Published as a conference paper at ICLR 2024

BEYOND ACCURACY:
EVALUATING SELF-CONSISTENCY OF CODE LARGE
LLANGUAGE MODELS WITH IDENTITYCHAIN

Marcus J. Min! Yangruibo Ding' Luca Buratti? Saurabh Pujar?
Gail Kaiser' Suman Jana' Baishakhi Ray'

LColumbia University ~ 2IBM Research

Jm5025@columbia.edu

{yrbding, kaiser, suman, rayb}@cs.columbia.edu
{luca.buratti2, saurabh.pujar}@ibm.com

ABSTRACT

Code Large Language Models (Code LLMs) are being increasingly employed in
real-life applications, so evaluating them is critical. While the conventional accu-
racy evaluates the performance of Code LLMs on a set of individual tasks, their
self-consistency across different tasks is overlooked. Intuitively, a trustworthy
model should be self-consistent when generating natural language specifications
for its own code and generating code for its own specifications. Failure to pre-
serve self-consistency reveals a lack of understanding of the shared semantics un-
derlying natural language and programming language, and therefore undermines
the trustworthiness of a model. In this paper, we first formally define the self-
consistency of Code LLMs and then design a framework, IdentityChain, which
effectively and efficiently evaluates the self-consistency and conventional accu-
racy of a model at the same time. We study eleven Code LLMs and show that they
fail to preserve self-consistency, which is indeed a distinct aspect from conven-
tional accuracy. Furthermore, we show that IdentityChain can be used as a model
debugging tool to expose weaknesses of Code LLMs by demonstrating three ma-
jor weaknesses that we identify in current models using IdentityChain. Our code
is available at https://github.com/marcusmll7/IdentityChain.

1 INTRODUCTION

Code Large Language Models (Code LLMs) are being increasingly employed in real-life applica-
tions (GitHub, 2023; OpenAl, 2023). Hence, evaluating them rigorously is a crucial problem. Con-
ventional evaluations of Code LLMs focus on the models’ accuracy on a wide range of individual
tasks (Lu et al., 2021; Zhu et al., 2022), primarily the following two:

1) Code Generation i.e. Natural Language to Programming Language (NL-to-PL) Generation: Given
a natural language specification, the model is tasked to generate a corresponding program.

2) Code Summarization i.e. Programming Language to Natural Language (PL-to-NL) Generation:
Given a program, the model is tasked to generate a corresponding natural language specification.

However, evaluating these two tasks in isolation overlooks their symmetric nature. NL-to-PL and
PL-to-NL Generation can be thought of as semantic-preserving translation and back-translation be-
tween the PL space and the NL space. Therefore, a trustworthy model should be able to correctly
perform PL-to-NL Generation given programs generated by itself from previous NL-to-PL tasks.
Similarly, it should correctly perform NL-to-PL Generation given natural language specifications
generated by itself from previous PL-to-NL tasks. We call such a property “self-consistency”.

Consider a real example shown in Figure 1. GPT-3.5 is first instructed to generate a program ply
according to a specification nly written in a docstring, and then instructed to summarize its own
code plj into a new docstring nl;. If we evaluate NL-to-PL and PL-to-NL Generation in isolation,
GPT-3.5 is more than capable as it achieves 100% accuracy on both tasks. However, from the self-
consistency perspective, even though the model is self-consistent when generating nl; from pl,

Published as a conference paper at ICLR 2024

Code Generation Code Summarization Code Generation

“_——)__——‘\ /—__)__~—‘\ /——___~—‘\ o
‘. ‘* ’ “ ’ ‘*

HumanEval/138: nly Model-Generated Code: plg Model-Generated Docstring: nly . Model-Genearted Code: ply

Evaluate whether the (ifor i in range(1, n//2 + 1): Check if there exist for i in range(1, n):

given number n can be for j in range(i, n//2 + 1): four even numbers i, for j in range(i+l, n):
written as the sum of for k in range(j, n//2 + 1): j, k, U such that for k in range(j+1, n):
exactly 4 positive for 1 in range(k, n//2 + 1): their sum is equal to for 1 in range(k+1, n):

even numbers n.

L Accurate 4—J l t—» Self-Consistent <—J L» Not Self-Consistent <—J l

O Test Outputs | ® Test Outputs
is_equal_to_sum_even(4) == Fa‘Lse? Test Outputs is_equal_to_sum_even(4) == False.i
: T~ Don't Match < . 5
i is_equal_to_sum_even(8) == True | i is_equal_to_sum_even(8) == False

Figure 1: The IdentityChain Framework. Starting from a docstring nly, instruct the model to gener-
ate a program ply, summarize ply into a new docstring nl;, and generate a new program pl;. If the
test outputs of pl; do not match the ones of ply, then the model is not self-consistent. This chain can
be extended to length n € N and we compute whether, for all ¢ < n, the test outputs of pl; match the
ones of pl; 1, returning a binary result that indicates if the model is self-consistent regarding nl.

it surprisingly fails to preserve self-consistency when generating pl; from its own docstring nl;.
Note that self-consistency is different from consistency: nl; here is generated by the model itself
instead of arbitrarily crafted by humans or synthesized by other algorithms. This example reveals
that GPT-3.5 doesn’t understand the underlying semantics of the programs and natural language
specifications, which raises a significant trustworthiness concern.

Unfortunately, current NL-to-PL evaluations (Chen et al., 2021; Li et al., 2023; Roziere et al., 2023)
typically assess if the model-generated programs pass a set of test cases, and current PL-to-NL eval-
uations (Ahmad et al., 2021; Li et al., 2023; Roziere et al., 2023) commonly employ token-based
metrics like BLEU (Papineni et al., 2002), which both fail to take self-consistency into account.
Although similar self-consistency properties of LLMs have been probed through some natural lan-
guage tasks (Jiang et al., 2023; Ohmer et al., 2023), their evaluations rely on Closed-domain QA
tasks and cannot be generalized to open-ended generation (Section 2). Therefore, in this paper:

1) We formalize the definition of self-consistency and its evaluation (Section 3).

2) We design a novel framework, IdentityChain (Section 4), which effectively and efficiently evalu-
ates a Code LLM'’s self-consistency by employing a new metric, Test Output Match (TOM) score,
and leveraging greedy decoding during inference. Through experiments, we exhibit the effectiveness
of the TOM score (Section 6.2) and the efficiency of greedy decoding (Section 6.3).

3) We evaluate eleven current Code LLMs including GPT-4, showing that they are not always self-
consistent. Furthermore, we find that more accurate models are not necessarily more self-consistent,
highlighting that self-consistency is a different aspect from conventional accuracy (Section 6.1).

4) We show through experiments that TOM score is also an effective metric to evaluate PL-to-
NL Generation (Section 6.2), thus completing IdentityChain as a holistic framework that evaluates
the NL-to-PL accuracy, PL-to-NL accuracy, and self-consistency of Code LLMs at the same time.
We further discuss three major weaknesses of current models that we identify using IdentityChain,
demonstrating the potential of IdentityChain as a debugging tool that helps model developers by
exposing weaknesses of models and inspiring potential improvements (Section 6.4).

2 RELATED WORK

Evaluating Code Large Language Models. For NL-to-PL evaluation, token-based metrics like
Exact Match (Ding et al., 2023b), Edit Distance (Zhang et al., 2023), Jaccard Similarity (Pei et al.,
2023), and BLEU (Iyer et al., 2018; Ahmad et al., 2021) are used, but these metrics fail to capture
the code-specific characteristics. To address this issue, CodeBLEU (Ren et al., 2020) takes Key-

Published as a conference paper at ICLR 2024

words, Abstract Syntax Tree, and Data-Flow Match into account, and CodeBERTScore (Zhou et al.,
2023) computes a similarity score of code embeddings extracted by pre-trained Code LL.Ms. How-
ever, static code similarity doesn’t reflect the dynamic semantics of programs, which gave rise to
execution-based metrics like Pass@K (Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021;
Li et al., 2022). Nonetheless, all existing NL-to-PL metrics focus only on the one-time accuracy
while overlooking whether they are self-consistent regarding a model’s own output. For PL-to-NL
evaluation, BLEU (Papineni et al., 2002) score has been the automated metric adopted by most mod-
els (Roziere et al., 2023; Li et al., 2023; Wang et al., 2023). Metrics like ROGUE (Lin, 2004), chrF
(Popovi¢, 2015), and BERTScore (Zhang et al., 2020) are also reasonable choices. However, these
static metrics fail to capture semantics separately from syntax and require ground truth references for
comparison. In this paper, we proposed a dynamic metric TOM score for self-consistency evalua-
tion, showing that it is not only effective but also compatible with all existing evaluation benchmarks
with test cases. We also show that TOM score effectively evaluates PL-to-NL Generation regardless
of ground-truth references, outperforming all aforementioned PL-to-NL metrics.

Evaluating Self-Consistency of Large Language Models. Previous studies (Minervini & Riedel,
2018; Li et al., 2019; Asai & Hajishirzi, 2020) show that LLMs behave inconsistently when given
two semantically-bonded inputs.! However, measuring those inconsistencies is different from eval-
uating a model’s self-consistency since these inputs, either hand-crafted or algorithm-synthesized
are not generated by the model itself. As LLMs become better at multitasking (Brown et al., 2020;
Ouyang et al., 2022), their self-consistency across tasks evolves into an important issue. Jiang et al.
(2023) asks LLMs to generate the answer for an arithmetic reasoning problem, replace a variable
in the original problem with an unknown z, and then instruct the same model to solve for = given
the answer it previously generated. Ohmer et al. (2023) asks LLMs to translate a question from
English to another language and instruct the same model to answer the questions in both languages.
However, both evaluation settings above rely on tasks with fixed ground truths and cannot be gen-
eralized to open-ended generation tasks where there can be multiple ground truth answers with
arbitrary lengths. In this paper, we evaluate Code LLMs on two major open-ended generation tasks:
NL-to-PL and PL-to-NL Generation.

3 FORMALIZATION

3.1 SELF-CONSISTENCY DEFINITION

Given a model M that is capable of performing both NL-to-PL and PL-to-NL Generation, let n2p
and p2n denote two instructions that respectively set M to perform NL-to-PL Generation or PL-to-
NL Generation. In practice, the instructions n2p and p2n are usually prompts. Therefore, a model
instructed to perform one of the two tasks can be defined as two functions:

Mn2p2N£—>'P£ Mp2n1P£—>Nﬁ

where PL denotes the space of all valid programs in a specific programming language and N L
denotes the space of all semantically valid and unambiguous® program specifications in a specific
natural language. For example, PL can be the space of all valid Python programs and AL can
be the space of all valid and unambiguous corresponding English specifications of these programs,
which is the setting for all experiments later in this paper.

Let nly € AL be a valid and unambiguous natural language specification, and plg = M0, (nlp) be
the program generated by the model M for nly. If the model is accurate, then ply and nly should
have the same underlying semantics.®> If we further instruct the model to generate a specification
nly = My, (plo) given ply, then the semantics of ply, nly, ply should be all identical. We call such
a property “self-consistency”. Generally, a self-consistent model should be able to perform such
translations between A/ L and PL infinitely many times without changing underlying semantics.

Note that self-consistency is a different property from accuracy. While accuracy assesses a model’s
ability to uni-directionally translate from A/ L to PL or the converse in a single step, self-consistency

"One input entails, contradicts, or is identical to the other.

*Nonsensical and ambiguous text is important in natural languages, but for NL-PL tasks, it makes more
sense to only consider a subset of the natural language that validly and unambiguously specifies programs.

3 Aside from program semantics i.e. input-output behavior, nly and ply should be also aligned regarding
pragmatic aspects like complexity, security, and human readability. In this paper, our scope is just the semantics.

Published as a conference paper at ICLR 2024

assesses the model’s ability to bidirectionally translate between the two spaces in infinitely many
steps. Therefore, a model can remain self-consistent even when it’s inaccurate, as long as it consis-
tently preserves the same error. Similarly, low self-consistency but high accuracy can also happen.

We can now formalize the above intuitions about the self-consistency of Code LLMs. Assume that
given N'L and PL, there exists a semantics space D (we don’t assume any specific definition of D)
s.t. an interpretation function sem is well-defined as the following:

sem : NLUPL — D

which means that for all pl € PL or nl € N'L, the interpretation function sem maps it uniquely to
an element in D. We define the self-consistency property as the following:

Definition 1: Self-Consistency. Given a valid and unambiguous specification nly € AL, a model
M is self-consistent w.r.t. nly if and only if

Vi € N, sem(pl;) = sem(nl;11) = sem(pli+1)

where
plo = Myop(nly), nlip1 = Mpon(pli), pliy1r = Myop(nlisq)

Aligning with the informal intuitions, our definition doesn’t consider the initial generation plj to be
semantically the same as nly. As long as, for all © € N, the three-tuple pl;, nl;;1, and pl;11 are
semantically identical, we can say that M is self-consistent w.r.. nly. If ply is semantically identical
to nly and the model is self-consistent w.r.t. nly, we can say the model is “strong self-consistent”,
since if a model is always accurate, it must be self-consistent. We formally define it as:

Definition 2: Strong Self-Consistency. Given nly € AL, a model M is strong self-consistent w.r1.
nly if and only if M is self-consistent w.r.t. nly and sem(nly) = sem(ply), where ply = My,2,(nlo).

Similar to the above definitions, we can further define self-consistency and strong self-consistency
w.r.t. an arbitrary plo € PL. Note that these two classes of definitions are not equivalent,* but for
simplicity, we adopt the self-consistency and strong self-consistency w.r.t. nlg € N L definitions.

3.2 SELF-CONSISTENCY EVALUATION

Chain of Identity Transformations. Let a model M be self-consistent w.r.t. nly. Instruct the
model to generate plg = M,2,(nly) and iteratively apply the PL-to-NL function to get nl;+1 =
Mo, (pl;) and the NL-to-PL function to get pl; 1 = M,,2,,(nl;+1). From the semantics perspective,
alternatively applying the PL-to-NL and NL-to-PL functions on ply for n € NT times is equivalent
to applying the identity transformation I in the semantics space D on sem(ply) for 2n times:

sem((Myzp © Mpon)" (plo)) = I*"(sem(ply))

The chain of transformations on ply between the language spaces AN'L and PL corresponds to a
chain of identity transformations on sem(ply) within the semantics space D. In the equation above,
the superscript n denotes the length of such an “identity chain”.

Self-Consistency Scores. To evaluate the self-consistency of a model M, it’s impossible to extend
the identity chain infinitely long or exhaust all N'£, so we approximate by picking a fixed chain
length n € N and a reasonably large subset of AL with m € N elements as an evaluation set.
We index the inputs in the evaluation setby j € N*, 1 < j < m. For an input nly ; in the evaluation
set, we check its corresponding semantic equalities sem(pl;) = sem(nl;11) = sem(pl;+1) for all
i € N,0 < i < n. We use a binary output sc,, ; € {0, 1} to indicate whether all semantic equalities
are true at the same time i.e. whether M is self-consistent w.r.t. nly ; within n steps. Similarly, we
use sscy, ; € {0,1} to denote if M is strong self-consistent w.r.t. nly ; within n steps. Finally, by
aggregating sc,, ; and ssc,, ; over all j, we can evaluate self-consistency and strong self-consistency
of M within n steps by reporting two scores SC,, and SSC,, defined as the following:
Z;nzl SCn,j S ssen

SCTL = SSCn = J
m m

*Self-consistency w.r.t. all nly € NL doesn’t imply self-consistency w.rz. all plo € PL. The converse is
also not true. The NL-to-PL function M2, can simply map all nly to the exact same plo, where M is strong
self-consistent w.r.t. plo. No claim can be made about M ’s self-consistency w.r. the entire P L space.

Published as a conference paper at ICLR 2024

4 THE IDENTITYCHAIN FRAMEWORK

4.1 EFFECTIVE SELF-CONSISTENCY EVALUATION

Determining the truth value of the semantic equalities sem(pl;) = sem(nl;11) = sem(pl;+1) can
be performed by humans. However, it’s not feasible to employ human judgment when the evaluation
set scales up. Consequently, we need automated metrics as approximations.

Inapplicability of Existing Automated Metrics. Ideal automated PL-to-NL and NL-to-PL metrics
should map a program and a natural language specification to the semantic space, and directly com-
pute their semantic distance. Given such ideal metrics, we can approximate or even determine the
truth values of sem(pl;) = sem(nl;11) and sem(nl;11) = sem(pl;+1). However, all existing met-
rics gauge the semantic equalities indirectly by computing a distance between the model-generated
candidate and a predefined ground truth reference. Specifically, all existing NL-to-PL metrics com-
pute a distance between two programs in the same programming language and all existing PL-to-NL
metrics compute a distance between two specifications in the same natural language. Unfortunately,
we do not have any predefined ground truth reference for either nl; 1 or pl; 1.’

Relaxation of the Semantic Equalities. Recall that our goal is to approximate the truth value of
the semantic equalities sem(pl;) = sem(nl;11) = sem(pl;+1). Although there are no existing
metrics to approximate the truth values of sem(pl;) = sem(nl;11) or sem(nl;11) = sem(plit1),
the third equality sem(pl;) = sem(pl;11) is feasible to gauge. We can use existing NL-to-PL
metrics to approximate this equality as they directly compute a distance between two programs in the
same programming language. In addition, if the model summarizes pl; wrongly into a semantically
different nl;41, then program pl; 11, which is supposed to be semantically identical to nl; 1, is
highly unlikely to have the exact same semantics as pl; and vice versa. Therefore, any effective NL-
to-PL metric, which approximates the truth value of sem(pl;) = sem(pl;+1), can be also considered
as an effective approximation to that of sem(pl;) = sem(nl;+1). In Table 2, we empirically show
that there is a positive correlation between them.

Design of the Test Output Match (TOM) Score. While all NL-to-PL metrics have the potential
to be self-consistency evaluation metrics, we want to pick one that best approximates the semantic
equality sem(pl;) = sem(pl;+1). As reviewed in Section 2, execution-based dynamic metrics
like Pass/Fail can directly, though not complete, gauge the code semantics, and are therefore more
preferred than static metrics like CodeBLEU. In Table 2, we empirically verify this conclusion.

The most widely used dynamic metric, Pass@K, is not directly applicable to self-consistency eval-
uation. Whether pl; passes or fails the test cases does not imply whether it is semantically identical
to pl;+1 and vice versa, so naturally, we come up with a new metric, the Pass/Fail Match (P/FM)
score, which checks if pl; and pl; 1 both pass or both fail at the same time. If both of them pass
all test cases, they must be semantically identical. If one passes while the other fails, they must
be semantically different. However, P/FM doesn’t handle the Fail-Fail situation well since pl; and
pl; 41 can fail the same test case due to completely different reasons.

We, therefore, propose another new metric, the Test Output Match (TOM) score, which compares
the exact output of pl; and pl; 1, for each test case, records 1 if the outputs match and 0 if the outputs
differ, and finally computes the percentage of matches among all test cases.

Number of Matched Outputs

TOM =
Total Number of Test Cases

For syntax errors and runtime errors like ValueError or IndexError, the TOM score is calculated by
comparing the full error message instead of just the error type. By capturing more fine-granular
semantic information, TOM score better approximates the truth value of sem(pl;) = sem(pl;i+1)
than the simple P/FM score. In Table 2, we show that TOM indeed better correlates to the human-
judged truth value, and therefore is an effective metric for self-consistency evaluation.

3Taking nl; or pl; as the ground truth reference for nl; 1 or pl;y1 is not generally applicable. For example,
if plo fails some test cases, then nl1 = Mpan (plo), which is supposed to be semantically identical to plo, must
be semantically different from nly. Therefore, nly cannot be seen as the ground truth for ni;.

Published as a conference paper at ICLR 2024

4.2 EFFICIENT SELF-CONSISTENCY EVALUATION

Efficient Evaluation by Greedy Decoding. To evaluate self-consistency up to a certain chain length
n, we use greedy decoding for both NL-to-PL and PL-to-NL Generation. Given a starting point nl,
if at some step ¢ in the chain, pl;;; is an exact match of pl;, or nl;;1 is an exact match of nl;,
then by the deterministic nature of greedy decoding, we know that the model will always generate
the same program and specification repeatedly. In such cases, we can assert that the model is self-
consistent w.r.t. pl; or nl; (not necessarily nly). Therefore, our IdentityChain framework adopts
greedy decoding and stops the chain early when exact matches are found. We show in Figure 2 that,
with greedy decoding and early stopping, self-consistent cases can be quickly determined.

4.3 HoOLISTIC EVALUATION OF CODE LLMSs

The IdentityChain framework not only effectively and efficiently evaluates the self-consistency of a
Code LLM, but also holistically evaluates multiple aspects of a model at the same time.

NL-2-PL Accuracy. The bootstrapping step from nlj to ply is exactly the canonical NL-to-PL eval-
uation setting, where we can compute the Pass@1 score to evaluate the model’s NL-to-PL accuracy.

PL-2-NL Accuracy. Unlike NL-to-PL metrics, existing PL-to-NL metrics are all static and there-
fore struggle to capture underlying semantics. As discussed in Section 4.1, by back-translating a
model-generated natural language specification into another program, we can approximate the se-
mantic equality between the original program and the specification. Therefore, the SC; score i.e. the
averaged TOM score between all ply and pl;, can be an effective metric for the model’s PL-to-NL
accuracy. In Table 2, we empirically show that TOM outperforms all existing PL-2-NL metrics.

Strong Self-Consistency. An ideal model should be both accurate and self-consistent. An accu-
rate but not self-consistent model is not trustworthy, while a self-consistent but not accurate model
is useless. The strong self-consistency score SSC,, takes both accuracy and self-consistency into
account, which serves as a comprehensive evaluation of the model’s overall performance.

Model developers can first check the SSC,, score as a performance summary and then examine the
SC,,, Pass@1, and SC; scores to determine whether the model is lacking more accuracy or self-
consistency. More importantly, with IdentityChain, it’s easy to pinpoint cases where a model is not
self-consistent to reveal subtle weaknesses of the model, as we will show in Section 6.4.

5 EXPERIMENTS

Benchmarks. We evaluate the self-consistency of Code LLMs on two widely adopted benchmarks:
HumanEval and MBPP. HumanEval (Chen et al., 2021) contains 164 hand-crafted Python prob-
lems. Liu et al. (2023) proposes HumanEvalPlus to augment HumanEval with more test coverage.
Specifically, we use HumanEvalPlus-Mini-v(.1.6 where each problem has 16.5 test cases on aver-
age. MBPP Austin et al. (2021) includes 974 crowd-sourced Python problems with 3.0 test cases for
each problem on average. For more precise evaluations, we use the test split of the sanitized version
of MBPP, which contains 257 problems manually verified by Austin et al. (2021). In both datasets,
all problems have predefined meaningful function names, for example, “has_close_elements”. If the
model generates an incorrect function body at the initial step, there can be a conflict between the
semantics of the function body and the name, which weakens the soundness of self-consistency eval-
vation. Therefore, we replace meaningful function names with a generic “func” at all steps except
the initial one, so that the model solely relies on the semantics of the function body or docstring
instead of taking shortcuts using the function name. See Appendix C for a concrete example.

Models. We evaluate two types of Code LLMs: foundation models and instruction-tuned models.
For foundation models, we evaluate two open-source model families, StarCoderBase (Li et al., 2023)
and Code Llama (Roziere et al., 2023). For instruction-tuned models, we evaluate the instruction-
tuned versions of Code Llama and StarCoderBase, Google’s Gemini-1.0-Pro-001° (Team, 2023),
and three most capable OpenAl models: GPT-3.5-Turbo-0613, GPT-4-0613, and GPT-4-0125-

SWe set the temperature to 0.2 for Gemini since the API sometimes returns no response due to its recitation
or safety filtering mechanism. To compare with other models using temperature 0.2, see Figure 3 and 5.

Published as a conference paper at ICLR 2024

Preview (the latest GPT-4-Turbo snapshot). For models from Google and OpenAl, we choose the
parameter-frozen snapshots of them so that the results can be reproduced.

Prompts. We use one-shot prompting for all the models on both benchmarks to better guide the
model to generate the expected format.” For instruction-tuned models, we formulate the prompt
as chats (Ouyang et al., 2022), where the “system” role provides general instructions, the “user”
role provides the input of the one-shot example, and the “assistant” role provides the output of the
one-shot example. For foundation models, the prompt is only the one-shot example. To maximize
the capacity of all Code LLMs, we carefully customize the prompt template for each model. See the
“examples” folder in our code repository for details of the prompt templates. See Appendix B for
detailed hardware and software configurations of all experiments.

6 RESULTS

6.1 SELF-CONSISTENCY OF CODE LLMsS

Code LLMs Fail to Preserve Self-Consistency. We observe in Table 1 that all models’ self-
consistency and strong self-consistency decreases as the number of iteration steps increases. For
example, all models’ SSC5 scores, which assess strong self-consistency within five steps, evidently
decline up to 78.0% compared to the initial Pass@1.% Regardless of the accuracy of the initial gen-
eration, all models” SC5 scores, which assess self-consistency within five steps, also decline up to
43.8% compared to SC;. Such a performance drop indicates that while the models might be initially
(strong) self-consistent, they are not able to preserve it. In Section 6.4, we delve deeper into the
some of root-cause errors that trigger violations of (strong) self-consistency.

HumanEvalPlus MBPP Sanitized
Model Size pas@1 SSC; SC; SCs Pass@1 SSC; SC, SCs
Instruction-tuned Models
Gemini-Pro® N/A 54.6 20.2 1 63.0% 442 27.6 | 37.6% 57.2 30.7 L 46.3% 619 444 | 28.3%
GPT-4-Turbo N/A 81.0 59.5 126.5% 81.0 68.1 1 15.9% 73.9 61.5 168% 856 77.819.1%
GPT-4 N/A 74.8 63.8 1 14.8% 84.0 76.119.5% 72.8 62.6 | 13.90% 88.7 82.517.0%
GPT-3.5 N/A 71.8 40.5 1 43.6% 56.4 50.3 | 10.9% 68.9 549 1203% 864 763 11.7%

7B 16.08 43 1 73.1% 17.8 141 1 20.7% 22.2 11.7 para%n 307 253 | 17.7%
13B 30.7 17.8 L 42.0% 40.5 33.1 | 18.2% 40.5 23.0 L 43.3% 502 42.8 | 14.7%
StarChat-Beta 15B 25.2 5.5178.0% 19.6 11.0 | 43.8% 32.3 7.8 175.9% 148 11.3 | 23.7%
Foundation Models

7B 23.9% 8.0166.7% 22.1 19.0]13.9% 38.9 20.6 | 47.0% 45.1 43.6 | 3.4%

CodeLlama-Inst

Codellama 3B 356 98,man 178 14.1,207% 463 230 s04% 479 4201 122%
1B 11.0 3.7166.7% 12.3 9.8 1 20.0% 28.8 11.3 1608% 342 31.5180%
StarCoderBase 3B 17.8 49 1 724% 123 11.0 L 10.0% 37.4 144 1 61.5% 393 342 12.9%

7B 24.5 8.6 165.0% 19.0 16.0 1 16.1% 43.6 23.0 L 47.3% 47.1 43.6 | 7.4%
15B 27.0 8.01705% 209 17.2117.6% 44.0 21.0 | 52.2% 447 41.2 1 7.8%

Table 1: Performance of Code LLMs evaluated by IdentityChain. Pass@]1 indicates the NL-to-PL
accuracy. SC; representing self-consistency within 1 step indicates PL-to-NL accuracy. SC5 repre-
sents self-consistency within 5 steps and SSCj5 represents strong self-consistency within 5 steps.

Self-Consistency is Different from Conventional Accuracy. Existing evaluations of Code LLMs
refer to conventional accuracy (e.g. Pass@K) as the model’s overall capacity, which is confirmed by
our results in Table 1: larger models in the same model families indeed have higher Pass@1 scores.
However, results in Table 1 show that stacking more parameters does not necessarily guarantee
improvement of self-consistency. For example, the Pass@1 score of StarChat-Beta (15B), which
indicates accuracy, is higher than Code Llama-Instruct-7B for both benchmarks, but the SC5 score
of the former, which indicates self-consistency, is lower than the latter for both benchmarks. For
another example, while StarCoderBase-7B performs worse than StarCoderBase-15B in Pass@1 for
both benchmarks, it outperforms the double-sized version of itself in SSCs, which indicates strong
self-consistency, for both benchmarks.

"For MBPP, we use task 2 in the prompt split as the one-shot example. For HumanEvalPlus, since there’s
no dedicated prompt split, we use HumanEval/0 as the one-shot example and exclude it from experiments.

8For Code Llama-Instruct and Code Llama 7B, the Pass@ 1 we measured are noticeably different from those
reported by Roziere et al. (2023). We conjecture that it might be caused by the models’ sensitivity to prompts.

Published as a conference paper at ICLR 2024

Moreover, conventional accuracy can underestimate the capability difference between models, and
self-consistency complements the drawback. For example, GPT-4, which is recognized to be sig-
nificantly more capable than GPT-3.5, reports a Pass@]1 score of 74.8 on HumanEvalPlus, which
is only a 4.2% relative improvement compared to GPT-3.5. However, GPT-4 is significantly more
self-consistent. It achieves an SC5 score of 76.1, which is 51.2% higher than GPT-3.5, highlighting
that there is a non-trivial capability gap between GPT-4 and GPT-3.5.

6.2 EFFECTIVENESS OF TOM SCORE

To show the effectiveness of TOM, we excerpt a 1-step chain (nlo, plg, nly, ply) from an Identity-
Chain experiment of GPT-3.5, and gathered human-judged ground truth of whether nl; is semanti-
cally identical to ply i.e. sem(plo) = sem(nly).”

Metric r p T
Metric r_ P 7 BLEU 285 275 227
EM 285 285 285 ROUGE-L 254 239 .196
CodeBLEU .179 173 .144 chrF 271 256 210
P/FM 204 202 292 BERTScore 381 .389 .319
TOM 461 454 410 TOM 500 482 445

Table 2: Pearson (), Spearman (p), and Kendall-Tau (7) correlations with human-judged ground
truth of whether pl is semantically identical to nl;, the model-generated docstring for pl.

TOM is Effective for Self-Consistency Evaluation. We compared TOM to two static PL space
metrics: Exact Match (EM) and CodeBLEU and the naive dynamic metric Pass/Faill Match (P/FM)
using Pearson (r), Spearman (p), and Kendall-Tau (7) correlations with human judgment in Ta-
ble 2. Recall our conjectures in Section 4.1: PL space metrics can approximate the truth value of
sem(ply) = sem(nly), dynamic metrics are better than static ones, and the fine-grained TOM score
is better than naive P/FM. All three conjectures are verified in this experiment.

TOM is Effective for PL-to-NL Evaluation. Within the same experiment setting, we compare
TOM with four NL space metrics: BLEU, ROUGE-L, chrF, and BERTScore in Table 2. Note that
for this comparison, the correlations are only computed on 117 out of the total 163 problems where
plo passes all test cases. Otherwise, if plj is not semantically the same as nly, we can’t use nlj as a
ground truth reference for nl; to calculate those NL space metrics. We show that TOM outperforms
all NL space metrics given that their ground truth references exist, not to mention that TOM works
well for the remaining 46 problems, for which the ground truth references are absent.

6.3 EFFICIENCY OF GREEDY DECODING

Greedy Decoding Efficiently

=fl= GPT-4 == CL-Inst-13B == StarChat == GPT-4 == CL-Inst-13B =#= StarChat
Evaluates Self-Consistency. We ~# GPT-3.5=8#= CL-138 - SCB-15B ~f GPT-3.5=#= CL-138 @ SCB-15B
find that using greedy decoding, ol 50 -\Kiﬂ |

IdentityChain efficiently reveals % g A
most not self-consistent cases
within the initial three steps. Fig-
ure 2 shows an evident decline
of both SC; and SSC; scores
within the first three steps. After
that, all models stabilize or show
only minimal decreases in their

s shatls Tl el]

(strong) self-consistency scores, ¢ 3 B 8 % 8 2 2 g2 ! 5
which underscores the efficiency of
IdentityChain as an evaluation tool. Figure 2: SSC; and SC; at Computed Each Step i.

Although we set the chain length to
five in our experiments, for mode developers and researchers with tighter time limits or computing
resources, it’s reasonable to choose a shorter chain length when using greedy decoding.

“Different from the grading policy used in Chen et al. (2021), which ignores incorrect input-output examples
in the generated docstrings, we consider a docstring with correct description but wrong examples still wrong.

Published as a conference paper at ICLR 2024

Instruction-tuned Models Foundation Models
50 i 16
Greedy Decoding Results are Gen- ‘ 1d
eralizable to Different Tempera- 40 \,,\' 13 %
tures. To show the generalizabil- LN A BT "\
1 1 W= GPT-3.5 A\ @~ SCB-7B
ity of greedy decoding results, we 8 \ e || § o ¥ =
additionally evaluate the SCs score 20 s censtze T LN \‘ -@- sce-18
at four different temperatures. As ~ \ i K ™~
illustrated in Figure 3, while the 10 SR , TRy
o ~
SCs scores of all models decrease G BT 5 So
as the temperature increases, their 00 02 04 o6 o8 00 02 04 06 o8
relative rankings mostly remain i.e. Temperature Temperature

more self-consistent models are al-
ways more self-consistent regardless
of temperature, which shows that the greedy decoding results are indeed generalizable. Moreover,
it is reasonable that the absolute self-consistency of all models drops as the temperature increases.
There is always a balance between exploration, which introduces novel solutions but weakens self-
consistency, and exploitation, which ensures self-consistency but may overlook novel solutions.

Figure 3: SC; Evaluated at Different Temperatures.

From our observations, greedy decoding is both more efficient and more appropriate for self-
consistency evaluation. See Appendix D for the SSC5 scores evaluated at different temperatures.

6.4 IDENTITYCHAIN AS A MODEL DEBUGGING TOOL

Evaluating Code LLMs with IdentityChain, we can easily pinpoint the cases where the model is
not self-consistent. Studying these non-self-consistent cases, we identify three major weaknesses of
current models in code understanding, which are not captured by accuracy-oriented evaluations.

Code LLMs Have Weak Sense of Data Types. We observe that Code LLMs are not sensitive to
data types. In all programming languages, data type is a fundamental element that specifies how
variables should be stored, manipulated, and interacted with. However, we find that current models
tend to overlook data type information. We show such an example in Appendix Figure 6. Inaccurate
interpretations of data types will inevitably result in erroneous code usage. In real software develop-
ment scenarios, it can lead to intricate issues like memory management, performance bottlenecks,
or unexpected behaviors during code execution (Ding et al., 2022; He & Vechev, 2023).

Code LLMs Have Weak Sense of Implicit Code Semantics. We observe that Code LL.Ms cannot
accurately capture the implicit code semantics, which is a major root cause of non-self-consistency.
Current models tend to only capture the shallow semantics that are explicitly presented in the pro-
gram while overlooking the implicit logic. For example, they tend to only summarize the explicit
if-checks while ignoring the implicit else-branch. We show two concrete examples in Appendix
Figure 7. Ignoring implicit code semantics during PL-to-NL Generation will unavoidably result in
misleading or ambiguous documentation in real development scenarios.

Code LLMs Have Weak Sense of Code Execution. We also observe that Code LLMs cannot ac-
curately predict the execution outcomes Austin et al. (2021); Ding et al. (2023a). Specifically, when
instructed to summarize programs, the models often generate correct natural language specifications
but incorrect input-output examples. We show two concrete examples in Appendix Figure 8. This
weakness is particularly concerning if we want to generate test cases to guide the entire software
development process (Test-Driven Development), which underscores the importance of aligning the
models’ PL-to-NL Generation ability with their understanding of code execution.

7 CONCLUSION

In conclusion, we reveal that different from accuracy, self-consistency is indeed a crucial missing
link in current evaluations of Code LLMs, and IdentityChain effectively and efficiently bridges the
gap. More importantly, IdentityChain can be used not only as a holistic evaluation tool but also
as a model debugging tool that helps model developers study weaknesses in their models and thus
potentially inspire future improvements. See Appendix A for future directions that potentially extend
the scope of self-consistency evaluation or improve current Code LLMs using IdentityChain.

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

We would like to thank Qianyu Gu, Nan Jiang, and Sophia Su for valuable discussions. This
work was supported in part by an IBM Ph.D. Fellowship, DARPA/NIWC-Pacific N66001-21-C-
4018, NSF CNS-1845995, CNS-2247370, CCF-2221943, CCF-2313055, CCF-1845893, and CCF-
2107405. Any opinions, findings, conclusions, or recommendations expressed herein are those of
the authors and do not necessarily reflect those of IBM, DARPA, or NSF.

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for
program understanding and generation. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 2655-2668, Online, June 2021. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2021.naacl-main.211.

Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regularization for con-
sistent question answering, 2020.

Jacob Austin, Augustus Odena, Maxwell 1. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Pro-
gram synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray, and Saikat
Chakraborty. Towards learning (dis)-similarity of source code from program contrasts. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 6300-6312, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.436. URL https://aclanthology.org/2022.
acl-long.436.

Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
Execution-aware pre-training for source code, 2023a.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly modeling
in-file and cross-file context, 2023b.

GitHub. Github copilot x: The ai-powered developer experience, 2023. URL https://github.
blog/2023-03-22-github-copilot-x-the-ai-powered-developer—-experience/.

10

Published as a conference paper at ICLR 2024

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adver-
sarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS’23), 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021.

Srinivasan Iyer, loannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code
in programmatic context, 2018.

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James T. Kwok.
Forward-backward reasoning in large language models for verification, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, Jodo
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for consistency
of neural models, 2019.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, R¢ mi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with AlphaCode. Science, 378(6624):1092-1097, dec 2022. doi: 10.1126/science.
abql158. URL https://doi.org/10.1126%2Fscience.abgll58.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74-81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie LIU. CodeXGLUE: A machine learning benchmark dataset for code
understanding and generation. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 1), 2021. URL https://openreview.net/
forum?id=61E4dQXaUcb.

Pasquale Minervini and Sebastian Riedel. Adversarially regularising neural nli models to integrate
logical background knowledge, 2018.

Xenia Ohmer, Elia Bruni, and Dieuwke Hupkes. Separating form and meaning: Using self-
consistency to quantify task understanding across multiple senses, 2023.

OpenAl. Code interpreter: An experimental chatgpt model that can use python, handle uploads and
downloads, 2023. URL https://openai.com/blog/chatgpt-plugins.

11

Published as a conference paper at ICLR 2024

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311-318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language
models reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 27496-27520. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.
press/v202/pei23a.html.

Maja Popovic¢. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pp. 392-395, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/W15-3049. URL https:
//aclanthology.org/W15-3049.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis,
2020.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code, 2023.

Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu
Chen. Repocoder: Repository-level code completion through iterative retrieval and generation.
arXiv preprint arXiv:2303.12570, 2023.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert, 2020.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
generation with pretrained models of code, 2023.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K.
Reddy. Xlcost: A benchmark dataset for cross-lingual code intelligence, 2022.

12

Published as a conference paper at ICLR 2024

A FUTURE WORK

Introducing PL-to-PL and NL-to-NL Generation. It is natural to extend the self-consistency
definitions on a large set of multiple programming and natural languages by introducing PL-to-PL
Generation i.e. Code Translation and NL-to-NL Generation i.e. Machine Translation. In practice,
IdentityChain can be improved to support more programming languages and natural languages.

Studying Weaknesses of Code LLMs. Following the three examples in Section 6.4, future work
can further identify and categorize more subtle weaknesses in Code LLMs. More importantly, we
encourage future work to investigate the relationship between those weaknesses and the training
data. It is possible that the weaknesses are barely addressed within current training paradigms.

Fine-tuning Code LLMs for Better Self-Consistency. It is not yet clear how we can improve the
self-consistency of Code LLMs. For a model with imbalanced NL-to-PL and PL-to-NL accuracy,
fine-tuning the task that the model performs worse can possibly work. For a model with balanced
accuracy, we might need to customize a fine-tuning dataset that contains input-output pairs gener-
ated by the model itself. Many fair hypotheses can be made following this line of reasoning. We
encourage future work to raise more and test them accordingly.

B EXPERIMENT CONFIGURATIONS

For all models, we use greedy decoding for our main experiment in Section 6.1. The closed-source
OpenAl models GPT-3.5 and GPT-4 are non-deterministic and there is no way to set them to perform
greedy decoding using APIs. Therefore, we set the temperature to 0 to minimize the randomness.

For open-source models, all model checkpoints are downloaded using the Python library “trans-
formers” from Hugging Face. Note that we downloaded Code Llama and Code Llama-Instruct,
from https://huggingface.co/codellama instead of the link provided by Meta Al. We
run open-source model experiments on NVIDIA RTX A6000 GPUs with CUDA 11.3, cuDNNS-
devel, PyTorch 1.12.1, and Python 3.10.9. For efficiency, we set the max prompt length to be 1,024
tokens, the max generation length to be 512 tokens, and the inference precision to be FP16.

13

Published as a conference paper at ICLR 2024

C REPLACING MEANINGFUL FUNCTION NAMES

ﬁumanEvalﬁs \
def

is_simple_power(x, n):

"""Your task is to write a function that
returns true if a number x is a simple power
of n and false in other cases.

x is a simple power of n if n**int=x

For example:

is_simple_power(1l, 4) => true ~o

is_simple_power(2, 2) => true ~

is_simple_power(8, 2) => true N

is_simple_power(3, 2) => false \

is_simple_power(3, 1) => false

\ is_simple_power(5, 3) => false / E

Inaccurate

if x ==
return True
for i in range(2, int(x ** @0.5) + 1):
if x %1 ==

Keep Function Name return False

return True

Replace Function Name

def is_simple_power(x, n): def func(x, n):
if x == 1: if x ==
return True return True
- for i in range(2, int(x ** 0.5) + 1): for i in range(2, int(x ** 0.5) + 1): [~ _
R if x % i == e: if x % i == 0: s
L, return False return False \
4 return True return True !

@ Not Self-Consistent Self-Consistent @

"""Check if a given number is a simple

\ power of another number. A simple power is '
* defined as a number that can be expressed as """Check if a given number is prime. L,
‘\\ x*n, where x is a positive integer and n is >>> func(5, 2) R
S a positive integer greater than 1. True --"
Examples: >>> func(1e, 3)

>>> is_simple_power(8, 2) True False

>>> is_simple_power(27, 3) True
>>> is_simple_power(10, 2) False

Figure 4: Replacing Meaningful Function Names with A Generic "func”. Given the docstring with
the original function name, GPT-3.5 generates an incorrect program that conflicts with the function
name. When further summarizing that program along with the original function name, GPT-3.5
completely ignores the code and generates a new docstring based on the function name. In this
case, we will falsely conclude that GPT-3.5 is not self-consistent. However, when summarizing
the program along with a generic name “func” in replacement, GPT-3.5 correctly captures the code
semantics and thus is self-consistent w.r.z. the original docstring. Therefore, when generating nl;
and pl; for ¢ > 1, we replace the original meaningful function name with the generic “func”.

14

Published as a conference paper at ICLR 2024

D GENERALIZABILITY OF GREEDY DECODING

Instruction-tuned Models Foundation Models
40 3
u\ NN
35 \
> --l--~ﬂl-\‘h- 6

25 i :

e 5% =B GPT-3.5 i ﬂ\ \ -0~ SCB-78

@A =de= CL-nst-13B | 7 4 |- =®= SCB-3B |

n 4 & B n \ -®- 2
- \ “A= CLnst-7B | 5 ‘\ @ SCB-1B

10 2 e) i

\\ = e -’v-‘:}\

N i~ - YN
A= ——ar *
6 s i-st.ﬁ 0 \‘7
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Temperature Temperature

Figure 5: SSCj5 Evaluated at Different Temperatures. Similar to the SCy results in Section 6.3, for
the strong self-consistency score SSCs, the relative rankings of models mostly remain regardless of
temperature i.e. more strong self-consistent models are always more strong self-consistent no matter

the temperature, which confirms that greedy results are generalizable to different temperatures.

E EXAMPLES OF CODE LLMS’ WEAKNESSES

GPT-3.5 Implementation for HumanEval/92

def func(x, y, z):
if isinstance(x, int) and isinstance(y, int) and isinstance(z, int):
if X=y+zory=x+2zo0rz==x=+yY:
return True
return False

GPT-3.5 Summarization of the Above Code

"""Check if any two numbers in the given three numbers add up to the third number.
>>> func(1, 2, 3)

True ®
>>> func(4, 5, 6)

False Fail to Capture The Data Type Checking

Figure 6: Code LLMs Have Weak Sense of Data Types. The implementation checks whether all
three inputs are type int at the same time, but the summarization only mentions that the inputs are

three “numbers” failing to capture the data type information.

15

Published as a conference paper at ICLR 2024

GPT-3.5 Implementation for HumanEval/102

def func(x, y):
max_even = -1
for num in range(x, y + 1):
if num % 2 == @ and num > max_even:
max_even = num
return max_even

GPT-3.5 Implementation for HumanEval/69

def func(lst):
freq_dict = {}
for num in 1st:
if num in freq_dict:
freq_dict[num] += 1
else:
freq_dict[num] = 1
max_num = -1
for num, freq in freq_dict.items():
if freq >= num and num > max_num:
max_num = num
return max_num

GPT-3.5 Summarization of the Above Code

GPT-3.5 Summarization of the Above Code

"""Find the largest even number between two
given numbers.

>>> func(1l, 10)

10

>>> func(5, 15)

14

"""Find the largest number in the given list
that appears at least as many times as its
value.

>>> func([l, 2, 3; 3r 4r 41 4])

4

>>> func([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])

3

® Fail to Capture The Implicit Else-Branch ®

Figure 7: Code LLMs Have Weak Sense of Implicit Code Semantics. In the left example, the
implementation has an implicit “else” branch that returns —1 when no even number is found. In the
right example, the implementation also has an implicit “else” branch that returns —1 when no larger
satisfying number is found. However, both summarizations fail to capture that implicit logic.

GPT-3.5 Implementation for HumanEval/39

GPT-3.5 Implementation for HumanEval/6

from typing import List
def func(paren_string: str) -> List[int]:
result = []
for group in paren_string.split():
max_depth = 0
current_depth = @
for char in group:
if char == '(":
current_depth += 1
max_depth = max(max_depth, current_depth)
elif char == ')":
current_depth -= 1
result.append(max_depth)
return result

def func(n: int):
def is_prime(num):
if num < 2:
return False
for i in range(2, int(num %k 0.5) + 1):
if num % i == 0:
return False
return True
fib_nums = [0, 1]
count = 2
while count < n:
fib_nums.append(fib_nums[-1] + fib_nums[-2])
if is_prime(fib_nums[-11):
count += 1
return fib_nums[-1]

GPT-3.5 Summarization of the Above Code

GPT-3.5 Summarization of the Above Code

"""Given a string of parentheses, return a list of the
maximum depth of each group of parentheses.

>>> func("((())) () O")

[3, 1, 1]

>>> func("() () (")
[1, 1, 1]

>>> func("((())())")

[4]

"""Find the nth Fibonacci number that is also a prime
number.
>>> func(1)

>>> func(5)
13
>>> func(10)
8

Figure 8: Code LLMs Have Weak Sense of Code Execution. In both examples, some input-output
pairs in the summarization are wrong, which means that the model fails to predict execution.

16

