.

4.1 Query Conjunction Mechanism

Consider a conjunction query composed of a conjunction operator
that links two atomic aggregate threshold queries& = &1∩&2. Our
optimization problem has two di�erentially privatemechanisms,"1

and"2 of the same type, that answer &1 and &2, respectively. One
way to combine the independent outputs of"1 and"2 for the �nal
answer of & is to �nd their intersection" (�) = "1 (�) ∩"2 (�).
We de�ne this step as query conjunction mechanism.

De�nition 4.1 (Query Conjunction Mechanism). Let randomized
mechanism "8 : D → $8 with a di�erential privacy guarantee
satisfy a V8 -bound on FNR for aggregate threshold query&8 . We can
answer query & which is a conjunction of 2 aggregate threshold
queries &1 ∩ &2 using mechanism " where " (�) = "1 (�) ∩

"2 (�).

Ā-Bound on False Negative Rate. As per Sec. 3.2, we know that
a mechanism "8 that answers an individual aggregate threshold
query has an associated V8 -bound on FNR. To derive the appor-
tioning function 5V for the FNR for & in terms of V1 and V2, we
generate a confusion matrix (Figure 3) by running"1 and"2 on
&1 and &2 respectively and classifying their outcomes, as well as
classifying their conjunction and disjunction. As seen in Figure 3,
the conjunction mechanism" = "1∩"2 results in a false negative
in any of the three cases (A,B,C). As"1 and"2 are mechanisms of
independent randomness, their outcomes are independent from one
another given the true query answer, though the atomic queries
themselves &1 and &2 may not be independent. Note that because
the three cases are mutually exclusive, we can simply add their
probabilities to obtain the overall probability of M resulting in a
false negative. Thus, we can deduce the overall FNR as the three
lines below. For any predicate _ 9 ∈ Λ,

% [_ 9 ∉" (�) |_8 ∈&
Λ,� (�)]

= % [_ 9 ∈ "1 (�) |_ 9 ∈&1 (�)] ·% [_ 9 ∉"2 (�) |_ 9 ∈&2 (�)]

+ % [_ 9 ∉ "1 (�) |_ 9 ∈&1 (�)] ·% [_ 9 ∈"2 (�) |_ 9 ∈&2 (�)]

+ % [_ 9 ∉ "1 (�) |_ 9 ∈&1 (�)] ·% [_ 9 ∉"2 (�) |_ 9 ∈&2 (�)]

= (1 − �#'1) ·�#'2+(1 − �#'2) ·�#'1+�#'1 ·�#'2 (9)

= �#'1 + �#'2 − �#'1 · �#'2 (10)

f �#'1 + �#'2 f V1 + V2

The last inequality holds due to the V8 -bound guarantee on �#'8
provided by"8 . Hence, we obtain the function:

5V (V1, V2) = V1 + V2 (11)

The detailed analysis can be found in Appendix A.1.

Privacy Loss. We apply the sequential composition theorem of
di�erential privacy (Def. 2.2) to compose the privacy loss of the two
sub-mechanisms of" . Hence, the budget apportioning function of
" is

n = 5n (n1, n2) = n1 + n2 (12)

5
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Figure 3: Classi�cation of conjunction of outputs "1 and

"2 resulting from running the mechanisms on &1, &2. False

negative (FN) outcomes are highlighted in red.

This means that our optimization problem is now as follows.

minimize n1 + n2

subject to V1 + V2 f V
(13)

We consider the primitivemechanism for atomic queries, TSLM [24],
described in Sec. 3.2 to illustrate the optimization. In this case, we

can use the privacy budget n8 =
�68 ln(1/(2V )

D8
which guarantees a

V8 -bound on FNR. Thus, we rewrite the n apportioning function as
follows:

5n (n1, n2) = n1 + n2

=
�61 ln(1/(2V1))

D1
+
�62 ln(1/(2V2))

D2

= ln(1/2V1)
�61
D1 + ln(1/2V2)

�62
D2

= − ln((2V1)
�61
D1 (2V2)

�62
D2 ) (14)

To minimize n , we thus need to maximize

(V1)
�61
D1 (V2)

�62
D2 (15)

Our optimization problem is now as follows. We want to min-
imize n by maximizing the expression de�ned in Eq. (15), subject
to the V-bound constraint from problem (13). In other words, we
aim to �nd the local maxima of such a multivariate function given
the inequality constraint on its variables. This type of constrained
optimization problem can thus be solved with the Lagrange Multi-
pliers method [4], as this method aims to determine the extrema
of a function composed of multiple variables given an equality or
inequality constraint. The Lagrange method achieves this by refor-
mulating the optimization problem into a set function called the
Lagrangian function. Solving this function yields the proportioning
technique below. A complete proof can be found in Appendix A.1.

Theorem 4.2. Given a conjunction query & = &1 ∩&2 answered

by a conjunction mechanism " (�) = "1 (�) ∩ "2 (�) where "8

implements TSLM and n = n1 + n2, we achieve minimum privacy loss

n by budgeting the V-bound on FNR as:

V1 =
D2�61V

D1�62 + D2�61
, V2 =

D1�62V

D1�62 + D2�61
(16)

Generalized =-Query Conjunction. We extend the previous ap-
proach to generalize it over the conjunction of =-aggregate thresh-
old queries. Consider a query& = &1 ∩ ...∩&= , where each atomic

query &8 is answered with TSLM "8 that has an associated FNR
bound V8 . By decomposing the conjunctions into (= − 1) 2-way
conjunctions, we can generalize our previous 5n and 5V functions
into:

minimize Σ
=
8=1n8

subject to Σ
=
8=1V8 f V

(17)

Using the Lagrange Multipliers method again, we obtain the appor-
tionment technique below:

Theorem 4.3. Given a complex DS query &Λ,� composed of =

aggregate threshold queries connected by=−1 conjunctions, we achieve

minimum privacy loss n by budgeting the V-bound on FNR as:

V8 =
�68V

∏=,G≠8
G=1 (DG )

∑=
~=1

∏=,G≠~
G=1 (DG�6~)

,∀8 = {1, 2, ..., =} (18)

Thus, by setting the individual V8 bounds for sub-queries &8

according to Eq. (18), we provide a mathematical guarantee that
privacy loss n is optimally minimized while also maintaining the
V-bound guarantee on FNR.

Note that other DP composition theorems could be used to ex-
press n as a function of the individual n8 , including the Advanced
Composition Theorem [19], but this would change the formulation
of our optimization problem. Similarly, other mechanisms may be
used to provide DP guarantees presuming that they also o�er a
V-bound on FNR, but will require di�erent derivations to solve
the optimization problem. Using relaxations of DP such as Rényi
di�erential privacy [41] or f -di�erential privacy [10] is, however,
non-trivial, as the expression of privacy loss n in terms of the V

or U error rates used (i.e. as de�ned in [24]) may not necessarily
hold. Thus, they require extensive analysis to formulate a baseline
expression of privacy loss before solving the optimization problem.

4.2 Query Disjunction Mechanism

Similarly to the previous section, we model a privacy-preserving
mechanism on a query composed of two atomic aggregate threshold
queries linked by the disjunction operator &Λ,�

= &1 ∪&2, where
&1 and &2 are answered by two di�erentially private mechanisms
"1 and"2 respectively. The overall mechanism is the union of the
two sub-mechanisms" (�) = "1 (�) ∪"2 (�).

De�nition 4.4 (Query Disjunction Mechanism). Let mechanism
"8 : D → $8 with a di�erential privacy guarantee satisfy a V8 -
bound on FNR for aggregate threshold query &8 . We can answer
query & which is a disjunction of 2 aggregate threshold queries
&1 ∪&2 using mechanism" where" (�) = "1 (�) ∪"2 (�).

Ā-Bound on False Negative Rate. Similarly to the conjunction
mechanism, each randomized mechanism"8 ran on an individual
aggregate threshold query in a disjunction has an associated V8 -
bound on FNR. We thus derive the apportioning function 5V for
the overall false negative rate FNR for & in terms of V8 by deriving
and using a confusion matrix similar to Figure 3 for disjunction.
Thus, by similar analysis (shown in Appendix A.1), the overall FNR
can be upper bounded by the three lines below. For any predicate
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_8 ∈ Λ,

% [_ 9 ∉" (�) |_8 ∈&
Λ,� (�)]

f % [_ 9 ∉ "1 (�) |_ 9 ∉&1 (�)] ·% [_ 9 ∉"2 (�) |_ 9 ∈&2 (�)]

+ % [_ 9 ∉ "1 (�) |_ 9 ∈&1 (�)] ·% [_ 9 ∉"2 (�) |_ 9 ∉&2 (�)]

+ % [_ 9 ∉ "1 (�) |_ 9 ∈&1 (�)] ·% [_ 9 ∉"2 (�) |_ 9 ∈&2 (�)]

= )#'1 · �#'2 + �#'1 ·)#'2 + �#'1�#'2

= )#'1 ·�#'2 + �#'1 ()#'2 + �#'2)

f �#'2 + �#'1 f V1 + V2

Again, we simplify this expression by providing an upper bound
on the FNR by removing negative clauses. We thus obtain the
apportioning function:

�#' f 5V (V, V) = V1 + V2 f V (19)

Privacy Loss. Similar to conjunction, we use the sequential compo-
sition theorem of di�erential privacy (Def. 2.2) to compose the
privacy loss of the two sub-mechanisms of " . Assuming that
each sub-mechanism uses TSLM, we can again use the budget

n8 =
�68 ln(1/(2V8 )

D8
, which guarantees a V8 -bound on FNR. Thus,

overall privacy loss can be minimized by maximizing

(V1)
�61
D1 (V2)

�62
D2 (20)

Since our 5n and 5V functions in the case of disjunctions are identical
to that of conjunctions, our optimization problem for both are
the same. Using the Lagrange method therefore yields the same
apportionment technique. Thus, Theorems 4.2 and 4.3 hold for
disjunction as well, which are formally shown in Appendix A.1 and
A.2 respectively.

4.3 Combined Conjunctions/Disjunctions

Consider a complex decision support query&Λ,� comprised of a set
of = atomic aggregate threshold queries &01 , ..., &0= connected by
disjunctions or conjunctions. Such a query corresponds to a binary
operator tree ) where each operator is either a conjunction (∩) or
a disjunction (∪). To execute &Λ,� , we �rst evaluate each of the
atomic queries, then recursively combine their outcomes based on
the connecting operators in the operator tree ) to determine the
results.

Our challenge, therefore, lies in generalizing our apportionment
technique such that, given a query tree ) , we determine the V

budget distribution across all atomic queries such that the V-bound
is guaranteedwhileminimizing privacy loss n . We show through the
example below how to express the V as a function of the V8 given a
tree structure, then formalize the problem of optimal apportionment
given any tree.

Example 4.1. Consider an example query &) 1 = &1 ∪ (&2 ∩&3)

shown in Figure 4(a). We refer to the sub-query associated with
a node by its node-id (e.g., in Figure 4(a) node =1 corresponds to
sub-query &1.). For &) 2, we can derive the FNR by �rst deriv-
ing individual FNRs for the sub-tree &=3 = &2 ∪ &3 using the
2-conjunction mechanism, where the two sub-trees &=3 and &=1

can in turn be executed using the 2-disjunctionmechanism.We thus
obtain V=3 = V2 + V3, V=1 = V1 and V=1 + V=3 f V . By substitution,

Figure 4: The �gure shows the query trees for (a) &) 1 = &1 ∪

(&2 ∩&3), and (b) &) 2 = (&1 ∪&2) ∩ (&1 ∪&3)

we obtain the false negative rate constraint

V1 + V2 + V3 f V (21)

Let us further consider query&) 2 = (&1 ∪&2) ∩ (&1 ∪&3) shown
in Figure 4(b). Executing the same recursive steps for &) 2 yields

2V1 + V2 + V3 f V (22)

In the example above, note that for &) 1, leaf nodes in )1 cor-
respond to unique atomic queries while in &) 2, the atomic query
&1 appears twice in )2. Let us denote the number of occurrences
of a atomic query &8 in the leaf nodes of a tree by >8 . Thus, in )1,
the values of >1, >2, and >3 are all 1, whereas in )2 >2, and >3 are
1, while the value of >1 is 2, leading to the di�erence in the FNR
constraint for )1 and )2. More speci�cally, given a tree ) with
&01 , ..., &0= sub-queries and corresponding >1, ..., >= occurrences,
the overall FNR for query &Λ,� can be expressed as

5V (V1, V2, ..., V=) = >1V1 + >2V2 + ... + >=V= f V (23)

A formal proof of the above is provided in Appendix A.2. As for
privacy loss, we must run the atomic mechanisms"8 on each leaf
node in order to maintain their independent randomness. Therefore,
the n8 budget allocated for each sub-query must be divided across
its occurrences as well, i.e. >8n8 . Thus, our apportionment problem
for a given tree is now

minimize Σ
=
8=1>8n8

subject to Σ
=
8=1>8V8 f V

(24)

We use the Lagrange Multipliers method to yield the theorem below.

Theorem 4.5. Given a complex decision support query &Λ,� with

query tree ) composed of = aggregate threshold queries with an asso-

ciated >8 number of occurrences within the tree, we achieve minimum

privacy loss n by budgeting the V-bound on FNR as:

V8 =
�68V

∏=,G≠8
G=1 (DG )

∑=
~=1

∏=,G≠~
G=1 (DG>~�6~)

,∀8 = {1, 2, ..., =} (25)

Note that a query &Λ,� may be represented by multiple equiv-
alent trees, due to the distributive property of logical operators.
In Example 4.1 for instance, &) 1 and &) 2 have equivalent query
trees )1 and )2, where )2 is obtained from distributing the OR
operator over the AND operator. From Eq. (21) and (22), however,
we can infer that a distributed query tree, i.e. a query with a higher
number of nodes, may cause the overall privacy loss of the query
to increase, because it allocates a lower V8 to one or more given
sub-queries &8 .

Thus, the ProBE mechanism aims to generate the optimal query
tree with the least number of leaf nodes to minimize any addi-
tional distribution of the V budget. We can use Boolean function
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Algorithm 1 ProBE Mechanism Overview. DS query &Λ,F
=

[), {&1 (61, 21), . . . , &= (6=, 2=)}], maximum privacy budget n<0G ,
dataset � , accuracy requirements (V-FNR, U-FPR)

1: procedure ProBE(&Λ,F, n<0G , �, V, U)
2: Tree minimization (&2 , >) ←<8=8<8I4 (&) [37]
3: ($ 5 , n5 , &2 ) ← PhaseOne(&2 , >, n<0G , �, V)

4: ($ 5 , n5 ) ← PhaseTwo(&2 , >, n<0G , �, V, U, n5 ,$ 5 )

5: return $ 5 , n5

minimization algorithms such as [37] to return the compact tree
representation of the query )2 . Our mechanism subsequently ex-
tracts the number of occurrences >8 from )2 for each atomic query
which will be used to compute the V8 budget as in Eq. (25).

5 IMPLEMENTING PROBE

Now that we have determined our V budget apportionment tech-
nique, we can implement ProBE by individually running mecha-
nisms "8 on the atomic queries &8 based on apportionment dis-
cussed in the previous section, then combining the results following
the conjunction/disjunction operators as depicted in the query tree.
However, simply implementing this framework incurs an arbitrary
cost on the FPR when bounding the FNR as previously explained in
§3.2. To address this, we develop an additional optimization which
aims to provide an algorithmic bound on false positives.

In this section, we propose a two-phase algorithm that imple-
ments the ProBE apportionment framework to answer complex
decision support queries with minimal privacy loss and bounds on
utility. The overall algorithm is depicted in Algorithm 1. We �rst
use a boolean minimization algorithm (Quine-McCluskey) [37] to
minimize our query tree in order to obtain the occurrences of each
sub-query within the query tree > and the tokenized version of
this minimal tree &2 (line 2). We subsequently run the two phases
(lines 3-4). The �rst phase of the algorithm traverses the query
tree and implements the apportionment framework from Section 4,
which solves the optimization problem to guarantee the V-bound
on FNR. The second phase then relaxes this solution by providing
a post-optimization bound on the FPR. We �rst discuss Phase One,
wherein we set the initial uncertain region parameter D to a large
value in order to potentially obtain minimal privacy loss. Phase
Two subsequently checks if the resulting false positives in Phase
One exceed the FPR bound. If not, it uses intermediate results from
Phase One to determine the next optimal uncertain region D>?C
such that the U bound on FPR is met. Finally, we propose an itera-
tive, entropy-based variant of the ProBE algorithm which further
optimizes privacy loss in terms of Min-Entropy [24].

5.1 Phase One of ProBE

The �rst phase of the ProBE algorithm is detailed in Algorithm 2.
This algorithm takes the minimized query&2 , the set of occurrences
of each sub-query > as well as the maximum privacy loss allowed
n<0G and the FNR bound V . For each query node in the query tree,
we �rst compute the initial uncertain region, which we set to a
large percentage (30%) of its range of values. We also compute its
corresponding FNR bound V8 according to Eq. (25) (lines 3-5). Note
that because we are using a two-phase algorithm, we allocate half

Algorithm 2 First Phase of ProBE Mechanism.

1: procedure PhaseOne(&2 , >, n<0G , �, V)
2: Initialize global budget variable n5 ← 0

3: for query node &8 ∈ &2 do

4: D8 ← 0.3 ∗ A0=64 (&8 )

5: V8 ←
�68 (V/2)

∏=,G≠8
G=1 (DG )

∑=
~=1

∏=,G≠~

G=1 (DG>~�6~ )

6: 5 ;068 = )AD4

7: $ 5 ← Traverse(&2 .A>>C)

8: return $ 5 , n5 , &2

9: function Traverse(node)
10: if node is conjunction then

11: $; ← Traverse(node.left)
12: if $; is empty, then skip node.right and return $;

13: else, $A ← Traverse(node.right)
14: return $; ∩$A

15: else if node is disjunction then

16: $; ← Traverse(node.left)
17: $A ← Traverse(node.right)
18: return $; ∪$A

19: else if node is a query &8 then

20: if 5 ;06 = )AD4 then

21: $8 , n8 ,�8 ← Tslm (&8 , D8 , V8 , �)
22: Update global budget n5 ← n5 + n8
23: 5 ;068 = �0;B4

24: if n5 > n<0G then

25: Terminate program and return ‘Query Denied’.
return $8

of the V budget to each phase. However, we explore di�erent V allo-
cation strategies across the two phases in Appendix F (Additional
Experiments). We also store a general �ag parameter 5 ;068 , which
indicates if the DP mechanism (in this case, TSLM) should be run
if the sub-query is encountered in the traversal. These parameters
are stored within the node itself &8 .

The algorithm can now begin traversing the tree in a pre-order
traversal ( i.e. starting from the root and executing the leaf nodes
left to right). We �rst check if a leaf node is either a query or
an operator. If it is an operator, we recursively call the traversal
function in order to reach the leftmost leaf query node and then
the rightmost leaf query node (lines 10-13/15-17). Depending on
the nature of the operator (conjunction or disjunction), we either
intersect the results of the left and right traversal (line 14) or union
the results (line 18).

If the current node is a query &8 , then we execute the TSLM
mechanism provided that the 5 ;068 is True. Thus, TSLM is run with
the appropriate V8 and D8 , which returns predicates whose noisy
values are greater than their respective shifted thresholds 28 − D8
into the result set$8 , the noisy values set�8 , as well as the resulting

privacy loss n8 computed with the equation n8 =
�68;= (1/2V8 )

D8
(line

21). The resulting n8 is subsequently accumulated into the global
privacy budget variable n5 , and the execution �ag 5 ;068 is changed
to False (lines 22-23). If the current privacy loss n5 is above our max-
imum tolerated privacy loss n<0G , the query is denied. Otherwise,
the output of the current node $8 is returned (line 25).
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Skipping for conjunction queries. For the conjunction of = ag-
gregate threshold queries, we note that the result of running a
privacy-preserving mechanism like " (�) = "1 (�) ∩ "2 (�) ...

∩ "= (�) on such a query can be determined as false if one sub-
mechanism "8 (�) is evaluated as false due to the nature of the
intersection operator. We exploit this fact by adding an optimization
which skips the evaluation of sub-queries in conjunctions if any of
the previous sub-queries return an empty set, thus further minimiz-
ing overall privacy loss. We implement this in line 12, where, upon
returning the traversal results of the left node, if the output $; is
an empty set, we can automatically skip the execution of the right
node and return the $; result itself. Note that due to the recursive
nature of this traversal, any subsequent conjunctions will also be
skipped until a disjunction operator is met or the query terminates.

5.2 Phase Two of ProBE

The second phase of the ProBEMechanism is depicted in Algorithm
3. This algorithm takes the V, U bounds, as well as the maximum
budget n<0G . It also takes the resulting output $>=4 and privacy
loss n>=4 from Phase One. The query&8 also includes the previously
derived parameters (e.g. the noisy aggregates �8 and the V8 bound)
resulting from Phase One. The algorithm starts by estimating the
number of false positives as a result of running Phase One for each
query node &8 (line 4). We �rst describe the approach to derive the
FPR estimate below.

Estimating the Bound on FPR. At the beginning of Phase Two,
we �rst determine an upper bound on the FPR resulting from Phase
One. If the latter is within the user-speci�ed U bound, we can skip
the second phase of the algorithm, otherwise we rerun some of
the query nodes with an additional privacy budget. We empirically
measure the FPR of each mechanism "8 for sub-query &8 by the
ratio between the number of false positives |�% | and the number of
negatives |# |. However, we cannot compute the truthful number
of false positives and negatives without looking at the data, which
consumes an additional privacy budget. Hence, we derive (i) an
upper bound for the number of false positives and (ii) a lower bound
for the number of negatives, to get an upper bound for FPR.

We �rst obtain the following observed results based on the noisy
aggregates from Phase One:

$?? ← {_ 9 ∈ Λ | �8 [ 9] > 28 }

$? ← {_ 9 ∈ Λ | �8 [ 9] > 28 − D8 }

$= ← {_ 9 ∈ Λ | �8 [ 9] < 28 − D8 }

where �8 [ 9] is the noisy aggregate for predicate 9 in the 8th sub-
query &8 . In particular, $? and $= are the reported positives and
negatives for &8 by Phase One. $?? are the predicates with large
noisy counts which are “de�nitely positive”.

A naive upper bound for the number of false positives is |$? |,
which includes all the reported positives. However, among them,
the predicates in $?? have noisy aggregates much larger than the
testing threshold 28 − D8 in TSLM, which are unlikely to be false
positives. If all the de�nitely positive predicates in $?? had true
counts < 2 − 2D8 (at worst case), they would have a noisy aggregate
> 2 − D8 and thus become a false positive with a probability f V8
by the property of Laplace noise. Therefore, we can have an upper

Algorithm 3 Second Phase of ProBE Mechanism.

1: procedure PhaseTwo(&2 , >, n<0G , V, U, n>=4 ,$>=4 )
2: Let $ 5 ← {}, n5 ← n>=4
3: for query node &8 (�8 , 28 , D8 , V8 , 5 ;068 ) ∈ &2 do

4: 54BC , A4BC ← EstimateFPs(&8 ,$>=4 )

5: Compute allowed false positives 5<0G ←
U
= A8

6: if 54BC > 5<0G then

7: Search D>?C ← the largest D such that running
EstimateFPs(&8 ,$>=4 ) returns 54BC f 5<0G

8: Set 5 ;068 ← )AD4 to rerun TSLM

9: $ 5 ← Traverse(&2 .A>>C)

10: if updated 54BC > 5<0G for any&8 then Terminate program
and return ‘Query Denied’

11: return $ 5 , n5

bound for the number of false positives:

|�% | f |$? −$?? | + |$?? | · V8 (26)

The number of negatives |# | is greater than |$= | − |�# |, where
|�# | is the truthful number of false negatives. By the V8 -FNR prop-
erty of TSLM, we have |�# | f V8 ( |�8 | − |# |), where |�8 | is the total
number of predicates in the input to query &8 . Hence, we have this
inequality

|# | g |$= | − |�# | g |$= | − V8 ( |�8 | − |# |) .

Solving this inequality by moving all the terms involving the un-
known |# |, we have a lower bound to |# |,

|# | g
|$= | − V8 |�8 |

1 − V8
. (27)

Algorithm 4 Estimating FPs.

function EstimateFPs(&8 (�8 , 28 , D8 , V8 , 5 ;068 ),$>=4 )
$?? ← {_ 9 ∈ Λ | �8 [ 9] > 28 }

$? ← {_ 9 ∈ Λ | �8 [ 9] > 28 − D8 }

$= ← {_ 9 ∈ Λ | �8 [ 9] < 28 − D8 }

$?? ← $?? ∩$>=4 ,$? ← $? ∩$>=4 ,$= ← $= −$>=4

Upper bound for FPs 54BC = |$? −$?? | + |$?? | ∗ V8

Lower bound for Negatives A4BC =
|$= |−V8 |�8 |

1−V8
return 54BC , A4BC

The process of deriving an upper bound on the FPR is formalized
in the function EstimateFPs. We retrieve the$?? ,$? $= . We then
compute the upper bound on FP and lower bound on N according
to Eq. (26) and (27) (lines 17-18).

This algorithm also o�ers an additional optimization based on
the nature of the operator (i.e. conjunction/disjunction), through
which certain elements in the uncertain region can be eliminated
in the �rst step. We illustrate this through the example below.

Example 5.1. Consider an example query & = &1 ∩&2. Consider
a predicate _1 s.t. its noisy value falls within the uncertain region
[21 − D1, 21] of &1 i.e. is undecided, but falls within [−∞, 22 − 2D2]
of &2 i.e. decidedly negative. We know that due to the nature of
the ∩ operator, the result of intersecting the values for _1 from
&1 and &2 will be negative without classifying _1 in &1. We can
therefore eliminate _1 from the set of potential false positives within
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Figure 5: Illustration of sets $? , $?? , $= on noisy values of

predicates for Phase One. In Phase Two, we identify a new

D>?C such that the newly observed positive set $ ′? based on

> 2 −D>?C is reduced from$? by a size of 54BC − 5<0G (indicated

by dots changing from red to blue) if the number of estimated

false positives 54BC in Phase One is greater than the allowed

number of false positives 5<0G .

the uncertain region to be used for the second phase. Conversely,
consider the query& = &1∪&2 and a predicate _1 s.t. _1 is reported
as negative, i.e. falling into [−∞, 21 − D1] (it is in $=), but its noisy
value for &2 falls within [22,∞] of &2 i.e. decidedly positive. We
know that the ∪ operator only requires one element to be positive
for the result to be positive as well, so _1 can be classi�ed as positive
and thus removed from $= .

The above optimization is illustrated in line 16, where we only
keep predicates in$? and$?? which have appeared in the results of
Phase One$>=4 , and we similarly only keep the negative predicates
which are not in$>=4 . The estimated upper bound on false positives
is stored in 54BC and the lower bound on negatives in A4BC . With these
estimates for the FPR, the rest of the second step can be executed.

Resetting the Uncertain Region D>?C . After retrieving the upper
bound on the current FPR, the second step algorithm �rst checks if
the upper bound on FPs 54BC is higher than the allowed number of
FPs 5<0G . The latter value is derived from the bound U , which is
divided equally amongst sub-queries i.e. U/=. We prove that this
allocation ensures overall U in Appendix A.3. The bound is then
multiplied by the estimated number of negatives stored in A4BC .

If the bound is exceeded, we compute the next D>?C at which
the "extra" false positives i.e. 54BC − 5<0G would reside outside the
new threshold 2 −D>?C as shown in Figure 5. In this way, the newly
observed positives become $ ′? , and its size is 54BC − 5<0G smaller
than$? . Hence, the newly estimated false positive negatives based
on Eq. (26) are also reduced by that if |$? −$?? | g 54BC − 5<0G . We
do so by retrieving the noisy value of the cuto� predicate where
the number of extra FPs would reside to the left of. This noisy value
becomes our new lower bound for the uncertain region, i.e. 28−D>?C .
We thus solve for D>?C from this equality. Upon obtaining the new
uncertain region, we can now rerun the TSLM algorithm with D>?C
and V8 as parameters and accumulate the privacy loss resulting
from this second phase. We do so by setting each execution �ag
5 ;068 for the appropriate query nodes, then running the Traverse
function again (lines 8-9). We recompute the estimated FPs 54BC
after execution (line 10) by calling the estimation function again,
and if the 5<0G FP bound is not met, then the query is denied and
the algorithm exits, otherwise the resulting output and privacy loss
$ 5 , n5 are returned.

Theorem 5.1. Algorithm 1 satis�es nmax-DP, a V-bound on the

False Negative Rate and an U-bound on the False Positive Rate if the

query is not denied.

Proof of the theorem above can be found in Appendix A.4.

5.3 Multi-Step Entropy-based Algorithm

ProBE assigns di�erent privacy levels to di�erent predicates due
to the early elimination of data points at the �rst step, meaning
predicates that go on to the second step have a higher privacy loss
n . This concept is captured through the de�nition of Predicate-wise
DP (PWDP)[24], a �ne-grained extension of di�erential privacy
which quanti�es the di�erent levels of privacy loss data points may
have in multi-step algorithms.

Naturally, a measure to quantify this new de�nition of privacy is
needed. Previous work tackles this problem by proposing a new pri-
vacy metric for PWDP entitled Min-Entropy [24]H<8= which mea-
sures a lower bound on the level of uncertainty given the set of pred-
icates and their respective privacy levels Θ = {(_1, n1), ..., (_: , n: )}.
the Data Dependent Predicate-Wise Laplace Mechanism (DDP-
WLM) also introduced in [24] maximizes min-entropy (i.e. maxi-
mizing the lower bound on uncertainty) in an iterative algorithm
by also using the noisy aggregate values obtained from previous
iterations to compute the best privacy level n at which Min-Entropy
is maximized for the set of elements in the uncertain region. This
algorithm similarly guarantees a V-bound on FNR for a single aggre-

gate threshold query by setting the privacy loss to n =
�6 ln(1/(2V ) )

D ,
but it does so by setting a starting privacy level nB as well as a
maximum level n< prior to execution which is spent across a �xed
number of iterations <. In each iteration, the privacy budget is
further distributed across �ne-grained steps<5 and the privacy
level with the highest min-entropy is chosen as the next iteration’s
budget. It follows that the uncertain region parameter D is, again,
chosen statically at the beginning, and therefore does not provide
a bound on false positives.

We propose ProBE-Ent, a multi-step entropy-based algorithm
which integrates DDPWLMwith ProBE in order to not only answer
complex DS queries with minimized entropy, but also to provide
a post-facto bound on FPs. Instead of having a �xed starting nB ,
we internally choose a starting D0 and compute the initial privacy
level. Within the �rst step of DDPWLM, we run the FP estimation
algorithm (Algorithm 4) in order to compute the optimal uncertain
region parameter D>?C . We use this new uncertain region as an up-
per bound for the algorithm, i.e. we compute the n< upper bound
that represents the exit condition for the algorithm. Additionally,
we provide a V budget optimization which exploits the multi-step
nature of the algorithm in a way that provides a potentially higher
budget if previous sub-queries exit early. This is done by redistribut-
ing any remaining V8 which was not used in the current sub-query
(due to early exit) to subsequent sub-queries, thus fully utilizing the
V bound given and consequently minimizing the overall privacy
loss. We provide a more detailed version of this algorithm with
complete de�nitions in Appendix C.

6 EXPERIMENTS

In this section, we evaluate the ProBE algorithms previously ex-
plained on di�erent real-life datasets based on various decision
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support application types. We assess their performance (in terms
of resulting privacy and utility) over a varying number of complex
queries, and over examples of queries modeled after frequently
used KPIs. Our experiments prove that all ProBE achieves its util-
ity guarantees, while also successfully minimizing privacy loss for
di�erent levels of query complexity.

6.1 Experimental Setup

Datasets. To evaluate our approach, we use three real-world datasets
from di�erent domains. The �rst dataset, NYCTaxi, is comprised of
New York City yellow taxi trip records in 2020 [1], where the data
consists of 17 attributes and approximately 3 million records. The
second data set, UCIDataset, is comprised of occupancy data in 24
buildings at the University of California, Irvine campus collected
from April to May 2019 [40]. This data consists of 18 attributes
and 5 million records. The �nal dataset, TurkishMarketSales, stores
records of sale transactions at a chain supermarket across Turkey
in 2017 [2], where the data consists of 1.2 million records and 26
attributes.
Query Benchmarks. For each dataset, we model several mean-
ingful aggregate threshold queries as summarized in Table 1. In
this paper, we present our experimental results for the COUNT ag-
gregate function only. Queries with other aggregate functions (e.g.
AVERAGE), which show similar results, are included in Appendix E.
As per our previous de�nition of conjunction/disjunction queries,
all of our sub-queries have the same predicates but di�erent �lters
on certain attributes (e.g. sub-queries on the UCI dataset all check
the same 41 rooms every day for 14 days for the count of records
with �lters on di�erent attributes). For the Sales dataset speci�cally,
we model our queries based on frequently used retail and sales
KPIs. Table 2 summarizes the KPIs used, their respective de�nitions,
and the aggregate functions used to represent them. For example,
to illustrate the User Retention Rate KPI, we evaluate the distinct
count of customers who visited a speci�c business in a speci�c time
period. For the UCI and NYTaxi datasets, which do not have clearly
de�ned KPIs, we select meaningful queries that are modeled based
on anomaly detection or performance evaluation scenarios typi-
cally used in decision support applications, for example, selecting
statistics based on speci�c demographics (e.g. age, gender, etc.) or
speci�c performance criteria (e.g. fare amount is above the norm
for a speci�c location). For each query, we select the corresponding
threshold using the Z-score outlier detection method, to further
emulate the concept of anomaly detection that decision support
applications implement.
Algorithms. We test our ProBE approach and compare it against
the Naive approach mentioned in the Introduction. This Naive
approach simply proportions the FNR bound V into equal parts
across the sub-queries &8 and calls sub-mechanisms with this V8 .
This approach does not optimize the privacy budget given the V
constraint, nor does it o�er utility guarantees on both V or U . In
other words, this baseline is an extension of [24] where the V budget
is split evenly across sub-queries. We do not evaluate our approach
against the algorithm in [23], as [24] is directly based on it with
the additional focus on bounding the FNR only. We also evaluate
two variations of our ProBE framework; the two-step approach of
ProBE using the Naive approach (i.e. splitting the V budget equally

between sub-queries) as its Phase One entitled ProBE-Naive, and the
entropy-based iterative variation described in §5.3 entitled ProBE-
Ent.
Parameters. For all four algorithms, we set a FNR bound of V =

0.05, a maximum privacy loss of n<0G = 5. For ProBE-based algo-
rithms, we choose a large starting uncertain region of D0 = 30%

of the value range, and set a FPR bound of U = 0.1. For the Naive
algorithm we choose D = 12% as a default but explore other values
in the experiments; we set this smaller default value due to the fact
that the FPR is not bound in the Naive approach, meaning that a
large D would result in a very high FPR. We run each algorithm
over 100 iterations.

6.2 Experimental Results

Privacy Results. We use ex-post di�erential privacy, denoted by
n , as our privacy metric to evaluate the performance of our ProBE
optimization as implemented in the previously mentioned algo-
rithms1. We assess all four algorithms on exclusive conjunction,
exclusive disjunction, and a randomized combination of both for
a varying number of sub-queries (1 to 6) in order to evaluate the
e�ect of the operator on privacy loss and utility. We only include
conjunction and the combination in Figure 6, as disjunction yields
the same results. Note that in the case of a single sub-query, the
Naive and ProBE algorithms would yield the same privacy results
provided that the second step of ProBE is not triggered.

As expected, the experiments show that ProBE-based algorithms
achieve their respective bounds on the FPR and FNR. Furthermore,
they achieve these bounds with minimal privacy loss. While the
FPR and FNR bounds are set to 0.1 and 0.05 respectively, the actual
rates are even smaller, while the maximum n ranges from 1.5 in the
Sales dataset to about 5 for the NYTaxi dataset. This di�erence is
due to the underlying data distribution, which might trigger more
predicates to be reran in the second step in order to guarantee the U
bound. In contrast, the Naive algorithm results in a linear increase
on the privacy budget, as well as high values speci�cally for the FPR.
The iterative, entropy-based algorithm ProBE-Ent achieves close or
the lowest privacy loss overall. This is due to the fact that ProBE-
Ent makes use of the underlying data distribution to progressively
compute the results of the query at the lowest privacy cost, while
also allowing for early stopping at a much lower privacy loss if all
predicates are properly classi�ed outside of the uncertain region. As
expected, the privacy loss increases as the number of sub-queries
increases, but the Naive algorithm has a linear increase, whereas
ProBE is less a�ected by the increasing complexity. The nature
of the query (conjunction versus combination) does not cause a
signi�cant di�erence in pattern for privacy loss for the same data
set.

Comparison of Naive versus Optimized Phase One. By ana-
lyzing the di�erence in results between the ProBE-Naive and ProBE
algorithms, we are able to highlight the importance of the V budget
optimization performed by ProBE in Phase One. In cases where
query sensitivities and domain sizes dramatically di�er (i.e. result-
ing in vastly di�erent uncertain regions) across sub-queries, the
optimal distribution would be to allocate a smaller V budget for the
sub-query with the larger uncertain region D as they are inversely

1We include the additional privacy results in terms of Min-Entropy in the Appendix.
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Dataset Attributes used Predicates # of predicates ?

UCI Dataset *, age, userType, gender, groupName, o�ce room, date 41(rooms)*14(days)=574
Turkish Market Sales *, region, netTotal, customerId, category, gender city, date 43 (cities)*14(days)=602

NYTaxi *, fareAmnt, totalAmnt, paymentType, location, storeFwdFlag location, date 34(location)*15(days)=476

Table 1: Datasets used for experiments and respective attributes/predicates used

Sales KPI De�nition Query Equivalent

Sales Volume # of sales Q1: SELECT a GROUP BY a HAVING COUNT(*) > C
Regional Sales Volume # of sales in region Q2: SELECT a WHERE region=‘A’ GROUP BY a HAVING COUNT(*) >C
User Retention Rate # of customers per period Q3: SELECT a GROUP BY a HAVING COUNT(DISTINCT(customerId)) > C
Conversion Rate # of sales / # of customers Q4: SELECT a GROUP BY a HAVING COUNT(DISTINCT(customerId)) > C

Table 2: KPI-based Queries used for Sales Dataset experiments

correlated (a direct re�ection of the trade-o� between FN and FP),
and allocate a larger V to the sub-query with a smaller D. In cases
such as this, the Naive approach would result in a non-optimal equal
distribution of the V budget and subsequently a higher privacy loss.
We see this di�erence in privacy loss in Figure 6 in speci�c cases
such as the Sales (row 2) and UCI (row 3) datasets where the addi-
tion of speci�c sub-queries results in a much higher privacy loss
depending on underlying the data distribution.
Accuracy Results. To evaluate our algorithms, we use two ac-
curacy metrics, the FNR, which is de�ned as the number of false
negatives divided by the total number of positives, and the FPR,
de�ned as the number of false positives divided by the total num-
ber of negatives. These metrics are averaged over the number of
iterations run per algorithm, which we set to 100. We again use the
default value of V = 0.05 for the bound on FNR and U = 0.1 for the
bound on FPR. We use the same uncertain region parameters as
previously mentioned.

All algorithms achieve the guaranteed bound of V = 0.05 as seen
in Figure 6 (columns 3-4), where the FNR is zero as the number of
sub-queries increases for all datasets, hence the overlap of solid
lines (FNR) for all algorithms. For the Naive algorithm, the FPR
mostly sees a steady increase both in the conjunction-only and
combination queries, whereas ProBE-based algorithms successfully
meet the bound on FPR U at a lower privacy loss due to the upper
bound estimation and dynamic re-computation of the uncertain
region parameter D>?C . The pattern, however, largely depends on
the data distribution of the underlying dataset; e.g. for the Sales
dataset we note that the FPR decreases as the number of sub-queries
increases, which may be attributed to selectivity of the query along
with the distance of the data points from their respective thresholds.

Varying Uncertain Region. We vary the uncertain region param-
eterD for the Naive algorithm by setting its values to {5, 10, ..., 30}%
of the data range on the Sales dataset in order to evaluate its perfor-
mance compared to ProBE-based algorithms, which internally set
theirD (�rst by setting its initial value to a conservative 30% then by
recomputing it in the second step). We use the query&1∪(&2∩&3)

where &1, &2, &3 refer to the �rst three KPIs from Table 2, and the
thresholds are computed using the outlier method again. We �x the
other parameters to V = 0.05 and U = 0.1.

Figure 7(a-b) shows that as the uncertain region increases, pri-
vacy loss declines for all algorithms as expected, seen in Figure 7a.

We see that for the Naive algorithm, the FPR steadily increases as
the uncertain region increases, whereas the privacy loss n steadily
decreases as the D increases. This shows not only the direct cor-
relation between false positives and D, but also the extent of the
trade-o� between privacy loss and the FPR. For our ProBE algo-
rithms, since they do not take the parameter D but rather internally
set it in an optimal way, the privacy level and FPR are constant
across plots. The FNR does not change for any algorithm due to
the upheld V bound guarantee.

Query Trees andOperatorDistribution. As discussed in §4.3, the
structure of a query tree has an e�ect on privacy loss. To evaluate
the impact of operator distribution (i.e. distributing a conjunction
over a disjunction and vice versa) we run ProBE-based algorithms
and Naive algorithms for the two queries illustrated in Figure 4
(c-d): &� = &1 ∪ (&2 ∩&3) and &� � = (&1 ∪&2) ∩ (&1 ∪&3). We
run these queries on the Sales dataset with the default parameters
of V = 0.05, as well as a uncertain region parameter of D0 = 12%

for the Naive algorithm. Figure 7 shows that the distributed query
&� � incurs a higher ex-post privacy cost than the grouped query&�

for all algorithms. Similarly, the FPR for the Naive algorithm sees a
slightly higher value for query&� � as compared to the original query
&� . Experiments ran on distributing the AND operator over or (i.e.
&1∩(&2∪&3) vs. (&1∩&2)∪(&1∩&3)) showed similar results. This
is attributed to the fact that &1 was allocated an additional privacy
budget due to its second occurrence in &� � , thus incurring a higher
cost on the overall privacy loss due to the use of the Sequential
Composition theorem.

Varying V and U Parameters. We analyze the e�ect of selecting
di�erent values for the user-set FNR bound V and FPR bound U

on all four algorithms. We vary the two bounds by setting their
values to {0.025, 0.05, 0.075, 0.1, 0.125, 0.15} on the Taxi dataset with
a 3-disjunction query (i.e. &1 ∪&2 ∪&3). Figure 8 (a) shows that
varying V causes privacy loss n to decrease as V increases across all
algorithms, which is to be expected due to the inverse correlation
between n and V . The accuracy measures depicted in Figure 8 (b), i.e.
the FNR and FPR, are not signi�cantly impacted as their respective
bounds are met by the ProBE-based algorithms. Conversely Figure
8 (c-d) depicts the e�ect of varying the U bound on FPR. As the
Naive algorithm does not support a mechanism to bound the FPR,
the privacy and accuracy results remain constant. On the other
hand, we note that the privacy loss n also decreases as the U bound
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Figure 6: Privacy Loss in terms of Ex-Post DP n (cols 1,2) and Accuracy in terms of FNR and FPR (cols 3,4) for 1-6 sub-queries at

V = 0.05 for Conjunction (cols 1,3) and Combined Conjunction/Disjunction (cols 2,4) using NYTaxi (row 1), Sales (row 2) and

UCI (row 3) data. The Accuracy plots have two axes, left for FNR (with a range of [0, 0.75]) and right for FPR (with a range of

[10−6, 10−2] ).

is increased for ProBE-based algorithms. This is attributed to the
fact that, as the U bound increases, the probability of Phase Two
being run decreases as the tolerance for FP errors is higher, thus
avoiding the additional privacy cost of the second step. However,
this decrease is dependent upon the data distribution and how
many elements are in the uncertain region; if the estimated FPR is
lower than a smaller bound (e.g. 0.1) then increasing U will have
no additional on privacy loss, hence the somewhat constant FPR
between 0.1 − 0.15 for the ProBE-based algorithms. In terms of
accuracy, the FNR and FPR similarly do not see a signi�cant change,
as their respective bounds are met regardless of their values. Setting
a value for the V and U bounds are thus entirely dependent on
the use case of the decision support application built upon our
ProBE algorithm and its purpose, as well as the underlying data
distribution. Therefore, ProBE allows the user the �exibility of

exploring the trade-o� between privacy and accuracy in a way that
meets their various requirements.

7 RELATED WORK

Di�erential Privacy [18, 19] has become a well-studied standard for
privacy-preserving data exploration and analysis [12, 27, 48, 51].
Various work has been proposed to answer queries with DP, such as
range queries [16, 30, 54], and linear counting queries [32, 38, 39].
This body of work, however, is not applicable to the aggregate
threshold queries that our solution considers. Join queries [11, 13,
28, 52] may be more applicable to such queries (speci�cally for
conjunctions), but they do not encompass the full scope of the
complex queries we tackle, nor does recent work apply a utility-
�rst approach to their solutions.

Accuracy-constrained systems for di�erentially private data anal-
ysis have been proposed in recent years [23, 33, 34, 36], which allow
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(a) Ex-Post DP n (b) FNR and FPR (c) Ex-Post DP n (d) FNR and FPR

Figure 7: Privacy (n) and Accuracy (FNR and FPR) at V = 0.05 for varying D (a-b) and for two equivalent query trees (c-d) on Sales

data

(a) Ex-Post DP n (b) FNR and FPR (c) Ex-Post DP n (d) FNR and FPR

Figure 8: Ex-Post DP (n) and Accuracy (FNR, FPR) Results for varying V (a-b) and U (c-d) values on Taxi data.

data analysts to interactively specify accuracy requirements over
their queries while providing a formal privacy guarantee. However,
these solutions either do not speci�cally focus on decision support
queries (CacheDP [36], Ligett et al. [33]), or do not take into ac-
count their asymmetric utility accuracy requirements (APEx [23]
and DPella [34]).

The problem of incorporating di�erential privacy in decision
support applications has been tackled in MIDE [24], which we have
previously described and extended in our work. Other solutions
such as Fioretto et al. [22] also studies decision support on di�eren-
tially private data, but does so from a fairness lens by proposing
recommendations to mitigate bias resulting from making decisions
on DP data. Detailed related work can be found in Appendix C.

8 CONCLUSION AND FUTUREWORK

In this paper, we proposed ProBE, an optimization frameworkwhich
enables the execution of complex decision support queries under
utility requirements on the false positive and negative rates at a
minimal privacy loss. A natural generalization of our framework is
implementing it with di�erent DP mechanisms. One such mecha-
nism de�ned in [24] explores a more �ne-grained de�nition of DP,
where predicates have di�erent privacy budgets, thus necessitating

a new metric to quantify this privacy loss entitled Min-Entropy. We
thus extend the entropy-based algorithm from [24] to answer com-
plex queries with guarantees on both error rates as formalized in
Appendix C. Another interesting direction would be to implement
the ProBE framework with other widely used DP mechanisms such
as the exponential mechanism [19] or the matrix mechanism [32]
to compare their performance to the algorithms previously used.
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A PROOFS

A.1 Proofs for Single Operator Queries (FNR)

1. Proof For 2-Query Conjunction. Consider a complex decision
support query & composed of two atomic aggregate threshold
queries & = &1 ∩ &2. &1 and &2 are answered by TSLM "1, "2

respectively, and mechanism" = "1 ∩"2 is used to answer query
& . If"1 and"2 guarantee an FNR bound of V1 and V2 respectively,
then" has an FNR bound of V1 + V2.

Proof. ∀_8 ∈ Λ,

Let� be the event that _8 ∈ "1 (�), � be the event that _8 ∈ "2 (�),
� be the event that _8 ∈ &1 (�) and � be the event that _8 ∈ &2 (�).
The probability of false negatives can be derived as:

�#' = % [_8 ∉ "1 (�) ∩"2 (�) |_8 ∈ &1 (�) ∩&2 (�)]

= % [�� |��] = % [� ( � |��] = % [�� (�� (�� |��]

=
% [(�� (�� (��) '��]

% [��]

=
% [(�� '��) ( (�� '��) ( (�� '��)]

% [��]
(28)

Given that the three clauses are mutually exclusive events

=
% [�� '��] + % [�� '��] + % [�� '��]

% [��]

= % [�� |��] + % [�� |��] + % [�� |��]

We know that "1 and "2 are mechanisms of independent ran-
domness, i.e. add random noise. This means that � is indepen-
dent of � given �� and vice versa. Therefore we can rewrite
% [�� |��] = % [�|��]% [� |��]. We obtain:

= % [�|��]% [� |��] + % [�|��]% [� |��] + % [�|��]% [� |��]

There is a conditional independence between � and � given � due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between � and � given � . Thus, we can
rewrite % [�|��]% [� |��] = % [�|�]% [� |�]. Therefore,

= % [�|�]% [� |�] + % [�|�]% [� |�] + % [�|�]% [� |�]

Knowing that �#'1 = % [�|�], �#'2 = % [� |�], )%'1 = % [�|�]

and )%'2 = % [� |�], we substitute:

= �#'1 ·)%'2 +)%'1 · �#'2 + �#'1 · �#'2

= �#'1 (1 − �#'2) + (1 − �#'1)�#'2 + �#'1�#'2

= �#'1 + �#'2 − �#'1�#'2

f �#'1 + �#'2 f V1 + V2 (29)

□

2. Proof For 2-Query Disjunction. Consider a complex decision
support query & composed of two atomic aggregate threshold
queries & = &1 ∪ &2. &1 and &2 are answered by TSLM "1, "2
respectively, and mechanism" = "1 ∪"2 is used to answer query
& . If"1 and"2 guarantee an FNR bound of V1 and V2 respectively,
then" has an FNR bound of V1 + V2.

Proof. ∀_8 ∈ Λ,

Let� be the event that _8 ∈ "1 (�), � be the event that _8 ∈ "2 (�),
� be the event that _8 ∈ &1 (�) and � be the event that _8 ∈ &2 (�).
The probability of false negatives can be derived as:

�#' = % [_8 ∉ "1 (�) ∩"2 (�) |_8 ∈ &1 (�) ∩&2 (�)]

= % [� ( � |� ( �]

=
% [(��) ' (�̄� (��̄ (��)]

% [� ( �]

Given that the three clauses are mutually exclusive events

=
% [(��) ' �̄�] + % [(��) '��̄] + % [(��) '��]

% [� ( �]

=
% [(��) |�̄�]% [�̄�]

% [� ( �]
+
% [(��) |��̄]% [��̄]

% [� ( �]

+
% [(��) |��]% [��]

% [� ( �]

f % [�� |�̄�] + % [�� |��̄] + % [�� |��]

We know that "1 and "2 are mechanisms of independent ran-
domness, i.e. add random noise. This means that � is indepen-
dent of � given �� and vice versa. Therefore we can rewrite
% [�� |��] = % [�|��]% [� |��]. We obtain:

= % [�|��]% [� |��] + % [�|��]% [� |��] + % [�|��]% [� |��]

There is a conditional independence between � and � given � due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between � and � given � . Thus, we can
rewrite % [�|��]% [� |��] = % [�|�]% [� |�]. Therefore,

= % [�|�]% [� |�] + % [�|�]% [� |�] + % [�|�]% [� |�]

Knowing that �#'1 = % [�|�], �#'2 = % [� |�], )#'1 = % [�|�]

and )#'2 = % [� |�], we substitute:

= )#'1 · �#'2 + �#'1 ·)#'2 + �#'1 · �#'2

= )#'1 · �#'2 + �#'1 ()#'2 + �#'2)

f �#'2 + �#'1 f V1 + V2 (30)

□

3. Proof for Theorem 4.2. Given a disjunction/conjunction query
& answered by a disjunction/conjunction mechanism" (�) where
"8 is a Threshold Shift Laplace mechanism and n = n1 + n2, we
achieve minimum privacy loss n and a V-bound on FNR by budget-
ing V as:

V1 =
D2�61V

D1�62 + D2�61
, V2 =

D1�62V

D1�62 + D2�61
(31)
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Proof. Consider a complex decision support query& composed
of two atomic aggregate threshold queries connected by the disjunc-
tion or conjunction operator. For both conjunction and disjunction
mechanisms, we obtained the optimization problem of:

maximize (V1)
�61
D1 (V2)

�62
D2

subject to V1 + V2 f V
(32)

from Eq. (11), (15) for conjunction and Eq. (19), (20) for disjunction.
We use the Lagrange Multipliers method to solve this constrained
optimization problem, which consists of solving the Lagrangian
function that sets the gradient of the function equal to the gradient
of the constraint multiplied by the Lagrange Multiplier _. We solve
for _ below:

3

3V2
((V1)

�61
D1 (V2)

�62
D2 ) = _

3

3V2
(V1 + V2)

(V1)
�61
D1 (V2)

�62
D2
−1
·
�62

D2
= _ (33)

Similarly,

3

3V1
((V1)

�61
D1 (V2)

�62
D2 ) = _

3

3V1
(V1 + V2)

(V1)
�61
D1
−1
(V2)

�62
D2 ·

�61

D1
= _ (34)

From setting Equations (33) and (34) equal we obtain,

V1 =
D2V2�61

D1�62
, V2 =

D1V1�62

D2�61

Substituting in the original optimization inequality constraint,

V2 + (
D2V2�61

D1�62
) = V

V2 =
D1�62V

D1�62 + D2�61

Similarly,

V1 + (
D1V1�62

D2�61
) = V

V1 =
D2�61V

D1�62 + D2�61
□

A.2 Proofs of PROBE Generalization for
=-Queries

Proof for Theorem 4.3. Given a complex decision support query
&Λ,� composed of = aggregate threshold queries connected by =−1
conjunctions/disjunctions, we achieve minimum privacy loss n by
budgeting the false negative bound V as:

V 9 =
�6 9 V

∏=,G≠9
G=1 (DG )∑=

~=1

∏=,G≠~
G=1 (DG�6~)

,∀9 = {1, 2, ..., =} (35)

Proof. We will consider exclusive conjunction for this proof
because the false negative rate equation is identical for both 2-
way conjunction and disjunction. Consider the conjunction of =

aggregate threshold queries &1, &2, ..., &= , where & 9 is de�ned as
&
Λ,59
gj (.)>� 9

(�) = {_8 ∈Λ | gj (�
59
_8
)>2 9 8 }. All & 9 have the same pred-

icates Λ = _8 , _2, ..., _: but di�erent �lters 59 , aggregate function
6 9 (.) and threshold � 9 = 2 9 1, ..., 2 9 : . Let mechanism"8 : D → $8

satisfy a V8 -bound on FNR for aggregate threshold query&8 . We can
answer query & which is a conjunction of = aggregate threshold
queries using mechanism" where" (�) = "1 (�) ∩"2 (�) ∩ ...∩

"= (�). First, we formally de�ne "’s overall false negative rate
bound for exclusive conjunction.

We can evaluate mechanism " by sequentially evaluating the
2-way conjunction of each pair of sub-mechanisms ("8 , "8+1). Let
"8 8+1 be the resulting conjunction mechanism. For an even number
of queries = we obtain:

" (�) = "12 (�) ∩"34 (�) ∩ ... ∩"=−1=

Each mechanism "8 8+1 has the resulting FNR bound of V8 + V8+1
according to Theorem 4.2, e.g. "1,2 has an FNR bound of V12 =

V1 + V2. We subsequently run the 2-way conjunction mechanism
on every pair ("8 8+1, "8+2 8+3). We obtain:

" (�) = "1234 (�) ∩ ... ∩"=−3=−2=−1= (�)

Where each mechanism "8 8+1 8+2 8+3 will have the FNR bound
V8 8+1 + V8+2 8+3 e.g. V1234 = V12 + V34 = V1 + V2 + V3 + V4. We
can thus recursively run the 2-way conjunction mechanism in this
subsequent manner to obtain:

V1 + V2 + ... + V= f V (36)

For an odd number of atomic queries = we similarly recursively
group sub-mechanisms in pairs except for the last sub-mechanism
"= , which will be paired last with the mechanism composed of =1
sub-mechanisms. We thus obtain the same result.

Second, we de�ne mechanism" ’s overall privacy loss n in terms
of =-bounds V1, V2, ...V= . For conjunction and disjunction alike, we
use the sequential composition theorem (Def. 2.2) to compute the
�nal privacy loss. Formally,

n = n1 + n2 + ... + n=

= �61
ln(1/(2V1))

D1
+ �62

ln(1/(2V2))

D2
+ ... + �6=

ln(1/(2V=))

D=

= ln(1/2V1)
�61
D1 + ln(1/2V2)

�62
D2 + ... + ln(1/2V=)

�6=
D=

= − ln(2V1)
�61
D1 − ln(2V2)

�6=
D2 − ... − ln(2V=)

�6=
D=

= − ln((2V1)
�61
D1 (2V2)

�62
D2 ... (2V=)

�6=
D= )

To minimize n we thus need to maximize:

5V (V1, V2, ..., V=) = (V1)
�61
D1 (V2)

�62
D2 ... (V=)

�6=
D= (37)

We thus use the Lagrange method to solve the following optimiza-
tion problem:

maximize 5V (V1, V2, ..., V=) = (V1)
�61
D1 (V2)

�62
D2 ... (V=)

�6=
D=

subject to V1 + V2 + ... + V= f V
(38)

Applying the Lagrangian function to our optimization problem,
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we obtain =-functions:
3

3V1
((V1)

�61
D1 (V2)

�62
D2 ... (V=)

�6=
D= ) = _

3

3V1
(V1 + V2 + ... + V=)

3

3V2
((V1)

�61
D1 (V2)

�62
D2 ... (V=)

�6=
D= ) = _

3

3V2
(V1 + V2 + ... + V=)

...
3

3V=
((V1)

�61
D1 (V2)

�62
D2 ... (V=)

�6=
D= ) = _

3

3V=
(V1 + V2 + ... + V=)

Solving the equations results in,

�61

D1
(V1)

�61
D1
−1
(V2)

�62
D2 ...(V=)

�6=
D= = _

�62

D2
(V1)

�61
D1 (V2)

�62
D2
−1
...(V=)

�6=
D= = _

...
�6=

D=
(V1)

�61
D1 (V2)

�62
D2 ...(V=)

�6=
D=
−1

= _

By setting every combination of equations equal, we obtain:

�61

V1D1
=

�62

V2D2
= ... =

�6=

V=D=

Solving for individual V8 ,

V1 =
V2D2�61

D1�62
=

V3D3�61

D1�63
= ... =

V=D=�61

D1�6=

V2 =
V1D1�62

D2�61
=

V3D3�62

D2�63
= ... =

V=D=�62

D2�6=

...

V= =
V1D1�6=

D=�61
=

V2D2�6=

D=�62
= ... =

V=−1D=−1�6=

D=�6=−1

We can now substitute V 9≠8 in the original constraint to solve for
individual V8 :

V = V1 +
V1D1�62

D2�61
+ ... +

V1D1�6=

D=�61

For V1 we obtain:

V1 =
V

(1 + D1
�61
(
�62
D2
+ ... +

�6=
D=
))

=
V

(1 + D1
�61
(
�62D3D4 ...D=+�63D2D4 ...D=+...+�6=D2D3 ...D=−1

D2D3 ...D=
))

=
V

(1 + D1
�61
(

∑=,8≠1
8=1

∏=,9≠8,1
9=1 D 9�68∏=,8≠1

8=1 D8
))

=
�61V

∏=,8≠1
8=1 D8

�61
∏=,8≠1

8=1 D8 + D1
∑=,8≠1
8=1

∏=,9≠8,1
9=1 D 9�68

=
�61V

∏=,8≠1
8=1 D8

∑=
8=1

∏=,9≠8
9=1 D 9�68

Similarly,

V2 =
�62V

∏=,8≠2
8=1 D8

∑=
8=1

∏=,9≠8
9=1 D 9�68

, ... , V= =
�6=V

∏=,8≠=
8=1 D8

∑=
8=1

∏=,9≠8
9=1 D 9�68

Thus, we can generalize the expression for 8 ∈ 1, 2, ..., =

V8 =
�68V

∏=,G≠8
G=1 (DG )∑=

~=1

∏=,G≠~
G=1 (DG�6~)

,∀8 = {1, 2, ..., =} (39)

□

Proof for Theorem 4.5. Given a complex decision support query
&Λ,� with query tree ) composed of = aggregate threshold queries
with an associated >8 number of occurrences within the tree, we
achieve minimum privacy loss n by budgeting the V-bound on FNR
as:

V8 =
�68V

∏=,G≠8
G=1 (DG )∑=

~=1

∏=,G≠~
G=1 (DG>~�6~)

,∀8 = {1, 2, ..., =} (40)

Proof. We �rst prove that the apportioning function 5V that
optimally apportions the FNR bound V over the sub-queries given
a query tree )2 is:

5V (V1, V2, ..., V=) =

=∑

8=1

>8V8 f V (41)

We prove this by induction as follows:
Base case: Query tree with two nodes. consider a complex query
&Λ,� with compact query tree ) composed of = = 2 leaf nodes
containing two sub-queries &1, &2 with occurrences >1 = >2 = 1

connected by an operator ∩ or ∪. It follows from Appendix A.2 that
the apportioning of the FNR in terms of V8 is:

5V (V1, V2) = V1 + V2 f V

5V1,V2 = >1V1 + >2V2 f V

Therefore condition (41) holds for the base case of = = 2.
Induction step: Suppose that for a query tree ) of size = = :

nodes containing < sub-queries &1, &2, ..., &< with occurrences
>1, >2, ..., >< , the FNR is apportioned in terms of V8 and bound by
V as:

5V (V1, V2, ..., V<) =

<∑

8=1

>8V8 f V (42)

Now we show that the condition holds for = = : + 1. Let ) be a
compact query tree composed of = = : + 1 nodes containing< sub-
queries &1, &2, ..., &< with occurrences >1, >2, ..., >< connected by
an operator ∩ or ∪. We refer to the right sub-tree as)' and the left
sub-tree as)! . Each sub-tree contains the sub-queries&1, &2, ..., &<

with local occurrences )! .>8 or )' .>8 which add up to the overall
occurrence number in the tree ) .>8 , i.e. ∀8 ∈<

) .>8 = )! .>8 +)' .>8 (43)

For the right sub-tree)' , we know that the condition (42) holds for
= = : . Therefore the FNR for )' in terms of V8 is:

V)' =

<∑

8=1

)' .>8V8 (44)

Similarly for the left sub-tree )! , we obtain the FNR,

V)! =

<∑

8=1

)! .>8V8 (45)
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For overall tree ) , we know from 2-way conjunction/disjunction
that:

5V) (V1, V2, ..., V<) = V)! + V)' f V

Substituting in Eq. (44) and (45) we obtain:

5V) (V1, V2, ..., V<) =

<∑

8=1

)! .>8V8 +

<∑

8=1

)' .>8V8 f V

=

<∑

8=1

)! .>8V8 +)' .>8V8 f V

From Eq. (43) we obtain

5V) (V1, V2, ..., V<) =

<∑

8=1

) .>8V8 f V

Therefore Eq. (42) holds for all query trees ) with< atomic aggre-
gate threshold queries.

Second, we derive the apportionment of V8 from Eq. (40). To do
so, we derive our optimization problem which minimizes n given
the constraint from Eq. (41). Given that we run each sub-query &8

using"8 based on its number of occurrences >8 in query tree ) , its
privacy budget will be proportional to the number of occurrences,
i.e. the loss will be >8n8 for each &8 . This means that the overall
privacy loss, when using the Sequential Composition theorem, will
be n =

∑=
8=1 >8n8 . As we use TSLM for the sub-mechanisms"8 , we

can use the formulation of n8 = �68
ln(1/(2V8 ) )

D8
. Substituting in:

n =

=∑

8=1

>8n8

=

=∑

8=1

>8�68
ln(1/(2V8 ))

D8

= −

=∑

8=1

ln(2V8 )
>8�68
D8

= − ln((2V1)
>1�61
D1 (2V2)

>2�62
D2 ... (2V=)

>=�6=
D= )

To minimize n we thus need to maximize:

5V (V1, V2, ..., V=) =

=∏

8=1

(V8 )
>8�68
D8 (46)

So our optimization problem is updated to:

maximize

=∏

8=1

(V8 )
>8�68
D8

subject to

=∑

8=1

>8V8 f V

(47)

We thus apply the LagrangeMultipliersMethod aswith the previous
proof to obtain:

V8 =
�68V

∏=,G≠8
G=1 (DG )∑=

~=1

∏=,G≠~
G=1 (DG>~�6~)

,∀8 = {1, 2, ..., =} (48)

□

A.3 Proofs For FPR Bounds

1. Proof For 2-Query Conjunction. Consider a complex decision
support query & composed of two atomic aggregate threshold
queries & = &1 ∩ &2. &1 and &2 are answered by TSLM "1, "2

respectively, and mechanism" = "1 ∩"2 is used to answer query
& . If"1 and"2 guarantee an FPR bound of U1 and U2 respectively,
then" has an FPR bound of U1 + U2. If we set U8 = U/=, we obtain
a U bound on FPR.

Proof. ∀_8 ∈ Λ,

Let� be the event that _8 ∈ "1 (�), � be the event that _8 ∈ "2 (�),
� be the event that _8 ∈ &1 (�) and � be the event that _8 ∈ &2 (�).
The probability of false positives can be derived as:

�%' = % [_8 ∈ "1 (�) ∩"2 (�) |_8 ∉ &1 (�) ∩&2 (�)]

= % [�� |��] = % [�� |� ( �] = % [�� |�� (�� (��]

=
% [�� '�� (�� (��]

% [��]

=
% [(�� '��) ( (�� '��) ( (�� '��)]

% [��]
(49)

Given that the three clauses are mutually exclusive events

=
% [�� '��] + % [�� '��] + % [�� '��]

% [��]

=
% [�� |�̄�]% [�̄�]

% [��]
+
% [�� |��̄]% [��̄]

% [��]

+
% [�� |��]% [��]

% [��]

f % [�� |�̄�] + % [�� |��̄] + % [�� |��]

We know that "1 and "2 are mechanisms of independent ran-
domness, i.e. add random noise. This means that � is indepen-
dent of � given �� and vice versa. Therefore we can rewrite
% [�� |��] = % [�|��]% [� |��]. We obtain:

= % [�|��]% [� |��] + % [�|��]% [� |��] + % [�|��]% [� |��]

There is a conditional independence between � and � given � due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between � and � given � . Thus, we can
rewrite % [�|��]% [� |��] = % [�|�]% [� |�]. Therefore,

= % [�|�]% [� |�] + % [�|�]% [� |�] + % [�|�]% [� |�]

Knowing that �%'1 = % [�|�], �%'2 = % [� |�], )%'1 = % [�|�]

and )%'2 = % [� |�], we substitute:

= �%'1 ·)%'2 +)%'1 · �%'2 + �%'1 · �%'2

= �%'1 ·)%'2 + �%'2 (�%'1 +)%'1)

f �%'1 + �%'2 f U1 + U2 (50)

So if we set U1 = U2 = U/2, then �%' f U . □

2. Proof For 2-Query Disjunction. Consider a complex decision
support query & composed of two atomic aggregate threshold
queries & = &1 ∪ &2. &1 and &2 are answered by TSLM "1, "2

respectively, and mechanism" = "1 ∪"2 is used to answer query
& . If"1 and"2 guarantee an FPR bound of U1 and U2 respectively,
then" has an FPR bound of U1 + U2. If we set U8 = U/=, we obtain
a U bound on FPR.
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Proof. ∀_8 ∈ Λ,

Let� be the event that _8 ∈ "1 (�), � be the event that _8 ∈ "2 (�),
� be the event that _8 ∈ &1 (�) and � be the event that _8 ∈ &2 (�).
The probability of false positives can be derived as:

�%' = % [_8 ∈ "1 (�) ∩"2 (�) |_8 ∉ &1 (�) ∩&2 (�)]

= % [� ( � |� ( �]

=
% [(�� (�� (��) '��]

% [� ( �]

Given that the three clauses are mutually exclusive events

=
% [�� '��] + % [�� '��] + % [�� '��]

% [� ( �]

= % [�� |��] + % [�� |��] + % [�� |��]

We know that "1 and "2 are mechanisms of independent ran-
domness, i.e. add random noise. This means that � is indepen-
dent of � given �� and vice versa. Therefore we can rewrite
% [�� |��] = % [�|��]% [� |��]. We obtain:

= % [�|��]% [� |��] + % [�|��]% [� |��] + % [�|��]% [� |��]

There is a conditional independence between � and � given � due
to the nature of the randomized mechanisms. Similarly there is a
conditional independence between � and � given � . Thus, we can
rewrite % [�|��]% [� |��] = % [�|�]% [� |�]. Therefore,

= % [�|�]% [� |�] + % [�|�]% [� |�] + % [�|�]% [� |�]

Knowing that �%'1 = % [�|�], �%'2 = % [� |�], )#'1 = % [�|�]

and )#'2 = % [� |�], we substitute:

= )#'1 · �%'2 + �%'1 ·)#'2 + �%'1 · �%'2

= (1 − �%'1)�%'2 + �%'1 (1 − �%'2) + �%'1�%'2

f �%'1 + �%'2 − �%'1�%'2 f �%'1 + �%'2 f U1 + U2(51)

So if we set U1 = U2 = U/2, then �%' f U . □

Generalization of FPR bound. By using a similar proof by in-
duction as in Appendix A.2 (Proof for Theorem 4.5), we obtain
the bound on FPR given any query T, where each sub-query &8

of = sub-queries, with an associated >8 number of occurrences, as
follows:

�%' f

=∑

8=1

>8U8

If we set U8 = U/2>8 for each sub-query, then �%' f U .

A.4 Proof of ProBE Algorithm

Proof for Theorem 5.1. Algorithm 2 satis�es nmax-DP, a V-bound
on the False Negative Rate and a U bound on the False Positive Rate.

Proof. First, we show the proof that TSLM o�ers the guarantee
that for an atomic aggregate threshold query &08 , setting the pri-

vacy budget to n8 =
�68 ln(1/(2V8 )

D8
guarantees the FNR is bounded

by V8 as de�ned in [24]. For all predicates _8 ∈ Λ:

% [_8 ∉ " (�) |_8 ∈ & (�)]

= % [6(�
5

_8
) + [8 f 28 − D8 |6(�

5

_8
) > 28 ]

f % [[8 f −D8 ] f
4−;= (1/2V )

2
f V

Second, we prove that setting V per iteration to V/2 upholds a V

bound on the overall mechanism’s FNR.
We know that the FNR is bounded as �#' f

∑=
8=1 V8 . Therefore,

if we set VBC4? = V2 where BC4? = 8 ∈ {1, 2}, then we obtain
�#' f V/2 + V/2 = V . Therefore the FNR is bounded by V .

Third, the algorithm satis�es n<0G -DP.
(i) Phase One of ProBE adds noise from the Laplace Distribution

according to the Laplace Mechanism[19], i.e. with a mean of 0
and a standard deviation of 1/n8 . This means that Phase one is n8 -
di�erentially private. (ii) Phase Two of ProBE similarly adds noise
from the Laplace Distribution according to the Laplace Mechanism
with a newly computed n 9 privacy budget, making phase two n 9 -
di�erentially private. (iii) Because the two phases are executed
sequentially, their composition (i.e. the overall ProBE mechanism)
is n8 + n 9 -di�erentially private. (iv) It follows that ProBE satis�es
n<0G -DP as it checks that the current privacy budget (i.e. n8 + n 9 )
does not exceed the limit of n<0G .

Fourth, the algorithm satis�es the U-bound on FPR because we
estimate an upper bound on the FPR by deriving an upper bound
on �% and a lower bound on # . Thus, since �%' f �%'4BC , then
enforcing a bound on the upper bound �%'4BC f U (by exiting the
algorithm if it is exceeded) will enforce a bound on the actual �%'.
i.e. �%' f �%'4BC f U ⇒ �%' f U .

□

B PROBE COMPUTATIONAL COMPLEXITY
ANALYSIS

We analyze the computational complexity of ProBE as it relates to
regular SQL queries by using the example query below:

SELECT disease, count(*) FROM PATIENT_DATA

WHERE disease_type ='viral'

GROUP BY disease

HAVING (count(*) > c1 AND avg(age) > 65)

If executed over an SQL system such as MySQL, the query eval-
uation plan would be:

(1) Full Table Scan on %�)��#)_��)�
(2) GROUP BY disease attribute
(3) Compute aggregations on 2>D=C (∗) and on avg(age) based

on the tuples in a group per group and �lter matching
groups based on the count(*) > c1 and avg(age) > 65 condi-
tions

(4) Return matching groups

In ProBE, if we break the query into sub-queries and execute
them separately then apply the conjunction or disjunction as dis-
cussed in the paper, the approach will correspond to the following
plan:

For Q1:

(1) Full Table Scan on %�)��#)_��)�
(2) GROUP BY disease attribute
(3) Compute aggregations with noise on count(*) based on the

tuples in a group per group and �lter matching groups
based on count(*) > c1 condition

For Q2:

(1) Full Table Scan on %�)��#)_��)�
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(2) GROUP BY disease attribute
(3) Compute aggregations with noise on avg(age) based on

the tuples in a group per group and �lter matching groups
based on avg(age) > 65 condition

And lastly:

(1) Compute conjunction of Q1 and Q2
(2) Return matching groups

In the execution plan above, if we have : operators (i.e. conjunc-
tions and/or disjunctions), the technique will result in a computa-
tional complexity of almost : times. Note that when we scan for
each of the sub-queries, we do not need to do this scan indepen-
dently. Indeed, a better plan would be:

(1) Full Table Scan on %�)��#)_��)�
(2) GROUP BY disease attribute
(3) Compute all aggregationswith noise i.e. count(*) and avg(age)

and �lter matching groups based on the count(*) > c1 and
avg(age) >65 conditions

(4) Compute conjunction of Q1 and Q2
(5) Return matching groups

The above execution plan would meet our requirement, and has
complexity similar to the original SQL plan, but will require an
in-database implementation to be slightly modi�ed to achieve the
above. Our goal in this paper is primarily to develop the foundation
for answering complex queries in a di�erentially private manner
and not on optimizing the query performance in terms of execution
time. Nonetheless, this aspect of optimizing the execution of our
algorithm is a very interesting direction of future work.

Note that implementation of the GROUP BY operation has to
be special in that all possible groups to be returned (i.e. all the
diseases) must be pre-determined, as opposed to the SQL GROUP
BY implementation which does not have knowledge of the existing
groups. This issue applies to both second and third plan.

C DETAILED MULTI-STEP ENTROPY-BASED
ALGORITHM

The two-step algorithm ProBE assigns di�erent privacy levels to
di�erent predicates due to the early elimination of data points at
the �rst step, meaning predicates that go on to the second step have
a higher privacy loss n . This concept is captured through the de�ni-
tion of Predicate-wise DP (PWDP)[24], a �ne-grained extension of
di�erential privacy which quanti�es the di�erent levels of privacy
loss data points may have in multi-step algorithms. Formally,

De�nition C.1 (Predicate-wise Di�erential Privacy (PWDP)). Given
a set of mutually exclusive predicates and their corresponding
privacy budgets Θ = {(_1, n1), ..., (_: , n: )}, we say a randomized
mechanism " satis�es \ -PWDP if for all i, for any neighboring
databases � and �′ di�ering in at most one record that satis�es _8 ,
the following holds:

% [" (�) ∈ $] f 4n8% [" (�′) ∈ $] (52)

Naturally, a measure to quantify this new de�nition of privacy is
needed Previous work tackles this problem by proposing a new pri-
vacy metric for PWDP entitled Min-Entropy [24]H<8= which mea-
sures a lower bound on the level of uncertainty given the set of pred-
icates and their respective privacy levels Θ = {(_1, n1), ..., (_: , n: )}.
Formally,

De�nition C.2 (PWDP Min-Entropy). The Min-Entropy of a Θ-
predicate-wise di�erentially private mechanism with Θ = {(_1, n1),

..., (_: , n: )} is de�ned as:

H<8= (Θ) =<8= Σ
:
8=1 − ?̂8 log ?̂8

B .C .
4−n8

Σ84n8
f ?̂8 f

4n8

Σ84−n8
∀8 ∈ [1, :] 0=3 Σ8 ?̂8 = 1 (53)

where ?̂8 is the probability that a random tuple x will take a value C
that satis�es _8 .

the Data Dependent Predicate-Wise Laplace Mechanism (DDP-
WLM) also introduced in [24] maximizes min-entropy (i.e. maximiz-
ing the lower bound on uncertainty) in a multi-step algorithm by
also using the noisy aggregate values obtained from previous itera-
tions to compute the best privacy level n at which Min-Entropy is
maximized for the set of elements in the uncertain region. This algo-
rithm similarly guarantees a V-bound on FNR for a single aggregate

threshold query by setting the privacy loss to n =
�6 ln(1/(2V ) )

D , but
it does so by setting a starting privacy level nB as well as a maximum
level n< prior to execution which is spent across a �xed number of
iterations< in a way that maximizes min-entropy. In each iteration,
the privacy budget is further distributed across �ne-grained steps
<5 and the privacy level with the highest min-entropy is chosen
as the next iteration’s budget. It follows that the uncertain region
parameter D is, again, chosen statically at the beginning, then cho-
sen to minimize privacy loss rather than in a way that can provide
a bound on false positives.

We modify this algorithm by integrating our two-step algorithm
ProBE into its framework in order to not only answer complex DS
queries, but also to provide a post-facto bound on false positives.
Our modi�ed algorithm is entitled ProBE-Ent as described in Algo-
rithm 5. Instead of having a �xed starting nB , we internally choose
a starting D0 and compute the initial privacy level (line 7). Within
the �rst step of DDPWLM, we run the FP estimation algorithm
(Function in Algorithm 3) in order to compute the optimal uncer-
tain region parameter D>?C . We use this new uncertain region as an
upper bound for the algorithm, i.e. we compute the n< upper bound
that represents the exit condition for the algorithm. Additionally,
we provide a V budget optimization which exploits the multi-step
nature of the algorithm in a way that provides a potentially higher
budget if previous sub-queries exit early.
V-Budget Redistribution. In the case of multi-step algorithms, we
exploit their iterative nature to further optimize V budget allocation
during execution. Given that certain queries may terminate early (if
an iteration 9 < < yields no predicates within the uncertain region),
the assigned V8 for such a query may not be fully used and may thus
be wasted. We exploit the progressive nature of such algorithms
to further optimize the privacy budget: if the previous sub-query
terminates before the<-th step of its run, we can redistribute the
leftover false negative rate budget to subsequent sub-queries, thus
fully utilizing the false negative rate bound given and consequently
minimizing the overall privacy loss. For each sub-query, we calcu-
late the remaining V budget after running the MSPWLM algorithm
by subtracting the used V8 budget from the overall V (line 9). For
subsequent sub-queries, we check if the remaining V budget VA4<
from the previous iteration is higher than 0. If this is not the case,
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Algorithm 5 ProBE Entropy-based Mechanism. & = {&1, ..., &=},
D = {D1, ..., D=}, > = {>1, ..., >=}, �6 = {�61, ...,�6=}, C =

{C1, ..., C=−1} where C8 = 0 if conjunction, 1 if disjunction

1: procedure EntProbe(&, �,D, V, >,�6, n<0G ,<,<5 , C )
2: Let $ 5 ← {}, n5 ← 0, VA4< ← 0

3: for 8 = 1, ..., = do

4: if VA4< > 0 then

5: update overall FNR budget V ← VA4<
6: & ← {&8 , ..., &=}

7: V8 ←
�68V

∏=,G≠8
G=1 (D0 )

>8
∑=

~=1

∏=,G≠~

G=1 (D0�6~ )
,nB =

�68 ln(1/(2V8/<) )
D0

8: $8 , n8 , VDB43 ← Ddpwlm(&8 , D8 , V8 , n<0G , nB ,<,<5 )
9: VA4< ← 0 if V8 = VDB43 else V − VDB43
10: n5 ← n5 + n8
11: if n5 f n<0G then

12: if C~?4 = 0 then

13: $ 5 ← $8 if $ 5 = ∅ else $ 5 ← $ 5 ∩$8

14: return $ 5 , n5 if $8 = ∅

15: else if C~?4 = 1 then

16: $ 5 ← $ 5 ∪$8

17: else

18: return ‘Query Denied’

19: return $ 5 , n5

then we use the ProBE optimization with the original V and all the
sub-queries. Otherwise, we update the overall V to the remaining
VA4< and re-run the ProBE optimization using only the subsequent
sub-queries &8 , . . . , &= (lines 4-6). To illustrate this algorithm, we
use the example below.

Example C.1. Consider a 3-step PPWLM run with a conjunction
query composed of 4 aggregate threshold queries; if the �rst query
�nishes executing after its 1st step, its leftover overall false negative
rate will be V − �V1, where �V1 =

1
3 V1. Therefore we re-compute

the false negative rates for subsequent queries V2, V3, V4 using Eq.
(25) with V′ = V − �V1 and with the &2, &3, &4 leftover queries.

D DETAILED RELATED WORK

Di�erential Privacy [18, 19] has become a well-studied standard for
privacy-preserving data exploration and analysis [12, 27, 48, 51].
Various work has proposed frameworks for answering speci�c
query types, such as range queries [16, 30, 54], and linear counting
queries [32, 38, 39]. This body of work, however, is not applicable
to the aggregate threshold queries that our solution considers, nor
does it take the approach of accuracy-�rst, which aims to minimize
privacy loss given an accuracy constraint. Join queries may be
more applicable to such queries, as conjunction-only queries may
be written as join queries. However, such an approach complicates
the queries at hand: the join operator is known for having high
sensitivity resulting in low accuracy when answering such queries.
Additionally, recent algorithms tackling join queries [11, 13, 28, 52]
do not provide accuracy guarantees in terms of FNR or FPR, and
their data-dependent nature make it di�cult to successfully enforce
error bounds.

Multiple accuracy-constrained systems for di�erentially private
data analysis have been proposed in recent years [23, 33, 34, 36],

which allow data analysts to interactively specify accuracy require-
ments over their queries while providing a formal privacy guarantee.
However, these solutions do not speci�cally focus on decision sup-
port queries and do not take into account their speci�c accuracy
requirements. CacheDP [36] proposes a query engine that uses pre-
vious answers stored in a di�erentially private cache to lower the
overall privacy budget, but this framework does not support aggre-
gate threshold queries, and hence is not applicable to our problem
of complex DS queries. The system APEx [23], and programming
framework DPella [34] both allow data analysts to provide accuracy
bounds for di�erentially private query answering, and both support
aggregate threshold queries (also referred to as iceberg counting
queries), but neither support complex decision support queries
which are compositions of atomic queries, nor do they incorporate
the asymmetric utility characteristic (i.e. the importance of the false
negative rate) that decision support queries have. Ligett et al. [33],
which we extend in our work through the use of the ex-post DP
notion, uses empirical error to determine the best privacy budget n .
Such an approach is not suitable for aggregate threshold queries, as
the sensitivity of the error would result in a high privacy loss, and
the testing for empirical error incurs an additional cost to privacy.

The problem of incorporating di�erential privacy in decision
support has been tackled in MIDE [24], which our work extends.
MIDE [24] makes use of the asymmetric utility feature in DS appli-
cations to formally de�ne strict accuracy guarantees in terms of the
false negative rate V , and proposes novel mechanisms to answer DS
queries at a minimal privacy loss while upholding such guarantees.
However, this work only addressed simple atomic queries, rather
than complex DS queries composed of multiple aggregate statistics
evaluated against their respective thresholds. Other work such as
Fioretto et al. [22] also studies decision support on di�erentially
private data, but does so from a fairness lens. It tackles aggregate
threshold queries, but proposes solutions to mitigate bias resulting
frommaking decisions on such data, rather than optimizing privacy
loss or providing formal accuracy guarantees.

E LAGRANGE MULTIPLIERS METHOD

The Lagrange Multipliers method [4] is a optimization technique
used to maximize or minimize multivariate functions subject to
equality or inequality constraints. Given an objective function 5 , the
goal is to �nd the extremum of such a function given a constraint
function 6. The intuition behind this method is that if 5 and 6 attain
an extremum at G∗, then one of the level curves of 5 and 6 are
tangent at G∗, meaning that their gradients ∇5 and ∇6 are parallel.
This implies that the gradient of the constraint function ∇6 is a
multiple of the objective function gradient ∇5 , and this multiple is
referred to as a Lagrange Multiplier _. The relationship between the
gradients and the multiplier is depicted in the Lagrangian Function,
which is the equation:

∇5 (G) = _∇6(G)

Solving this equation for the multiplier _ thus yields the optimal
variable expression which can be substituted into the constraint
function to obtain the corresponding extrema. Formally,

Theorem E.1 (Lagrange Multipliers Method). Let 5 : R3 →

R be the objective function, and 6 : R3 → R
= be the constraint

function where both functions are�1. If 5 attains a local extremum at
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G∗ such that A0=: (� (6(G∗)) = = given the constraint function, then

there exists a unique multiplier _ such that:

∇5 (G∗) = _∇6(G∗) (54)

F ADDITIONAL EXPERIMENTS

Min-Entropy Privacy Results. We extend our experiments to in-
clude Min-Entropy denotedH<8= (Θ) as part of our privacy metrics
used to evaluate the performance of all algorithms. We use the same
parameters as the main paper: we set a FNR bound of V = 0.05, a
FPR bound of U = 0.1, a maximum privacy loss of n<0G = 5, a start-
ing uncertain region of D0 = 30%|� | for ProBE-based algorithms
(the original ProBE algorithm, the ProBE-Naive variation with the
Naive �rst step, and the ProBE-Ent entropy-based variation) and
a default D = 12% for the Naive algorithm. We run each algorithm
over a 100 iterations and vary the number of sub-queries from 1 to
6.

In terms of Min-entropy H<8= (Θ), the closer to 1 the results
are (meaning that the lower bound on uncertainty is extremely
high) the better. The results in Figure 9 thus show that ProBE-
Ent outperforms other algorithms and stays constant or su�ers
only from a small decrease as the number of sub-queries increases.
This directly follows from the fact that ProBE-Ent is designed to
maximize min-entropy at each iteration, regardless of the number
of sub-queries. Other algorithms su�er from a decrease in min-
entropy as the number of sub-queries increase, as it is inversely
correlated to the ex-post DP loss n .

Varying V budget split across phases. We evaluate the privacy
loss and accuracy measures of our proposed ProBE algorithm when
varying the distribution of the overall V bound budget across the
two phases of the algorithm. We use the following combinations of
percentages: {10%−90%, 90%−10%, 50%−50%, 40%−60%, 60%−40%,
} where the �rst percentage is allocated to Phase One of ProBE and
the second is allocated to Phase Two. We use a simple disjunction
query &1 ∪ &2 on the Taxi dataset with the �xed parameter of
U = 0.1 and vary the V value from the default V = 5 ·10−2 to a much
smaller value of 5 · 10−6. Our results are shown in Table 3. The

di�erent distributions used for the V budget do not signi�cantly
impact the privacy loss n . There is no direct correlation observed
between privacy loss and the V distribution across the two phases,
as we observe that although the lowest privacy loss achieved is
when 90% of V is allocated to the Phase One, this is not the case
for the 60% allocation. We additionally note that the FPR is the
highest when Phase One is allocated 90% of V and lowest when 90%

is allocated to Phase Two, but the FPR bound of U = 0.1 is upheld
regardless of the split. As predicted from the inverse relationship
between privacy loss and the FNR bound of V , the smaller the V
value, the higher privacy loss n is as seen in Table 3. When using
smaller values of V , we note that the FNR as well as FPR bounds
are still upheld, but the optimal distribution of the V budget across
phases cannot be discerned despite varying V values and remains a
non-trivial optimization problem.

AVERAGE aggregate function conjunction-only privacy

and accuracy results. We model queries for the Sales dataset
which use the AVERAGE aggregate function based on meaningful
KPIs typically used in decision support applications (e.g. average
transaction value). We include the results for conjunction-only
complex queries in Figure 10 with a varying number of sub-queries
from 1 to 6. We use the same default parameters to evaluate the
performance of the Naive, ProBE, ProBE-Naive and ProBE-Ent
algorithms. We set D = 12% for single-step algorithms, D0 = 30%

for multi-step algorithms and V = 0.05, U = 0.1, as well as< = 4

steps and<5 = 3 �ne-grained steps for ProBE-Ent. Our privacy
results in terms of ex-post privacy loss n and min-entropy H<8=

show that AVERAGE queries have similar results as COUNT queries
but with a higher range of values for n , with ProBE-Ent having the
lowest privacy loss and highest min-entropy. The higher average for
privacy loss is due to the sensitivity of the query being higher (AVG
often has a higher sensitivity than COUNT). The accuracy results
in terms of false negative rate (FNR) and false positive rate (FPR)
show that all algorithms again achieve the bounded guarantees of
V = 0.05, and the multi-step algorithms achieve the FPR bound of
U .
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Overall V Phase One V % Phase Two V % Privacy loss n FNR FPR

5 · 10−2

10 90 4.55 · 10−2 0 1.81 · 10−3

40 60 4.56 · 10−2 0 3.03 · 10−3

50 50 4.44 · 10−2 0 2.40 · 10−3

60 40 4.80 · 10−2 0 3.01 · 10−3

90 10 4.16 · 10−2 0 5.45 · 10−3

5 · 10−4

10 90 5.46 · 10−2 0 1.21 · 10−3

40 60 5.66 · 10−2 0 1.81 · 10−3

50 50 5.12 · 10−2 0 4.84 · 10−3

60 40 5.32 · 10−2 0 3.63 · 10−3

90 10 5.15 · 10−2 0 1.21 · 10−3

5 · 10−6

10 90 8.15 · 10−2 0 1.2 · 10−3

40 60 8.36 · 10−2 0 3.07 · 10−4

50 50 8.12 · 10−2 0 1.21 · 10−3

60 40 8.18 · 10−2 0 6.06 · 10−4

90 10 8.09 · 10−2 0 1.12 · 10−3

Table 3: Privacy loss and Accuracy when varying the V budget distribution across the two ProBE Phases

Figure 9: Privacy Loss in terms of Min-EntropyH<8= (Θ) for 1-6 sub-queries at V = 0.05 and U = 0.1 for Conjunction (row 1) and

Combined Conjunction/Disjunction (row 2) using NYTaxi (column 1), Sales (column 2) and UCI (column 3) data.

(a) Ex-Post DP n (b) Min-Entropy V (Θ) (c) FNR and FPR

Figure 10: Privacy (n,V (Θ)) and Accuracy (FNR, FPR) Results for AVG functions at V = 0.05 and U = 0.1 on the Sales dataset.
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